
Worked Examples from Introductory Physics
(Algebra–Based)

Vol. I: Basic Mechanics

David Murdock, TTU

October 3, 2012



2



Contents

Preface i

1 Mathematical Concepts 1
1.1 The Important Stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Measurement and Units in Physics . . . . . . . . . . . . . . . . . . . 1
1.1.2 The Metric System; Converting Units . . . . . . . . . . . . . . . . . . 2
1.1.3 Math: You Had This In High School. Oh, Yes You Did. . . . . . . . . 3
1.1.4 Math: Trigonometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.5 Vectors and Vector Addition . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.6 Components of Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Worked Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 Measurement and Units . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Trigonometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Vectors and Vector Addition . . . . . . . . . . . . . . . . . . . . . . . 14

2 Motion in One Dimension 19
2.1 The Important Stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2 Speed and Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.3 Motion With Constant Velocity . . . . . . . . . . . . . . . . . . . . . 20
2.1.4 Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.5 Motion Where the Acceleration is Constant . . . . . . . . . . . . . . 21
2.1.6 Free-Fall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Worked Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Motion Where the Acceleration is Constant . . . . . . . . . . . . . . 23
2.2.2 Free-Fall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Motion in Two Dimensions 33
3.1 The Important Stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Motion in Two Dimensions, Coordinates and Displacement . . . . . . 33

3



4 CONTENTS

3.1.2 Velocity and Acceleration . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.3 Motion When the Acceleration Is Constant . . . . . . . . . . . . . . . 35
3.1.4 Free Fall; Projectile Problems . . . . . . . . . . . . . . . . . . . . . . 36
3.1.5 Ground–To–Ground Projectile: A Long Example . . . . . . . . . . . 36

3.2 Worked Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.1 Velocity and Acceleration . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 Motion for Constant Acceleration . . . . . . . . . . . . . . . . . . . . 40
3.2.3 Free–Fall; Projectile Problems . . . . . . . . . . . . . . . . . . . . . . 41

4 Forces I 49
4.1 The Important Stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.2 Newton’s 1st Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1.3 Newton’s 2nd Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1.4 Units and Stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.5 Newton’s 3rd Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.6 The Force of Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.7 Other Forces Which Appear In Our Problems . . . . . . . . . . . . . 54
4.1.8 The Free–Body Diagram: Draw the Damn Picture! . . . . . . . . . . 56
4.1.9 Simple Example: What Does the Scale Read? . . . . . . . . . . . . . 56
4.1.10 An Important Example: Mass Sliding On a Smooth Inclined Plane . 58
4.1.11 Another Important Example: The Attwood Machine . . . . . . . . . 61

4.2 Worked Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.1 Newton’s Second Law . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.2 The Force of Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.3 Applying Newton’s Laws of Motion . . . . . . . . . . . . . . . . . . . 65

5 Forces II 69
5.1 The Important Stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.2 Friction Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.3 An Important Example: Block Sliding Down Rough Inclined Plane . 70
5.1.4 Uniform Circular Motion . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.5 Circular Motion and Force . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1.6 Orbital Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Worked Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.1 Friction Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.2 Uniform Circular Motion . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.3 Circular Motion and Force . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.4 Orbital Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



CONTENTS 5

6 Energy 87

6.1 The Important Stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1.2 Kinetic Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1.3 Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1.4 The Work–Energy Theorem . . . . . . . . . . . . . . . . . . . . . . . 89
6.1.5 Potential Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1.6 The Spring Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.1.7 The Principle of Energy Conservation . . . . . . . . . . . . . . . . . . 91

6.1.8 Solving Problems With Energy Conservation . . . . . . . . . . . . . . 92
6.1.9 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 Worked Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2.1 Kinetic Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2.2 The Spring Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.3 Solving Problems With Energy Conservation . . . . . . . . . . . . . . 94

7 Momentum 99
7.1 The Important Stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.1.1 Momentum; Systems of Particles . . . . . . . . . . . . . . . . . . . . 99
7.1.2 Relation to Force; Impulse . . . . . . . . . . . . . . . . . . . . . . . . 99

7.1.3 The Principle of Momentum Conservation . . . . . . . . . . . . . . . 100
7.1.4 Collisions; Problems Using the Conservation of Momentum . . . . . . 102

7.1.5 Systems of Particles; The Center of Mass . . . . . . . . . . . . . . . . 104
7.1.6 Finding the Center of Mass . . . . . . . . . . . . . . . . . . . . . . . 105

7.2 Worked Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8 Rotational Kinematics 107

8.1 The Important Stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.1.1 Rigid Bodies; Rotating Objects . . . . . . . . . . . . . . . . . . . . . 107

8.1.2 Angular Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.1.3 Angular Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.1.4 Angular Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.1.5 The Case of Constant Angular Acceleration . . . . . . . . . . . . . . 111

8.1.6 Relation Between Angular and Linear Quantities . . . . . . . . . . . 112
8.2 Worked Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.2.1 Angular Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.2.2 Angular Velocity and Acceleration . . . . . . . . . . . . . . . . . . . 113

8.2.3 Rotational Motion with Constant Angular Acceleration . . . . . . . . 114
8.2.4 Relation Between Angular and Linear Quantities . . . . . . . . . . . 114



6 CONTENTS

9 Rotational Dynamics 117
9.1 The Important Stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9.1.2 Rotational Kinetic Energy . . . . . . . . . . . . . . . . . . . . . . . . 117
9.1.3 More on the Moment of Inertia . . . . . . . . . . . . . . . . . . . . . 119
9.1.4 Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
9.1.5 Another Way to Look at Torque . . . . . . . . . . . . . . . . . . . . . 124
9.1.6 Newton’s 2nd Law for Rotations . . . . . . . . . . . . . . . . . . . . . 124
9.1.7 Solving Problems with Forces, Torques and Rotating Objects . . . . . 125
9.1.8 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
9.1.9 Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
9.1.10 Rolling Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.1.11 Example: Round Object Rolls Down Slope Without Slipping . . . . . 130
9.1.12 Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

9.2 Worked Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
9.2.1 The Moment of Inertia and Rotational Kinetic Energy . . . . . . . . 135

10 Oscillatory Motion 137
10.1 The Important Stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

10.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
10.1.2 Harmonic Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
10.1.3 Displacement, Velocity and Acceleration . . . . . . . . . . . . . . . . 140
10.1.4 The Reference Circle . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
10.1.5 A Real Mass/Spring System . . . . . . . . . . . . . . . . . . . . . . . 144
10.1.6 Energy and the Harmonic Oscillator . . . . . . . . . . . . . . . . . . 145
10.1.7 Simple Pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
10.1.8 Physical Pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

10.2 Worked Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
10.2.1 Harmonic Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
10.2.2 Mass–Spring System . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
10.2.3 Simple Pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

11 Waves I 151
11.1 The Important Stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

11.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
11.1.2 Principle of Superposition . . . . . . . . . . . . . . . . . . . . . . . . 152
11.1.3 Harmonic Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
11.1.4 Waves on a String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
11.1.5 Sound Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
11.1.6 Sound Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158



CONTENTS 7

11.1.7 The Doppler Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
11.2 Worked Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

11.2.1 Harmonic Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
11.2.2 Waves on a String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
11.2.3 Sound Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162



8 CONTENTS



Preface

This booklet can be downloaded free of charge from:

http://iweb.tntech.edu/murdock/books.html

The date on the cover page serves as an edition number. I’m continually tinkering with
these booklets.

This book is:

• A summary of the material in the first semester of the non–calculus physics course as
I teach it at Tennessee Tech.

• A set of example problems typical of those given in non–calculus physics courses solved
and explained as well as I know how.

It is not intended as a substitute for any textbook suggested by a professor. . . at least not
yet! It’s just here to help you with the physics course you’re taking. Read it alongside the
text they told you to buy. The subjects should be in the rough order that they’re covered
in class, though the chapter numbers won’t exactly match those in your textbook.

Feedback and errata will be appreciated. Send mail to me at:

murdock@tntech.edu
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Chapter 1

Mathematical Concepts

1.1 The Important Stuff

1.1.1 Measurement and Units in Physics

Physics is concerned with the relations between measured quantities in the natural world. We
make measurements (length, time, etc) in terms of various standards for these quantities.

In physics we generally use the “metric system”, or more precisely, the SI or MKS
system, so called because it is based on the meter, the second and the kilogram.

The meter is related to basic length unit of the “English” system —the inch— by the
exact relations:

1 cm = 10−2 m and 1 in = 2.54 cm

From this we can get:

1m = 3.281 ft and 1km = 0.6214mi

Everyone knows the (exact) relations between the common units of time:

1minute = 60 sec 1 hour = 60min 1day = 24h

and we also have the (pretty accurate) relation:

1 year = 365.24days

Finally, the unit of mass is the kilogram. The meaning of mass is not so clear unless
you have already studies physics. For now, suffice it to say that a mass of 1 kilogram has a
weight of — pounds. Later on we will make the distinction between “mass” and “weight”.

1



2 CHAPTER 1. MATHEMATICAL CONCEPTS

1.1.2 The Metric System; Converting Units

To make the SI system more convenient we can associate prefixes with the basic units to
represent powers of 10. The most commonly used prefixes are given here:

Factor Prefix Symbol

10−12 pico- p
10−9 nano- n
10−6 micro- µ
10−3 milli- m
10−2 centi- c
103 kilo- k
106 mega- M
109 giga- G

Some examples:
1ms = 1millisecond = 10−3 s

1µm = 1micrometer = 10−6 s

Oftentimes in science we need to change the units in which a quantity is expressed.
We might want to change a length expressed in feet to one expressed in meters, or a time
expressed in days to one expressed in seconds.

First, be aware that in the math we do for physics problems a unit symbol like ‘cm”
(centimeter) or ”yr” (year) is treated as a multiplicative factor which we can cancel if the
same factor occurs in the numerator and denominator. In any case we can’t simply ignore
or erase a unit symbol.

With this in mind we can set up conversion factors, which contain the same quantity on
the top and bottom (and so are equal to 1) which will cancel the old units and give new
ones.

For example, 60 seconds is equal to one minute. Then we have

(

60 s

1min

)

= 1

so we can multiply by this factor without changing the value of a number. But it can give
us new units for the number. To convert 8.44min to seconds, use this factor and cancel the
symbol “min”:

8.44min = (8.44min)
(

60 s

1min

)

= 506 s
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x

y

x y

z

(a) (b)

Figure 1.1: (a) Rectangle with sides x and y. Area is A = xy. I hope you knew that. (b) Rectangular box
with sides x, y and z. Volume is V = xyz. I hope you knew that too.

If we have to convert 3.68× 104 s to minutes, we would use a conversion factor with seconds
in the denominator (to cancel what we’ve got already; the conversion factor is still equal to
1). So:

3.68 × 104 s = (3.68 × 104 s)
(

1min

60 s

)

= 613min

1.1.3 Math: You Had This In High School. Oh, Yes You Did.

The mathematical demands of a “non–calculus” physics course are not extensive, but you
do have to be proficient with the little bit of mathematics that we will use! It’s just the stuff
you had in high school. Oh, yes you did. Don’t tell me you didn’t.

We will often use scientific notation to express our numbers, because this allows us
to express large and small numbers conveniently (and also express the precision of those
numbers). We will need the basic algebra operations of powers and roots and we will solve
equations to find the “unknowns”.

Usually the algebra will be very simple. But if we are ever faced with an equation that
looks like

ax2 + bx + c = 0 (1.1)

where x is the unknown and a, b and c are given numbers (constants) then there are two
possible answers for x which you can find from the quadratic formula:

x =
−b±

√
b2 − 4ac

2a
(1.2)

On occasion you will need to know some facts from geometry. Starting simple and working
upwards, the simplest shapes are the rectangle and rectangular box, shown in Fig. 1.1. If
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R R

(a) (b)

D

Figure 1.2: (a) Circle; C = πD = 2πR; A = πR2. (b) Sphere; A = 4πR2; V = 4
3
πR3. You’ve seen these

formulae before. Oh, yes you have.

R

h h

A

(a) (b)

Figure 1.3: (a) Circular cylinder of radius R and height h. Volume is V = πR2h. (b) Right cylinder of
arbitrary shape. If the area of the cross section is A, the volume is V = Ah.

the rectangle has sides x and y its area is A = xy. Since it is the product of two lengths ,
the units of area in the SI system are m2. For the rectangular box with sides x, y and z, the
volume is V = xyz. A volume is the product of three lengths so its units are m3.

Other formulae worth mentioning here are for the circle and the sphere; see Fig. 1.2.
A circle is specified by its radius R (or its diameter D, which is twice the radius). The

distance around the circle is the circumference, C . The circumference and area A of the
circle are given by

C = πD = 2πR A = πR2 (1.3)

A sphere is specified by its radius R. The surface area A and volume V of a sphere are
given by

A = 4πR2 V = 4
3
πR3 (1.4)

Another simple shape is the (right) circular cylinder, shown in Fig. 1.3(a). If the cylinder
has radius R and height h, its volume is V = πR2h. This is a special case of the general
right cylinder (see Fig. 1.3(b)) where if the area of the cross section is A and the height is
h, the volume is V = Ah.
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a

b

c

q

f

Figure 1.4: Right triangle with sides a, b and c.

1.1.4 Math: Trigonometry

You will also need some simple trigonometry. This won’t amount to much more than relating
the sides of a right triangle, that is, a triangle with two sides joined at 90◦.

Such a triangle is shown in Fig. 1.4. The sides a, b and c are related by the Pythagorean
Theorem:

a2 + b2 = c2 =⇒ c =
√

a2 + b2 (1.5)

We only need the angle θ to determine the shape of the triangle and this gives the ratios

of the sides of the triangle. The ratios are given by:

sin θ =
a

c
cos θ =

b

c
tan θ =

a

b
(1.6)

Or you can remember these ratios in term of their positions with respect to the angle θ. If
the sides are

a = opposite b = adjacent c = hypothenuse

then the ratios are

sin θ =
opp

hyp
cos θ =

adj

hyp
tan θ =

opp

adj
(1.7)

If you pick out the first letters of the “words” in Eq. 1.7 in order, they spell out SOHCAH-

TOA. If you want to remember the trig ratios by intoning “SOHCAHT OA”, be my guest,
but don’t do it near me.

1.1.5 Vectors and Vector Addition

Throughout our study of physics we will discuss quantities which have a size (that is, a
magnitude) as well as a direction These quantities are called vectors. Examples of vectors
are velocity, acceleration, force, and the electric field.
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A

B

C

A

B

Figure 1.5: Vectors A and B are added to give the vector C = A + B.

Ax

Ay

A

y

x

Figure 1.6: Vector A is split up into components.

Vectors are represented by arrows which show their magnitude and direction. The laws
of physics will require us to add vectors, and to represent this operation on paper, we add

the arrows. The way to add arrows, say to add arrow A to arrow B we join the tail of B to
the head of A and then draw a new arrow from the tail of A to the head of B. The result
is A + B. This is shown in Figure 1.5.

Vectors can be multiplied by ordinary numbers (called scalars), giving new vectors, as
shown in Fig. 1.5.

1.1.6 Components of Vectors

Addition of vectors would be rather messy if we didn’t have an easy technique for handling
the trigonometry. Vector addition is made much easier when we split the vectors into parts
that run along the x axis and parts that run along the y axis. These are called the x and y
components of the vector.

In Figure 1.6A vector split up into components: One component is a vector that runs
along the x axis; the other is one running along the y axis.

If we let A be the magnitude of vector A and θ is its direction as measured counter–
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y

x

y

x

A

A

(a) (b)

Figure 1.7: Vectors can have negative components when they’re in the other quadrants.

clockwise from the +x axis, then the component of this vector that runs along x has length
Ax, where the relation between the two is:

Ax = A cos θ (1.8)

Likewise, the length of the component that runs along y is

Ay = A sin θ (1.9)

Actually, we don’t literally mean “length” here since that implies a positive number.
When the vector A has a direction lying in quadrants II, III or IV (as in Figure 1.7, then
one of its components will be negative. For example, if the vector’s direction is in quadrant
II as in Fig. 1.7(a), its x component is negative while its y component is positive.

Now if we have the components of a vector we can find its magnitude and direction by
the following relations:

A =
√

A2
x + A2

y tan θ =
Ay

Ax

(1.10)

where θ is the angle which gives the direction of A, measured counterclockwise from the +x
axis.

Once we have the x and y components of two vectors it is easy to add the vectors since
the x components of the individual vectors add to give the x component of the sum, and
the y components of the individual vectors add to give the y component of the sum. This is
illustrated in Figure 1.8. Expressing this with math, if we say that A + B = C, we mean

Ax + Bx = Cx and Ay + By = Cy (1.11)

One we have the x and y components of the total vector C, we can get the magnitude
and direction of C with

C =
√

C2
x + C2

y and tan θC =
Cy

Cx
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C

A

B

Ax

By

Ay

Bx
x

y

Figure 1.8: Vectors A and B add to give the vector C. The x components of A and B add to give the x
component of C: Ax + Bx = Cx. Likewise for the y components.

Summing up, many problems involving vectors will give you the magnitudes and direc-
tions of two vectors and ask you to find the magnitude and direction of their sum. To do
this,

• Find the x and y components of the two vectors.

• Add the x and y parts individually to get the x and y parts of the sum (resultant vector).
• Use Eq. 1.10 (trig) to get the magnitude and direction of the resultant.

1.2 Worked Examples

1.2.1 Measurement and Units

1. The mass of the parasitic wasp Caraphractus cintus can be as small as 5×10−6 kg.
What is this mass in (a) grams (g), (b) milligrams (mg) and (c) micrograms (µg)?
[CJ6 1-1]

(a) Using the fact that a kilogram is a thousand grams: 1 kg = 103 g, we find

m = 5 × 10−6 kg = (5 × 10−6 kg)

(

103 g

1 kg

)

= 5 × 10−3 g
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(b) Using the fact that a milligram is a thousandth of a gram: 1mg = 10−3 g, and our
answer from (a), we find

m = 5 × 10−3 g = (5 × 10−3 g)

(

1mg

10−3 g

)

= 5mg

(c) Using the fact that a microgram is 10−6 (one millionth) of a gram: 1µg = 10−6 g

m = 5 × 10−3 g = (5 × 10−3 g)

(

1µg

10−6 g

)

= 5 × 103 µg

2. Vesna Vulovic survived the longest fall on record without a parachute when
her plane exploded and she fell 6miles, 551 yards. What is the distance in meters?
[CJ6 1-2]

Convert the two lengths (i.e. 6miles and 551 yards) to meters and then find the sum.
Use the fact that 1mile equals 1.6093 km to get:

6mile = (6mile)

(

1.6093 km

1mile

)(

103 m

1km

)

= 9656.1m

and we can use the exact relation 1 in = 2.54 cm to get

551 yd = (551 yd)

(

36 in

1 yd

)

(

2.54 cm

1 in

)(

1m

102 cm

)

= 503.8m

Add the two lengths:

LTotal = 9656.1m + 503.8m = 1.0160 × 104 m

3. How many seconds are there in (a) one hour and thirty–five minutes and (b)
one day? [CJ6 1-3]

(a) Change one hour to seconds using the unit–factor method:

1 h = (1h)
(

60min

1h

)(

60 s

1min

)

= 3600 s
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Likewise change 35min to seconds:

35min = (35min)
(

60 s

1min

)

= 2100 s

The total is
1 h + 35min = 3600 s + 2100s = 5700 s

(b) Change one day to seconds; use the unit factors:

1 day = (1day)

(

24h

1day

)

(

60min

1h

)(

60 s

1min

)

= 86, 400 s

4. Bicyclists in the Tour de France reach speeds of 34.0 miles per hour (mi/h) on
flat sections of the road. What is this speed in (a) kilometers per hour (km/h)
and (b) meters per second (m/s)? [CJ6 1-4]

(a) Use the relation between miles and kilometers:

1mi = 1.609 km

to get

v = 34.0 mi
h

= (34.0 mi
h

)

(

1.609 km

1mi

)

= 54.7 km
h

(b) Using our answer from (a) along with the relations

1 km = 103 m and 1hr = (60min)
(

60 s

1min

)

= 3600 s

to get

v = (54.7 km
h

)

(

1h

3600 s

)(

103 m

1km

)

= 15.2 m
s

1.2.2 Trigonometry

5. For the right triangle with sides as shown in Figure 1.9, find side x and the
angle θ.
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6.20

3.50

x

q

Figure 1.9: Right triangle for example 5.

7.10
y

x

36
o

Figure 1.10: Right triangle for example 6.

We can use the Pythagorean theorem to find x. Pythagoras tells us:

x2 + (3.50)2 = (6.20)2

Solving for x gives

x2 = (6.20)2 − (3.50)2 = 26.19 =⇒ x =
√

26.19 = 5.12

As for θ, since we are given the “opposite” side and the hypothenuse, we know sin θ. It
is:

sin θ =
3.50

6.20
= 0.565

Then get θ with the inverse sine operation:

θ = sin−1(0.565) = 34.4◦

6. For the right triangle with the side and angle as shown in Figure 1.10, find
the missing sides x and y.

We don’t know the “opposite” side y but we do know the angle to which it is opposite.
So we can write a relation involving the sine of the angle, thus:

sin 36◦ =
y

7.10
=⇒ y = (7.10) sin 36◦ = 4.17
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45
o

2.601.50

q
45

o

2.601.50

q

y

(a) (b)

Figure 1.11: Right triangle for example 7.

Likewise, we can write a relation involving the “adjacent” side and the cosine of the
angle,

cos 36◦ =
x

7.10
=⇒ x = (7.10) cos 36◦ = 5.74

7. Find the missing angle θ in Figure 1.11(a). (The right angles in the figure are
marked.)

It will help to first find the length of the side marked y in Fig. 1.11(b). Since y and the
side of length 2.60 are the opposite and adjacent sides of the 45◦ angle, we have:

tan 45◦ =
y

(2.60)
=⇒ y = (2.60) tan 45◦ = 2.60

We can write a similar relation for the missing angle,

tan θ =
y

(1.50)
=

2.60

1.50
= 1.73

Using the inverse tangent operation,

θ = tan−1(1.73) = 60.0◦

The missing angle is 60.0◦.

8. You are driving into St. Louis, Missouri and in the distance you see the
famous Gateway–to–the–West arch. This monument rises to a height of 192m.
You estimate your line of sight with the top of the arch to be 2.0◦ above the
horizontal. Approximately how far (in kilometers) are you from the base of the
arch? [CJ6 1-11]
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2.0o

x

192 m

Figure 1.12: Gateway Arch is viewed from car.

The situation is diagrammed in Figure 1.12. (Of course the ground is not exactly flat and
your eyeballs are not quite at ground level but these details don’t make much difference.)

If the distance of the car from the base of the arch is x then we have

(192m)

x
= tan(2.0◦) = 3.49 × 10−2

Solve for x:

x =
(192m)

(3.49 × 10−2)
= 5.50 × 103 m

= 5.50 km

The car is about 5.50 km from the base of the arch.

9. The silhouette of a Christmas tree is an isosceles triangle. The angle at the
top of the triangle is 30.0◦, and the base measures 2.00m across. How tall is the
tree? [CJ6 1-15]

The triangle described in the problem is shown in Fig. 1.13(a). By “isosceles” we mean
that the two angles at the bottom are the same and as a result the two sides have the same
length.

We can drop a line from the top of the triangle to the base; this line divides the base into
two equal parts, and since the length of the whole base is 2.0m, the length of each part is
1.0m. This is shown is Fig. 1.13(b). Let the height of the triangle be called y.

Now since the angles in a triangle must all add up to 180◦ we have

2θ + 30◦ = 180◦ =⇒ 2θ = 150◦ =⇒ θ = 75◦

and then we can write
tan θ =

y

1.00m
and then solve for y:

y = (1.00m) tan θ = (1.00m) tan 75◦ = 3.73m
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30o

2.0 m

q q

y

(a) (b)

1.0 m

Figure 1.13: Isoceles–triangle shaped Christmas tree

52
o

y

x

290 N

Figure 1.14: Force vector for Example 10.

1.2.3 Vectors and Vector Addition

10. A force vector points at an angle of 52◦ above the +x axis. It has a y
component of +290newtons. Find (a) the magnitude and (b) the x component of
the force vector. [CJ6 1-38]

(a) The vector (which we’ll call F) is shown in Fig. 1.14. We know Fy and the direction of
F. With F standing for the magnitude of F , we have

sin(52◦) =
Fy

F
=

(290N)

F

Then solve for F :

F =
(290F)

(sin 52◦)
= 368N
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5.0 m

2.1 m

0.5 m

y (N)

x (E)

R

20o

Figure 1.15: Displacements of the golf ball in Example 11.

(b) We also have

tan(52◦) =
Fy

Fx

=
(290N)

Fx

Then solve for Fx:

Fx =
(290N)

(tan 52◦)
= 227N

11. A golfer, putting on a green, requires three strokes to “hole the ball”. During
the first putt, the ball rolls 5.0m due east. For the second putt, the ball travels
2.1m at an angle of 20.0◦ north of east. The third putt is 0.50m due north. What
displacement (magnitude and direction relative to due east) would have been
needed to “hole the ball” on the very first putt? [CJ6 1-41]

The directions and magnitudes of the individual putts are shown in Fig. 1.15. The vectors
are joined head–to–tail, showing the total displacement of the ball. The total displacement
(which we call R) is also shown.

Note, the first vector only has an x component. The last vector only has a y component.
We add up the xcomponents of the three vectors:

Rx = 5.0m + (2.1m) cos 20◦ + 0.0m = 6.97m

And we add up the y components of the three vectors:

Ry = 0.0m + (2.1m) sin 20◦ + 0.50m = 1.22m

The magnitude of the net displacement is

R =
√

R2
x + R2

y =
√

(6.97m)2 + (1.22m)2 = 7.1m
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B

A

C

60.0
o

20.0
o

+x

+y

Figure 1.16: Vectors for Example 12.

and the direction of the net displacement, as measured in the usual way (“North of East”)
is given by θ, where

tan θ =
Ry

Rx

=
(1.22)

(6.97)
= 0.175

so that
θ = tan−1(0.175) = 9.9◦

Had the golfer hit the ball giving it this magnitude and direction, the ball would have
gone in the hole with one hit, which is called a double–Bogart or something to that effect.

12. Find the resultant of the three displacement vectors in Fig. 1.16by means of
the component method. The magnitudes of the vectors are A = 5.00m, B = 5.00m
and C = 4.00m. [CJ6 1-43]

First find the individual components of each of the vectors. Note, the angles given in the
figure are measured in different ways so we have to think about the signs of the components.
Here, the x component of vector A is negative and the y component of vector C (which is
all it’s got!) is also negative.

Using a little trig, the components of the vectors are:

Ax = −(5.00m) cos(20.0◦) = −4.698m

Ay = +(5.00m) sin(20.0◦) = +1.710m

Bx = +(5.00m) cos(60.0◦) = +2.500m

By = +(5.00m) sin(60.0◦) = +4.330m
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R

y

x

Figure 1.17: Vector R lies in quadrant II.

and
Cx = 0 Cy = −4.00m

The resultant (sum) of all three vectors (which we call R) then has components

Rx = Ax + Bx + Cx = −4.698m + 2.500m + 0m = −2.198m

Ry = Ay + By + Cy = +1.710m + 4.330m − 4.000m = 2.040m

This gives the components of R. The magnitude of R is

R =
√

R2
x + R2

y =
√

(−2.198m)2 + (2.040m)2

= 3.00m

If the direction of R (as measured from the +x axis) is θ, then

tan θ =
2.040

(−2.198)
= −0.928

and naively pushing the tan−1 key on the calculator would have you believe that θ = −42.9◦.
Such vector would lie in the “fourth quadrant” as we usually call it. But we have found that
the x component of R is negative while the y component is positive and such a vector must
lie in the “second quadrant”, as shown in Fig. 1.17. What has happened is that the calculator
returns an angle that is wrong by 180◦ so we need to add 180◦ to the naive angle to get the
correct angle. So the direction of R is really given by

θ = −42.9◦ + 180◦ = 137.1◦

13. Vector A has a magnitude of 6.00 units and points due east. Vector B points
due north. (a) What is the magnitude of B, if the vector A+B points 60.0◦ north
of east? (b) Find the magnitude of A + B. [CJ6 1-47]
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A

BA+B

60o

x

y

6.00

Figure 1.18: Vectors A and B for example 13.

(a) Vectors A and B are shown in Fig. 1.18. The components of A are

Ax = 6.00 Ay = 0

and we also know that Bx = 0, but we don’t know By. But if the sum of A and B is R:

R = A + B

Then the components of R are given by

Rx = Ax + B + x = 6.00 + 0.00 = 6.00 Ry = Ay + By = 0 + By = By

But we are given the direction of R, namely θ = 60.0◦, so that

Ry

Rx

= tan θ = tan(60.0◦) = 1.732

But then this tells us:
Ry

Rx

=
By

Ax

=
By

6.00
= 1.732

Solve for By:
By = (6.00)(1.732) = 10.32

(b) The magnitude of A + B (that is. R) is

R =
√

R2
x + R2

y =
√

(6.00)2 + (10.32)2

= 11.94



Chapter 2

Motion in One Dimension

2.1 The Important Stuff

2.1.1 Displacement

We begin with motion that takes place along a straight line, for example a car speeding
up along a straight road or a rock which is thrown straight up into the air. The concepts
introduced here will be useful when we solve harder problems with motion in two dimensions.

We often talk about the motion of a “particle”. This just means that the object in
question is small in size compared to the distance that it moves for the times of interest, so
that we don’t need to worry about its actual size or orientation.

We map out the possible positions of the particle with a coordinate (system) which
might be labelled x (or y). Changes in position are given by changes in the value of x; we
write a change in x as ∆x.

The change in coordinate ∆x is the displacement that the particle undergoes; it will
occur over some time interval ∆t. Displacements have units of length (meters) and can be
positive or negative!

If we divide the displacement by the time interval we get the average velocity for the
particle for the given time period ∆t.

2.1.2 Speed and Velocity

When an object undergoes a displacement ∆x in a time interval ∆t, the ratio is the average
velocity v for that time interval:

v =
∆x

∆t
(2.1)

Velocity has units of length divided by time; in physics, we will usually express velocity
in m

s
.

19
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The average velocity depends on the time interval chosen for the measurement ∆x and
as such isn’t a very useful quantity as far as physics is concerned. A more useful idea is that
of a velocity associated with a given moment in time. This is found by calculating v for a
very small time interval ∆t which includes the time t at which we want this velocity.

The instantaneous velocity v is given by:

v =
∆x

∆t
for “very small” ∆t. (2.2)

The instantaneous velocity has a definite value at each point in time.
The idea of an instantaneous velocity is familiar from the fact that you can tell the speed

of a car at a given time by looking at its speedometer. Your speedometer might tell you
that you are travelling at 65 mi

hr
. That doesn’t mean that you intend to drive 65mi or that

you intend to drive for 1 hour! It means what Eq. 2.2 says: At the time you looked at
the speedometer, a small displacement of the car divided by the corresponding small time
interval gives 65 mi

hr
. (Of course, when we use the idea in physics, we use the metric system!

We will us m
s
.)

The concept of taking a ratio of terms which are “very small” is central to the kind of
mathematics known as calculus. Even though this course is supposed to be “non–calculus”
we have to cheat a little because the idea of instantaneous velocity is so important!!

2.1.3 Motion With Constant Velocity

When an object starts off at the origin (so that x = 0 at time t = 0) and its velocity is
constant , then

x = v0t Constant velocity!! (2.3)

Which is the familiar equation often stated as “distance equals speed times time”. It is only

true when the velocity of the object is constant. But in physics the really interesting cases
are when the velocity is not constant.

2.1.4 Acceleration

We need one more idea about motion to do physics. The (instantaneous) velocity of an
object can change. It can change slowly (as when a car gradually gets up to a cruising
speed) or it can change rapidly (as when you really hit the gas pedal or the brakes in your
car). The rate at which velocity changes is important in physics.

If the velocity of an object undergoes a change ∆v over a time period ∆t we define the
average acceleration over that period as:

a =
∆v

∆t
(2.4)
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Acceleration has units of m
s

divided by seconds (s) which we write as m
s2

.
As with velocity, the average quantity is not as important as the “right–now” quantity so

we need the idea of an instantaneous acceleration. Therefore at any given time want to know
that ratio of ∆v to ∆t for a very small change in time. The instantaneous acceleration
a is given by:

a =
∆v

∆t
for “very small” ∆t. (2.5)

Generally the acceleration of an object can change with time. Now, since it’s a free
country we could ask how rapidly the acceleration is changing, but it turns out that this
is not so important for physics. Furthermore for a great many of our problems the moving
object will have a constant acceleration.

2.1.5 Motion Where the Acceleration is Constant

As we will see later on, the case of constant acceleration is encountered often because this is
what happens when there is a constant force acting on the object. In the following equations
we assume that we’re talking about a particle whose acceleration a is constant.

If the object accelerates uniformly (i.e. it moves with constant a) then its velocity changes
by the same amount for equal changes in the time t. We can express this as:

a =
∆v

∆t

We will now introduce some notation that will be used in the next couple chapters: We
will say that when we discuss the motion of a particle over a certain time period, the clock
starts at t = 0. So if we ask about the velocity and position at a later time, that later time
is just called “t”. We will say that the velocity of the particle at t = 0 is v0, and its velocity
at the time t is v. Then we have ∆v = v − v0 and ∆t = t, and the last equation can be
rewritten as:

v = v0 + at (2.6)

Next, we ask about the displacement of the particle at time t, given that it started off
with a velocity v0. Recall that we had a formula for x in Eq. 2.3 but when there is an
acceleration that equation is no longer true!!! (In fact it is no longer meaningful since it is
not clear what “v” means.)

Again we will say that the particle is initially located at x = 0, that is, it is initially at
the origin. Then the displacement of the particle at time t is given by:

x = v0t + 1
2
at2 (2.7)

By combining these equations we can show:

v2 = v2
0 + 2ax (2.8)



22 CHAPTER 2. MOTION IN ONE DIMENSION

which can be useful because it does not contain the time t. We can also show:

x = 1
2
(v0 + v)t (2.9)

which can be useful because it does not contain the acceleration a. But in order to use this
equation we must know beforehand that the acceleration is constant .

2.1.6 Free-Fall

The most common kind of acceleration which we encounter in daily life is the one which an
object undergoes when we drop it or throw it up in the air. Before stating the value of this
acceleration we need to be clear about the coordinates used to describe the motion of an
object in (one–dimensional) free–fall.

In our free–fall problems we will always have the y axis point straight up regardless of
the initial motion of the object. So when y increases the object is moving upward and the
velocity v will be positive; when y decreases the object is moving downward and the velocity
v will be negative

It turns out —for reasons we can understand only after learning about forces— that when
an object is moving vertically in free–fall its velocity decreases by 9.80 m

s
every second . This

is true when the object is moving upward and when it is moving downward and for that
matter when the object has reached its maximum height. Then the rate of change of the
object’s velocity has a constant value given by

a =
∆v

∆t
=

(−9.80 m
s
)

(1 s)
= −9.80 m

s2

The minus sign is important and comes from the fact that our y axis points upward but
things fall downward . This number is known as the acceleration of gravity.

Before going too far we should say that the acceleration of falling objects has this value
over the surface of the Earth and that the value may be slightly different depending on
location, i.e. at some place on earth the value may be more like −9.81 m

s2
.

The magnitude of acceleration of gravity is such an important number in physics that we
give it the name, g, so that to a good approximation we can use

g = 9.80 m
s2

(2.10)

But be careful: g is defined as a positive number, and with our y axis going upward, the
value of a (the acceleration for a freely-falling object) is a = −g. Signs are important!
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v0 = 69 m/s
v = 6.1 m/s

750 m

Figure 2.1: Jet landing and decreasing its speed, in Example 1.

2.2 Worked Examples

2.2.1 Motion Where the Acceleration is Constant

1. A jetliner, travelling northward, is landing with a speed of 69 m
s
. Once the

jet touches down, it has 750m of runway in which to reduce its speed to 6.1 m
s
.

Compute the average acceleration (magnitude and direction) of the plane during
landing. [CJ6 2-25]

We organize ourselves by drawing a picture of the landing plane, as shown in Fig. 2.1.
The plane touches down at x = 0; that’s where the motion begins, as far as we’re concerned.
The initial velocity is v0 = 69 m

s
. In the final position (after it has travelled the full extent

of the runway), x = 750m and v = 6.1 m
s
. But we are not given the time t for this motion

to take placed and we don’t know the (constant) acceleration a.
If we want to get a we can use Eq. 2.8, because it doesn’t contain the time t. Plugging

in the numbers, we get:
(6.1 m

s
)2 = (69 m

s
)2 + 2a(750m)

Do some algebra and solve for a:

a =
(6.1 m

s
)2 − (69 m

s
)2

2(750m)
= −3.15 m

s2

We get a negative answer, and we expect that; the plane’s velocity (in the direction of motion,
North) is decreasing. The acceleration has a magnitude of 3.15 m

s2
and its direction is opposite

the direction of motion, i.e. South.

2. A drag racer, starting from rest, speeds up for 402m with an acceleration of
+17.0 m

s2
. A parachute then opens, slowing the car down with an acceleration of

−6.10 m
s2
. How fast is the racer moving 3.50× 102 m after the parachute opens? [CJ6

2-28]
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402 m 350 m

a = 17.0 m/s
2 a = - 6.10 m/s

2

Figure 2.2: Motion of the drag racer in Example 2.

A diagram of the motion will help! This is shown in Fig. 2.2. First, let’s find the velocity
of the racer at the time the chute opened. We can use Eq. 2.8; with v0 = 0 (the racer starts
from rest), a = +17.0 m

s2
and x = 402m, solve for v:

v2 = v2
0 + 2ax = 2(402m)(17 m

s2
) = 6.83 × 103 m2

s2

So then
v = 82.7 m

s

Now consider the part of the motion after the chute opens; we must consider it separately
since the acceleration here is different from the first part of the motion. For this part of the
motion the initial velocity is the value we found for the final velocity of the earlier motion:

v0 = 82.7 m
s

Second part of motion

We have the distance covered for this part of the motion (x = 350m) and the acceleration
(a = −6.10 m

s2
; the racer’s velocity decreases during this part) and we can again use Eq. 2.8:

v2 = v2
0 + 2ax = (82.7 m

s
)2 + 2(−6.10 m

s2
)(350m) = 2.56 × 103 m2

s2

and this gives
v = 50.6 m

s

The racer has a speed of 50.6 m
s

when it has moved 350m past the point where the chute
opened.

2.2.2 Free-Fall

3. A penny is dropped from the top of the Sears Tower in Chicago. Considering
that the height of the building is 427m and ignoring air resistance, find the speed
with which the penny strikes the ground. [CJ6 2-37]

A picture of the problem is given in Fig. 2.3, where we’ve drawn the coordinate axis. The
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y

0

y = -427 m

a = -9.8 m/s
2

Sears

Figure 2.3: Penny dropped from top of Sears Tower in Example 3.

penny begins its motion at y = 0 and since it falls down, its coordinate upon striking the
ground is −427m. Since we drop the penny its initial velocity is v0 = 0 and its acceleration
during the fall is a = −g = −9.8 m

s2
.

We are looking for the final velocity v but we don’t have the time of the fall. We can use
Eq. 2.8 since that equation doesn’t contain t. We find:

v2 = v2
0 + 2ax

= 02 + 2(−9.8 m
s2

)(−427m)

= 8.37 × 103 m2

s2

Taking the square root of this number gives 91.5 m
s

but there are really two answers for v,
namely ±91.5 m

s
, and since the penny is falling downward when it hit the ground we want

the negative one:
v = −91.5 m

s
.

But the answer to the question is that the penny’s speed (the absolute value of v) was 91.5 m
s

when it hit the ground.

4. From her bedroom window a girl drops a water–filled balloon to the ground,
6.0m below. If the balloon is released from rest, how long is it in the air? [CJ6

2-41]

The problem is diagrammed in Fig. 2.4. The coordinate system is shown; the positive y
axis points up, and (as always) we assume that the balloon starts its motion at y = 0. But
if that is the case, then when the balloon hits the ground, its y coordinate is −6.0m.

The initial velocity of the balloon is v0 = 0 and its acceleration is a = −g = −9.80 m
s2

.
To find how long the balloon is in the air, we ask the question: At what time is y equal to
−6.0m? We can then find t using Eq. 2.7. So we write:

−6.0m = 0 + 1
2
(−9.80 m

s2
)t2
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6.0 m

v0 = 0

Figure 2.4: Water–balloon is dropped in Example 4.

t = 2.00 s

v0

Figure 2.5: Rock is tossed up in the air in Example 5.

and solve for t. We find:

t2 =
2(−6.0m)

(−9.80 m
s2

)
= 1.22 s2

and then
t = 1.11 s

The balloon hits the ground at t = 1.11 s, so it spends 1.11 s in the air.

5. A ball thrown vertically upward is caught by the thrower after 2.00 s. Find
(a) the initial speed of the ball and (b) the maximum height the ball reaches.
[Ser7 2-48]

(a) We sketch the problem in Fig. 2.5. The ball has some initial speed v0 (which we don’t
know). We know the acceleration of the ball, namely a = −g = −9.80 m

s2
. We also know that
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at t = 2.00 s the y coordinate of the ball was zero. (As usual, we say the ball starts off at
y = 0.) If we put that information into Eq 2.7 we get:

x = v0t + 1
2
at2 =⇒ 0 = v0(2.00 s) + 1

2
(−9.80 m

s2
)(2.00 s)2

and now we can solve this for v0:

v0(2.00 s) = 1
2
(9.80 m

s2
)(2.00 s)2 = 19.6m

This gives:

v0 =
(19.6m)

(2.00 s)
= 9.80 m

s

(b) We know that at maximum height the velocity v is zero. We can use Eq 2.8 to get
the value of y at this time:

v2 = v2
0 + 2ay =⇒ 0 = (9.80 m

s
)2 + 2(−9.80 m

s2
)y

Solve this for y and get:

y =
(9.80 m

s
)2

2(9.80 m
s2

)
= 4.90m

so the maximum height attained by the ball was 4.90m.

6. An astronaut on a distant planet wants to determine its acceleration due
to gravity. The astronaut throws a rock straight up with a velocity of +15 m

s

and measures a time of 20.0 s before the rock returns to his hand. What is the
acceleration (magnitude and direction) due to gravity on this planet? [CJ6 2-39]

A diagram of the path of the rock is shown in Fig. 2.6. The y axis is measured upward
from the position of the hand.

We know the initial velocity of the rock, v0 = +15.0 m
s

but we don’t know the value of
the acceleration, ay. (We do know that it will be a negative number, because objects fall
down on this planet too!) We know that at t = 0.0 s y is 0.0m (of course) but we also know
that at t = 20.0 s, y is equal to 0.0 s.

If we put the second piece of information into Eq. 2.7 we get

0.0 = (15.0 m
s
)(20.0 s) + 1

2
a(20.0 s)2

from which we can find a. Some algebra gives us:

1
2
a(20.0 s)2 = −300m
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v0 = 15 m/s

t = 20.0 s

Figure 2.6: Path of tossed rock in Example 6.

12 m/s

110 m

Figure 2.7: Man throws rock downward with speed 12 m
s
, in Example 7.

Then:

a = −2(300m)

(20.0 s)2
= −1.50 m

s2

The magnitude of the acceleration due to gravity on the planet is 1.50 m
s2

and from the minus
sign we know that the direction of the acceleration is downward. (No surprise... things fall
down on other planets as well!

7. A man stands at the edge of a cliff and throws a rock downward with a speed
of 12.0 m

s
. Sometime later it strikes the ground 110m below the place where it

was thrown. (a) How long does it take to reach the ground? (b) What is the
speed of the rock at impact?

(a) The problem is illustrated in Fig. 2.7. Since the rock is thrown downward , the initial
velocity of the rock is v0 = −12.0 m

s
, and of course a = −9.80 m

s2
. When the rock hits the
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ground its y coordinate is y = −110m, so in this part we are asking “At what time does
y = −110m?”

y is given by
y = v0t + 1

2
at2 = (−12.0 m

s
)t − 1

2
(9.80 m

s2
)t2

so we just need to solve

−110m = (−12.0 m
s
)t − 1

2
(9.80 m

s2
)t2

Dropping the units for simplicity, a little algebra gives

(4.90)t2 + (12.0)t − 110 = 0

which is a quadratic equation. (Recall Eq. 1.1.) Using the quadratic formula, there are two
possible answers, given by

t =
(−12.0) ±

√

(12.0)2 + 4(4.90)(110)

2(4.90)
.

A little calculator work gives the two (?) answers:

t = −6.12 s or t = 3.67 s

So which is the answer? (There can only be one time of impact!) The answer must be the
second one because a negative time t is meaningless; the rock was thrown at t = 0. Therefore
the rock takes 3.67 s to reach the ground.

(b) We need to find the velocity of the rock at the the time found in part (a). The velocity
of the rock is given by

v = v0 + at = (−12 m
s
) + (−9.80 m

s2
)t

so at t = 3.67 s it is

v = (−12.0 m
s
) − (9.80 m

s2
)(3.67 s) = −18.1 m

s

and so the speed of the rock at impact is 18.1 m
s
.

8. Two identical pellet guns are fired simultaneously from the edge of a cliff.
These guns impart as initial speed of 30.0 m

s
to each pellet. Gun A is fired straight

upward, with the pellet going up and falling back down, eventually hitting the
ground beneath the cliff. Gun B is fired straight downward. In the absence of air
resistance, how long after pellet B hits the ground does pellet A hit the ground?
[CJ6 2-43]



30 CHAPTER 2. MOTION IN ONE DIMENSION

v0 = -30.0 m/s

v0 = +30.0 m/s

Figure 2.8: Two pellet guns shoot pellets; pellet from Gun A goes up then down. Pellet from B goes
straight down.

Hoo! This one sounds complicated. And they didn’t even tell us how high the cliff is!
(Doesn’t it matter?) We draw a picture of the problem, as in Fig. 2.8.

It turns out that if we understand something about the motion of pellet A the problem
is much simpler. Let’s ask: What is the velocity v of pellet A when it returns to the height
at which it was thrown? Here we don’t care about the time, just the distances and velocities
are involved, so we want to use Eq. 2.8. When the pellet returns to the original height then
y = 0 and so we get:

v2 = v2
0 + 0 = (+30 m

s
)2 = 900 m2

s2

and the proper solution to this equation is

v = −30 m
s

.

Here we choose the minus sign because the pellet is moving downward at that time. So when
the pellet returns to the same height it has the same speed but is moving in the opposite
direction.

But recall that pellet B was thrown downward with speed 30 m
s
, that is, its initial velocity

was −30 m
s
. So from this point on, the motion of pellet A is the same as that of pellet B. So

from that point on it will be the same amount of time until A hits the ground. Therefore
the amount of time which A spends in the air above that spent by B is the time it spends it
takes to go up and then down to the original height. Therefore we now want to answer the
question: How long does it take A to go up and back to the original height?

To answer this question we can use Eq. 2.7 with x = 0. We can also ask how long it take
until the velocity equals −30 m

s
, and that will be simpler. So using Eq. 2.6 with a = −9.80 m

s2

we solve for t:

−30 m
s

= +30 m
s

+ (−9.80 m
s2

)t
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We get:

t =
(−60 m

s
)

(−9.80 m
s2

)
= 6.1 s

Summing up, it takes 6.1 s for pellet A to go up and back down to the original height;
this is the amount of time it spends in the air longer than the time B is in the air. So pellet
A hits the ground 6.1 s after B hits the ground.
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Chapter 3

Motion in Two Dimensions

3.1 The Important Stuff

3.1.1 Motion in Two Dimensions, Coordinates and Displacement

We will now deal with more general motion, motion which does not take place only along a
straight line.

An example of this is shown in Fig. 3.1, where a ball is thrown not straight up, but at
some angle θ from the horizontal. The motion of the ball takes place in a plane and its
trajectory (path) through the air happens to have the shape of a parabola.

To describe the position of the ball, we now need two coordinates, namely x and y,
defined as shown in the figure. Here we have chosen to put the origin of the coordinate
system at the place where the ball begins its motion with the positive y axis pointing “up”,
as in the last chapter. We will usually make this choice, although we are free to make other
choices for the placement of the axes... as long as we stick with our choices!

y

x

q

Figure 3.1: Tossed ball and coordinate system to describe its motion.

33
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r1

r2

Dr
y

x

r

y

x

(a) (b)

Figure 3.2: (a) Object’s position is given by the displacement vector r. (b) Change in the displacement
vector as the object moves. ∆r has components ∆x and ∆y.

The coordinates of the ball, (x and y) are the two components of the displacement
vector, which we will write as r. As the ball moves, the displacement vector changes. In
Fig. 3.2(b) we show a change in location for an object. The displacement vector changes
from r1 to r2, resulting in the change ∆r = r2 − r1. The components of ∆r are ∆x and ∆y.

3.1.2 Velocity and Acceleration

Whereas in the previous chapter we only had one coordinate changing with time, now we
have two: x and y. In a time interval ∆t both coordinates will change.

We can now study the ratio of ∆x to ∆t and the ratio of ∆y to ∆t. These ratios are the
average x and y velocities for the interval ∆t:

vx =
∆x

∆t
vy =

∆y

∆t
(3.1)

As before, the really interesting quantity, as far as physics is concerned, is (are) the
instantaneous x and y velocities. These are the velocities we compute when the time interval
is extremely small. . . as small as we can imagine:

vx =
∆x

∆t
for small ∆t vy =

∆y

∆t
for small ∆t (3.2)

These equations define the x and y velocities vx and vy at a particular point in time. These
velocities can change with time, and the rate of change of these velocities are the accelera-
tions: The x and y accelerations, respectively.

vx and vy are the x− and y− components of the velocity vector. The magnitude of the
velocity vector,

v =
√

v2
x + v2

y (3.3)
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is called the (instantaneous) speed of the particle. Speed is always a positive number and
like velocity it has units of m

s
.

The instantaneous x and y accelerations are defined by:

ax =
∆vx

∆t
for small ∆t ay =

∆vy

∆t
for small ∆t (3.4)

and ax and ay are the x− and y− components of the acceleration vector.

Basically the equations given above don’t involve any new it ideas from those given in
the last chapter. What is new is the fact that we are finding these quantities (velocity and
acceleration) for the x and y coordinates separately , and in our problem solving we will have
to think about both coordinates at once, so the problems will generally be more challenging.

3.1.3 Motion When the Acceleration Is Constant

Though one can study all kinds of two–dimensional motion at this point, we will have
enough trouble on our hands if we just settle for the simple case when both of the acceleration
components are constant. In that case, both components of the velocity will change uniformly
with time. Suppose at time t = 0 the velocity components vx and vy have the values v0x and
v0y. (These are the initial values of the velocity components.) Then the values of vx and
vy later on will be given by

vx = v0x + axt vy = v0y + ayt (3.5)

These equations have the same form but they are really different equations because in general
ax and ay will have different values in a physics problem; v0x and v0y will also be different.

If we want to find the value of the coordinates x and y at time t (assuming the particle
starts from the origin, x = 0 and y = 0 at time t = 0) then we can use:

x = v0xt + 1
2
axt

2 y = v0yt + 1
2
ayt

2 (3.6)

Again, these equations look alike but they pertain to the two parts of a particle’s motion:
The horizontal (x) part and the vertical (y) part.

Just as in the one-dimensional case we have an equation relating v, a and x but not
containing the time t:

v2
x = v2

0x + 2axx v2
y = v2

0y + 2ayy (3.7)
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y

x

q0

v0

R

H

Figure 3.3: A special projectile problem; projectile is fired at angle θ0 and initial speed v0.

3.1.4 Free Fall; Projectile Problems

When an object is moving freely (e.g. it has been thrown or is dropped) near the surface of
the earth, it undergoes a downward acceleration of magnitude g = 9.80 m

s2
. This means that

if our y axis points upward then

ax = 0 and ay = −9.80 m
s2

= −g

The horizontal acceleration here is zero... things don’t fall sideways! But the vertical accel-
eration is −g. . . things do fall down!

Again, the symbol g in these notes stands for +9.80 m
s2

.
Since the horizontal acceleration is zero, the x component of the velocity stays the same

all through the motion, i.e. vx = v0x during the flight of the projectile.

3.1.5 Ground–To–Ground Projectile: A Long Example

In this section we solve a special case for a projectile, the case where the projectile begins
and ends its motion at the same height . We will get some results which are interesting and
can be used in some problems, but one must keep in mind that if we have a projectile whose
initial and final heights are not the same, these results are not relevant!

The derivation given here involves more math than usual for these notes, but again, the
result is interesting enough that it is worth it.

We consider the motion of a projectile fired from ground level, as shown in Fig. 3.3, at
angle θ0 upward from the horizontal and a speed v0. The projectile goes up and comes back
down, striking the ground at the same level at which it was fired. We are interested in
finding how long the projectile was in flight, the horizontal distance it travels (called the
range, R) and its maximum height H. We are treating v0 and θ0 as if that are already
known so that R and H will be expressed in terms of these values.
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From the magnitude and direction of the initial velocity vector v0 we get the components
of the initial velocity:

v0x = v0 cos θ0 v0y = v0 sin θ0

We will first answer the question: How long is the projectile in flight? That is the same as
asking: “At what time does y equal zero”? Since ay = −g, the y part of Eq. 3.6 gives

y = 0 = (v0 sin θ0)t − 1
2
gt2

for which we can factor the right hand side to get

0 = t
(

v0 sin θ0 −
gt

2

)

There are two solutions to this equation. These are:

t = 0 or
gt

2
= v0 sin θ0 ⇒ t =

2v0 sin θ0

g

The first of these possibilities is a correct answer to the question but not the one we want!
The second solution gives us the time of impact:

t =
2v0 sin θ0

g
(3.8)

To find the range R we ask: “What is the value of x at the time of impact?”. Use the
result in Eq. 3.8 and the x part of Eq. 3.6 (remembering that ax = 0 for a projectile!):

x = (v0 cos θ0)t − 1
2
axt

2 (3.9)

= (v0 cos θ0)

(

2v0 sin θ0

g

)

− 0 (3.10)

=
2v2

0 sin θ0 cos θ0

g
(3.11)

This answer can be made a little simpler using a formula from trigonometry,

sin 2θ0 = 2 sin θ0 cos θ0

so our result is

R =
2v2

0 sin θ0 cos θ0

g
=

v2
0 sin 2θ0

g
(3.12)

Two interesting features of this solution can be noted:
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• If we have a definite speed v0 with which to launch the projectile, to give it the greatest
range we would choose a launch angle of θ0 = 45◦. This is because 45◦ makes the factor
sin θ0 the greatest.

• For a given launch speed, if we launch the projectile at either one of a pair of complementary
angles the range R will be the same. (For example, θ0 = 30◦ and θ0 = 60◦ will give the same
range R.) This is because for complementary angles, sin 2θ0 is the same.

Now we’ll find the maximum height of the projectile. The projectile reaches maximum
height when its y− velocity is zero (it is instantaneously moving neither upward nor down-
ward at that point) so the y part of Eq. 3.5 gives:

vy = 0 = (v0 sin θ0) − gt ⇒ t =
v0 sin θ0

g

which, you’ll note, is half the total time spent in flight. Thus the project takes as much time
to go up as it does to come down.

The maximum height is the value of y at this time. Using the y part of Eq. 3.6, with
ay = −g, we find:

y = v0yt + 1
2
ayt

2 = (v0 sin θ0)

(

v0 sin θ0

g

)

− 1
2
g

(

v0 sin θ0

g

)2

=
v2

0 sin2 θ0

g
− v2

0 sin2 θ0

2g
=

v2
0 sin2 θ0

2g

So the maximum height attained by the projectile is

H =
v2

0 sin2 θ0

2g
(3.13)

Finally we can find the shape of the ball’s trajectory; we can find this by relating x and
y for the motion of the ball and looking at the relation that we find. Our equations for x
and y were:

x = (v0 cos θ0)t and y = (v0 sin θ0)t− 1
2
gt2 (3.14)

The first of these gives

t =
x

v0 cos θ0

.

Substitute this into the second of the equations in 3.14 and do some algebra; we get:

y = (v0 sin θ0)
(

x

v0 cos θ0

)

− 1
2
g
(

x

v0 cos θ0

)2

= (tan θ0)x −
(

g

2v2
0 cos2 θ0

)

x2 (3.15)
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7.7 m/s

vy

35o

Figure 3.4: Velocity vector for jumping dolphin in Example 1.

Now while the result in Eq. 3.15 may look like a mess, the important thing to see is that
there is a y on one side of the equation and an x2 and x on the other side of the equation.
From your usual college algebra class we know that this relation maps out a parabola . In
general the trajectory of a ball tossed through the air is a parabola.

3.2 Worked Examples

3.2.1 Velocity and Acceleration

1. A dolphin leaps out of the water at an angle of 35◦ above the horizontal. The
horizontal component of the dolphin’s velocity is 7.7 m

s
. Find the magnitude of

the vertical component of the velocity. [CJ6 3-7]

The velocity vector for the dolphin is drawn in Fig. 3.4. If the vertical component of the
velocity is vy, then from trigonometry we know that:

tan 35◦ =
vy

vx

=
vy

(7.7 m
s
)

And then we can find vy:

vy = (7.7 m
s
) tan 35◦ = 5.4 m

s

The vertical component of the velocity is 5.4 m
s
. (That is also its magnitude.
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3.2.2 Motion for Constant Acceleration

2. On a spacecraft, two engines are turned on for 684 s at a moment when the
velocity of the craft has x and y components of v0x = 4370 m

s
and v0y = 6280 m

s
.

While the engines are firing, the craft undergoes a displacement that has com-
ponents of x = 4.11 × 106 m and y = 6.07 × 106 m. Find the x and y components of
the craft’s acceleration. [CJ7 3-12]

For the case of constant acceleration, the displacement is related to the initial velocity
and acceleration by Eq. 3.6. For the x displacement we have

x = v0xt + 1
2
axt

2

Plugging in the numbers from the problem, we have

4.11 × 106 m = (4370 m
s
)(684 s) + 1

2
ax(684 s)2

From this we can solve for ax. We get:

1
2
ax(684 s)2 = 1.12 × 106 m =⇒ ax =

2(1.12 × 106 m)

(684 s)2
= 4.79 m

s2

Do the same with the given values for the y displacement. Using

y = v0yt + 1
2
ayt

2

we have

6.07 × 106 m = (6280 m
s
)(684 s) + 1

2
ay(684 s)2

Solve for ay:

1
2
ay(684 s)2 = 1.77 × 106 m =⇒ ay =

2(1.77 × 106 m)

(684 s)2
= 7.59 m

s2

The acceleration of the craft has components

ax = 4.79 m
s2

and ay = 7.59 m
s2
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28.0 m/s

19.6 m

?

Figure 3.5: Tennis ball begins its flight horizontally in Example 3.

3.2.3 Free–Fall; Projectile Problems

3. A tennis ball is struck such that it leaves the racket horizontally with a speed
of 28.0 m

s
. The ball hits the court at a horizontal distance of 19.6m from the

racket. What is the height of the tennis ball when it leaves the racket? [CJ6 3-13]

We draw picture of the ball and its motion along with the coordinates, as in Fig. 3.5.
Let’s first find the time t at which the tennis ball hit the ground. We know that when it

hit its x coordinate was equal to 19.6m. Now from Eq. 3.6, the equation for the x− motion
is

x = v0xt + 1
2
axt

2

and here the initial x− velocity is v0x = 28.0 m
s

and ax = 0 (no sideways acceleration; things
fall down, not sideways!) The time which gives x = 19.6m is then found from:

19.6m = (28.0 m
s
)t + 0 ⇒ t =

(19.6m)

(28.0 m
s
)

= 0.70 s

Now we can ask: What is the y coordinate of the ball at this time? The answer will give
us the height of the ball when it was hit.

The ball’s velocity at the beginning of the motion was purely horizontal, so that v0y = 0
(no initial y− velocity). The y− acceleration is ay = −9.80 m

s2
. Then the y part of Eq. 3.6

gives us:

y = v0yt + 1
2
ayt

2

= 0 + 1
2
(−9.80 m

s2
)(0.70 s)2 = −2.4m
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11.4 m/s

15.5 m

v

Figure 3.6: Golf ball rolls off a cliff in Example 4.

We get a negative number here because when it hits the ground, the ball has moved downward

from its initial position of y = 0. But to answer the question we say that the initial height
of that ball was 2.4m.

4. A golf ball rolls off a horizontal cliff with an initial speed of 11.4 m
s
. The ball

falls a vertical distance of 15.5m into a lake below. (a) How much time does the
ball spend in the air? (b) What is the speed v of the ball just before it strikes
the water? [CJ6 3-15]

(a) We draw picture of the ball and its motion along with the coordinates, as in Fig. 3.6.
Since the y axis goes upward, the level of the water is at y = −15.5m.

Note that the ball rolls off the cliff horizontally, so that it has an initial x velocity:
v0x = 11.4 m

s
, but there is no initial y velocity: v0y = 0.

To answer (a) we think about the mathematical condition that the ball has hit the water.
This is when y = −15.5m. (We don’t know the x coordinate of the ball when it hits the
water.) Then using the y part of Eq. 3.6 with ay = −g and v0y we can solve for the time t:

−15.5m = 0 + 1
2
(−9.80 m

s2
)t2

So

t2 =
2(−15.5m)

(−9.80 m
s2

)
= 3.2 s2

and then

t = 1.8 s

(b) If we have both components of the velocity at the time the ball hits the water, we can
find the speed from Eq. 3.3.
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670 m/s

0.025 m

Figure 3.7: Bullet is fired horizontally at bull’s–eye in Example 5.

Now since there is no x− acceleration, vx stays the same as it was at the beginning,
namely vx = 11.4 m

s
. Using our answer from (a) and the y part of Eq. 3.6 we find the value

of vy at impact:
vy = 0 + (−9.80 m

s2
)(1.8 s) = −17.4 m

s
.

Then the speed of the ball at impact is

v =
√

v2
x + v2

y

=
√

(11.4 m
s
)2 + (−17.4 m

s
)2 = 20.8 m

s

The speed of the ball when it hits the water is 20.8 m
s
.

5. A horizontal rifle is fired at a bull’s–eye. The muzzle speed of the bullet
is 670 m

s
. The barrel is pointed directly at the center of the bull’s–eye, but the

bullet strikes the target 0.025m below the center. What is the horizontal distance
between the end of the rifle and the bull’s–eye? [CJ6 3-31]

As usual, begin by drawing a picture of what is happening! The problem is diagrammed
in Fig. 3.7. Even though the rifle is pointed straight at the bull’s–eye, the bullet must miss
because it will take a certain amount of time to travel the horizontal distance to the target
and in that time the bullet will have some downward vertical motion.

The rifle was fired horizontally, and from that we know:

v0x = 670 m
s

v0y = 0

We know that at the time the bullet struck the target its y coordinate was y = −0.025m.
Then using the y part of Eq. 3.6 we have:

−0.025m = 0 + 1
2
(−9.80 m

s2
)t2
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R

3100 m

90 m/s

Figure 3.8: Airplane releases a package in Example 6.

which gives us

t2 =
2(−0.025m)

(−9.80 m
s2

)
= 5.1 × 10−3 t2

and finally
t = 7.1 × 10−3 s

The distance to the target is the value of x at the time the bullet struck. Now that we
have the time of impact we find x using the x part of Eq. 3.6:

x = (670 m
s
)(7.1 × 10−3 s) = 48m

6. An airplane is flying horizontally with a speed of 90.0 m
s

at an altitude of
3100m. The plane releases a package which falls to the level terrain below. At
what distance (measured horizontally from the point of release) does the package
strike the ground? Neglect air resistance!

A picture of the problem is given in Fig. 3.8. The package travels on an arcing path and
eventually hits the ground. Why is this? If the package is “released”, doesn’t it just fall
straight down? No, for reasons that can be better appreciated later on, when the package is
“released” it initially has the velocity of its environment, namely that of the plane, and so
the package has an initial velocity of 90.0 m

s
. After that time though it is in free–fall and its

velocity will change because of the acceleration of gravity. At impact the package has moved
horizontally from its point of release by some distance R.

The package’s initial velocity has only a horizontal component, so we have:

v0x = 90.0 m
s

v0y = 0
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50o

80 m

35 m/s

Figure 3.9: Golf ball is shot toward a tall brick wall in Example 7.

We know that y coordinate of the package when it hits the ground; that is y = −3100m.
(It starts at y = 0 and falls downward .) We can find the time it takes to hit the ground;
find the time at which y = −3100m:

y = v0yt − 1
2
ayt

2 =⇒ −3100m = 0 + 1
2
(−9.80 m

s2
)t2

Solve for t:

t2 =
2(3100m)

(9.80 m
s2

)
= 633 s2

t = 25.2 s

The distance R is the value of the x coordinate at this time.

R = x = v0xt + 1
2
axt

2 = (90.0 m
s
)(25.2 s)

= 2.26 × 103 m = 2.26 km

At impact the package has moved a horizontal distance of 2.26 km from its starting point.

7. A golf ball is hit at a speed of 35.0 m
s

at 50.0◦ above the horizontal toward a
large brick wall whose base is 80.0m from the point where the ball is launched.
(a) At what height does the ball strike the wall? (b) What is the speed of the
ball when it hits? (c) When the ball hit the wall was it still rising or was it
descending?

(a) The problem is illustrated in Fig. 3.9. (The figure shows the ball descending as it hits
the wall, but that may not be the case; we need to have a reason for our answer to part (c).)

First find the components of the ball’s initial velocity. With the initial speed being
v0 = 35.0 m

s
, we have:

v0x = v0 cos θ = (35.0 m
s
) cos 50◦ = 22.5 m

s
v0y = v0 sin θ = (35.0 m

s
) sin 50◦ = 26.8 m

s
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We don’t know the y coordinate for the place where the ball hits the wall, but we do
know its x coordinate: It’s x = 80.0m. We can first find the time at which the ball strikes
the wall by finding the time at which x = 80.0m. Use the x part of Eq. 3.6 with ax = 0 to
get:

x = v0xt + 1
2
axt

2 =⇒ 80.0m = (22.5 m
s
)t + 0

Solve for t:

t =
(80.0m)

(22.5 m
s
)

= 3.56 s

Now find the value of y at this time. Use the y part of Eq. 3.6 with ay = −9.80 m
s2

and get:

y = v0yt + 1
2
ayt

2 = (26.8 m
s
)(3.56 s) + 1

2
(−9.80 m

s2
)(3.56 s)2 = 33.3m

This is the y coordinate at the time the ball hits; so the ball hits the wall at a height of
33.3m.

(b) Use both parts of Eq. 3.5 to find the components of the velocity at the time of impact.
Actually, we only need to think about the y part; since there is no x–acceleration for a
projectile, vx always keeps the same value which we found to be 22.5 m

s
. Then:

vy = v0y + ayt = 26.8 m
s

+ (−9.80 m
s2

)(3.56 s) = −8.1 m
s

The speed v of the ball is the magnitude of the velocity vector, so

v =
√

v2
x + v2

y =
√

(22.5 m
s
)2 + (−8.1 m

s
)2 = 23.9 m

s

The ball hits the wall with a speed of 23.9 m
s
.

(c) In part (b) we found that the y component of the velocity was negative at the time
of impact. That tells us that the ball had already attained its maximum height, because
maximum height is the place where vy = 0. So the ball was descending at the time of impact.

8. The punter on a football team tries to kick a football so that it stays in the
air for a long “hang time”. If the ball is kicked with an initial velocity of 25.0 m

s

at an angle of 60◦ above the ground, what is the “hang time”? [CJ6 3-61]

Since the football begins and ends its flight at ground level, we do have the kind of
projectile problem discussed in the “Ground–To–Ground” section above, and we can use the
results we derived. In Eq. 3.8 we found the time in flight in terms of the launch speed and
launch angle. We can use it here to get:

T =
2v0 sin θ0

g

=
2(25.0 m

s
)

(9.80 m
s2

)
= 5.1 s
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R

Figure 3.10: For the purpose of doing Example 9, treat the jumper as a small object.

9. An Olympic long jumper leaves the ground at an angle of 23◦ and travels
through the air for a horizontal distance of 8.7m before landing. What is the
takeoff speed of the jumper? [CJ6 3-33]

Even though a jumper is not a small object, for the purpose getting an answer we will
treat him/her as a “particle” which is launched from ground level (by its tiny legs!?!), moves
through the air and then lands at ground level. See Fig. 3.10.

So this is a problem where the projectile (the jumper) begins and ends at the same
height so we can use the results of the section where we got the results for the range R. We
rearrange the result for R (Eq. 3.12) to solve for the initial speed v0:

R =
v2

0 sin 2θ0

g
⇒ v2

0 =
Rg

sin 2θ0

Plug in the numbers:

v2
0 =

(8.7m)(9.80 m
s2

)

sin(46◦)
= 119 m2

s2

So then
v0 = 11 m

s
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Chapter 4

Forces I

4.1 The Important Stuff

4.1.1 Introduction

The preceding two chapters dealt with the mathematics of motion, kinematics. We now
begin the study of the physical reasons for the motion of objects, i.e. the study of dynamics.
Dynamics gives us the ability to predict the motion of an object in a particular physical
situation.

All motion around us can be found from an application of three simple laws discovered by
Isaac Newton. These laws relate the influences which govern the motion of objects (forces)
to the accelerations of the objects and to a property of these objects, their mass.

The three laws are simple to state but can take years to learn how to use, and that is
what makes physics a challenging (and interesting) subject. They were found to be adequate
for describing all motion in the universe until early in the 20th century, when they were
generalized by Albert Einstein to include motion at very large speeds and later by a bunch
of Germans to deal with motion on the atomic scale.

Some word usage: Throughout the next few chapters we will be talking about the motion
of objects whose sizes are “small” compared to the distance over which they are moving. In
that case, the fact that they may be rotating will not be important and we will just discuss
their overall motion. When we can treat motion in this way we will refer to the object as a
particle.

This chapter is a long one, because in it we encounter the basis of all (classical) physical
as well as examples of their usage. It is important to look at many examples of how we work
with forces; only then can you get the hang of doing physics.

49
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4.1.2 Newton’s 1st Law

Newton’s First Law (for our purposes) is based on earlier ideas by Galileo; it tells us what
happens if we don’t have any forces around, and states:

When there are no forces acting on an object its velocity remains the same.

This law contradicts “common sense” because we are used to all motion coming to a halt
if we don’t do anything to maintain it. But common experience can be deceptive, and it
took the genius of Galileo and Newton to see that there are forces of friction which act on
everyday objects to slow them down. Take away such influences and the motion (velocity)
continues forever, unchanged.

4.1.3 Newton’s 2nd Law

When there are influences (forces) acting on an object, then in general the velocity of the
object will change, that is, there will be an acceleration. Newton’s 2nd law tells us how to
find that acceleration. Knowing the acceleration, we can predict the motion of the object,
as covered in the preceding chapters.

When there is a stronger force acting on the object the acceleration is greater. So the
acceleration is proportional to the force: a ∝ F .

But it is also true that a given force doesn’t affect all objects in the same way. If an
object has more “bulk” to it, the acceleration it undergoes will be smaller; in other words a
given force doesn’t do as well in changing the motion of a bulky object. The proper name
for property we are considering is mass; it is denoted by m and it is measured in kilograms.
Anyway, the acceleration is inversely proportional to the mass of the object: a ∝ 1

m

Combining these two ideas, acceleration is proportional to force divided by mass: a ∝
F/m. Multiplying both sides by m gives the simple expression of Newton’s 2nd law:

F = ma

but we aren’t done yet.

First, force and acceleration are both vectors; they have direction and magnitude. Sec-
ondly, in general there may be several forces acting on a mass m. When there are, we take
the vector sum of these forces to get the total (net) force:

Fnet = F1 + F3 + F3 + . . .

and it is the net force that gives the acceleration of the object. Now we are prepared to state
Newton’s 2nd law:
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When forces F1, F2, . . . act on a mass m, the acceleration of the mass can be
found from:

Fnet = ma . (4.1)

The equation in the 2nd law is a vector equation so it means the same thing as when we
write out the x and y components separately:

Fnet, x = max and Fnet, y = may (4.2)

4.1.4 Units and Stuff

Mass is measured in kilograms. From the equation F = ma, we see that the units of force
F must be those of mass times those of acceleration,

Units of force = kg · m
s2

=
kg · m

s2

The combination of the basic SI units is known as the “newton”, in honor of you–know–who.
Thus:

1 kg·m
s2

= 1newton = 1N

The SI unit of force is the newton; sometimes we see another units of force, the dyne:

1 dyne = 1 g·cm
s2

= 10−5 N

In the old “English” system of units (which we don’t use in this book) the units of force
is the pound, abbreviated as “lb” for reasons I’ll never understand. The relation with the
newton is:

1 lb = 4.448N

4.1.5 Newton’s 3rd Law

The third law of Newton is sometimes useful to us when we solve more complicated physics
problems. It says something profound about nature. And it is often mis-stated and misun-
derstood.

Newton’s Third Law says that when there is a force acting on a particle it must be due
to the presence of some other particle(s). Forces must come from other objects. For there to
be a (real) force acting on an object you have to be able to say what kind of object it might
come from.

Secondly, if there are two objects A and B exerting forces on one another then those forces
are equal in magnitude and opposite in direction. Some examples are shown in Fig. 4.1.
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A

B

FB on A

FA on B

A

B

FB on A

FA on B

A

B

FB on A
FA on B

(c)(b)(a)

Figure 4.1: Illustrations of Newton’s 3rd law. Force of A on B is “equal and opposite” to the force of B
on A.

So Newton’s 3rd Law is:

The force which object A exerts on object B is equal in magnitude and op-
posite in direction to the force which B exerts on A.

Note that this law has to do with forces; the objects may be in motion or they may not
be, but the law only tells us about forces.

Unfortunately many people who think they understand physics express the law something
like:

For every action there is an equal and opposite reaction

This is a poor expression of the law because we never deal with anything properly called
“action” in this course, which (to my mind anyway) would seem to involve motion. It is
important to understand that the third law is about forces, and these (“equal and opposite”)
forces are exerted on two different objects.

4.1.6 The Force of Gravity

We discussed a very important example of acceleration in the last chapter – the acceleration
of a projectile – and we can now relate that to a force.

The acceleration of a projectile of mass m near the surface of the earth has magnitude
g and is directed downward. Then from F = ma, there is a force on the projectile with
magnitude mg and is directed downward. This is the force gravity; but where does it come
from? (By Newton’s 3rd law, it must come from another object.)

That other object is the entire earth. The way this comes about was also discovered
by Newton. He found that all masses in the universe attract one another with a force that
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m1

m2

F

F

Figure 4.2: Masses m1 and m2 exert an attractive gravitational force on one another.

depends on the values of the masses and the distance between them; the mathematical
expression is his Law of Gravitation.

The basic law of gravitation applies to two masses (m1 and m2) whose sizes are small
compared to their separation (i.e. “point” masses). They are separated by a distance r. As
shown in Fig. 4.2, each experiences an attractive force of magnitude F whose direction is
toward the position of the other mass and whose magnitude is

F = G
m1m2

r2
where G = 6.67 × 10−11 N·m2

kg2 (4.3)

The number G is called the gravitational constant. Since the newton can be expressed
in terms of kg, m, and s, G can also be expressed as

G = 6.67 × 10−11 m3

kg·s2
(4.4)

There is a gravitational force of attraction between any two objects but for everyday
objects this force is too small to be of any importance. However if one of the objects is
enormous —like a planet— then the force is not so small. The force of attraction between
a 1 kg mass and the entire earth is not small.

The problem is in how we calculate the attractive force between the earth and a small
object on its surface. It is reasonable that we should use m1 = Mearth and m2 = mobject in
Eq. 4.3, but what should we use for the distance of separation r?

It turns out that it is exactly true that since the earth is a spherically symmetric sort of
thing, the proper distance to use in Eq. 4.3 is the distance between the object and the center
of the earth, Rearth; see Fig. 4.3.

Thus the magnitude of the force of gravity on an object of mass m is

Fgrav = G
Mearthm

R2
earth

=

(

GMearth

R2
earth

)

m

But wait! Earlier we said that the force of gravity on an object had to be mg, or gm:

Fgrav = (g)m
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F

F
Rearth

Figure 4.3: Earth exerts force F on object on its surface. For the r in Newton’s law, use Rearth.

Since both are true, this can only mean that

g =
GMearth

R2
earth

(4.5)

Plugging in the numbers, we can see that we do get the value of g we’ve come to know and
love:

g =
(6.67 × 10−11 N·m2

kg2 )(5.98 × 1024 kg)

(6.38 × 106 m)2
= 9.80 m

s2

and we see how the numerical value of g depends on the mass and size of the earth. We
will get a different value for the acceleration of gravity on the surface of another planet, and
Eq. 4.5 shows us how to calculate it.

Anway. . . when we consider the forces acting on any object on the surface of the earth,
we must include the force of gravity, which is called the weight of the object, which, if the
object has mass m, has magnitude mg and is directed downward.

4.1.7 Other Forces Which Appear In Our Problems

In order to make use of knowledge of forces, we will be solving lots and lots of problems
involving simple things like blocks and strings and pulleys and inclined planes. We will
be calculating the forces exerted on the masses (when we know their acceleration) or the
acceleration of the masses (when we know the forces exerted on them.) Solving force problems
is the real guts of a physics course!

These objects will be idealized in the sense that we will approximate their behavior with
a simple rule. A real piece of string or a real pulley won’t behave exactly in the way we’ll
use; the real behavior is more complicated and difficult.

The objects we’ll see are:

• String (cord, rope) A string may be attached to a mass or a wall as in Fig. 4.4(a) or
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T

T

T

T

(a) (b)

Figure 4.4: A string pulls inward along its length with a force of magnitude T .

it may be looped over a pulley, as in Fig. 4.4(b). The string will usually be under tension.
When we are told this, it means that the string is pulling inward at both ends on whatever is
attached with a force of magnitude T . Then T is called the tension in the string. (Tension
is a scalar, and it has units of force, newtons.)

This is also true when the string is looped over an ideal, massless pulley, i.e. the tension
is the same on both ends. Later though, we will deal with pulleys which have mass and this
won’t be true. For now , it is.

• Smooth Surface A mass may be in contact with a ”smooth surface”. We can approximate
such a surface by coating it with Teflon or spraying WD–40 all over it or possibly by putting
very small but ideal wheels on the block. A clever lad like you can think up something.

No real surface behaves this way because there will be a friction force between the
surface and the mass, but we’ll deal with that in the next chapter.

The force from a smooth surface is perpendicular to the surface. The magnitude of this
force will depend on whatever is going on in the problem. This force is called the normal
force of the surface just because in math, “normal” means “perpendicular”.

As mentioned, in the next chapter we will deal with surfaces which are more realistic;
for these there is a frictional force which points along the surface. But not yet; for now, the
force is all normal (perpendicular).

When a mass slides on such a surface we note that its velocity and acceleration must
always point along the surface, that is, there will be no component of v or a perpendicular
to the surface. Since the acceleration has no component perpendicular to the surface, the
component of the net force perpendicular to the surface must also be zero. We will use this
fact in solving some problems involving hard surfaces.

• Spring scale Sometimes a problem will feature a scale. The innards of the device may
not be specified but we usually mean that there’s a spring of some sort inside. Two kinds of
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(a) (b)

Fscale

Fscale

Figure 4.5: Spring scales; the spring inside the device is under some tension and pulls or pushes on the
mass which is in contact with the scale. The magnitude of the force, Fscale is in general not equal to the
weight of the mass!

spring scale are illustrated in Fig. 4.5. In each case the scale (or actually the spring inside of
it) exerts a force on the mass with which it is in contact, and the magnitude of this force is
what we read from the numerical scale on the device. In general, this value is not the same
as the weight mg of the mass! The scale reading will depend on the details of the problem
we are solving.

4.1.8 The Free–Body Diagram: Draw the Damn Picture!

In general there will several kinds of forces acting on a mass in our problems. By Newton’s
Second law we have to find the (vector) sum of all these force in order to get the (vector)
acceleration. We will need a diagram of the directions of all the forces in order to add the
vectors correctly; it’s also a good to organize our thinking by noting down all the forces
explicitly, since that may help us see if we’ve omitted any forces (or included some that
shouldn’t be there).

So it is always a good idea to draw a sketch showing the mass and the force vectors which
act on it. Such a diagram goes by the fancy name of free–body diagram, but it amounts
to nothing more than drawing a damn diagram of the problem (with the forces specified)!

An example is given in Fig. 4.6. In (a) we have the physical situation of the mass; in (b)
we isolate the mass but show the directions of the forces acting on it.

4.1.9 Simple Example: What Does the Scale Read?

To start with a simple example, we consider a 2.0 kg mass hanging from a spring scale inside
an elevator, as shown in Fig. 4.7(a). Presently, the elevator is accelerating upward at a rate
of 1.80 m

s2
. What is reading on the scale?
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T

mg

Fair

(a) (b)

Figure 4.6: (a) A physics problem. (b) A free–body diagram for this problem.

a
m

m = 2.0 kg

a = 1.8 m/s2

m

mg

Fscale

(a) (b)

a

Figure 4.7: (a) Mass hangs from a scale inside an elevator which is accelerating upward. (What does the
scale read?) (b) Forces acting on the mass.
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It is true that if a mass m simply hangs from a scale and is not accelerating then the
upward force of the scale Fscale will equal the downward force of gravity mg, and that is
because the force vectors must add up to give zero for that case. But here the mass is
accelerating along with the elevator and all its contents so there is a net force and the force
vectors do not add up to zero.

In Fig. 4.7(b) we show the forces acting on the mass. Taking “up” as the +y direction,
the net force on the mass is

Fnet, y = Fscale − mg

and from Newton’s 2nd law this is equal to may, with ay = +1.80 m
s2

. Thus:

Fnet, y = Fscale −mg = may =⇒ Fscale = mg + may = m(g + ay)

Now plug in the numbers and get:

Fscale = (2.0 kg)(9.80 m
s2

+ 1.80 m
s2

) = 23.2N

So the force of the scale (the same as the tension in its spring here) is greater than the value
of its weight, mg = 19.6N. The scale will read 23.2N. One way to express this result is to
say that the apparent weight of the mass is 23.2N for the case we considered.

Now suppose the elevator car is accelerating downward with an acceleration of magnitude
1.80 m

s2
. What is the tension in the scale’s spring now?

The only thing that differs from the analysis we just did is the value of ay. Now we have
ay = −1.80 m

s2
. This time we get

Fscale = m(g + ay) = (2.0 kg)(9.80 m
s2
− 1.80 m

s2
) = 16.0N

so here the force from the spring is 16.0N so that is what the scale will read. Here the
apparent weight of the mass is 16.0N.

4.1.10 An Important Example: Mass Sliding On a Smooth In-
clined Plane

An important example of the applying the principles for solving force problems is the case of
a mass (or rather, a block of mass m) sliding on a frictionless inclined plane which is sloped at
angle θ from the horizontal. The situation is shown in Fig.4.8. Note, we could be considering
a mass which is sliding down the plane and moving faster and faster, or where the velocity
of the mass is up the plane and its speed is decreasing. In either case the acceleration of the
mass points down the slope and we would like to find its magnitude.

The first step is to identify the forces which act on the block. There are only two: One
is the force of gravity, which has a magnitude mg and points straight down. The other is
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q

m
smooth!

Figure 4.8: Mass m on a frictionless inclined plane. Angle of incline is θ.

mg

FN

y

x

(a) (b)

Figure 4.9: (a) Forces which act on the mass on the inclined plane. (b) We use a coordinate system with
axes along the plane (x) and perpendicular to it (y).
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mg

FN

mg sin q

mg cos q
q

y

x

Figure 4.10: The force of gravity (downward, mg) has the indicated components in our new coordinate
system.

the normal force of the surface which points perpendicular to the surface, with a magnitude
we’ll call FN . These are shown in Fig. 4.9(a).

The next steps involve some reasoning and math that are a little tricky, but it important
to understand them. The one thing we know about the mass is that its motion must take
place along the slope of the plane. The component of its acceleration perpendicular to the
plane is zero. Therefore it will be to our advantage to use a coordinate system which has axes
along the plane (x, directed down the plane) and perpendicular to it (y). These are shown
in Fig. 4.9(b). So now the normal force FN points along +y but the force of gravity points
along neither x nor y. That’s okay— we can get its x and y components in the new system
and work with those instead of the original vector. One can show with some geometry that
the component along the slope has magnitude mg sin θ and the one along y (going into the
plane) has magnitude mg cos θ. These components are illustrated in Fig. 4.10.

As we said, the y component of the total force must be zero. This gives us:

FN −mg cos θ = 0 so FN = mg cos θ

so (for what it’s worth) we know the magnitude of the normal force from the surface. Later
on, we will need this result.

The total force in the x direction is not zero, and Newton’s 2nd Law gives us:

mg sin θ = max

but the mass m cancels on both sides, giving us

ax = g sin θ

The acceleration of the mass is directed down the slope (as we would expect) and it has
magnitude mg sin θ. (It is a positive number because we had our x axis point down the
slope.
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m1

m2

Figure 4.11: Attwood machine; if released from rest, bigger mass goes down and the smaller mass goes
up!

Note that it gives the right values at θ = 0◦ (namely, ax = 0) and at θ = 90◦ (namely
ax = g).

4.1.11 Another Important Example: The Attwood Machine

The so–called Attwood Machine consists of two masses m1 and m2 joined by a string which
passes over a pulley. As we will treat it in this example the pulley and string are massless
and ideal. Such a device is shown in Fig.4.11. If we suppose that m2 is greater than m1 (we
don’t lose any “generality” if we do that; we’re always free to call the larger mass “m2”) then
if the masses are released, m2 will accelerate downward while m1 will accelerate upward. We
should be very surprised if m1 went downward!

We would like to find the value of the accelerations of the masses and also the tension in
the string.

In this problem there are two masses so we must analyze the forces (with diagrams)
on both of them individually. We begin with m1. The forces acting on m1 are shown in
Fig.4.12(a). The string tension T goes upward; the force of gravity m1 goes downward. Now
here we expect m1 to move upward so we’ll let the coordinate axis y go upward as usual and
let a be the component of its upward acceleration. Then applying Newton’s 2nd law in the
y direction gives

T − m1g = m1a (4.6)

Now we move on to m2. But before thinking about the forces on m2 we can think about
its motion. We expect the acceleration to be downward but we note that since m1 and m2

are connected by a taut string their motions are related. In particular at any given time
their speeds are equal and the rates of changes of these speeds are the same. That implies
that the magnitudes of their accelerations are equal. If m1 has an acceleration a upward , m2
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m1 m2

T

m1g

T

m2g

(a) (b)

Figure 4.12: (a) Forces on m1 in the Attwood machine. (b) Forces on m2 in the Attwood machine.

will have an acceleration a downward . It will be easier for us (I think) to use a downward
coordinate for m2; then the sum of the downward forces will give m2a, by Newton’s 2nd law.

So now we look at the forces on m2, shown in Fig. 4.12(b). Gravity m2 goes downward
and the string tension T (same tension on both ends) goes upward. Newton’s 2nd law gives:

m2g − T = m2a (4.7)

Now, taking m1 and m2 as “known” values, the two things we don’t know are a and T ,
and we want to find these. Eqs. 4.6 and 4.7 are two equations for these two unknowns so we
can use algebra to solve for them. If write them together:

T − m1g = m1a

m2g − T = m2a

then add the corresponding left and right sides we cancel the tension T to get:

m2g − m1g = m1a + m2a

factoring both sides gives
(m2 − m1)g = (m1 + m2)a

and finally, dividing both sides by (m1 + m2 to isolate a gives

a =
(m2 −m1)

(m1 + m2)
g (4.8)

We can check this result by considering two simple cases:

• If the masses are equal, m1 = m2, then Eq 4.8 gives a = 0, as we expect; with equal masses
there is no acceleration. However in that case the masses may still have a velocity .
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• If m1 (the smaller mass) is zero, then 4.8 gives

a =
(m2 − 0)

(0 + m2)
g =

m2

m2
g = g

so m2 falls down with the same acceleration it would have if we just dropped it. But is
essentially what is happening here since we are taking m1 and the string as having no mass.
So this case gives the correct answer as well.

Now we find the tension in the string. We can use Eq. 4.6, substitute the expression for
a and do some algebra:

T = m1g + m1a = m1g +
m1(m2 − m1)

(m1 + m2)
g

=
m1(m1 + m2)g

(m1 + m2)
+

m1(m2 − m1)g

(m1 + m2)

=
(m2

1 + m1m2 + m1m2 − m2
1)g

(m1 + m1)

=
2m1m2g

(m1 + m2)

4.2 Worked Examples

4.2.1 Newton’s Second Law

1. Forces act on a 4.0 kg mass, as shown in Fig. 4.13. Find the magnitude and
direction of the acceleration of the mass when forces are as shown in (a) and (b).

(a) Here there is a single force acting in the +x direction, so the net force is given by
Fnet, x = +5.0N. Put this into Newton’s 2nd law:

Fnet, x = max =⇒ 5.0N = (4.0 kg)ax

Solve for ax:

ax =
(5.0N)

(4.0 kg)
= 1.2 m

s2

The acceleration is in the +x direction and has magnitude 1.2 m
s2

.
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4.0 kg 5.0 N

x

(a)

4.0 kg 3.0 N

x

(b)

2.0 N

Figure 4.13: Forces act on a 4.0 kg mass in Example 1.

(b) Here we have to add two force vectors together; the forces are both directed along the
x axis (one of them points in the −x direction) so the total x−force is

Fnet, x = +3.0N − 2.0N = +1.0N

And this time Newton’s 2nd law gives us:

ax =
Fnet, x

m
=

(1.0N)

(4.0 kg)
= 0.25 m

s2

The acceleration of the mass is in the +x direction and has magnitude 0.25 m
s2

.

2. A car accelerates uniformly from 0 mi
hr

to 70 mi
hr

in 9.50 s. During this time what
is the force on the 80 kg driver?

First, find the final speed of the car in sensible units! We have:

70 mi
hr

= (70 mi
hr

)

(

1hr

3600 s

)(

5280 ft

1mi

)

(

0.3048m

1 ft

)

= 31.3 m
s

So the acceleration of the car is

ax =
v − v0

t
=

(31.3 m
s
− 0 m

s
)

(9.5 s)
= 3.29 m

s2

The acceleration of the driver is the same as that of the car! Newton’s 2nd law applied to
the driver gives

Fnetx = max = (80.0 kg)(3.29 m
s2

) = 264N

The force on the driver (horizontal; he has no vertical acceleration) has magnitude 264 m
s2

.
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4.2.2 The Force of Gravity

3. What is the magnitude of the force of gravitational attraction between two
2.00 kg masses separated by 50.0 cm?

Use Eq. 4.3 with m1 = m2 = 2.0 kg and r = 0.500m:

F = G
m1m2

r2
= (6.67 × 10−11 N·m2

kg2 )
(2.00 kg)(2.00 kg)

(0.500m)2
= 1.07 × 10−9 N

The force of gravity is 1.07 × 10−9 N.

4. Mars has a mass of 6.46 × 1023 kg and a radius of 3.39 × 106 m. (a) What is the
acceleration due to gravity on Mars? (b) How much would a 65 kg person weigh
on this planet? [CJ6 4-27]

(a) Use Eq. 4.5 using the mass and radius of Mars to get gMars:

gMars =
GMMars

R2
Mars

=
(6.67 × 10−11 N·m2

kg2 )(6.46 × 1023 kg)

(3.39 × 106 m)2

= 3.75 N
kg

= 3.75 m
s2

So we get a value which a bit more than 1
3

of the value of g on the Earth.

(b) The weight of an object of mass m on Mars is WMars = mgMars, so

WMars = mgMars = (65kg)(3.75 m
s2

) = 244N

4.2.3 Applying Newton’s Laws of Motion

5. A 3.00 kg mass is pulled upward by means of an attached rope such that its
acceleration is 2.20 m

s2
upward. What is the tension in the rope?

The basic problem is illustrated in Fig. 4.14(a). The first thing to do is to note down
all the forces acting on the mass, and this done in the “free–body–diagram” in Fig. 4.14(b):
The rope tension T pulls upward and the force of gravity mg is directed downward (with
m = 3.00 kg).
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3.0 kg

a = +2.2 m/s2

mg

T

(a) (b)

Figure 4.14: (a) Mass is pulled upward by a rope so that ay = +2.20 m
s2

. (b) Free–body–diagram for the
mass.

m1

m2

m1 = 3.0 kg

m2 = 2.0 kg

Figure 4.15: Masses joined by a string, in Example 6. m1 (3.00 kg) slides on a smooth surface. m2 hangs
from the string and falls downward.

By Newton’ 2nd law, the sum of the forces must equal ma and here the acceleration has
magnitude 2.20 m

s2
and goes upward. So Newton’s 2nd law gives:

T − mg = may

Solve for T :

T = mg + may = m(g + ay) = (3.00 kg)(9.80 m
s2

+ 2.20 m
s2

) = 36.0T

The tension in the rope is 36.0N.

6. A 3.00 kg mass slides on a smooth horizontal surface; it is joined by a string to
a hanging 2.00 kg mass. The string passes over a massless ideal pulley, as shown
in Fig. 4.15. When the 2.00 kg mass is released, (a) what is the acceleration of
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m1

m2

m1 = 3.0 kg

m2 = 2.0 kg

T

m2g

T

(a) (b)
m1g

FN

Figure 4.16: (a) The force(s) acting on m1 in Example 6. (b) the forces acting on m2.

the two masses? (b) What is the tension in the string?

(a) Before getting to the forces on the masses and the free–body–diagram, we ponder some
features of this problem. The 3.00 kg mass (to be called m1) will accelerate to the right
and the 2.00 kg mass (m2) will accelerate downward. These accelerations are in different
directions, but since the masses are joined by a string the distances they travel in any
amount of time are the same. So the magnitudes of their accelerations will be the same.

Now consider the forces acting on the masses. These are shown in Fig. 4.16. Mass m1

experiences a force m1g downward from gravity, a force from the table FN (the “mormal
force”) upward and a force T from the string tension to the right. Now, this mass isn’t
moving up or down so the vertical forces have to sum to zero. This gives us

FN − m1g = 0 or FN = m1g

which is correct, but doesn’t help to solve the problem.
The horizontal force on m1 gives its acceleration (to the right) and by Newton’s second

law we have
T = m1a (4.9)

It is true that here m1 = 3.00 kg, but it will be more useful to do some algebra first and
then plug in the numbers at the end.

Now we look at the forces on m2, as shown in Fig. 4.16(b). There is the string tension T
pulling upward and the force of gravity m2g pulling downward. Since we made the positive
direciton of m1’s motion to the right , it is consistent to make the direction of positive motion
for m2 downward , so that is what we will do. In that case, the downward acceleration of m2

is a, so adding up the downward forces on m2, Newton’s second law gives

m2g − T = m2a (4.10)
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Now we know the values of m1 and m2 and also the alue of g; the things we don’t know
in Eqs. 4.9 and 4.10 are T and a and of these it’s really a that we want. Since we have two

equations for two unknown quantities, we can do some algebra and find both of them.
If we add the respective left and right sides of the two equations we will get another

(valid) equation. The reason for doing this is that the tension T will cancel on the left side.
This gives:

T + m2g − T = m1a + m2a

A little algebra gives us
m2g = (m1 + m2)a

and then we can isolate a:
a =

m2g

(m1 + m2)
. (4.11)

Plugging in the numbers for the particular masses, the common acceleration is

a =
(2.00 kg)(9.80 m

s2
)

(3.00 kg + 2.00 kg)
= 3.92 m

s2

(b) We now have a so we can use Eq. 4.9 to get T :

T = m1a = (3.00 kg)(3.92 m
s2

) = 11.8N



Chapter 5

Forces II

5.1 The Important Stuff

5.1.1 Introduction

In this chapter we cover two more topics having to do with the basic application of Newton’s
laws.

First we discuss the force of friction, specifically as it occurs when two solid objects slide
against one another. This will allow us to solve more realistic problems and give us more
practice in making our force diagrams and applying Newton’s 2nd law.

Then we will discuss the special (but important) case when a mass moves in a circle at
constant speed. As we will see, this calls for a careful understanding of the directions of the
forces and acceleration.

5.1.2 Friction Forces

Now we need to go back to the examples of the last chapter and add a little realism.
We had some examples where a mass (i.e. a block) slides along a flat surface. Here we

want to take account of the fact that real surfaces are not smooth; in addition to the force
perpendicular to the surface (the “normal force”) there is also a force parallel to the surface
which comes from friction forces.

How do we get the magnitude and direction of this friction force? Alas, it is a bit tricky
but to have even the simplest discussion of friction we need to go into some details.

Sliding friction forces come in two kinds. In one kind, the block is not moving over the
surface; a frictional force is opposing some other applied forces so that there is no net force
and the block does not move. This is a force of static friction from the surface.

Now if we apply larger and larger forces to the block eventually it will move. So the static
friction force can take on values up to some maximum value, which, in a given situation we’ll

69
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call fMax
s .

How can we find this maximal value? Empirically one finds that it depends on two things:
(!) The kinds of surfaces (materials) that are rubbing together. (2) The normal force between
the two surfaces. The maximal value is proportional to the normal force between the surfaces
(as we might expect; push them together harder and they stick together more) so the formula
for fMax

s turns out to be
fMax

s = µsFN (5.1)

where FN is the normal force between the surfaces and µs is a number which depends on the
types of surfaces which are in contact. µs is called the coefficient of static friction and
since fMax

s and FN are both forces it doesn’t have any units (i.e. it is pure number). It is
very small when the surfaces are smooth and non–sticky.

The next kind of sliding friction happens when a block is moving over a rough surface.
Now there is a force of kinetic friction whose direction is opposite the direction of motion

and which has a magnitude fk. The magnitude of this friction force is given by a rule similar
to the one which gave the maximum value of the static friction force. fk depends on the types
of materials in contact as well as the normal force between the two surfaces. Empirically,
one finds:

fk = µkFN (5.2)

where the number µk is a unitless constant called the coefficient of kinetic friction.
Note how Eq. 5.2 is different from Eq. 5.1. Eq. 5.2 gives the actual value of the force of

kinetic friction whereas Eq. 5.1 just tells us how large the static friction force can possibly
be; its specific value will depend on the details of the other forces acting on the mass.

5.1.3 An Important Example: Block Sliding Down Rough Inclined

Plane

We go back to an “Important Example” considered in the last chapter, that of a block sliding
down an inclined plane. In that chapter we assumed the plane was perfectly smooth; what
happens if the plane is rough, with a coefficient of kinetic friction µk?

The first thing to do is to make a diagram of the forces acting on the block. In Fig. 5.1(a)
we show the forces which act on the block. Gravity with magnitude mg points downward.
The normal force of the surface points outward from the surface with magnitude FN . And
now there is a force of kinetic friction which is directed opposite to the motion with magnitude
fk. We’ve said that the block will be sliding down the slope so the friction force points up

the slope.
Once again, there is only motion along x so there can be no net force in the y direction.

This gives us
∑

Fy = FN − mg cos θ = 0 =⇒ FN = mg cos θ (5.3)
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mg

FN

y

x

(a) (b)

mg sin q

FNfk

mg cos q
mg

y

x

+
Dir. of motion

fk

Figure 5.1: Block sliding down a rough inclined plane. (a) Basic forces acting on the block. (b) Again, it
is useful to get the components of the gravity force along x and y.

and by Newton’s 2nd law the sum of the x forces gives
∑

Fx = mg sin θ − fk = max . (5.4)

From the last chapter we know that fk = µkFN and using Eq. 5.3 we get

fk = µk = µkmg cos θ (5.5)

Now using this in Eq. 5.4 we get

mg sin θ − µkmg cos θ = max .

We can cancel the mass m from both sides to get

ax = g sin θ − µkg cos θ (5.6)

It is interesting that once again the acceleration down the slope does not depend on the
mass, but it does depend on the types of surfaces involved, through the coefficient of friction
µk.

5.1.4 Uniform Circular Motion

We consider an important kind of motion not covered in Chapter 3. This is where a particle
moves in a circular path (with radius r) with constant speed, v, as shown in Fig. 5.2.

Suppose it takes a time T for the particle to go around the circle. Since it then moves a
distance C = 2πr in a time T , the speed of the particle must be

v =
2πr

T
⇒ T =

2πr

v
(5.7)
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v

r

Figure 5.2: Uniform circular motion.

v1
v2

-v1

v2

Dv

Dv = v2 - v1

(a) (b)

Figure 5.3: (a) Velocity vectors at two different times. (b) ∆v gives the direction of the acceleration vector.

Next, some questions to test our understanding of velocity and acceleration: Is this a
case of constant velocity? It is not . Even though the velocity of the particle always has the
same magnitude, the direction of the velocity is changing, and that is important. So the
particle has an acceleration and a net force which gives that acceleration.

What is the direction of this acceleration? To find the answer we have to go back to the
basic definition of the acceleration vector ; it is the rate of change in the velocity vector , i.e.

a =
∆v

∆t
for very small ∆t

We consider the difference in velocity vectors for two points on the particle’s path which are
close together in time. This is shown in Fig. 5.3(a). Velocity vectors at times t1 and t2, v1

and v2 point very nearly in the same direction, but not quite! If we take the difference of
these two vectors, as shown in Fig. 5.3(b), we find that ∆v = v2 − v1 points toward the
center of the circle. Since to get the acceleration we just divide ∆v by the interval ∆t, the
acceleration must also point toward the center of the circle. Thus:

For uniform circular motion, the acceleration vector always points toward the center.

Because of this we say that the acceleration is centripetal. We note that since the
acceleration does not have the same direction all the time (though it does have the same
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magnitude), the acceleration is not constant either!
What is the magnitude of the acceleration? One can show that the magnitude of the

acceleration is given by:

ac =
v2

r
(5.8)

where r is the radius of the circle and v is the (constant) speed of the particle. The subscript
“c” just indicates that this is the magnitude of the centripetal acceleration.

5.1.5 Circular Motion and Force

Newton’s 2nd law, Fnet = ma tells us something about the forces acting on a particle which
undergoes uniform circular motion. It says that the total force must also be pointing toward
the center of the circle and it must have a magnitude given by

Fc =
mv2

r
(5.9)

where again the subscript c indicates that the direction of the force is toward the center.

5.1.6 Orbital Motion

Using the equations for uniform circular motion and Newton’s law of gravity we can under-
stand some features of the orbits of planets around the sun or of moons of the planets.

Consider a small mass m2 in motion around a much larger mass m1; m1 is large enough
that we will assume it is stationary. Mass m2 experiences an attractive force toward m1 and
we will consider the case where this force provides the centripetal force for motion of m2

around m1 in a circular orbit of radius r. m2 is moving with constant speed v. See Fig. 5.4.
To repeat, m2 moves around m1 because at all times it is being pulled toward m1.
Since the distance between the two masses (their centers, actually) is r, the gravitational

force on m2 is given by

Fgrav = G
m1m2

r2

and from the facts about its orbit, the total force on m2 must be pointing toward the center
with magnitude

Fc =
m2v

2

r

But the gravity force on m2 is the total force on m2, so

Fgrav = Fc =⇒ G
m1m2

r2
=

m2v
2

r
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r

m2

m1

v

Fgrav

Figure 5.4: Small mass m2 is in orbit around the much larger mass m1 ; we assume that m1 doesn’t move
and that the orbit is a circle centered on the center of m1. The centripetal force on m2 is the gravitational
force Fgrav.

We see that m2 cancels in the last equation as does one power of r. We can write the result
as

Gm1 = rv2 (5.10)

There is a clearer way to express Eq. 5.10 because the things we usually know about a
planet or moon are the radius of the orbit r and the period of its motion, that is, the time
it takes to make one revolution, T . Since one revolution has a path length of 2πr, the speed
v and T are related by

v =
2πr

T

Put this into Eq. 5.10 and with a little algebra get:

Gm1 = r
(

2πr

T

)2

=
4π2r3

T 2

which we can write as

T 2 =
4π2r3

Gm1
(5.11)

We note that that the mass of the small orbiting object m2 does not appear in this equation;
so it says that for any mass orbiting m1 in a circular orbit, the period and orbital radius
are related as given in Eq. 5.11. It says that as r gets larger so does T , but the two are not
proportional; rather, the square of T is proportional to the cube of r.

Relation 5.11 is the modern version of a rule for planetary motion discovered by Kepler.
Kepler considered the planets of the solar system which all orbit the same object, namely
the sun. If we consider two planets with individual radii and periods r1, T1 and r2, T2, then
Eq. 5.11 gives

T 2
1

r3
1

=
4π2

GM
and

T 2
2

r3
2

=
4π2

GM
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mg

mg sinq

mg cosq

q

q

q = 15o

Fstat

N

m = 4000 kg

Figure 5.5: Forces acting on a 4000 kg truck is parked on a slope.

where M is the mass of the sun. This tells us:

T 2

r3
= the same for all planets (5.12)

We can use 5.12 to get the period or distance of a planet if we know both the period and
distance of another planet orbiting the same central object.

5.2 Worked Examples

5.2.1 Friction Forces

1. A 4000 kg truck is parked on a 15◦ slope. How big is the friction force on the
truck? [KJF 5-26]

The forces which act on the truck are shown in Fig. 5.5. With m = 4000kg and θ =
15◦, the downward force of gravity mg has been decomposed into components along and
perpendicular to the slope as we’ve done before. There is a normal force from the road with
magnitude N . The truck has no acceleration so there is no net force and so there must be
a force going up the slope, which of course is from static friction, denoted by Fstat.

For the forces along the slope to cancel we must have

Fstat = mg sin θ = (4000 kg)(9.80 m
s2

) sin 15◦ = 1.01 × 104 N

so that is the magnitude of the friction force.
What about Eq. 5.1? That equation only gives the maximum value that the force of

static friction can take on. No one said that this was the case in this problem. (The problem
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2.80 m/s

m

m = 0.300

m

x

(a) (b)

Figure 5.6: (a) Block is sliding on a smooth surface with a speed of 2.80 m
s
. It encounters a surface which

is rough, with µk = 0.300. (b) Block has come to a halt after moving a distance x on the rough surface.

m

mg

FN

fk

Dir. of motion

m= 0.500 kg

Figure 5.7: Forces acting on the mass in Example 2 while it is sliding on the rough surface.

did not say the truck is on the verge of slipping.) So while that equation is true, it’s not
relevant to the problem.

2. A block of mass 0.500 kg slides on a flat smooth surface with a speed of 2.80 m
s
.

It then slides over a rough surface with µk and slows to a halt. While the block is
slowing, (a) what is the frictional force on the block? (b) What is the magnitude
of the block’s acceleration? (c) How far does the block slide on the rough part
before it comes to a halt?

The problem is illustrated in Fig. 5.6. As indicated in Fig. 5.6 the block slides a distance
x in coming to a halt on the rough surface.

First, find the forces which act on the block... draw the damn picture, as we do in Fig. 5.7.
The forces are gravity (mg, downward) the normal force from the surface (FN , upward) and
the force of kinetic friction (fk, backward i.e. opposite the direction of motion).

Now, the motion only takes place along a horizontal line, so the vertical acceleration is
zero. So the net vertical force on the mass is zero, giving:

FN − mg = 0 =⇒ FN = mg = (0.500 kg)(9.80 m
s2

) = 4.90N
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Now that we have the normal force of the surface, Eq. 5.2 gives us the magnitude of the
(kinetic) friction force:

fk = µkFN = (0.300)(4.90N) = 1.47N

(b) The net force on the block is the friction force so that the magnitude of the block’s
acceleration is

a =
Fnet

m
=

(1.47N)

(0.500 kg)
= 2.94 m

s2

We should note that the direction of the acceleration opposes the diretion of motion, so if
the velocity is along the +x direction, the acceleration of the block is

ax = −2.94 m
s2

Actually, by plugging the numbers into the formulae we’ve missed an important point.
Going back to part (a), we had FN = mg, so that

fk = µkFN = µkmg

and the magnitude of the acceleration is

a =
Fnet

m
=

µkmg

m
= µkg ,

that is, the acceleration of the mass does not depend on the value of m, just on µk and g.

(c) The distance travelled by the mass before it comes to a halt: We have the initial velocity
v0 of the mass, the final velocity (v = 0) and the acceleration. We can use Eq. 2.8 to solve
for x:

v2 = v2
0 + 2ax =⇒ 02 = (2.80 m

s
)2 + 2(−2.94 m

s2
)x

Solve for x:

x =
(2.80 m

s
)2

2(2.94 m
s2

)
= 1.33m

3. A block slides down a rough incline sloped at an angle of 40.0◦ from the
horizontal. Starting from rest, it slides a distance of 0.800m down the slope in
0.600 s. What is the coefficient of kinetic friction for the block and surface?

The problem is illustrated in Fig. 5.8. From the information given about the motion of
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40 o

0.800 m

Rough!

x

Figure 5.8: Block slides down rough inclined plane in Example 3.

the block we can find its acceleration; with the x axis pointed down the slope (as we often
do in these problems), with v0x = 0 we have:

x = 0 + 1
2
axt

2 =⇒ a =
2x

t2

Plug in the numbers and get ax:

a =
2(0.800m)

(0.600 s)2
= 4.44 m

s2

We’ve solved the general problem of a block sliding down a rough inclined plane; In
Eq. 5.6 we found:

ax = g sin θ − µkg cos θ = g(sin θ − µk cos θ)

where θ is the angle of the incline. Since µk is the only thing we don’t know here, we can do
some algebra and solve for it:

sin 40◦ − µk cos 40◦ =
ax

g
=

(4.44 m
s2

)

(9.80 m
s2

)
= 0.454

µk cos 40◦ = sin 40◦ − 0.454 = 0.189

µk =
(0.189)

cos 40◦
= 0.247

So we get a coefficient of friction of 0.247 for the block sliding on the surface.

5.2.2 Uniform Circular Motion
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4. A small mass moves on a circular path of radius 2.50m with constant speed; it
makes one revolution every 3.20 s. (a) What is the speed of the mass? (b) What
is the magnitude of its centripetal acceleration?

(a) Every time the mass moves around the circle, it travels a distance

C = 2πr = 2π(2.50m) = 15.7m

This happens in a time T = 3.20 s so the speed of the mass must be

v =
C

T
=

(15.7m)

(3.20 s)
= 4.91 m

s

From Eq. 5.8 the centripetal acceleration has magnitude

ac =
v2

r
=

(4.91 m
s
)2

(2.50m)
= 9.64 m

s2

5. Find the centripetal acceleration of a point on the equator of the Earth due
to the rotation of the Earth about its axis [Ser7 7-15a]

A point on the Earth’s equator moves in a circle of radius

Rearth = 6.38 × 106 m

and the period of T = 1day = 86400 s. So the speed of that point is

v =
2πR

T
=

2π(6.38 × 106 m)

(86400 s)
= 464 m

s

Then from Eq. 5.8 the centripetal acceleration of this point has magnitude

ac =
v2

R
=

(464 m
s
)2

(6.38 × 106 m)
= 3.37 × 10−2 m

s2

(The direction of its acceleration is toward the center of the Earth, i.e. downward.)
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0.25 m

Fc

Figure 5.9: Ball moves in a circular arc.

5.2.3 Circular Motion and Force

6. A 0.015 kg ball is shot from the plunger of a pinball machine. Because of a
centripetal force of 0.028N, the ball follows a circular arc whose radius is 0.25m.
What is the speed of the ball? [CJ6 5-11]

A picture of the ball moving on its circular path is given in Fig. 5.9. The ball moves in
a circular path because the net force on the ball points toward the center of the circle and
has magnitude

Fnet = Fc =
mv2

r

Since we are given Fc, m and r, we can solve for v:

v2 =
Fcr

m
=

(0.028N)(0.25m)

(0.015 kg)
= 0.47 m2

s2

So then

v = 0.68 m
s

7. A 200 g block on a 50 cm–long string swings in a circle on a horizontal friction-
less table at 75 rpm. (a) What is the speed of the block? (b) What is the tension
in the string? [KJF 6-14]

(a) The motion of the block is shown in Fig. 5.10. We are given the number of revolutions
the block makes in one minute; how do we get the speed for that? We note that in each
revolution the block travels a distance

C = 2πr = 2π(0.50m) = 3.14m
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v

v

50 cm
T

Figure 5.10: Block swings in a circular horizontal path.

30 m

v mg

Fseat

(a) (b)

Figure 5.11: (a) Roller coaster with passengers at a dip. (b) The forces acting on a passenger at the
bottom of the dip.

and if the block travels 75 times this distance in minute its speed must be

v =
75(3.14m)

60.0 s
= 3.92 m

s

(b) There is only one force acting on the block, namely that of the string tension and it
pulls inward. The net force on the block must be Fc = mv2/r (inward) so that gives us

T =
mv2

r
=

(0.200 kg)(3.92 m
s
)2

(0.50m)
= 6.2N

The tension in the string is 6.2N.

8. The passengers in a roller coaster feel 50% heavier then their true weight as
the car goes through a dip with a 30m radius of curvature. What is the car’s
speed at the bottom of the dip? [KJF6-19]

Whoa! Passengers feel heavier? Speed at the bottom of the dip? Huh?
The motion of the car with its passengers is shown in Fig. 5.11(a). We don’t know the

speed v but we do know that since the car and its contents has a speed v and is in circular
motion where the radius of the motion is 30m. So the acceleration of the car is toward
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the center of the circle, that is to say, upward and has magnitude ac = v2/r. (Here we
assume that the only forces on the car and passengers are vertical; there is no tangential
acceleration) So the acceleration of any one of the passengers also has magnitude v2/r and
is directed upward.

So if the mass of a passenger is m then the net force on that passenger must have
magnitude mv2/r and be directed upward .

The forces acting on a passenger are shown in Fig. 5.11(b). There is the force of gravity,
mg, downward and also the force of the seat, Fseat, which is directed upward. These forces
do not have equal magnitude because as we just said, the net force has magnitude mv2

r
and

is directed upward. So using our force diagram, Newton’s 2nd law gives

Fseat − mg =
mv2

r

But the problem tells something about Fseat. Normally when we sit in chairs we are not
accelerating; then the chair’s force is equal to that of gravity (the weight): Fseat = mg. We
feel this force of the chair. For the passengers in the car Fseat is larger; the problem tells us
that the seat’s force is 50% larger than that of gravity:

Fseat = (1.50)Fgrav = 1.50mg

and using this fact in the first equation gives

(1.50)mg − mg = (0.50)mg =
mv2

r

which gives (cancel the m):

v2 = (0.50)gr = (0.50)(9.80 m
s2

)(30m) = 147 m2

s2

and then
v = 12 m

s

9. In the Bohr model of the hydrogen atom, an electron (mass m = 9.11×10−31 kg)
orbits a proton at a distance of 5.3 × 10−11 m. The proton pulls on the electron
with an electric force of 8.2× 10−8 N. How many revolutions per second does the
electron make? [KJF 6-38]

A picture of this model for the hydrogen atom is shown in Fig. 5.12. The electron orbits
in a circular orbit of radius r with speed v. The only force on the electron is the electrical
force which points inward and has magnitude

Fc = Felec =
mv2

r
= 8.2 × 10−8 N
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v

v

Felec

r
proton

electron

Figure 5.12: Electron orbits the proton in the Bohr model.

From this we can solve for the speed v:

v2 =
rFelec

m
=

(5.3 × 10−11 m)(8.2 × 10−8 N)

(9.11 × 10−31 kg)
= 4.8 × 1012 m2

s2

so then
v = 2.2 × 106 m

s

This speed is about 1
100

of the speed of light.
In one second the electron will travel 2.2 × 106 m, but the distance covered in one revo-

lution is
C = 2πr = 3.3 × 10−10 m

so that the number of revolutions made in one second is

N =
(2.2 × 106 m)

(3.3 × 10−10 m)
= 6.7 × 1015 rev

so the orbital rate of the electron is 6.7 × 1015 rev
s

. This is a large number, but the situation
(motion of an electron inside an atom) is rather exotic!

5.2.4 Orbital Motion

10. One of the moons of Jupiter (Europa) orbits Jupiter in a (roughly) circular
orbit with a radius of 670, 900 km. The period of the orbit is 3.55days. From this
information, what is the mass of Jupiter?

Eventually we will use Eq. 5.11 here to get m1 from r and T , but first we need to get
things in the right units. In meters, the radius of the orbit r is

r = (670, 900 km)

(

103 m

1km

)

= 6.71 × 108 m

and the period is

T = (3.55day)

(

24hr

1 day

)

(

3600 s

1 hr

)

= 3.07 × 105 s



84 CHAPTER 5. FORCES II

r

R

Figure 5.13: Space shuttle in orbit around the earth.

Doing some algebra on Eq. 5.11 to isolate the mass of the central body m1 gives:

m1 =
4π2r3

GT 2

and plugging in the numbers (use the form of G in Eq. 4.4) gives:

m1 =
4π2(6.71 × 108 m)3

(

6.67 × 10−11 m3

kg·s2

)

(3.07 × 105 s)2

= 1.90 × 1027 kg

We find that the mass of Jupiter is 1.90 × 1027 kg.

11. The space shuttle is in a 250−mile-high orbit. What are the shuttle’s orbital
period (in minutes) and its speed? [KJF 6-33]

We diagram the problem, as in Fig. 5.13. We need to convert 250mi to m:

250mi = (250mi)

(

103 m

0.621mi

)

= 4.03 × 105 m

but to find the radius of the shuttle’s orbit (that is, its distance from the center of the earth)
we must add this to the radius of the earth. Thus:

r = R + 4.03 × 105 m = 6.37 × 106 m + 4.03 × 105 m = 6.77 × 106 m

Having the radius of the orbit, and knowing the mass of the earth, we can use Eq. 5.11
to get the period of the orbit:

T 2 =
4π2r3

Gm1
=

4π2(6.77 × 106 m)3

(6.67 × 10−11 N·m2

kg2 )(5.98 × 1024 kg)

= 3.17 × 107 s2
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Then:

T = 5.54 × 103 s
(

1min

60 s

)

= 92.3min

We can get the speed of the shuttle using Eq. 5.7:

v =
2πr

T
=

2π(6.77 × 106 m)

(5.54 × 103 s)
= 7.68 × 103 m

s
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Chapter 6

Energy

6.1 The Important Stuff

6.1.1 Introduction

While Newton’s laws form the basis of physics, experience has shown that we need some other
concepts and laws to be able to deal with problems effectively. The present chapter and the
next one deal with some new quantities and the rules which they obey. The quantities are
energy and momentum.

6.1.2 Kinetic Energy

We make a definition of a quantity which we will soon find to be quite useful. For a particle
of mass m moving at speed v, the kinetic energy of the particle is defined by:

KE = 1
2
mv2 (6.1)

What sort of quantity is this? It is a scalar , that is, it is s single number which does not have
any direction associated with it (unlike velocity which is a vector). It is always a positive
number since m and v2 are always positive.

The units of this quantity have to be those of mass multiplied by those of speed squared,
that is,

kg ·
(

m

s

)2

= kg·m2

s2

This is a new and important combination which is called the joule. Thus:

1 joule = 1J = 1 kg·m2

s2
(6.2)

Other units of energy sometimes seen are:

1 erg = 1 g·cm2

s2
= 10−7 J and 1MeV = 1.602 × 10−19 J

87
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F

s

F

q

q

Figure 6.1: Constant force F acts on an object as it is displaced by s. Work done is Fs cos θ.

The erg is the unit of energy in the cgs system of units; the MeV is encountered when we
deal with atomic processes.

6.1.3 Work

We have one more quantity to define before we say anything of any substance. The quantity
is work. When a force acts on an object which undergoes a displacement (i.e. it moves)
then work is done.

We first consider a special case for computing work. This is where the force F is constant
(keeps the same magnitude and direction) and where the displacement of the mass is along
a straight line; so the displacement (change in location r) is some vector s; see Fig.6.1

Finally, suppose the angle between the force vector F and the displacement s is θ. Then
the work done by this force is

W = Fs cos θ (6.3)

We have several things to discuss about definition 6.3 before discussing why it’s impor-
tant.

First off, work is a scalar meaning that it is a single number. The units of work are those
of force times those of distance (a cosine has no units) which is the combination:

N · m = kg·m
s2

· m = kg·m2

s2

which you’ll notice is the very same combination that made up the units for kinetic energy,
the combination that we called a “joule”. Thus, work is measured in joules.

Next we note that while F and s are both positive, the cosine of an angle can be negative
(as then the angle is between 90◦ and 180◦) so that work (W ) can be negative.

Finally there are three special cases for θ that we will want to keep in mind: When
the force acts in the same direction as the displacement then θ is zero, cos θ = 1 and then
W = Fs. When the force acts in the opposite direction as the displacement then θ = 180◦,
cos θ = −1 and then W = −Fs. When the force acts in a direction perpendicular to that
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of the displacement then θ = 90◦, cos θ = 0 and the work done is zero. A force acting
perpendicular to the direction of motion does no work .

Finally, it will be of use to find the total work done by all the forces acting on a mass.
To get this, we simply add up the work done by each individual force. One can also find the
net force acting on the mass and find the work done by it ; the result is the same.

6.1.4 The Work–Energy Theorem

What are these definitions good for? One can show that the quantities kinetic energy (KE)
and work (W ) are related. If we consider the motion of a particle over a certain time interval
we can consider the total work done on the particle, Wtot. We can also consider its change
in kinetic energy, which is just

∆KE = KEf − KEi = 1
2
mv2

2 − 1
2
m2

1

The work energy theorem tells us that they are the same:

Wtot = ∆KE (6.4)

6.1.5 Potential Energy

Some physics problems can be done using the Work–Energy Theorem but in general we
need some further definitions and theorems so that it becomes really useful. In particular,
calculating the work done by the various forces can be made much simpler.

One can show that when an object of mass m moves from a height y1 to a height y2, then
work done by gravity is

Wgrav = −mg(yf − yi) = −mg∆y . (6.5)

This is an interesting result because Wgrav depends only on the difference in heights between
the initial and final positions. The path that the particle took between the two places does
not matter! The work done is just a difference in the quantity −mgy evaluated between the
initial and final locations.

We will see some other forces for which the work done is also expressible as a difference
in some expression between the final and initial positions. Not all forces have this property
but some of the more interesting ones do. Such forces are called conservative forces and
for these forces it is easiest to find and use the expression whose difference gives W .

To be precise, it’s the negative of the difference in some quantity which we want to equal
W ; the quantity is called the potential energy, PE. Thus, for forces which permit us to
have a simple expression for the work, we define:

∆PE = −W (6.6)
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x0

x0 x0

F F

F = 0

(a)

(b) (c)

Figure 6.2: Spring exerts a force on the block which opposes the displacement of the block from the
equilibrium position. (a) Spring has its natural length; no force. (b) Spring is compressed; force goes
outward. (c) Spring is stretched; force goes inward.

Comparing this with Eq. 6.5, the potential energy for the gravity force (near the surface
of the earth) is

PEgrav = mgy (6.7)

where y is the usual vertical coordinate.
As mentioned, not all forces are conservative. The kinetic friction force does not have

this property. As you might expect, such forces are called nonconservative.

6.1.6 The Spring Force

In order to have some variety at this point, I will introduce another kind of force which is
important in physics. This is the force exerted by an ideal spring on something attached to
its end.

In Fig. 6.2 we show the basic behavior of a spring. When it is unstretched or uncompressed
it has an equilibrium length. In that case there is no force exerted on the block which is
attached to one end. When it is compressed (as in (b)) or stretched (as in (c)) then a force is
exerted on the block; the direction of the force is opposite the direction of the displacement.

Also, the spring force has a greater magnitude the more we compress or stretch the spring
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(i.e. as |x| gets bigger). For the “ideal spring”, the magnitude of the force is proportional to
the amount of compression or stretch of the spring away from the equilibrium position. If we
consider the motion of the mass along the x axis and if x = 0 corresponds to the equilibrium
position then the force of the spring is given by:

Fx = −kx (6.8)

where the number k is a constant and depends on the stiffness of the spring. (It is positive;
the minus sign in Eq. 6.8 makes Fx opposite in sign to the displacement x.) It is called
the force constant of the spring and since it is equal to |F/x|, its units are those of force
divided by those of distance, or N

m
. (This combination is also equal to k

s2
.)

One can show that if the mass on the end of the spring goes from x1 to x2, the work done
by the spring force is

Wspring = −1
2
k(x2

2 − x2
1)

which is true regardless of how the mass gets from x1 to x2. Then Eq. 6.6 gives us the
expression for the potential energy of the spring force:

PEspr = 1
2
kx2 (6.9)

6.1.7 The Principle of Energy Conservation

Now we show why the idea of potential energy is useful.
The forces in nature are either conservative or non-conservative; when we compute the

total work done by all the forces we can separate the sum into two parts, one due to the
conservative forces and one due to the non-conservative forces:

Wtotal = Wcons + Wnon−cons

putting this into Eq. 6.4 we have:

Wtotal = Wcons + Wnon−cons = ∆KE

Now we note from Eq. 6.6 the work by the conservative forces is equal to the change in all
the kinds of potential energy:

Wcons = −∆PE

Putting this into the previous equation,

−∆PE + Wnon−cons = ∆KE

And then a little rearranging gives:

∆PE + ∆KE = ∆(PE + KE) = Wnon−cons
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One more definition and we’re done. We define the total energy E to be the sum of
the potential and kinetic energies:

E = PE + KE (6.10)

and then the last equation becomes:

∆E = ∆(PE + KE) = Wnon−cons (6.11)

In words, the change in the total energy of a system equals the work done by the non-
conservative forces.

Oftentimes we have a situation where there are no non-conservative forces; for example
if there are no friction force that need be considered. In that case, Wnon−cons is zero and
Eq. 6.11 reduces to

∆E = Ef − Ei = 0 (No non-conservative forces!) (6.12)

which tells us that for this case the total energy does not change. When a quantity in
physics remains the same in spite of other changes in the system we say that the quantity
is conserved. So we would also say that in the absence of non-conservative forces, total
energy is conserved .

6.1.8 Solving Problems With Energy Conservation

The principle of energy conservation can be useful in solving physics problems where the
motion of a particle is complicated but the kinds of forces involved are simple, and also if
you aren’t being asked for a time interval—because time does not enter into our equations
for energy.

In the cases where there are no friction forces (or any other forces which do work) we can
use Eq. 6.12. If we setup expressions for the total energy of a system before and after some
motion takes place (and set them equal) we may be able to solve for some unknown speed
or distance.

If the problem does involve a friction force or some other force which does work we would
have to use the more general Eq. 6.11 but it too can be useful if we have some way of treating
the non–coservative force.

6.1.9 Power

One more concept involving work and energy is useful in studying the world. We’ve discussed
how one calculates work done by a force. This quantity involved force and distance but it
did not involve time. If an amount of work W is done in a time t we define the average
power from this force as

P =
W

t
(6.13)
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Power is the expression of how rapidly energy is transferred from one system to another.
Like work and energy, power is a scalar and its units are those of energy (joules) divided

by those of time (seconds). We call the combination J
s

a watt:

1watt = 1W = 1 J
s

= 1 kg·m2

s3

If we consider very small time intervals t in Eq. 6.13 we find the instantaneous power P
from the force.

In the special case of a particle moving in one dimension, acted on by a constant force
along this direction and moving with instantaneous velocity vx, we can find the instantaneous
power from:

P = Fxvx (6.14)

6.2 Worked Examples

6.2.1 Kinetic Energy

1. At what speed does a 1000 kg compact car have the same kinetic energy as a
20, 000 kg truck going at 25 km/hr? [KJF 10-8]

Let m and v be the mass and speed of the compact car and M and V be the mass and
speed of the truck. We don’t know v but we have the condition that the kinetic energies of
the two are equal. Thus:

1
2
mv2 = 1

2
MV 2 =⇒ v2 =

MV 2

m
=

(2.00 × 104 kg)(25 km
hr

)2

(1.00 × 103 kg)

Solving this for v gives

v = 112 km
hr

6.2.2 The Spring Force

2. An ideal spring has a force constant of 820 N
m
. How far should one deform it

from its equilibrium length so that 0.100 J of energy is stored?
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60
o

v

1.20 kg

2.00 m

Figure 6.3: Mass on the end of a string is pulled back by 60◦ and then released. When the mass reaches
the lowest point, what is the tension in the string?

Use Eq. 6.9 and solve for x:

PEspr = 1
2
kx2 =⇒ x2 =

2(PEspr)

k

Plug in the numbers:

x2 =
2(0.100 J)

(820 N
m

)
= 2.44 × 10−4 m2 =⇒ x = 1.6 × 10−2 m = 1.6 cm

We need to compress the spring by 1.6 cm.

6.2.3 Solving Problems With Energy Conservation

3. A small 1.20 kg mass is attached to the end of a string of length 2.00m; the
string is pulled back by 60.0◦ from the vertical, as shown in Fig. 6.3. The mass
is released and it swings downward on the string. If the string breaks under a
tension of more than 20N, will the mass be able to get to the bottom of its swing
as shown in the figure?

For reasons that we’ll see as we work the problem, the maximum tension in the string
will occur at the bottom of the swing so if the string ever breaks it will break then. So we
will assume it gets to the bottom and then calculate the string tension at that point.

The string tension at the bottom is not equal to the weight of the mass. We have to
analyze the forces and apply Newton’s 2nd law!

The forces acting on the mass at the bottom of the swing are shown in Fig. 6.4. They
are gravity, mg downward and the string tension T upward. These forces do not add to zero
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v
m = 1.20 kg

R = 2.00 m

mg

T

Figure 6.4: Forces acting on the mass at the bottom of the swing.

q = 60
o

v

R = 2.00 m
Rcosq

R - Rcosq

Figure 6.5: Some geometry for Example 3.

because at this point the mass is accelerating. How so? The mass is moving on the arc
of a circle of radius R with speed v and so the radial (inward) forces must add to give the
centripetal force, Fc = mv2/R. Thus:

T − mg =
mv2

R
(6.15)

where R is the string length, R = 2.0m. To find T we will need to know the speed v at the
bottom of the swing.

We can get v using the conservation of energy. There are no friction forces here, only the
conservative force of gravity and the string tension T which does no work because it always
pulls perpendicularly to the motion of the mass. So total mechanical energy is conserved,
Ei = Ef .

Taking the bottom of the swing to be “zero height” a little geometry (see Fig. 6.5) show
that the initial height of the mass was

yi = R − R cos θ = R(1 − cos θ) = (2.00m)(1 − cos 60◦) = 1.00m
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R

q

(a) (b)

Figure 6.6: (a) Boy rests at top of frictionless hemisphere; he starts to slip down one side of it! (b) At
some angle θ from the vertical he loses contact with the surface.

So energy conservation gives

PEi + KEi = PEf + KEf =⇒ mgyi + 0 = mgyf + 1
2
mv2

Here cancel a factor of m and do some algebra:

g(yi − yf) = 1
2
v2 =⇒ v2 = 2g(yi − yf)

Plug in the numbers and get

v2 = 2(9.80 m
s2

)(1.00m − 0) = 1.96 m2

s2
=⇒ v = 4.43 m

s

Now we have the value of v2 that we can use in Eq. 6.15. Some algebra on that equation
gives

T = mg +
mv2

R
= m

(

g +
v2

R

)

Now plug in the numbers and get

T = (1.20 kg)



(9.80 m
s2

) +
(19.6 m2

s2
)

(2.00m)



 = 23.5N

But the string cannot support a tension this large! So the string will break before the mass
gets to the bottom of the swing.

4. A small boy sits at the top of a frictionless hemisphere of radius R, as shown
in Fig. 6.6(a). He starts to slip down one side of it and at some angle θ measured
from the vertical he loses contact with the surface, as shown in Fig. 6.6(b). Find
the angle θ.



6.2. WORKED EXAMPLES 97

q

v

RRcosq

Figure 6.7: Boy at position given by θ has speed v and height R cos θ

This is a classic and somewhat challenging problem but it does not require any more
math than simple trig.

We focus on the point at which the loss of contact occurs. While the boy starts from
rest at the top of the sphere, his speed is v at this point. As mentioned, his position is given
by the angle θ as measured form the vertical so that while his initial height was R it is now
R cos θ; see Fig. 6.7.

Since there are no friction forces acting, the boy’s total energy is conserved between the
initial position at the top and the final position at θ, that is:

KEi + PEi = KEf + PEf

Using PE = mgy this is

0 + mgR = 1
2
mv2 + mgR cos θ

where m is the mass of the boy. Do a little algebra on this and get:

1
2
mv2 = mgR − mgR cos θ = mgR(1 − cos θ) =⇒ v2 = 2gR(1 − cos θ)

The condition that the boy “loses contact” with the surface means that there is no normal

force from the surface on the boy at some point. We know that the surface exerts no sideways
(tangential) force on the boy because there is no friction. But in general the surface can
push outward on the boy with some force FN . (It cannot pull inward, and that is why the
boy will fly off at some point.)

The forces on the boy when he is at position θ are shown in Fig. 6.8. Gravity mg pulls
downward and the normal force FN pushes outward. The force of gravity has been split into
components: Doing a little geometry, we can see that a component mg cos θ points inward
toward the center of the sphere and a component mg sin θ points tangentially.

Now at the moment the boy loses contact he is following the path of a circle (with speed
v) so that the net force in the inward direction is the centripetal force, mv2/R. (It is true
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mg

mgsinq
mgcosq

q

FN

Figure 6.8: Forces on the boy at position given by θ.

that there is also a tangential force but that doesn’t matter.) According to our force diagram
the net force in the inward direction is

Fc = mg cos θ − FN

and so
mv2

R
= mg cos θ − FN .

But at the moment he loses contact, FN = 0 so we get

mv2

R
= mg cos θ =⇒ v2 = Rg cos θ

Comparing our results for energy conservation and the centripetal force, we got two
expressions for v2. If we equate them, we get

2gR(1 − cos θ) = Rg cos θ

Cancel the Rg and do some algebra:

2(1 − cos θ) = cos θ =⇒ 2 = 3 cos θ

Finally,

cos θ =
2

3
=⇒ θ = 48.2◦



Chapter 7

Momentum

7.1 The Important Stuff

7.1.1 Momentum; Systems of Particles

Again we begin the chapter with a definition; later, we’ll see why it’s useful and then use a
new principle to solve problems in physics.

When a particle of mass m has velocity v, its momentum (or more specifically, its
linear momentum), p is defined as:

p = mv (7.1)

That is, momentum is just mass times velocity.
Momentum is a vector , and Eq. 7.1 means that

px = mvx py = mvy pz = mvz

The units of momentum are those of mass (kg) times those of velocity ( m
s
), that is,

they are kg·m
s

. Oddly enough people haven’t been able to agree on a special name for this
combination so we leave it as it is.

7.1.2 Relation to Force; Impulse

Using Newton’s 2nd law we see how momentum is related to force. Considering forces and
motion in one dimension, if a constant force Fx acts on a mass m for a time interval ∆t then

Fx∆t = (max)∆t = m(ax∆t) = m∆vx

But since
m∆vx = m(vfx − vix) = mvfx − mvix = ∆px
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then combining the two equations gives

Fx∆t = ∆px

Or, dividing by ∆t,

Fx =
∆px

∆t
(7.2)

so that the force on a particle is equal to the rate of change of its momentum.
Eq. 7.2 gives us a definition for the average force acting on a particle. If, during a

time interval ∆t the change in momentum of a particle is ∆p, then the average force on the
particle for that period is

F =
∆p

∆t
(7.3)

People often make a definition to deal with the change in momentum of a particle. If
over a certain time interval a particle has a change in momentum ∆p, they say that the
impulse, I imparted to the particle is

I = ∆p (7.4)

From this, we see that impulse is a vector with the same units as momentum.
Since from Eq. 7.3 we have F∆t = ∆p, from the definition of impulse we also have

F∆t = I

7.1.3 The Principle of Momentum Conservation

Oftentimes in physics we are faced with the problem of two objects which are moving along
free from forces; the objects interact with each other and then move apart, again free from
outside forces, as shown in Fig.7.1. Often we want to call such an event a “collision”. The
velocities (both magnitude and direction) of the masses after the event can be quite different
from what they were before the event.

The problem with the analysis of such an event is that the force between the two objects

may not be known very well. Generally when objects collide this force is very strong, very
brief and very complicated. In such a situation does physics have anything at all to say
about the collision?

Here I’d like to give a simple derivation of the principle of momentum conservation
because the math is simple and it’s important to understand the basic reason behind this
principle.

Consider what happens during the interaction between A and B in Fig. 7.1(b). They
exert forces on each other, but from Newton’s 3rd law these forces are equal and opposite:

FB onA = −FA onB (7.5)
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(a) (b) (c)

A B

A B

A B

vBf

vAf

vBivAi

Figure 7.1: A collision between masses A and B. (a) Masses move freely with velocities vAi and vBi. (b)
For a brief time the masses exert a force on one another. The force changes their velocities. (c) The masses
move freely again, with velocities vAf and vBf

Consider a very small time interval ∆t during the interaction over which we can take force
as being constant. Multiply both sides of Eq. 7.5 by ∆t and get:

(FB onA)∆t = −(FA onB)∆t (7.6)

Now we’re assuming that B is the only thing exerting a force on A and vice versa. That
means that FB onA∆t gives the change in momentum of A, ∆pA over this time interval ∆t .
Similar remarks hold for B so we can write:

(∆pA)interval∆t = −(∆pB)interval∆t (7.7)

So the changes in momentum for A and B are equal and opposite over every little bit of the
interaction. If we add up the changes in momentum over all little bits of the interaction we
still find that they are equal and opposite for the whole interaction period :

(∆pA)whole = −(∆pB)whole (7.8)

Now write the changes in momentum in terms of the momenta before and after the
interaction:

pAf − pAi = − (pBf − pBi) (7.9)

A little rearranging gives:

pAi + pBi = (pAf + pBf) (7.10)

Now a definition. We’ll let P stand for the total momentum of all the particles,

P = pA + pB (7.11)
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With this definition, then the left side of 7.10 is the initial value of P and the right side is
the final value of P. So we have:

Pi = Pf (7.12)

that is, the value of the total momentum stays the same, or as we say in physics, is conserved .
We need to recall the conditions under which we could make this statement (our assump-
tions): We assumed that during the interaction, A and B were interacting with each other

but felt no forces from anything else. Another way to say this is that during the interaction,
the two objects were isolated; because of that, their total momentum was conserved.

The principle can be made more general by including more particles, and the lesson can
be stated as:

For a system of isolated particles, the total momentum is conserved.

7.1.4 Collisions; Problems Using the Conservation of Momentum

Sometimes we are faced with a problem where there are two or interacting particles which
“feel” no forces from anything else, i.e. they are isolated. Sometimes we have a situation
where we are considering the motion of several particles over such a short period of time

that we can safely ignore the external forces but we can’t ignore the forces between the
particles. Then, for the purposes of the problem, the particles are (again) “isolated”. The
forces between the particles may be very complicated, but that doesn’t matter. The total
momentum of the particles will stay the same before and after the interaction.

Examples of where such an interaction can occur are:

• When two particles travel freely, bounce off one another and then travel away from one
another in new directions; this is what we normally think of as a “collision”.
• When two particles come together and stick to one another; the combined mass travels off
as one unit (with a mass equal to the sum of the individual masses).
• When a single mass explodes and the individual parts fly off in different directions; we
would call this an “explosion”. Again, the sum of all the masses is the same before and after.

Though total momentum stays the same during these processes, what about the energy

of the particles? More specifically, since in the rapid interactions we are considering the
potential energy of the system doesn’t change by much we ask what happens to the kinetic

energy of the particles.
In general, the total kinetic energy can remain the same or decrease or even increase

for a collision; it depends on the nature of the interacting objects and the kind of force
the exert on each other. The usual case is that when real objects collide the force is in
small part frictional in nature and then kinetic energy is lost , or rather it changes form to
thermal energy. But it is possible that the impact releases chemical or other stored energy
from an exploding element and then the kinetic energy would increase. But if the surfaces
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m1
m2

v1i

m1
m2

v1f

v2f

(a) (b)

v2i = 0

Figure 7.2: Elastic collision in one dimension. (a) Mass m1 has initial velocity v1i and mass m2 is at rest.
(b) Final velocities of the two masses are v1f and v2f . Formulae for these velocities are given in the text.

of the objects are very tough and springy the change in energy might be so small as to be
unmeasurable.

When the total kinetic energy stays the same in a collision we say that it is an elastic
collision. If KE is lost (or gained) we say that the collision is inelastic.

A special name is given to the case mentioned above where one particle strikes another
and sticks. Such a collision is called completely inelastic.

If we know beforehand that a collision is elastic then we have some additional information
which can help us solve a problem. As an example we consider a situation which is easy to
set up in the lab: A one-dimensional collision in which a mass m1 is moving toward another
mass m2 which is at rest. Knowing that the collision is elastic we want to find the velocities
of the masses after the collision.

The problem is diagrammed in Fig.7.2. In the collision there are no (appreciable) external
forces, so momentum is conserved:

m1v1i + 0 = m1v1f + m2v2f (7.13)

Here the v’s are velocities so that they can be positive or negative. However if we say that
v1i is positive then v2f had better be positive; if the second mass went backward after the
collision, both masses would have to be moving backward, which is nonsense! But v1f could
possibly be negative; that is the case where m1 bounces backwards after the collision.

Now if we also know that kinetic energy is conserved in the collision then we can write
another equation:

1
2
m1v

2
1i = 1

2
m1v

2
1f + 1

2
m2v

2
2f (7.14)

If we take the masses m1 and m2 and v1i as “known” and the final velocities v1f and
v2f as unknown then the two equations 7.13 and 7.14 allow us to find the two unknown
velocities. This involves some algebra which I’ll skip, but the solution is:

v1f =
(m1 − m2)v1i

(m1 + m2)
v2f =

2m1v1i

(m1 + m2)
(7.15)

Eq. 7.15 tells us some interesting things. If the masses are equal (m1 = m2) then the
equations tell us that v1f is zero— the first mass stops— and v2f = v1i, the second mass
moves off with the same velocity that the first mass had.
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If we consider the case where m2 is enormous compared to m1, then in the solution for
v1f we can replace (m1 − m2) by −m2 and (m1 + m2) by m2, giving

v1f =
−m2

m2

v1i = −v1i

so that mass m1 just reverses its motion. In this case, m2 will move forward very slowly.
The case where m1 is enormous compared to m2 is interesting. We find that v1f is almost

the same as v1i, but for m2 we find that since (m1 + m2) is basically the same as m1 we get

v2f ≈ 2m1

m1
v1i = 2v1i

that is, m2 goes forward with twice the original speed of m1. (And m1 plows ahead with
roughly the same speed.)

7.1.5 Systems of Particles; The Center of Mass

Newton’s laws as given in Chapter 4 really apply to point masses (“particles”) and yet we’ve
been applying them to real objects which have non–zero dimensions. Have we been correct
in doing so? If so, how was it correct?

There are two problems in ignoring the fact that real objects have real sizes. First off, a
real object can change its orientation while staying basically in the same place. We say that
a real object can rotate, and we will deal with simple rotations in the next chapter.

Secondly, if an object has a non-zero size it is somewhat problematical as to what we
mean by the “location” of the object when discussing its kinematics: When we talk about
the “motion” of the object, what particular point of the object are we talking about? The
“middle” of the object, maybe? What do we mean by “middle”?

A real object can be treated as a collection of a whole lot of point particles and with this
treatment and the use of Newton’s laws (which do apply to points) one can show that we
can keep using Newton’s laws for big things (or systems of particles) as long as we make the
following replacements:

• For the force Fnet in Newton’s 2nd law, use the total external force acting on all parts of
the object. (The parts of the object or set of masses may be exerting forces on each other ,
but we don’t need to count those.)
• For the mass m, use the total mass of the object or the total mass of the system of particles.
Let’s call the total mass M .
• For the acceleration a, realize that we are now talking about the acceleration of a special

point called the center of mass of the object or system of particles: aCM.

With these replacements in mind, the expression of Newton’s 2nd law (fortunately) looks
the same:

Fnet = MaCM (7.16)
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(a) (b)

CM

CM

CM

Figure 7.3: (a) Diver jumps off diving board and does some of that crazy diver-type stuff; action looks
very complicated! (b) If we plot the center of mass of the diver, its motion is fairly simple (a parabolic path).

but the terms have new meanings.

With the new usage of Newton’s second law, things which seem to have a complicated
motion have a simple aspect. Consider a diver jumping into the water and doing all those
crazy things that divers do, as shown in Fig.7.3. The motion looks complicated, but if at
each instant in time we could locate the center of mass of the diver and track its motion, we
would see that it follows a nice parabola as shown in Fig. 7.3(b). Why is that?

The revised version of Newton’s 2nd law says to consider the total (external) force acting
on the diver. Granted, gravity acts on the diver’s various parts but the total force is still
Mg, directed downward. The total mass of the diver is M . So we know that the acceleration
of the center of mass is simple; it has magnitude Mg/M = g and is directed downward, the
same as for the (point) projectile problem solved back in Chapter 3. There we found that
the general path is a parabola and so that is the shape of the path of the center of mass for
the diver.

7.1.6 Finding the Center of Mass

So the center of mass has great importance in the physics of a system of particles. How do
we find it?

Here we will just give the formula the center of mass of a set of mass points; for a
continuous mass we use the same principle but it becomes necessary to use calculus. Also
we’ll just work in two dimensions.

If a set of mass points with masses m1, m2, m3. . . have coordinates (x1, y1), (x2, y2),
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(x3, y3). . . then the x coordinate of its center of mass is given by

xcm =
m1x1 + m2x2 + · · ·

m1 + m2 + · · · =

∑

i mixi

M
with M =

∑

i

mi (7.17)

Likewise the y coordinate of the center of mass is

ycm =
m1y1 + m2y2 + · · ·

m1 + m2 + · · · =

∑

i miyi

M
with M =

∑

i

mi (7.18)

In both cases what we are doing is taking a weighted average of the coordinates of the mass
points, where the “weighting” is done with the masses of the points.

As the members of a set of mass points move around, the location of their center of mass
will also move, and it will have its own velocity. The components of the velocity of the center
of mass satisfy an equation similar to that of the location of the cm:

vcm,x =
m1v1,x + m2v2,x + · · ·

m1 + m2 + · · · =
Px

M
vcm,y =

m1v1,y + m2v2,y + · · ·
m1 + m2 + · · · =

Py

M
(7.19)

or:

vcm =
P

M
=⇒ P = Mvcm

. . . which looks like the definition of momentum but here it gives the total momentum of a
system of particles.

Finally, the acceleration of the center of mass satisfies

acm,x =
m1a1,x + m2a2,x + · · ·

m1 + m2 + · · · acm,y =
m1a1,y + m2a2,y + · · ·

m1 + m2 + · · · . (7.20)

7.2 Worked Examples
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Rotational Kinematics

8.1 The Important Stuff

8.1.1 Rigid Bodies; Rotating Objects

So far we have had much to say about the motion of objects and the way it is determined by
the forces acting on those objects. But in all of our examples we were treating the objects
as points (i.e. “particles”), assuming that if they did have any size or internal motion it was
unimportant.

We will now deal with the fact that real objects have a non-zero size and it addition to
the motion of their center of mass (the translational motion) they can also be in rotation.

We will only deal with objects which keep the same shape; the individual bits of the
object always stay at the same distance from one another, i.e. they don’t stretch, compress
or otherwise deform. Such an object is called a rigid body and we’ll have enough on our
plate just to deal with such objects.

Even after restricting ourselves to rigid bodies, their motion can be very complicated. If
you throw a football the right way it will have a simple kind of rotational motion, as shown
in Fig. 8.1(a). If you throw it the wrong way it will be rotating in several different ways all
at once, as in Fig. 8.1(b).

In this and the next chapter we will deal with very simple rotations, usually of the kind
illustrated in Fig. 8.2(a). Here, a rigid body rotates around a fixed axis. Each point of the
object moves in a circle, though the radii of these individual circles will not be the same.
For now, this is what we will mean by a “rotating object”.

We’ll also consider rotations of the kind illustrated in Fig. 8.2(b). Here, a round object is
rolling. We can look at this as a rotation; here the axis keeps the same orientation, though
it is moving. This kind of motion will be covered in the following chapter.
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(a) (b)

Figure 8.1: (a) Football thrown the right way. (b) Football thrown the way I always throw one. It has
several kinds of rotation all at once!

v

(a) (b)

Figure 8.2: The kinds of (simple) rotations we will consider. (a) Object turns about a fixed axis. (b)
Rolling object turns about an axis which itself is in motion.
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q

Figure 8.3: Orientation of a rotating object is given by the angle θ.

8.1.2 Angular Displacement

The orientation of a rotating object is given by a single number, an angle θ, which can be
taken as the angle between some some radial marker on the object and some fixed axis, as
shown in Fig. 8.3.

Now, while we have so far measured angles in degrees (since they are easiest to visualize)
it turns out that it is now more convenient to measure angles in radians. Recall that there
are 2π radians in a full circle, i.e. 360 degrees:

2π radians = 360degreees or π radians = 180degrees (8.1)

Also keep in mind that 1 revolution just means that the object makes one full turn. To
convert between the different “units” for rotations, use

1 revolution = 360degrees = 2π radians

The reason for using radians to measure angles is that it will be useful to talk about the
actual distance a point on a rotating object travels when the object rotates by an angle θ.
As shown in Fig. 8.4, a point at distance r from the axis travels a distance s when the object
rotates through an angle θ. There is a simple relation between these values: s = rθ, which
is true only when θ is measured in radians. Thus:

s = rθ With θ in radians! (8.2)

We will also refer to s as the “linear distance” through which the point travels, though of
course the actual path is the arc of a circle.

When an object rotates all points have the same angular displacement, but since the
points are at different r’s, the linear distances they travel are different.
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r

q

s

Figure 8.4: Object turns through an angle θ; a point on the object at a distance r from the axis moves
through a distance s = rθ.

8.1.3 Angular Velocity

We follow the same steps as in Chapter 2 to study the relation between angular displacement
and time.

If a rotating object turns through some angular displacement ∆θ in a time ∆t then the
average angular velocity ω for that period is

ω =
∆θ

∆t
(8.3)

(The symbol ω is the small Greek letter “omega”.)
As with our linear motion, a much more interesting quantity is the instantaneous

angular velocity ω, which has the same kind of definition but applied to a very small time
interval ∆t and which than has meaning at a particular time t:

ω =
∆θ

∆t
For very small ∆t (8.4)

As used in these notes, angular velocity is a scalar (a single number) because of the
simplicity of our rotations; position is given by a single angle θ. In advanced physics courses
where the rotations are more complicated it is necessary to treat angular velocity as a vector.

Since θ is measured in radians and t in seconds, the units of ω ought to be rad
s

and indeed
if you are asked for an angular velocity you should give it with these units. But as we’ll see
if we stick by our practice of writing down all the units (including “rad”) we will run into
some inconsistencies later on, which basically come from the fact that our “radian” units is
mathematical in nature; there is no standard “radian” kept under glass in France anywhere.

Though opinions differ on this, my practice is that the symbol “rad” should taken as
optional , inserted just for clarity. When expressing an angular velocity or acceleration, one
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should include it to emphasize that we are not using degrees. When we do a calculation
where the answer needs to come out in joules, then it should be dropped. However it would
be OK (with me) to express an angular velocity in 1

s
= s−1.

When we set up our equations for angular displacement it will be simplest to say that at
time t = 0 the angular displacement is θ = 0.

8.1.4 Angular Acceleration

As we’ll see, when an outside influence acts on a rotating object the effect is that the
rotational motion (i.e. the angular velocity) changes and we now want a measure of how
rapidly the angular velocity changes with time. If the angular velocity of object has a change
∆ω in a time period ∆t We define an average angular acceleration α as:

α =
∆ω

∆t
(8.5)

But a more important quantity is the instantaneous angular acceleration, defined by

α =
∆ω

∆t
for very small ∆t (8.6)

The units of angular acceleration must be the units of angular velocity divided by those
of time, that is,

rad
s

s
= rad

s2
.

But as with angular velocity, I wouldn’t get upset if you expressed it as 1
s2

, treating the “rad”
as optional. Check with the local Units Police officer.

8.1.5 The Case of Constant Angular Acceleration

If α does not depend on time then for any time interval t (where we start counting time
from t = 0) we have

α =
∆ω

t
=

ω − ω0

t
.

Here, ω0 is the initial angular velocity of the object, that is, its angular velocity at t = 0.
This gives

ω = ω0 + αt (8.7)

We followed very similar steps in finding the equation v = v0 +at in one-dimensional motion
with constant linear acceleration. And in a similar way one can show that θ is given by

θ = ω0t + 1
2
αt2 (8.8)



112 CHAPTER 8. ROTATIONAL KINEMATICS

Here we measure θ such that θ = 0 at t = 0.
We can get other relations between θ, ω and α with some algebra. One can show that

Eqs. 8.7 and 8.8 give:
ω2 = ω2

0 + 2αθ (8.9)

And one can show
θ = 1

2
(ω0 + ω)t (8.10)

but you are cautioned that this equation holds only when we already know that α is constant.

8.1.6 Relation Between Angular and Linear Quantities

We’ve already mentioned that when the object turns by an angle θ a particular point on the
object at radius r travels a distance s, given by s = rθ.

Suppose an object is rotating with angular velocity ω. A point at radius r has speed v
which we can find from

v =
s

t
=

rθ

t
= r

(

θ

t

)

= rω

(Here we are really talking about a very small time interval t so that v and ω are the
instantaneous velocities.)

This gives us the relation between linear speed v and angular speed ω for the point:

v = rω (8.11)

We note that while all points of the object rotate at the same angular speed ω, because
they have different radii they will have different linear speeds v.

Finally we discuss the acceleration of a point on the rotating object. This is little more
complicated, because there are two parts to the acceleration.

We have already seen that when a particle undergoes uniform circular motion its acceler-
ation points toward the center of the circle and has magnitude ac = v2

r
. We can use Eq. 8.11

to express this as:

ac =
v2

r
=

(rω)2

r
= rω2 (8.12)

But when the object has an angular acceleration there is also a component of the accel-
eration in the tangential direction. This is because with an α which is not zero, the linear
speed of the point is increasing as it travels on its circular path. Again taking a very small
time interval t, the tangential acceleration is given by

aT =
∆v

t
=

∆(rω)

t
= r

∆ω

t
= rα

That is,
aT = rα (8.13)
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ac

aT

w, a

Figure 8.5: Acceleration of a point on a rotating object has centripetal and tangential components, ac and
aT .

So in general for a point on a rotating object, the acceleration has two components, as
illustrated in Fig. 8.5.

8.2 Worked Examples

8.2.1 Angular Displacement

1. A rigid body turns through 1.85 radians. Express this in degrees and revolutions

Use the fact that π radians equals 180◦, then

1.85 rad = (1.85 rad)

(

180deg

π rad

)

= 106deg

Then, use the fact that 1 revolution = 2πrad to get

1.85 rad = (1.85 rad)
(

1 rev

2π rad

)

= 0.294 rev

8.2.2 Angular Velocity and Acceleration

2. Long ago people listened to music which was stored on “phonograph records”.
These records turned at a rate of 33.3 revolutions per minute. Express this
rotation rate in radians per second.
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Use the relations 1 rev = 2π rad as well as 1min = 60 s to convert the units:

33.3 rev
min

= (33.3 rev
min

)

(

2π rad

1 rev

)

(

1min

60 s

)

= 3.49 rad
s

8.2.3 Rotational Motion with Constant Angular Acceleration

3. A flywheel has a constant angular deceleration of 2.0 rad
s2

. (a) Find the angle
through which the flywheel turns as it somes to rest from an angular speed of
220 rad

s
. (b) Find the time required for the flywheel to come to rest. [CJ7 8-19]

(a) The problem tells us that if we take the angular velocities as positive, then we have
α = −2.0 rad

s2
. Then if the initial angular velocity is ω0 = 220 rad

s
and it comes to rest (ω = 0)

as it turns through an angle θ, the relation between these quantities is given by Eq. 8.9,

ω2 = ω2
0 + 2αθ

so solving for θ,

θ =
(ω2 − ω2

0)

2α

Plugging in the numbers,

θ =
(0)2 − (220 rad

s
)2

2(−2.0 rad
s2

)
= 1.21 × 104 rad

(b) To find the time it takes the flywheel to come to rest, use Eq. 8.7,

ω = ω0 + αt =⇒ t =
(ω − ω0)

α

and we get

t =
(0 − 220 rad

s
)

(−2.0 rad
s2

)
= 110 s

8.2.4 Relation Between Angular and Linear Quantities

4. A string trimmer is a tool for cutting grass and weeds. It utilizes a length of
nylon “string” that rotates about an axis perpendicular to one end of the string.
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47 rev/s

54 m/s

r

Figure 8.6: Rotating string in Example 4.

The string rotates at an angular speed of 47 rev
s
, and its tip has a tangential speed

of 54 m
s
. What is the length of the rotating string? [CJ7 8-29]

The rotating string is shown in Fig. 8.6. The angular frequency of the string’s rotation
is

ω = 2πf = 2π(47 s−1) = 295 s−1

We have the speed of the tip of the string (which is a distance r from the axis), so from
Eq. 8.11 we can get the length of the string, r:

v = rω =⇒ r =
v

ω
=

(54 m
s
)

295 s−1)
= 0.183m = 18.3 cm

The string is 18.3 cm long.
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Chapter 9

Rotational Dynamics

9.1 The Important Stuff

9.1.1 Introduction

Having worked with the kinematics of rotation in the last chapter we now move on to study
the dynamics of rotation. In effect, we have to re-do that past chapters on dynamics (force,
energy and momentum) in the setting of rotating objects. We have our work cut out for us
and accordingly, this is a long chapter!

9.1.2 Rotational Kinetic Energy

When an object turns around a fixed axis (as they did in the last chapter) the individual
bits are in motion, so the object certainly has kinetic energy . Kinetic energy is always a
positive scalar , so the kinetic energies of these little bits add up to give the kinetic energy
of the whole object.

We would like to calculate the kinetic energy, but we must keep in mind that even though
all parts of the object have the same angular velocity they have different speeds because they
lie at different distances from the axis. We will have to add up the kinetic energies of the
separate parts of the object; this is another derivation for which it is instructive (and easy)
to understand all the steps.

Imagine the object is broken up into little pieces, each indexed by the number i. Piece i
has mass mi, speed vi and sits at a distance ri from the axis, as shown in Fig.9.1.

The total kinetic energy of rotation is the sum of the kinetic energies of all the little bits:

KErot =
∑

i

1
2
miv

2
i

117
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ri

mi

Figure 9.1: A little piece of the rotating object has mass mi and is a distance ri from the axis.

Into this we substitute vi = riω, giving

KErot =
∑

i

1
2
mi(riω)2

Now we take the common factors of 1
2

and ω2 outside the sum and write it as

KErot = 1
2

(

∑

i

mir
2
i

)

ω2 (9.1)

and now we focus on the quantity inside the parentheses in Eq. 9.1.
This quantity is the sum over all the little pieces of the object of the mass of that piece

times its radius squared. (When the object is a continuous mass like a disc it is implied that
the pieces need to be very small!) This quantity is called the moment of inertia of the
object1, and it is given the symbol I . Thus:

I =
∑

i

mir
2
i (9.2)

As we will use it, the moment of inertia is a scalar. It units must be those of mass times
those of length squared, thus for physics they are

kg · m2

There is no abbreviation for this.
Using this definition in Eq. 9.1 we have the simple expression

KErot = 1
2
Iω2 (9.3)

and we note that it looks like the expression for the kinetic energy of a particle, KE = 1
2
mv2.

1Sometimes you will see it called the rotational inertia.
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9.1.3 More on the Moment of Inertia

Most of the time we are interested in the moment of inertia of some continuous object like
a rod or a disk, and for these shapes, even though we use the principle given in Eq. 9.2 we
actually need calculus to get the result.

So it is best just to give a short catalogue of formulae to use with the most common basic
shapes we’ll see in our problems.

Figures 9.2 and 9.3 give a set for formulae for the moments of inertia for various shapes.
In all these cases we assume that the material of the object has uniform density. To use the
formulae, we need to know the mass of the object and one or two of its dimensions. Some
of the most commonly used formulae are:

Ihoop = MR2 Idisk = 1
2
MR2 Isolid sph = 2

5
MR2 (9.4)

It’s important to realize that the value of the moment of inertia depends on where we put

the axis . For example, for a uniform rod, the moment of inertia when the axis goes through
the middle is 1

12
ML2. But when the axis goes through the end of the rod, the moment of

inertia is 1
3
ML2.

There is a useful theorem which can give us the moment of inertia under a special
circumstance. Suppose:

• We know that moment of inertia of some object around an axis which goes through its
center of mass, Icm.

• We want the moment of inertia around an axis which is parallel to that axis, a distance D
away from it.

Then we can get the desired moment of inertia from a simple formula,

I = Icm + MD2 , (9.5)

a formula which is called the Parallel Axis Theorem. The elements of the theorem are
illustrated in Fig. 9.4.

9.1.4 Torque

When we arrived at Chapter 4 we asked the question: “Accelerations are what makes motion
interesting. . . what causes an object to accelerate?”. We do something analogous here: “An-

gular accelerations are the interesting feature of rotational motion; what makes a rotating
object accelerate?”

Actually, forces are still the cause for changes in motion, but for our present purposes
the best answer is that changes in rotational motion are caused by a rotational version of
force called torque. Torque has something to do with the force exerted on the object but it
also depends on where the forces are exerted and their directions.
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R

R1

R2

R R

L

L L

(a) (b)

(c) (d)

(e) (f)

MR2 M(R1+R2)
1
2

2 2

ML2

MR21
4

ML2 1
12+

 1
12 ML21

3

MR21
2

Figure 9.2: Some values of the moment of inertia for various shapes and choices of axes.
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R R

(a) (b)

R

(c) (d)a

b

MR22
5 MR22

3

MR21
2

M(a2+b2) 1
12

Figure 9.3: More moments of inertia.

cm

IcmI

D

M

Figure 9.4: The Parallel Axis Theorem: Axis through the cm gives Icm, and we want the moment of inertia
I about a new axis.
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F F
F

(a) (c)(b)

Figure 9.5: Forces exerted on a door: (a) Force exerted far from the hinge, perpendicular to the door face.
(b) Force is exerted perpendicular to the door face but close to the hinge! (c) Force is exerted far from the
hinge but not perpendicular to the door face. Attempting to open a door using the forces in (b) or (c) will
only make you look foolish.

F

f

Fsin f

Figure 9.6: Only the perpendicular part of the force, F⊥ contributes to the torque; F⊥ = F sin φ.

Fig. 9.5(a) shows how one should exert a force to open a door. Push on the end far away
from the hinge (axis) and push perpendicularly to the line which joins the axis to the point
of application. Exerting a force this way gives a large amount of torque on the door.

Figs. 9.5(b) and (c) show how not to open a door. In (b) the force is exerted perpendicular
to the length of the door but it is too close to the hinge. In (c) the force is exerted far from
the hinge but not perpendicularly to the line joining hinge and the point of application.

When you go opening doors, exert a force like the one shown in 9.5(a)!
The “thing” that makes the door rotate contains the magnitude of the force exerted (F )

and the distance from the axis (r), but is only the perpendicular part of the force (F⊥) that
matters, i.e. perpendicular to the line joining the axis and point of application, as shown in
Fig. 9.6.

The magnitude of the torque, τ is the product of F⊥ and r:

τ = rF⊥ = rF sinφ (9.6)

where φ is the angle between the line from the axis the direction of the force.
We now work on the details of the definition of “torque”; it’s a little confusing.
Is it a vector or a scalar? In actuality it’s a vector, and if the force and line from the

axis lie in a certain plane, the direction of the torque is perpendicular to that plane, (which



9.1. THE IMPORTANT STUFF 123

F1

F2

f1

f2

Figure 9.7: Given that our positive rotation direction is counter-clockwise, force F1 gives a positive torque.
Force F2 gives a negative torque.

we might call the z direction). For our present purposes, the rotations we consider are all
simple so we are only using the z component of the torque. In that case we’re only talking
about a single number so we will treat torque as a number. But this number can be positive
or negative.

What about the units? From its definition the units must be those of force times those
of distance, i.e. N ·m. Now it is true that in Chapter 6 we said that this combination was a
“joule”. It wouldn’t be quite right to use that notation here because torque is a very different
quantity from energy and the two quantities never really mix in any of our work. So it is
considered good practice to leave the units of torque as N · m.

Now we need to be more careful about the definition in Eq. 9.6. It is really the magnitude

of the torque exerted on the object by the force F . Just as our angular displacements can
be positive or negative, torque will also bo positive or negative depending on whether the
force is making the object rotate in the positive or negative sense.

To avoid using more mathematics than we need, we’ll use the following convention: We
can use 9.6 to get the magnitude of the torque; if the force would make the object rotate in
the counter-clockwise direction, the torque is positive. If the force would make the object
rotate in the clockwise sense, the torque will be negative. Examples are shown in Fig. 9.7.

Of course, we can let “clock-wise” be the positive rotation direction, as long as we are
consistent.

With this in mind, we define the magnitude of torque as

|τ | = rF sin φ (9.7)

where φ is angle between the direction of the force and the line from the axis.

When we have several forces acting on a rotating object we will want to find the total

torque. Just add up the individual torques, making sure you get the signs right.
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l

f

f

F

F

f
F

(a) (b)

r r

Figure 9.8: (a) Force F pulls at angle φ from the radial line. (b) We drop a “line of action” along the
direction of the force and make a perpendicular “lever arm” from the axis. Now the (same) force pulls
perpendicularly to the lever arm. Lever arm has length ` = r sin φ.

9.1.5 Another Way to Look at Torque

Another way to arrive at our definition of torque, Eq. 9.7, advocated in some textbooks is
as follows.

Again start with a rotating system like a door with a force of magnitude F pulling at a
distance r and angle φ, as in Fig. 9.8(a). We know that things are simple when the force
is pulling perpendicularly to the line from the axis, and we can do something interesting to
create this condition.

Fig. 9.8(b) show how to do this. Draw a line along the direction of the force such we can
drop a new line from the axis which is perpendicular to the force. Now we have the simple
situation for torque. The length of this new line is ` and is called the lever arm for the
force in question. We then want to have τ = `F for our formula. But is that the same as
what we had before?

Fig. 9.8(b) shows that it is. Since ` = r sinφ we get

τ = `F = (r sinφ)F = rF sinφ

and it’s the same as before.

9.1.6 Newton’s 2nd Law for Rotations

What is torque good for? If the torque on a object is greater then the angular acceleration
that the object will undergo is greater; that much is obvious, but what is the relation between
the two?

We can get a hint from considering the motion of single mass point m around an axis
at a distance r. Suppose a single force F acts on this mass in the tangential direction.
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Then Newton’s 2nd law gives F = ma, a being the acceleration in the tangential direction.
Multiply both sides by r and get rF = mar.

Now make some substitutions in this last equation. Since the force is applied at 90◦ to
the radial line, it gives a torque τ = rF . Also the linear acceleration a is tnagential and is
related to its angular acceleration by a = aT = rα. This gives us:

τ = m(rα)r =⇒ τ (mr2)α

Now the moment of inertia for a single point mass m at a distance r is I = mr2. Making
this substitution in the last equation gives

τ = Iα

While this little derivation doesn’t show very much it turns out that one can show that
the result is general: When we have a bunch of (external) forces acting on a rotating object
giving some net torque τnet, the net torque is related to the moment of inertia and angular
acceleration by

τnet = Iα (9.8)

This relation is often called Newton’s 2nd law for rotations and indeed it strongly
resembles the original version of Newton’s 2nd law: Compare F = ma with τ = Iα. In the
second one, torque plays the role of force and the moment of inertia plays the role of the
mass. Of course, α corresponds to a as we saw in the last chapter.

9.1.7 Solving Problems with Forces, Torques and Rotating Ob-
jects

Knowing how rotating objects behave we can now solve problems which involve (idealized)
rotating systems. Often the problem will include a pulley or wheel over which a string passes.
The pulley will have mass , and that will be an important aspect of the problem but generally
we will ignore any friction in the bearings of the pulley. (When we consider it, it will give a
torque which opposes its rotational motion.)

We will now have to make free–body diagram (i.e. draw the damn picture) for the
rotating objects as well. For the rotating elements the diagram will show the forces acting
and where they are applied .

Two typical elements in these problems are shown in Fig. 9.9. In (a) a string is wrapped
around a pulley or radius R. There is a tension T in the string; the string rolls off the pulley
tangentially. We can treat this system as if a force of magnitude T is pulling at the edge
of pulley, at right angles to the radial line. Then the torque on the pulley (from the string
force) is TR sin 90◦ = TR.

We will use the fact that the linear motion of the edge of the pulley (where the string
rolls off) is the same as that of the string itself.
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T

T2

T1

(a) (b)

Figure 9.9: (a) String wrapped around a pulley; tension T gives a torque on the pulley. (b) String is in
contact with pulley; tensions on the different sides are not the same.

Another one is shown in (b). Here a string passes over an ideal pulley and does not slip,
so again the linear motion of the edge of the pulley is the same as that of the string. Now,
in the case that the pulley has mass, the parts of the string on either side of the pulley have
different tensions. the string forces can be treated as forces applied at the edge, tangent to
the pulley, so that in (b) the (clock-wise) torque from the string is

τ = T1R − T2R = (T1 − T2)R

9.1.8 An Example

The following example will give show how we can solve problems involving rotating objects.

A string is wrapped around a pulley of mass M and radius R. The string is attached
to a mass m; the mass is released. Find the acceleration of the mass as it falls. Treat the
pulley as if it were a uniform disk of radius R.

The basic situation is shown in Fig. 9.10. The mass will fall with an acceleration that
we expect will be somewhat less than g. As it falls the pulley will turn and since the motion
of the edge of the pulley is the same as that of the string, the edge of the pulley will have a
tangential acceleration and the pulley will have an angular acceleration; it will rotate faster
and faster.

We have to analyze the force with diagrams; we will now have a diagram for the block
and one for the pulley. First, the block. Forces on the block are shown in Fig. 9.11(a).
Gravity mg points down and the string tension T pulls upward. Since the motion of the
mass is downward, we’ll let “down” be the positive direction for simplicity and let a be the
downward acceleration of the mass. Then Newton’s 2nd law gives:

mg − T = ma (9.9)
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m

R

M

Figure 9.10: Mass hangs from a string which is wrapped around a wheel.

T

(a) (b)

T

mg

R

+

Figure 9.11: (a) Forces on the block. Positive direction of motion will be taken as downward for simplicity.
(b) Force on the wheel.
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Now look at the forces acting on the pulley, shown in Fig. 9.11(b). The string tension
acts to give a tangential force T at the edge of the wheel, and hence a torque of RT . That’s
the only force which gives a torque around the wheel’s axis. Note, for this picture, we are
taking “clock-wise” as the positive rotation direction. (I know, that isn’t our convention.
So sue me.) This choice makes things consistent with the choice (downward) for the block’s
motion. Anyways, Newton’s 2nd law for rotation gives

τ = RT = Iα (9.10)

We can treat the pulley as a uniform disk of radius R, so we can substitute I = 1
2
MR2

here. Also, we recall that the tangential acceleration of the edge of the wheel is the same as
that of the string and of the mass m, namely a. Then we can write:

a = aT = Rα =⇒ α =
a

R

Now make these two substitutions in Eq. 9.10. Then we have:

RT =
(

1
2
MR2

) a

R
= 1

2
MRa =⇒ T = 1

2
Ma (9.11)

Use this to substitute for T in Eq. 9.9 and get

mg − 1
2
Ma = ma (9.12)

Now do some algebra to solve for a:

mg =
(

1
2
M + m

)

a =⇒ a =
mg

(

1
2
M + m

) (9.13)

This result makes sense if we set M = 0. We find that the formula then gives a = g. This
is what we should get because that is the case where the hanging mass is really attached to
nothing and falls freely under gravity.

9.1.9 Statics

From Chapter 7 and the current chapter we have some rules about the total forces and
torques on objects which, for our present purposes can be expressed as:

If the center of mass of an object is at rest, then the total external force on
the object must be zero.

If an object is not rotating then the total torque on it must be zero.

Actually the second of these statements is true for any choice of an axis which as we’ll
see can be used to make problem–solving a little easier.
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Now, there many situations in the world when we we’d like some object to be absolutely
motionless. For example, since gravity acts on all objects on the earth we might need to hold
them up and make sure they don’t fall; we need to do this with various forces of support
and we need to know what forces are required to support the objects.

Problems of this sort can be very complicated if the structures and the applied forces
are messy; there is a whole area of engineering devoted to this, known as “Statics”. We will
work with some very simple examples of this sort of problem.

The strategy for solving such problems is to first draw the force diagram for the object.
(You can’t do these problems without a diagram.) Include the dimensions of the objects
and where the forces are applied, and if possible the directions of the forces. Then apply the
conditions:

∑

Fx = 0
∑

Fy = 0
∑

τ = 0 (9.14)

(We’ll only work in two dimensions so the force condition just has two components.) As
mentioned, for the condition on the torques you can choose any point on the object to server
as an axis.

To make the math easier it is often useful to put the axis at a place where one or more
unknown forces are applied; since those forces will give no torque about that axis they will
not appear in the torque equation.

9.1.10 Rolling Motion

A very common kind of motion is when a round object like a cylinder or a sphere rolls
without slipping on a surface. This means that as the object moves the arc length around
its edge matches one-to-one with the distance travelled linearly, as indicated in Fig. —.

Because of this match-up, we can relate the quantities for linear motion with the angular
quantities. First, if the object turns through an angle θ while rolling the linear distance
travelled by the center of the object is

xc = Rθ (9.15)

where R is the radius of the object. The velocity of the center and angular velocity of the
object are related by

vc = Rω (9.16)

And finally the linear acceleration of the center and angular acceleration of the object are
related by

ac = Rα (9.17)

These are the values of the linear speed, velocity and acceleration of the center of the
object. The instantaneous velocities of the other parts of the object are different: The point
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in contact with the surface has an instantaneous velocity of zero which the top point has a
speed of 2vc in the forward direction.

Because the rolling object is in contact with the surface there may be a force of friction
from the surface. If so, it is a force of static friction because the very bottom of the rolling
object has no velocity relative to the surface. (And recall that the normal force of the surface
only gives us the maximum value of the static friction force.)

A rolling object has kinetic energy, of course. One can show that if an object with
moment of mass M and moment of inertia I is rolling so that the speed of its center is vc

and its angular velocity is ω, its kinetic energy is

KE = 1
2
Mv2

c + 1
2
Iω2 = KEtrans + KErot (9.18)

that is, it is the sum of two parts: One part comes from the translational motion of the
center, and the other comes from the rotational motion of the object about its center.

Sometimes in solving a problem, the total KE in Eq.9.18 for a rolling object can be
expressed more simply if we know the expression for the moment of inertia. For example,
suppose the object is a uniform cylinder. In that case, I = 1

2
MR2 and since ω = vc/R we

get

KEtotal = 1
2
Mv2

c + 1
2
Iω2

= 1
2
Mv2

c + 1
2
(1

2
MR2)

(

vc

R

)2

= 1
2
Mv2

c + 1
4
Mv2

c

= 3
4
Mv2

c

9.1.11 Example: Round Object Rolls Down Slope Without Slip-

ping

An important example of rolling motion is that of a round symmetrical object rolling down
a slope inclined at angle |theta, as illustrated in Fig. 9.12 (if for no other reason than that
it is easy to set up in the lab). The object has mass M , radius R and moment of inertia I
about its center.

We would like to find the acceleration of the center of the object. Recall that when we
did this problem for a mass sliding down the slope without friction we got a = g sin θ; but
this is a different problem.

The forces acting on the object are shown in Fig. 9.13. Gravity acts with magnitude Mg
downward and we can treat its force as acting at the center of the object. (Thinking ahead,
we split the vector into parts “down the slope” and perpendicular to the slope as shown in
Fig. 9.13. Then we work with these components in Newton’s laws. ) The normal force of
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q

M
R

I

Figure 9.12: Example: Object with mass M radius R and moment of inertia I rolls (without slipping)
down a slope inclined at θ above the horizontal.

qMg

Mg sinq

Mg cosq

fs

FN

Figure 9.13: Forces acting on the round object as it rolls down the slope. The downward force of gravity
Mg has been split up into its components along/perp to the slope.
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the surface FN is applied at the point of contact, as is the force of friction fs which acts
along the surface in the direction shown. (Actually, it may not be clear that friction acts in
the backward direction, but that will be clear later.)

We will consider the forces acting on the object and apply the regular version of Newton’s
2nd law. Then we will consider the torques acting about the center of the wheel and apply
the rotational version of Newton’s 2nd law. Eventually we will get ac.

Take “down the slope” as the positive direction. The forces acting down the slope are
the component Mg sin θ from gravity minus the force of friction fs which acts up the slope.
Newton’s 2nd law gives:

Mg sin θ − fs = Mac (9.19)

Next the torque: This time we will take “clock-wise” to be the positive rotation direction
(to be consistent with the linear acceleration) and sum of the clock-wise torques will equal
Iα. Since gravity acts at the center and the normal force acts along a line through the center
(so φ = 0), only the friction force gives a torque about the center. It act perpendicularly to
the radial line, at a distance R, so:

τnet = fsR = Iα (9.20)

Lastly, by Eq. 9.17, ac and α are related:

ac = Rα (9.21)

Equations 9.19, 9.20, and 9.21, have three unknowns (fs, α and ac) so we can solve for
them. Putting 9.21 into 9.20 gives

fs =
Iα

R
=

I(ac/R)

R
=

Iac

R2

and putting this into 9.19 gives

Mg sin θ −
(

I

R2

)

ac = Mac

Doing some algebra to get ac, we get:

Mg sin θ =
(

M +
I

R2

)

ac

and finally (drum roll), the answer:

ac =
Mg sin θ
(

M + I
R2

) (9.22)
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We can make it a little cleaner by dividing top and bottom by M , and then we have:

ac =
g sin θ

(

1 + I
MR2

) (9.23)

and then we see that since the denominator is bigger than 1 the acceleration of the object
must be smaller that g sin θ, the “sliding” value. Also if we could fix the value of M but
make the moment of inertia larger, ac would get smaller.

Some specific examples might be useful here. If the rolling object is a uniform cylinder
then I/(MR2) = 1

2
and we get:

ac =
g sin θ
(

1 + 1
2

) =
g sin θ

3
2

= 2
3
g sin θ

or if the object is a sphere then I/(MR2) = 2
5

and then

ac =
g sin θ
(

1 + 2
5

) =
g sin θ

7
5

= 5
7
g sin θ

Note that in both of these results the actual mass and radius do not appear although the
results depend on the shapes of the objects; any uniform cylinder will roll down the slope
with acceleration 2

3
g sin θ. Since 5

7
> 2

3
a uniform sphere has a larger acceleration than the

cylinder in rolling down the slope.

9.1.12 Angular Momentum

And we conclude with the rotational version of momentum.
We have found that the mass m from linear dynamics corresponds to the moment of

inertia I in rotational dynamics, and the velocity v corresponds to the angular velocity ω.
We found in Chapter 7 that a useful quantity in linear motion was the momentum, px = mvx.
If we had to come up with the rotational version of this quantity (for whatever reason) it
would have to be Iω, and that is what we will use for the rotational version of “momentum”
. For our simple rotating systems, we define the angular momentum L as:

L = Iω (9.24)

Angular momentum (as we will use it, for our simple rotations) is just a single number,
although as with angular velocity and torque we’re really talking about the z component of
a vector. Its units are those of I times those of ω (without the “rad” marker, i.e. 1

s
), thus

they are:

kg · m2 · 1

s
= kg·m2

s
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(a) (b)

Figure 9.14: (a) Minimalist man holds weights in outstretched arms. Initially, he has a small rate of
rotation. (b) Man pulls weights inward; moment of inertia of system is smaller and rate of rotation is larger.

Again, there is no common abbreviation for this unit.

We will refer to our previous quantity p = mv as linear momentum to keep things
straight.

Recall that the reason that linear momentum was so useful was that it was conserved

for an isolated system. That is, if the net external force acting on a system of particles was
zero, their total linear momentum stayed the same.

A similar thing is true for the rotational case; the terms just translate over from linear
to rotational language:

If there is no net external torque on a system of objects, their total angular
momentum stays the same.

This principle is known as the conservation of angular momentum.

A familiar example of the application of this principle is that of a spinning ice skater who
is initially turning at a slow rate with her arms outstretched and then turns much faster
when she pulls them in. One can also show the effect by resting on a turntable or rotating
stool and holding two weights in your outstretched arms, as shown in Fig. 9.14. If you are
given a small rotation rate at first you can make yourself spin much faster by pulling in your
arms, so much so that it is often hard to stay on the turntable!

What is going on here?

Both before and after the arms are pulled in, the angular momentum of the turning
system is given by L = Iω. Since there are no (significant) external torques on the system,
the product of L and ω will remain the same. But when the arms are pulled in the moment
of inertia I decreases so then ω — the rate of turning — must increase.
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Using some math, if Ii and If are the initial and final moments of inertia and ωi and ωf

are the initial and final angular velocities, then conservation of angular momentum gives

Iiωi = Ifωf

so that the final angular velocity is

ωf =

(

Ii

If

)

ωi

that is, the final angular velocity is bigger than the initial angular velocity by a factor given
by the ratio of the moments of inertia.

A word of caution about this example: It is true that angular momentum is conserved
as I changes, but in general the kinetic energy is not conserved. The rotating man has
more kinetic energy after pulling his arms inward. You can appreciate this if you do the
demonstration yourself; you will feel yourself doing work as you pull your arms inward.
increasing the energy of the rotating system.

9.2 Worked Examples

9.2.1 The Moment of Inertia and Rotational Kinetic Energy

1. A horizontal 150–kg merry-go-round of radius 2.0m is turning at a rate of
32.0 rpm. What is its kinetic energy? (Assume the merry-go-round is a uniform
disk.)

Find the angular velocity of the merry-go-round: Converting from revolutions per minute
to radians per second,

(32.0 rev
min

)
(

1min

60 sec

)

(

2π rad

1 rev

)

= 3.35 rad
s

Using the formula for the moment of inertia of a uniform disk from Eq. 9.4, we have:

I = 1
2
MR2 = 1

2
(150 kg)(2.0m)2 = 300kg · m2

and from Eq. 9.3, the kinetic energy is

KE = 1
2
Iω2 = 1

2
(300 kg · m2)(3.35 rad

s
)2 = 1.68 × 103 J
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6.7 m

240 kg
w = 44 rad/s

Figure 9.15: Helicopter blades for Example 2.

2. A helicopter has two blades each of which has a mass of 240 kg and can be
approximated as a thin rod of length 6.7m. The blades are rotating at an angular
speed of 44 rad

s
. (a) What is the total moment of inertia of the two blades about

the axis of rotation? (b) Determine the rotational kinetic energy of the spinning
blades. [CJ7 9-46]

(a) We sketch the system in Fig. 9.15. From our formulae for the moment of inertia of basic
shapes, we recall that the moment of inertia of a thin stick rotating about an axis at one

end of the stick is 1
3
ML2 where L is the length of the stick. We have two such sticks in our

simple treatment of the helicopter blades, so the total moment of inertia is

Iblades = 2
(

1
3
ML2

)

= 2
(

1
3
(240 kg)(6.7m)2

)

= 7.18 × 103 kg · m2

(b) And now to get the kinetic energy of the rotating blades, use Eq. 9.3:

KE = 1
2
Iω2 = 1

2
(7.18 × 103 kg · m2)(44 s−1)2 = 6.95 × 10−6 J



Chapter 10

Oscillatory Motion

10.1 The Important Stuff

10.1.1 Introduction

All right, back to one-dimensional motion. (Eh? Haven’t we done everything that can be
done with one-dimensional motion?)

In Chapter 6 we encountered the “spring force”, a force which is proportional to the
displacement and opposes it. As you will surely recall, the force from an “ideal” spring
followed the formula given in Eq. 6.8,

F = −kx (10.1)

where k was called the “force constant” of the spring and x is the displacement of the end
of the spring from the equilibrium position. You’ll also recall that the energy stored in the
spring is PE = 1

2
kx2.

In Chapter 6 we had masses bump into springs and exchange energy with them. Now
we’ll do something a little different. We’ll attach a mass to the end of a spring, pull the mass
back a little ways (a distance A) and then release it, as shown in Fig. 10.1. (The surface on
which the mass is sliding is frictionless!)

What do we expect the ensuing motion to be like?
Since the mass gets pulled inward when the spring is stretched and gets pushed outward

when the spring is compressed we expect the motion to be represented by something like the
x vs. t graph in Fig. 10.2.

10.1.2 Harmonic Motion

The graph in Fig. 10.2 shows how the mass would move if the spring is ideal and obeys the
force law Fspr = −kx. The curve is “sinusoidal” meaning that it follows the basic form of

137
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A

m

k

Figure 10.1: Mass m attached to spring of force constant k is pulled back a distance A and released.

-1.00

-0.50

0.00

0.50

1.00

x

0.0 5.0 10.0 15.0 20.0 t

Figure 10.2: Motion of mass on the end of a spring.
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Figure 10.3: Period T and amplitude A of the motion of the mass on a spring.

the sine or cosine functions (I hope) you’ve seen in math.
When the motion of an object depends on time in this sinusoidal fashion, we say that

the object is undergoing harmonic motion and that the physical system producing such a
motion is a harmonic oscillator.

The maximum distance which the mass goes outward from the equilibrium point is the
same as the maximum distance it goes inward . This distance is called the amplitude of the
motion. In Fig. 10.3 the amplitude is indicated by A. (For the mass’s motion the amplitude
is a length and is measured in meters.)

Then there is the amount of time required for the mass to make one full oscillation, that
is, to go back and forth and return to a place where its motion will repeat itself. This is the
period of the motion, and it is indicated (twice) on Fig. 10.3. The period T is a time and
is measured in seconds.

A related number describing the rapidity of the oscillations is the number of oscillations
the mass will make in a given time period; this is called the frequency of the oscillations:

f =
(# of oscillations)

time
(10.2)

The frequency is the inverse of time divided by oscillations ; but the time for each oscil-
lation is the period T , so that f is the inverse of T :

f =
1

T

One must be careful with the units of f . Even though it is the inverse of a time one should
always express f in terms of oscillations (or cycles) per second. It is true that “oscillations”
is not really a fundamental unit but it is important to distinguish frequency from angular

velocity ω because we will find that the two quantities are related.
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t

x

Figure 10.4: Points

In place of cycles
s

we can also use shorter notation “Hertz”; thus:

1Hz = 1cycle
s

= 1osc
s

10.1.3 Displacement, Velocity and Acceleration

We now look at the graph of x vs. t in greater to understand what is happening with the
position, velocity and acceleration of the mass.

In Fig. 10.4 the plot of the motion is given over a couple cycles with some important
points marked (a)–(e).

At point (a) the mass is “released”, meaning that its initial velocity is zero. At this point
the displacement is a maximum. The acceleration of the mass is negative and takes on its
maximum size (magnitude) at this point because the spring force has maximum size at this
point.

At point (b) the displacement is zero; here the mass is zipping through the equilibrium
position, where the spring has its natural length and exerts no force. the velocity is negative
and has its maximum size at this point. The acceleration is zero here.

At point (c) the mass has gone as far inward as it’s going to go; the displacement here is
negative and has the maximum size. The velocity is zero at this point. The acceleration is
positive and has its maximum value.

At point (d) the mass is once again at the equilibrium point so that the displacement x
is zero. But the velocity is now postivie and has the same maximum size as it did before at
this point. Since the spring is undistorted here the force and acceleration are zero.

At point (e) the motion is the same as it was at (a), i.e. maximum displacement, zero
velocity, maximal (negative) acceleration.

From here on the motion repeats.
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q

peg

A

(a)

(b)

Figure 10.5: Reference circle. (a) Top view of you with your bad haircut looking at the turning wheel
along its edge. Wheel has a peg located at its edge, at r = A. (b) What you see when you look at the wheel;
peg seems to move back and forth along a line.

10.1.4 The Reference Circle

We can get some useful insight into the motion of the oscillating mass by relating it to the
motion of a mass in uniform circular motion.

Imagine that we have a wheel of radius A which turns at a constant rate; at the edge of
the wheel is a peg. Then imagine that you are looking at the turning wheel from the side,
i.e. level with the surface of the wheel. This is shown in Fig. 10.5(a). What you would
see in shown in Fig. 10.5(b); you would see the profile of the peg moving back and forth
horizontally, oscillating much like the mass on the of the spring. . . except that here there’s
no spring!

It turns out that the motion of the peg is exactly like that of the mass on the spring; in
both cases the object moves between x = −A and x = +A with a sinusoidal dependence on
time. For the case of the peg we can see this with a little math. Suppose the reference wheel
turns at a constant angular velocity ω then (as usual) assuming θ = 0 at t = 0, then θ is
given by θ = ωt.

Now the x coordinate of the peg (which is all the man in Fig. 10.5(a) can see) is given
by x = A cos θ (see Fig. 10.6.) Putting these relations together, we have

x = A cos(ωt)

and for this relation the graph of x vs. t is a sinusoidal curve.
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q
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x

x = Acosq

q = wt

Figure 10.6:

Thinking of the reference circle we can associate an angular velocity ω with the motion
of an oscillator. This makes sense even though the mass in question really moves back and
forth along a line, not in a circle.

The angular velocity ω we associate with the oscillator and its frequency are related.
Every time the mass on the spring makes one full cycle the corresponding peg on the wheel
turns through 2π radians. This means that the angular velocity ω (in radians per second)
must be 2π times as large as the frequency f (in cycles per second) so that:

ω = 2πf (10.3)

But here I will repeat the caution about the units given before: Eq. 10.3 seems to say that
both ω and f have the same units, but to avoid confusion we should always express f in
cycles

s
or Hz.

When we speak about an oscillator we say that ω is the angular frequency of the
oscillator, as distinguished from the plain old frequency f .

We can use the reference circle to derive some useful formulae about oscillatory motion
from the fact that the man watching the peg on the wheel sees only the sideways (x) part of
the peg’s motion, and thus only the x components of its velocity and acceleration vectors.
When the peg is at the θ = 90◦ position, as shown in Fig. 10.7(a), the velocity vector (which
always has the same magnitude, namely v = ωA)) is pointing sideways so that the man sees
the mass with a speed of |vx| = vmax = ωA. So the largest speed of the mass is related to
the amplitude and frequency by

vmax = ωA = 2πfA (10.4)

Next, consider the “view” of the mass when it is at the θ = 0◦ position, as in Fig. 10.7(b).
The man “sees” zero velocity but he sees the maximum size of the acceleration. The accel-
eration vector of the peg always has magnitude ac = v2

A
and here the man sees a sideways
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A

Figure 10.7: Man with big nose and bad haircut can only “see” the sideways components of the velocity
and acceleration vectors. (a) When the peg is at the θ = 90◦ position man sees the peg with maximum
velocity and zero acceleration. (b) When peg is at the θ = 0◦ position man sees the peg with zero velocity
and maximal acceleration.

acceleration ax of this size. So the maximum acceleration is

|ax,max| =
v2

A

But now using v = ωA we get

|ax,max| =
v2

A
=

(ωA)2

A
= ω2A (10.5)

But the sideways motion of the peg is the same as that of the corresponding mass on a
spring, and when the mass is at the “far” position (the 0◦ position for the peg) the force of
the spring has magnitude kA. Then from Newton’s 2nd law the acceleration at the “far”
position the value

|ax| = |Fx|/m =
kA

m
which is the same as the amax in the equation before it. Equating the two we find

ω2A =
kA

m
=⇒ ω =

√

k

m
(10.6)

and so a mass m oscillating on a spring of force constant k the frequency of the motion is
given by

f =
ω

2π
=

1

2π

√

k

m
(10.7)
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Figure 10.8: (a) Mass is attached to the end of a vertical spring; the spring stretches from its original
length so as to support the mass. (b) Mass will now oscillate around the new equilibrium position.

and the period of the motion is

T =
1

f
= 2π

√

m

k
(10.8)

The answer is a little surprising because the amplitude of the motion (A) does not appear
in it. So if we start the oscillations by pulling the mass back by any distance A the frequency
of the oscillations is the same! (Recall the assumption about the spring behaving ideally ; if
the spring doesn’t follow Fx = −kx then we can’t make this statement.)

It might seem as though with a larger amplitude the period would be greater (the mass
has to move farther), but that’s not the case!

10.1.5 A Real Mass/Spring System

Since the mass on the spring in Fig. 10.1 needs to slide on a frictionless surface, the setup
illustrated would be difficult to set up in the lab even if we could get a spring which has
ideal behavior. With friction present the system would lose mechanical energy and come to
a halt.

It turns out that one can get (basically) the same behavior by suspending the mass from
a spring and letting the mass bob up and down as shown in Fig. 10.8. When the mass hangs
from the spring with no motion, as in Fig. 10.8(a), the spring is stretched so as to give a force
to hold the mass up, i.e. the spring force equals the weight of the spring. The elongation x
is given by

|Fspr| = Fgrav =⇒ kx = mg =⇒ x =
mg

k

Now if mass is given a little tap it will oscillate up and down around this new position
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(as shown in Fig. 10.8(b)) with the same frequency as in the horizontal case, that is, T =

2π
√

m/k. It might seem surprising that the frequency doesn’t depend on the value of g, but
it doesn’t. The effect of gravity is that the mass is oscillating about a point other than the
true equilibrium length of the spring.

So you can set up a mass/spring system in the lab just as long as the spring behaves
ideally under the conditions of your experiment. If you hang an enormous mass from the
spring it may deform and fail to act ideally. Even worse, you will have to pay for the damaged
spring if they find out who did it.

One word of warning about using the frequency formula Eq. 10.8 for a real spring (either
horizontal or vertical). It assumes that the mass of the spring is very small compared to that
of the hanging mass, but that may not be the case. The bits of the spring are also moving
up and down —the part closest to the mass has the greatest movement— and as a result the
effective mass of this oscillator is greater. For reasons far too long to go into, it is correct to
include 1

3
of the spring’s mass with that of the hanging mass so the equation for the period

is really

Treal spr = 2π

√

m + mspr

3

k
(10.9)

Unless otherwise stated, we’ll assume that the springs in the problems will be massless.

10.1.6 Energy and the Harmonic Oscillator

As the mass oscillates on the spring the energy of the mass–spring system stays the same.
Suppose the total energy of the system is ETot. Then when the mass is at x = ±A (the
extreme positions) the speed is zero so there is no kinetic energy. The energy of the system
at these points is all contained the potential energy of the spring, which is general is given
by 1

2
kx2. This tells us:

1
2
kA2 = ETot

Similarly when the mass is zipping through the equilibrium (central, x = 0) position
there is no potential energy in the spring and the energy is all kinetic. Since that speed of
the mass is vmax here, we have:

1
2
mv2

max = ETot

Equating the two expressions, we get

1
2
kA2 = 1

2
mv2

max

At all other points in the motion of the mass there is both potential energy and kinetic
energy so if the mass is at position x and has velocity vx, we have

1
2
kx2 + 1

2
mv2

x = ETot (10.10)
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Figure 10.9: (a) Simple pendulum of length L with small mass m attached to the end. Pendulum is pulled
back by θ0 and released. (b) Forces acting on the mass when pendulum is at angle θ from the vertical. The
down ward force of gravity mg has been split into components along and perpendicular to the string.

10.1.7 Simple Pendulum

Another oscillating system is shown in Fig. 10.9(a). A small mass m is attached to a light
string of length `; it is pulled back by some angle θ0 and released. The mass swings back
and forth in a vertical plane. This is a pendulum, of course; since all the mass in the system
is at the very end of the string it is called a simple pendulum.

Clearly the mass will swing back and forth between angles of ±θ0 from the vertical.
(Total energy will remain the same so it will rise to the same height as when it started.)
We’d like to find how the period of this motion depends on the physical properties of the
pendulum.

We can view the mass and string as a system that rotates about the place where the
string is attached. Then since there is only a single point mass a distance L from the axis,
the moment of inertia of this system is I = mL2.

The torque on the system is provided by gravity. The forces acting on the mass are shown
in Fig. 10.9(b). String tension T pulls inward along the string’s length and the downward
force of gravity, mg has been split up into components along the string and perpendicular to
it. The forces which act along the string give no torque about the axis (the sin φ factor for
the torque is zero) but the perpendicular part of gravity, mg sin θ is exerted at a distance of
L and gives a torque of magnitude τ = L(mg sin θ).

We need to get the sign of the torque correct here. From Fig. 10.9(b) we see that when
θ is positive, the torque τ is in the opposite (negative) sense, so actually we should say:

τ = −mgL sin θ
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From τ = Iα and I = mL2 we then get

τ = −mgL sin θ = (mL2)α

and then some algebra gives

α = −
[

g

L

]

sin θ (10.11)

One more step is needed so that we can get f from this equation. It turns out that when
the angle θ is small (and measured in radians, as is assumed in Eq. 10.11) the value of sin θ
is very close to the value of θ itself. If θ is less than the radian equivalent of 20◦ the two
values are within 2% of each other. We will promise (hah!) never to use our results when
the angle of swing is greater than 20◦ and then in place of Eq. 10.11 we will write

α = −
[

g

L

]

θ (10.12)

Now we recall the equations for the mass and spring. We had Fx = −kx and Fx = max.
Combining these equations gives:

ax = −
[

k

m

]

x (10.13)

an equation which is similar in form to Eq. 10.12.
Now from Eq. 10.6 we found that ω2 for the mass–spring system is k/m, namely the

thing inside the square brackets in Eq. 10.13. It is sensible (and valid) to conclude that ω2

for the simple pendulum is the thing inside the brackets in Eq. 10.12. So for the pendulum

system we have:

ω2 =
g

L
=⇒ ω =

√

g

L
(10.14)

and then from f = ω/(2π) we have

f =
1

2π

√

g

L
(10.15)

and using T = 1/f we get the period of the pendulum,

T = 2π

√

L

g
(10.16)

The result for f (or T ) is surprising because of what is not in the formula. The mass of
the pendulum bob is not there; as long as the mass is great enough so that air resistance is
not significant the period is the same for any small bob attached to the end.

Secondly, the initial angle θ0 does not appear. Does this mean that the period of a
pendulum does not depend on how far back you pull it initially? Pretty much, yes. But
we must recall that we are always working within the approximation that all the angles are
“small”! If you pull the pendulum back by 60◦ there will be a significant (i.e. measurable)
difference from the period you get by starting the pendulum at 5◦.
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Mom. of Inertia = I

Figure 10.10: A “physical” pendulum. (What pendulum is not physical??) Object has moment of inertia
I about the pivot; center of mass is a distance L from the pivot.

10.1.8 Physical Pendulum

For completeness, we give the results for a different kind of pendulum, but one which you
may encounter in your problem sets or in the lab.

Suppose we suspend an object by a frictionless pivot so that its center of mass hangs
below this pivot. Then we give the object a small displacement from the vertical position
and let it oscillate back and forth.

Such an object is a kind of pendulum, but not a simple one because its mass is not
concentrated at one point. People usually call it a physical pendulum, but I have yet to
see a pendulum which is not “physical”.

Hey, I just work here.

Anyway, when we write down the equations for the torque and angular acceleration of this
object (similar to what we did above for the simple pendulum) we find that the frequency of
the motion depends on the total mass M of the object, the moment of inertia of the object
about the pivot point I and the distance L from the pivot to the center of mass of the object;
see Fig. 10.10. Recall that to get the moment of inertia about points other than the center
of mass the parallel axis theorem (Eq. 9.5) can be helpful.

The result for the frequency and period is

f =
1

2π

√

MgL

I
and T = 2π

√

I

MgL
(10.17)
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10.2 Worked Examples

10.2.1 Harmonic Motion

1. Atoms in a solid are not stationary, but vibrate about their equilibrium
positions. Typically, the frequency of vibration is about f = 2.0×1012 Hz, and the
amplitude is about 1.1 × 10−11 m. For a typical atom, what is its (a) maximum
speed and (b) maximum acceleration? [CJ7 10-15]

(a) The angular frequency of the atoms’ oscillations is

ω = 2πf = 2π(2.0 × 1012 s−1 = 1.26 × 1013 s−1

so using Eq. 10.4 the maximum speed of atom is

vmax = ωA = (1.26 × 1013 s−1)(1.1 × 10−11 m) = 1.38 × 102 m
s

(b) Using Eq. 10.5, the maximum acceleration of the atom is

amax = ω2A = (1.26 × 1013 s−1)2(1.1 × 10−11 m) = 1.66 × 1015 m
s2

10.2.2 Mass–Spring System

2. A 0.200 kg mass hanging from the end of a spring is set into motion. It is
found that the mass bobs up and down through 10 cycles in 6.50 s. What is the
force constant of the spring?

Find the period of the motion. Since 6.50 s was the time for ten cycles, we get :

T =
(6.50 s)

(10.0 cycle)
= 0.650 s

Then use Eq. 10.8 to solve for T :

T = 2π

√

m

k
=⇒ T 2 =

4π2m

k
=⇒ k =

4π2m

T 2

Plug in stuff:

k =
4π2(0.200 kg)

(0.650 s)2
= 18.7 kg

s2
= 18.7 N

m
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10.2.3 Simple Pendulum

3. What is the period of a simple pendulum which has a length of 3.00m?

Use Eq. 10.16 with L = 3.00m. Get:

T = 2π

√

L

g
= 2π

√

√

√

√

(3.00m)

9.80 m
s2

= 3.48 s

The period of the pendulum is 3.48 s.

4. What is the length of a simple pendulum which has a period of 1.00 s?

Use Eq. 10.16; square both sides then solve for L. We get:

T 2 = 4π2 L

g
=⇒ L =

T 2g

4π2

Plug in T = 1.00 s and get:

L =
(1.00 s)2(9.80 m

s2
)

4π2
= 0.248m

A pendulum with a length of 0.248m = 24.8 cm will have a period of 1.00 s.

5. A simple pendulum of length 2.0m is being swung on the surface of some
strange planet. It makes 20 complete oscillations in 51.7 s. What is the value of
g on this planet?

To get the period of this pendulum, find the time per oscillation:

T =
(51.7 s)

(20 osc)
= 2.59 s

osc
= 2.59 s

Solve for g from Eq. 10.16:

T = 2π

√

L

g
=⇒ T 2 = 4π2 L

g
=⇒ g =

4π2L

T 2

Plug in the numbers:

g =
4π2(2.0m)

(2.59 s)2
= 11.8 m

s2

The acceleration of gravity on this planet is 11.8 m
s2

.



Chapter 11

Waves I

11.1 The Important Stuff

11.1.1 Introduction

A wave (as we’ll use the term in this chapter) is a disturbance in some continuous, deformable
and otherwise uniform medium which travels over “long” distances while the little bits of
the medium itself are moving over relatively small distances. Familiar examples of waves
are the surface waves on water, the waves on a vibrating string and sound waves, which are
travelling distortions in the density of air.

Light and electromagnetic waves in general have some properties in common with these
types of waves, but electromagnetic waves are different in that they do not travel through
any medium. Also, they arise from the electric and magnetic fields we’ll study later on, and
as such they are best left to that part of the course.

Wave phenomena occur around us all the time and if only for that reason it would be
important to study them. But it turns out that when we look at the behavior of matter
on the smallest scales, the basic ”particles” in nature don’t behave like particles following
Newton’s laws as presented in this course; rather, they are waves.

In the end, it’s all waves.

Waves are characterized by the direction in which the little bits of the medium move in
relation to the direction of motion of the wave itself.

For a wave on a taut string the elements of the string move perpendicularly to the direction
of propagation of the wave, as shown in Fig. — (a). Such a wave is called a transverse
wave. These waves are the easiest to visualize.

For others, the motion of the medium is along the direction of propagation of the wave.
An example of this (one that can be seen, at least) is that of a Slinky which has been tapped
along its length. The disturbance which one sees travelling down the Slinky is a region where

151



152 CHAPTER 11. WAVES I

(a)

(b)

(c)

(d)

(e)

Figure 11.1: Two “positive” pulses are put on a string; they travel towards one another, add constructively

and then continue on as if nothing had happened!

the coils are slightly compressed. This type of wave is called a longitudinal wave.

The waves (and the media through which they travel) which we’ll study will have the
property that the disturbance will propagate unchanged.

11.1.2 Principle of Superposition

Another property of the waves (and media) which we’ll study is that individual waves “add
together”. What we mean by this is that if we have two sources of waves the wave that
is present when both sources operate at once is the sum of the waves that are present
when the sources are operating individually. We do mean the literal sum here; we add the
displacements of the medium at each point of the medium.

The idea of adding waves together is called the principle of superposition and it is obeyed
by all the media and waves that we will consider.

An example is given in Fig. 11.1, something which you and a friend could demonstrate
with a rope, but you’d have to observe it very quickly! Here two pulses are put onto a rope
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Figure 11.2: “Positive” and “negative” pulses of similar shape are created on a string and travel toward
each other. When they overlap the pulses cancel such that the rope is nearly flat at some point. Then the
pulses emerge and keep on travelling.

by some sources, like the hands of the people holding the rope. The pulses travel toward one
another meet and continue onward after they meet. The displacements of the rope making
the pulses are in the same direction for the two pulses. When the pulses meet at the center
their displacements add together to give a larger pulse. Somehow the rope “knows” that it
contains two individual pulses so that the pulses again separate and keep moving in their
original directions!

I kid you not, this really happens.

When waves combine so that the resulting wave is “larger” than the individual waves,
we say that constructive interference is taking place.

Even stranger is when the two people holding the rope create travelling pulses with
opposite displacements, i.e. for one pulse the string disturbance goes “up” while for the
other it goes “down”, as shown in Fig. 11.2. When the pulses begin to overlap the sum
of the waves has a smaller size than the individual wave and we say that destructive
interference is taking place. When the waves precisely overlap the string is very nearly
flat! (We assume the two pulses had similar shapes.) Nevertheless, an instant later the two
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Figure 11.3: A harmonic wave is a sinusoidal pattern that travels to the left or right.

pulses emerge and continue on their separate ways.
How can this be? If the string is momentarily flat, haven’t the two waves been “killed”?

Then why do the pulses reappear? What you don’t see in Fig. 11.2(c) is the instantaneous
velocity of the parts of the string and these are not zero. The “memory” of the shapes is
contained in that movement and when we wait a little longer we get the two pulses back
again.

11.1.3 Harmonic Waves

Things could get mighty complicated if we were to consider waves of any shape whatsoever.
It turns out that if we focus on a particular kind of wave with a repeating pattern of
displacement we will know about all we need to know about waves. Some of the reasons are
“beyond the scope of the course” as they say, but it’s also true that many wave sources will
produce a repeating pattern and then our results will be useful for describing the real world.

The kind of wave we want to study is shown in Fig. 11.3. It is sinusoidal in shape and is
essentially infinite in length. And since it is a wave, it is moving in some direction, either to
the left or to the right with some speed v.

Can you visualize that? I hope so. . . if only I could put an animated picture of the wave
onto this page! Maybe in the future the pages of books will be able to show moving pictures.
For now we’re stuck with paper and still pictures. So you’ll have to imagine that the pattern
in Fig. 11.3. is moving to the right.

Such a wave is called a harmonic wave.
Again, using your imagination think of the moving sinusoidal pattern as a wave on a

string and consider the motion of any single point on the string. A single point just moves
up and down, much like a harmonic oscillator in the previous chapter; see Fig. 11.4. In fact
for the harmonic wave, the motion of a single point is exactly that of a harmonic oscillator;
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Figure 11.4: The individual points on the harmonic wave act like harmonic oscillators, moving up and
down.
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Figure 11.5: (a) At a fixed time t the displacement y has a sinusoidal dependence on the coordinate x.
(b) At a fixed location x the displacement has a sinusoidal dependence on the time t.

it is sinusoidal in its time dependence also.

The harmonic wave is sinusoidal in a double sense: Freeze the time and the wave is
sinusoidal in x. Fix the location x and the wave is sinusoidal in the time t. This is shown in
Fig. 11.5.

Damn, I wish I could put animated pictures in a book.

Two important numbers which characterize a harmonic wave are the wavelength and the
frequency. In Fig. 11.6 we show a picture of a harmonic wave “frozen” at some particular
time t. The length of string from any place on the wave to where it starts to repeat is the
wavelength of the wave. It is usually given the symbol λ and is measured in meters (since
it is a length!).

Next we think of the motion of an individual bit of the string (like the individual elements
shown in Fig. 11.4). A plot of its displacement versus time might look like Fig. 11.7. The
string element oscillates up and down and therefore its motion has a frequency , just like the



156 CHAPTER 11. WAVES I

λ

xλ

-A

A

y

Figure 11.6: When we “freeze” the time t, the wavelength λ is the length along the string for one full cycle
of the displacement.
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Figure 11.7: When we choose a bit of the string at a particular x, the period T is the time needed for one
full cycle of the displacement. The frequency of the wave is given by f = 1/T .
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oscillators in the last chapter. This is what we mean by the frequency of the wave. The
frequency (f) is measured in Hz= cycle

s
.

And now we want to think about the space and time dependence of the wave simultane-
ously. If you can really visualize the wave motion (and it is a bit tricky) you can see that
in the time T (the time in which one bit of the string moves through a full cycle) the wave
moves forward by one wavelength, i.e. in a time T the waves moves forward a distance λ.
That means that the speed of the wave (v) is given by:

v =
λ

T

But since T = 1/f this gives us

v =
λ

(1/f)
= λf ,

that is,
λf = v (11.1)

11.1.4 Waves on a String

The speed of waves on a string depends on the tension (called F here) and the “bulkiness”
of the string material, which is given by the mass per unit length of the string. For a string
of length L and mass m under tension F it is given by:

v =

√

F

(m/L)
=

√

F

µ
(11.2)

where µ = m/L.

11.1.5 Sound Waves

A sound wave is a longitudinal wave in the density of some medium; most often we consider
the atmosphere as the medium but it could be a liquid or solid. Fluctuations in the density
of the medium occur because of the tiny motions of the elements of the medium (the atoms
and molecules) along the direction of motion of the wave.

Because of the collective motions of the molecules there are regions where the density is
slightly greater or less than the “normal” density of the medium and it is these regions of
greater or lesser density which from the disturbance which travels, i.e. the sound wave. An
exaggerated picture is shown in Fig. 11.8. Again, the problem with such still pictures is that
they don’t show the motion of the wave or how the high/low density regions are formed by
the motions of the little bits of the medium.

I wish I knew how to put animated pictures in these notes! Then it would look good.
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v

Figure 11.8: Sound wave travels down air air-filled pipe with speed v.

Damn.
Anyway, the speed of sound is strongly dependent on the type of medium in which the

wave travels. Even for sound waves in air at normal pressure the speed depends significantly
on the temperature of the air: In air at at 1 atm of pressure and at 20◦C the speed is 343 m

s

but at a temperature of 0◦C it is 331 m
s
.

There is actually a formula for the speed of sound waves in a gas. It involves some
quantities not covered yet in these notes but it is useful to write it down here. Suppose
the absolute (Kelvin) temperature of the gas is T and the mass of one of its molecules is
m. There is a number important is the study of the thermal properties matter called the
Boltzmann constant , k which is given by:

k = 1.38 × 10−23 J
K

Finally there is a unitless number symbolized by γ which is characteristic of the type of
molecules in the gas and some other factors; for monatomic gases under “normal” (room
temperature) conditions it is 5

3
; for diatomic gasses (like those in the atmosphere, N2 and

O2) it is 7
5
. Anyway, with all of this, the speed of sound is given by

v =

√

γkT

m
(11.3)

11.1.6 Sound Intensity

The two important aspects of a sound wave are its frequency (if it is a harmonic wave)
and its amplitude (i.e. its loudness). Since in a sound wave the particles of the medium
oscillate back and forth (on average) along the direction of propagation we could talk about
a displacement amplitude for the sound wave. Likewise, since the wave is formed of
pressure variations along the direction of propagation, one could also speak of a pressure
amplitude for the wave. These two type of amplitudes are related, but we won’t discuss
them further; refer to more complete physics texts.
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Figure 11.9: Spherical wave.

It is more useful to describe the loudness of a sound wave in terms of the rate at which it
transports energy . At a large distance from a source of sound, the wave maxima are close to
a set of equally spaced planes moving forward at speed v. If we consider a planar surface of
area A through the wave passes then in a time t the wave will transfer an amount of energy
E; E is clearly proportional to both A and t, so dividing them out gives a measure of the
strength of the sound wave, its intensity:

I =
E

At
(11.4)

The intensity I has units of J
m2·s

, or W
m2 .

The human ear can detect sounds with a large range of intensities, from 10−12 W
m2 (the

threshold of hearing) to 10 W
m2 , for which the sound wave is intense enough to be harmful. It

is useful to have a measure of intensity which gives the order of magnitude of the intensity,
and such a measure is given by the intensity level, defined by:

β = (10dB) log10

(

I

I0

)

(11.5)

where I0 = 10−12 W
m2 . The intensity level β has units of decibels, or dB.

Sometimes, a useful approximation in dealing with sound waves is to imagine that the
wave was created by a source that makes a wave go out radially, that is, equally is all
directions. This is the approximation of an isotropic source, and the wave from such a
source is illustrated in Fig. 11.9.

Such a source will put a certain amount of power P into the generation of the wave and
this energy is transmitted outward in all directions. If we consider a spherical surface of
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radius r centered on the source then the rate at which energy crosses this surface is also
P . The energy flux at this distance can then be found by taking the total power crossing
the surface (P ) and dividing by the total area of that surface (4πr2). Then the intensity of
sound waves at distance from an isotropic source of power P is

I =
P

4πr2
(11.6)

11.1.7 The Doppler Effect

An interesting effect occurs when a source of sound (isotropic, for simplicity) is in motion

through the medium through which the sound travels (usually the air, which we take to be
“stationary”). In Fig. — we show a source in motion toward an observer. The source has
speed vs and here the observer is at rest with respect to the air.

We see that since the waves were emitted from different points (due to the motion of the
source) the wave maxima (indicated with the circles) are bunched up in front of the source,
that is, more bunched up than if the source were standing still. Likewise, they are more
separated behind the source.

In this case, the observer will receive waves which are travelling at the usual speed but
which effectively have a shorter wavelength. Then the frequency of the wave must be larger

than if the source were standing still. One can show that the observer would hear a frequency
fo given by

fo = fs

(

1

1 − vs

v

)

where v is the speed of sound (in air), fs is the frequency of the source and vs is the speed
of the source toward the observer.

Conversely, if the observer had been behind the source, s/he would hear a frequency
lower than if the source were standing still and it would be given by

fo = fs

(

1

1 + vs

v

)

The two formulae can be combined as:

fo = fs

(

1

1 ∓ vs

v

)

(11.7)

where we take the bottom sign for motion of source toward the observer

There will also be an change in the frequency received from a source is the source is
stationary but the observer is in motion. Fig. — shows an observer running toward a source
of sound. In this case, the spacing of the wave maxima has its normal value, but the observer
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encounters the wave maxima at a greater rate because of his motion. In effect, the speed of
the waves is greater and so again the observer hears a larger frequency.

If the observer had been running away from the source he would have heard a lower
frequency.

The result for the two cases can be combined into one formula as:

fo = fs

(

1 ± vo

v

)

(11.8)

where as before we take the bottom sign for motion of the observer toward the source.

If both the source and observer are in motion then we must have to use the most general
formula, which is basically a combination of Eqs. 11.7 and 11.8:

fo = fs

(

1 ± vo

v

1 ∓ vs

v

)

(11.9)

where the choice of sign is the top one for “toward” and the bottom one for “away”.

11.2 Worked Examples

11.2.1 Harmonic Waves

1. A harmonic wave on a string has a speed of 220 m
s

and a wavelength of 0.720m.
What is the frequency of the wave?

Use Eq. 11.1 and solve for f :

λf = v =⇒ f =
v

λ

Substitute for v and λ and get:

f =
(220 m

s
)

(0.720m)
= 306Hz

The frequency of the wave is 306Hz.
Note that even though the units come out as “1

s
” here, a frequency should be expressed

in units of cycle
s

= Hz.
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2. What is the wavelength of a harmonic wave on a string if the speed of the
waves is 160 m

s
and the frequency of the wave is 220Hz?

Use Eq. 11.1 and solve for λ; plug in the numbers and get

λ =
v

f
=

(160 m
s
)

(220cycle
s

= 0.727m

11.2.2 Waves on a String

3. The linear density of the A string on a violin is 7.4× 10−4 kg/m. A wave on the
string has a frequency of 440Hz and a wavelength of 65 cm. What is the tension
in the string? [CJ6 16-13]

We are given the values of λ and f for this string wave so from Eq. 11.1 we ca get the
speed of the wave:

v = λf = (0.650 cm)(440 s−1) = 286 m
s

Eq. 11.2 relates the wave speed v to the tension F and mass density µ; solve for F :

v =

√

F

µ
=⇒ v2 =

F

µ
=⇒ F = µv2

Plug in:
F = (7.4 × 10−4 kg

m
)(286 m

s
)2 = 60.5N

11.2.3 Sound Waves


