Worked Examples to Eurocode 2: Volume 1

For the design of in-situ concrete elements in framed buildings to BS EN 1992-1-1: 2004 and its UK National Annex: 2005

CH Goodchild BSc CEng MCIOB MIStructE et al

Foreword

The introduction of European standards to UK construction is a significant event as, for the first time, all design and construction codes within the EU will be harmonised. The ten design standards, known as the Eurocodes, will affect all design and construction activities as all current British Standards for structural design are due to be withdrawn in 2010.

The cement and concrete industry recognised the need to enable UK design professionals to use Eurocode 2, Design of concrete structures, quickly, effectively, efficiently and with confidence. Supported by government, consultants and relevant industry bodies, the Concrete Industry Eurocode 2 Group (CIEG) was formed in 1999 and this Group has provided the guidance for a coordinated and collaborative approach to the introduction of Eurocode 2.

As a result, a range of resources are being delivered by the concrete sector (see www.eurocode2.info). The aim of this publication, Worked Examples to Eurocode 2: Volume 1 is to distil from Eurocode 2, other Eurocodes and other sources the material that is commonly used in the design of concrete framed buildings.

These worked examples are published in two parts. Volume 2 will include chapters on Foundations, Serviceability, Fire and Retaining walls.

Acknowledgements

The original ideas for this publication emanates from the research project `Eurocode 2: Transition from UK to European concrete design standards', which was led by the BCA and part funded by the DTI under their PII scheme and was overseen by a Steering Group and the CIEG. The work has been brought to fruition by The Concrete Centre from early initial drafts by various authors listed on the inside back cover. The concrete industry acknowledges and appreciates the support given by many individuals, companies and organisations in the preparation of this document. These are listed on the inside back cover.

We gratefully acknowledge the authors of the initial drafts and the help and advice given by Robin Whittle in checking the text. Thanks are also due to Gillian Bond, Kevin Smith, Sally Huish and the design team at Michael Burbridge Ltd for their work on the production.

The copyright of British Standards extracts reproduced in this document is held by the British Standards Institution (BSI). Permission to reproduce extracts from British Standards is granted by BSI under the terms of Licence No: 2009RM010. No other use of this material is permitted. This publication is not intended to be a replacement for the standard and may not reflect the most up-to-date status of the standard. British Standards can be obtained in PDF or hard copy formats from the BSI online shop: http://shop.bsigroup.com or by contacting BSI Customer Services for hard copies only: Tel:+44 (0)20 8996 9001, Email: cservices@bsigroup.com.

Published by The Concrete Centre, part of the Mineral Products Association

Riverside House, 4 Meadows Business Park, Station Approach, Blackwater, Camberley, Surrey GU17 9AB **Tel:** +44 (0)1276 606800 **Fax:** +44 (0)1276 606801 **www.concretecentre.com**

The Concrete Centre is part of the Mineral Products Association, the trade association for the aggregates, asphalt, cement, concrete, lime, mortar and silica sand industries. **www.mineralproducts.org**

Cement and Concrete Industry Publications (CCIP) are produced through an industry initiative to publish technical guidance in support of concrete design and construction. CCIP publications are available from the Concrete Bookshop at **www.concretebookshop.com Tel:** +44 (0)7004-607777

CCIP-041 Published December 2009 ISBN 978-1-9046818-84-7 Price Group P © MPA - The Concrete Centre

All advice or information from MPA - The Concrete Centre is intended only for use in the UK by those who will evaluate the significance and limitations of its contents and take responsibility for its use and application. No liability (including that for negligence) for any loss resulting from such advice or information is accepted by MPA - The Concrete Centre or its subcontractors, suppliers or advisors. Readers should note that the publications from MPA - The Concrete Centre are subject to revision from time to time and should therefore ensure that they are in possession of the latest version.

Printed by Michael Burbridge Ltd, Maidenhead, UK.

Worked Examples to Eurocode 2: Volume 1 Contents

	Symbols	ii
1	Introduction	1
1.1	Aim	1
1.2	Eurocode: Basis of structural design	3
1.3	Eurocode 1: Actions on structures	4
1.4	Eurocode 2: Design of concrete structures	4
1.5	National Annexes	5
1.6	Basis of the worked examples in this publication	5
1.7	Assumptions	6
1.8	Material properties	6
1.9	Execution	6

2	Analysis, actions and load arrangements	7
2.1	Methods of analysis	7
2.2	Actions	7
2.3	Characteristic values of actions	7
2.4	Variable actions: imposed loads	8
2.5	Variable actions: snow loads	12
2.6	Variable actions: wind loads	13
2.7	Variable actions: others	17
2.8	Permanent actions	18
2.9	Design values of actions	21
2.10	Load arrangement of actions: introduction	25
2.11	Load arrangements according to the	
	UK National Annex to Eurocode	25
2.12	Examples of loading	27
3	Slabs	35
3.0	General	35
3.1	Simply supported one-way slab	36
3.2	Continuous one-way solid slab	40
3.3	Continuous ribbed slab	52
3.4	Flat slab	71
3.5	Stair flight	95

4	Beams	97	
4.0	General	97	
4.1	Continuous beam on pin supports	98	
4.2	Heavily loaded L-beam	104	
4.3	Continuous wide T-beam	119	
5	Columns	134	
5.0	General	134	
5.1	Edge column	135	
5.2	Perimeter column (internal environment)	139	
5.3	Internal column	146	
5.4	Small perimeter column subject to two-hour fire resistance	157	
6	Walls	166	
6.0	General	166	
6.1	Shear wall	167	
7	References and further reading	183	
Арре	Appendix A: Derived formulae 185		
Арре	endix B: Serviceability limit state	190	
	endix C: Design aids	194	

Volume 2 (published separately)

Foundations
Special details: strut & tie
Serviceability
Fire
Retaining wall
References and further reading
Appendix A: Derived formulae
Appendix B: Design aids

Symbols and abbreviations used in this publication

Symbol	Definition		
A	Cross-sectional area; Accidental action		
A	Site altitude, m (snow)		
A	Altitude of the site in metres above mean sea level (wind)		
А, В, С	Variables used in the determination of $\lambda_{ ext{lim}}$		
A _c	Cross-sectional area of concrete		
A _d	Design value of an accidental action		
A _{Ed}	Design value of a seismic action		
A _{ref}	Reference area of the structure or structural element (wind)		
A _s	Cross-sectional area of reinforcement		
A _{s,min}	Minimum cross-sectional area of reinforcement		
A _{s,prov}	Area of steel provided		
A _{s,req}	Area of steel required		
A _{s1}	Area of reinforcing steel in layer 1		
A _{s2}	Area of compression steel (in layer 2)		
A _{sl}	Area of the tensile reinforcement extending at least l_{bd} + d beyond the section considered		
A _{sM} (A _{sN})	Total area of reinforcement required in symmetrical, rectangular columns to resist moment (axial load) using simplified calculation method		
A _{sw}	Cross-sectional area of shear reinforcement; Area of punching shear reinforcement in one perimeter around the column		
A _{sw,min}	Minimum cross-sectional area of shear reinforcement; Minimum area of punching shear reinforcement in one perimeter around the column		
A _t	Area of tensile reinforcement in flat slab column strips		
а	Distance, allowance at supports		
а	Axis distance from the concrete surface to the centre of the bar (fire)		
а	An exponent (in considering biaxial bending of columns)		
а	Projection of the footing from the face of the column or wall		
a _l	Distance by which the location where a bar is no longer required for bending moment is displaced to allow for the forces from the truss model for shear. ('Shift' distance for curtailment)		
a ₁ , a ₂ ,	Distance from edge of support to centre of support		
a ₁ , b ₁	Dimensions of the control perimeter around an elongated support (punching shear)		
a.m.s.l.	Altitude above mean sea level		
b	Overall width of a cross-section, or flange width in a T- or L-beam		
b	Breadth of building (wind)		
b _e	Effective width of a flat slab (adjacent to perimeter column)		
b _{eff}	Effective width of a flange		
$b_{\rm eq} (h_{\rm eq})$	Equivalent width (height) of column = $b(h)$ for rectangular sections		
b _{min}	Minimum width of web on T-, I- or L-beams		
b _t	Mean width of the tension zone. For a T-beam with the flange in compression, only the width of the web is taken into account		
b _w	Width of the web on T-, I- or L-beams. Minimum width between tension and compression chords		
b ₁	Half of distance between adjacent webs of downstand beams		
C _e	Exposure coefficient (snow)		
C _t	Thermal coefficient (snow)		
C _w	Shear centre		

Definition	
Dimensions of a rectangular column. For edge columns, c_1 is measured perpendicular to the free edge (punching shear)	
Altitude factor (wind)	
Dynamic factor (wind)	
Directional factor (wind)	
Exposure factor (wind)	
Force coefficient (wind)	
Minimum cover, (due to the requirements for bond, $c_{\min,b}$ or durability $c_{\min,dur}$)	
Nominal cover. Nominal cover should satisfy the minimum requirements of bond, durability and fire	
(External) pressure coefficient (wind)	
(External) pressure coefficient for areas > 1 m ² (wind)	
Internal pressure coefficient (wind)	
Probability factor (wind)	
Season factor (wind)	
Size factor (wind)	
Column dimensions in plan	
Allowance made in design for deviation	
Diameter of a circular column; Diameter	
Effective depth to tension steel	
Effective depth to compression steel	
Effective depth of concrete in compression	
Effect of action; Integrity (in fire); Elastic modulus	
Design value of modulus of elasticity of concrete	
Secant modulus of elasticity of concrete	
Bending stiffness	
Design value of modulus of elasticity of reinforcing steel	
Expression	
Static equilibrium	
Eccentricity	
Minimum eccentricity in columns	
Deflection (used in assessing M_2 in slender columns)	
Eccentricity due to imperfections	
Eccentricity, $M_{\rm Ed}/V_{\rm Ed}$ along y and z axes respectively (punching shear)	
Factor to account for flanged sections (deflection)	
Factor to account for brittle partitions in association with long spans (deflection)	
Factor to account for service stress in tensile reinforcement (deflection)	
Action	
Fixed end moment	
Force in concrete (steel)	
Design value of an action	
Tensile force in reinforcement to be anchored	
Characteristic value of an action	
Representative action (= yF_k where y = factor to convert characteristic to representative action)	
Tensile force in reinforcement	
Design value of the tensile force in longitudinal reinforcement	

Symbol	Definition	
F _{V,Ed}	Total vertical load (on braced and bracing members)	
Fw	Resultant characteristic force due to wind. (See section 2.6)	
$f_{\rm bd}$	Ultimate bond stress	
f_{cd}	Design value of concrete compressive strength	
f_{ck}	Characteristic compressive cylinder strength of concrete at 28 days	
$f_{\rm ct,d}$	Design tensile strength of concrete $(a_{\rm ct} f_{ m ct,k}/\gamma_{ m C})$	
$f_{ct,k}$	Characteristic axial tensile strength of concrete	
$f_{\rm ctm}$	Mean value of axial tensile strength of concrete	
$f_{\rm sc}$	Compressive stress in compression reinforcement at ULS	
$f_{\rm vd}$	Design yield strength of longitudinal reinforcement, A _{st}	
f _{yk}	Characteristic yield strength of reinforcement	
f _{ywd}	Design yield strength of the shear reinforcement	
f _{ywd,ef}	Effective design strength of punching shear reinforcement	
f _{ywk}	Characteristic yield strength of shear reinforcement	
G _k	Characteristic value of a permanent action	
G _{k,sup}	Upper characteristic value of a permanent action	
G _{k,inf}	Lower characteristic value of a permanent action	
g _k	Characteristic value of a permanent action per unit length or area	
	Horizontal action applied at a level	
H	Height of building (wind)	
h	Overall depth of a cross-section; Height	
h _{ave}	Obstruction height (wind)	
h _{dis}	Displacement height (wind)	
h _f	Depth of footing; Thickness of flange	
h _s	Depth of slab	
I	Second moment of area of concrete section; Inertia	
Ι	Insulation (in fire)	
i	Radius of gyration	
K	$M_{\rm Ed}/bd^2 f_{\rm ck}$. A measure of the relative compressive stress in a member in flexure	
K	Factor to account for structural system (deflection)	
Κ'	Value of K above which compression reinforcement is required	
K _v	A correction factor for axial load	
K _¢	A correction factor for creep	
k	Coefficient or factor	
k	Relative flexibility or relative stiffness	
l	Clear height of column between end restraints	
l	Height of the structure in metres	
l (or L)	Length; Span	
l _o	Effective length (of columns)	
l _o	Distance between points of zero moment	
l _o	Design lap length	
l _{o,fi}	Effective length under fire conditions	
l _b	Basic anchorage length	
l _{bd}	Design anchorage length	
l _{b,eq}	Equivalent anchorage length	
l _{b,min}	Minimum anchorage length	
0,11111	5 5	

k_{ab} Effective span k_{a} Clear span k_{a} Sending moment. Moment from first order analysis M Moment capacity of a singly reinforced section (above which compression reinforcement is required) $M_{b,kp}$ First order bending moment in quasi permanent (abd combination (SLS) $M_{0,kp}$ First order moment including the effect of imperfections $M_{0,kp}$ First order moment including the effect of imperfections (at about mid height) $M_{0,kp}$ First order moment in leader columns $M_{0,kp}$ Design noment in the respective direction $M_{0,kp}$ Design noment in the respective direction $M_{0,kp}$ Moment resistance in the respective direction $M_{0,kp}$ Moment resistance in the respective direction $M_{0,kp}$ Nomber of vertical members contributing to an effect $M_{0,kp}$ Axial force N Axial load under fire conditions N Axial load under fire conditions N Axial load annee N National Annex N National Annex N Axial load on the applied axial force (tension or compression) at ULS	Symbol	Definition
V_{aff} Effective span V_{aff} Clear span V_{aff} Spans of a two wy slab in the y and z directions V_{aff} Moment capacity of a singly reinforced section (above which compression reinforcement is required) M_{otage} First order bending moment in quasi permanent load combination (SLS) M_{otage} First order moments at ULS <i>including</i> allowances for imperfections M_{otage} First order moment including the effect of imperfections (at about mid height) M_{otage} Design value of the applied internal bending moment M_{otage} Design noment in the respective direction M_{otage} Design noment in the respective direction M_{otage} Design noment in the respective direction M_{otage} Moment resistance in the respective direction M_{otage} Number of vertical members contributing to an effect m Mass M_{otage} Avial force N_{otage} Avial locar N_{otage} Avial force N_{otage} Avial locar theoremet (s) as published in a country's National Annex N_{otage} Longitudinal forces contributing to H_1 N_{otage} Avial stress at ULS n_{otage} Avial stress at ULS n_{otage} Avial stress at ULS n_{otage} National Annex N_{otage} Characteristic value of a variable action n compression) at ULS N_{otage} National Annex N_{otage} National Annex N_{otage} National Annex N_{otage} National Annex </th <th>l_{b,rqd}</th> <th>Basic anchorage length</th>	l _{b,rqd}	Basic anchorage length
$q_{1}I_{2}$ Spans of a two-way slab in the y and z directions M Bending moment. Moment from first order analysis M_{0} Moment capacity of a singly reinforced section (above which compression reinforcement is required) $M_{0,form}$ First order bending moment in quasi permanent load combination (SLS) $M_{0,form}$ First order moment at ULS <i>including</i> allowances for imperfections $M_{0,form}$ Equivalent first order moment under fire conditions $M_{0,form}$ Nominal second order moment in slender columns $M_{0,form}$ Design noment in the respective direction $M_{0,form}^{*}$ Moment resistance in the respective direction $M_{0,form}^{*}$ Mass N Axial force N Axial force N Axial force N Axial force contributing to H_1 $N_{0,ford}^{*}$ Longitudinal forces contributing to H_1 $N_{0,ford}^{*}$ Longitudinal forces contributing to H_1 $N_{0,ford}^{*}$ Load level at norm	l _{eff}	Effective span
Available Bending moment. Moment from first order analysis M* Moment capacity of a singly reinforced section (above which compression reinforcement is required) Marge First order anoments at ULS including allowances for imperfections Marget First order moment in quasi permanent load combination (SLS) Marget First order moment in cluding the effect of imperfections Marget First order moment including the effect of imperfections (at about mid height) Marget First order moment in the respective direction Marget Nominal second order moment to column form a flat slab m Number of vertical members contributing to an effect m Mass Axial force N Basic span-to-effective-depth ratio, <i>I/d</i> , for <i>K</i> = 10 Notice Axial load under fire conditions NA National Annex N _{def} Longitudinal forces contributing to <i>H</i> , N _{def} Design value of the applied axial force (tension or compression) at ULS Ndp Longitudinal forces contributing to <i>H</i> , N _{def} Design value of the applied axial force (tension or compression) at ULS Ndp Nationally Determined Parameter(s) as published in a country's National Annex n Load le	l _n	Clear span
M Moment capacity of a singly reinforced section (above which compression reinforcement is required) M_{0LRP} First order hending moment in quasi permanent load combination (SLS) M_{0id} Equivalent first order moment nucluding the effect of imperfections (at about mid height) M_{0id} Equivalent first order moment nucluding the effect of imperfections (at about mid height) M_{0id} Equivalent first order moment in sender colurms M_{did} Design value of the applied internal bending moment M_{did} Design ransfer moment in the respective direction M_{did} Moment resistance in the respective direction M_{did} Design transfer moment to column from a flat slab m Number of vertical members contributing to an effect m Mass N Axial force N Axial force N_{add} Design value of the applied axial force (tension or compression) at ULS N_{add} Design value of the applied axial force (tension or compression) at ULS N_{add} Design value of the applied axial force (tension or compression) at ULS N_{add} Design value of the applied axial force (tension or compression) at ULS N_{add} Design value of at maximum moment resistance	l _y , l _z	Spans of a two-way slab in the y and z directions
$M_{0:50}$ First order bending moment in quasi permanent load combination (SLS) $M_{0:10}$ First order end moments at ULS including allowances for imperfections $M_{0:61}$ Equivalent first order moment including the effect of imperfections (at about mid height) $M_{0:61}$ Exits order moment under fire conditions $M_{0:61}$ Design value of the applied internal bending moment $M_{0:62}$ Nominal second order moment in slender columns $M_{0:62}$ Design moment in the respective direction $M_{0:62}/M_{0:62}$ Design transfer moment to column from a flat slab m Number of vertical members contributing to an effect m Mass N Axial force N Axial force N Axial force contributing to H_1 $N_{0:61}$ Axial load under fire conditions NA National Annex $N_g N_b$ Longitudinal forces contributing to H_1 $N_{0:61}$ Axial load under fire conditions NA Nationally Determined Parameter(s) as published in a country's National Annex $N_g N_b$ Longitudinal forces constributing to rarea) n Axial stress	M	Bending moment. Moment from first order analysis
M_{01} First order end moments at ULS including allowances for imperfections M_{01d} Equivalent first order moment including the effect of imperfections (at about mid height) M_{01d} First order moment under fire conditions M_{01d} Design value of the applied internal bending moment M_{01d} Design moment in the respective direction M_{01d} Memory resistance in the respective direction M_{01d} Number of vertical members contributing to an effect m Mass N Axial force N Basic span-to-effective-depth ratio, I/d , for $K = 1.0$ N_{01d} Design value of the applied axial force (tension or compression) at ULS N_{01d} Design value of the applied axial force (tension or compression) at ULS N_{01d} Design value of the applied axial force (tension or compression) at ULS N_{01d} Design value of the applied axial force (tension or compression) at ULS N_{01d} Design value of the applied axial force (tension or compression) at ULS N_{01d} Design value of the applied axial force (tension or compression) at ULS N_{01d} Design value of the applied axial force (tension or compression) at ULS	M'	Moment capacity of a singly reinforced section (above which compression reinforcement is required)
M_{01} First order end moments at ULS including allowances for imperfections M_{01d} Equivalent first order moment including the effect of imperfections (at about mid height) M_{01d} First order moment under fire conditions M_{01d} Design value of the applied internal bending moment M_{01d} Design moment in the respective direction M_{01d} Memory resistance in the respective direction M_{01d} Number of vertical members contributing to an effect m Mass N Axial force N Basic span-to-effective-depth ratio, I/d , for $K = 1.0$ N_{01d} Design value of the applied axial force (tension or compression) at ULS N_{01d} Design value of the applied axial force (tension or compression) at ULS N_{01d} Design value of the applied axial force (tension or compression) at ULS N_{01d} Design value of the applied axial force (tension or compression) at ULS N_{01d} Design value of the applied axial force (tension or compression) at ULS N_{01d} Design value of the applied axial force (tension or compression) at ULS N_{01d} Design value of the applied axial force (tension or compression) at ULS	M _{0.Eap}	First order bending moment in quasi permanent load combination (SLS)
First order moment under fire conditions M_{g} Nominal second order moment in slender columns M_{d} Design value of the applied internal bending moment $M_{day} M_{fad}$ Design moment in the respective direction $M_{hay} M_{fad}$ Moment resistance in the respective direction $M_{hay} M_{fad}$ Design value of the applied axial force (tension or compression) at ULS NDP Nationally Determined Parameter(s) as published in a country's National Annex n Load level at normal temperatures. Conservatively $n = 0.7$ (fire) n Axial stress at ULS n Utimate action (load) per unit length (or area) n Relative axial force $N_{faf}/(k_{a}, f_{ca})$ n_{bad} The value of n at maximum moment resistance n_{0}, n_{n} Number of storeys Q_{a} Characteristic value of a variable action (Characteristic value of an accompanying variable action) $Q_{a}(Q_{a})$ Characteristic value of a variable action per unit length or area q_{a} Basic wind pressure q_{a} Peak wind pressure q_{a} Reaction at support A R_{a} Reaction at support A R_{a} Reaction at support A R_{a} Reaction at support B R_{a} Design value of the resistance to an action r Radius r_{m} Ratio of first order end moments in columns at ULS SLS Serviceability limit state(s) – corresponding to conditions beyond which specified service requirements are no longer met s	M ₀₁ , M ₀₂	First order end moments at ULS including allowances for imperfections
$M_{0cd,h}$ First order moment under fire conditions M_{2} Nominal second order moment in slender columns M_{2d} Design value of the applied internal bending moment M_{2d} Mess M_{2d} Design moment in the respective direction M_{2d} Mess M Design transfer moment to column from a flat slab m Number of vertical members contributing to an effect m Mass N Axial force N Basic span-to-effective-depth ratio, <i>I/d</i> , for $K = 1.0$ $N_{0Ed,h}$ Axial local under fire conditions N_{4} Design value of the applied axial force (tension or compression) at ULS N_{eff} Design value of the applied axial force (tension or compression) at ULS N_{eff} Design value of the applied axial force (tension or compression) at ULS N_{eff} Design value of the apperatures. Conservatively $n = 0.7$ (fire) n Utad level at normal temperatures. Conservatively $n = 0.7$ (fire) n Relative axial force $N_{eff}/(L_{eff}/c_{o})$ n_{off} Relative axial force $N_{eff}/(L_{eff}/c_{o})$ n_{off} <t< th=""><th>M_{OEd}</th><th>Equivalent first order moment including the effect of imperfections (at about mid height)</th></t<>	M _{OEd}	Equivalent first order moment including the effect of imperfections (at about mid height)
M2 Nominal second order moment in slender columns M2 Design value of the applied internal bending moment M2 Design moment in the respective direction May Moment resistance in the respective direction M1 Design transfer moment to column from a flat slab m Number of vertical members contributing to an effect m Mass N Axial force N Basic span-to-effective-depth ratio, I/d, for K = 1.0 NgErdit Axial load under fire conditions NA National Annex Number Design value of the applied axial force (tension or compression) at ULS NDP Nationally Determined Parameter(s) as published in a country's National Annex NDP Nationall temperatures. Conservatively $n = 0.7$ (fire) n Load level at normal temperatures. n Relative axial force N _{Bd} (A _c C _{co}) n _{co} n, Number of storeys Q4 Characteristic value of a variable action per unit length or area q6 Basic wind pressure q6 Basic wind pressure q7 Number of storeys Q4 <th>M_{OEd,fi}</th> <th>First order moment under fire conditions</th>	M _{OEd,fi}	First order moment under fire conditions
$M_{idy} M_{tet}$ Design moment in the respective direction $M_{idy} M_{ket}$ Moment resistance in the respective direction $M_{idy} M_{ket}$ Design transfer moment to column from a flat slab m Number of vertical members contributing to an effect m MassNAxial forceNBasic span-to-effective-depth ratio, <i>I/d</i> , for $K = 1.0$ N_{otdifi} Axial load under fire conditionsNANational Annex N_{otdifi} Design value of the applied axial force (tension or compression) at ULSNDPNational forces contributing to H_i . N_{ket} Design value of the applied axial force (tension or compression) at ULSNDPNationally Determined Parameter(s) as published in a country's National Annex n Load level at normal temperatures. Conservatively $n = 0.7$ (fire) n Axial stress at ULS n Ultimate action (load) per unit length (or area) n Relative axial force $N_{ed}(A_{el,ca})$ n_{ot} Number of storeys Q_k Characteristic value of a variable action $Q_{i,1}(Q_{i,0})$ Characteristic value of a variable action $(Characteristic value of an accompanying variable action)q_kResistance, Mechanical resistance (in fire)R_kReaction at support AR_pReaction at support BR_kReaction at support BR_k$	M ₂	Nominal second order moment in slender columns
M_{tdy} Design moment in the respective direction M_{hdy} Moment resistance in the respective direction M_{hdy} Design transfer moment to column from a flat slab m Number of vertical members contributing to an effect m MassNAxial forceNBasic span-to-effective-depth ratio, l/d, for K = 1.0 $N_{otd,fl}$ Axial load under fire conditionsNANational Annex $N_{otd,fl}$ Longitudinal forces contributing to H_i N_{act} Design value of the applied axial force (tension or compression) at ULSNDPNationally Determined Parameter(s) as published in a country's National Annex n Load level at normal temperatures. Conservatively $n = 0.7$ (fire) n Axial stress at ULS n Relative axial force $N_{cd}/(A_c f_{cd})$ n Relative axial force $N_{cd}/(A_c f_{cd})$ n_{ch} Ultimate action (load) per unit length (or area) n_{ot} Relative axial force $N_{cd}/(A_c f_{cd})$ n_{ot} Number of storeys Q_i Characteristic value of a variable action Q_i Characteristic value of a variable action Q_i Characteristic value of a variable action per unit length or area q_p Peak wind pressure q_p Peak wind pressure q_p Peak welocity pressure at reference height z_{et} (wind) R_k Resistance, Mechanical resistance (in fire) R_k Resistance, Mechanical resistance (in fire) R_k Reaction at support A R_p	M _{Ed}	Design value of the applied internal bending moment
M_{Rdy}/M_{Rdz} Moment resistance in the respective direction M_1 Design transfer moment to column from a flat slab m Number of vertical members contributing to an effect m Mass N Axial force N Basic span-to-effective-depth ratio, l/d , for $K = 1.0$ $N_{0td,h}$ Axial load under fire conditions $N_{otd,h}$ Axial load under fire conditions $N_{otd,h}$ National Annex N_{ed} Design value of the applied axial force (tension or compression) at ULS NDP Nationally Determined Parameter(s) as published in a country's National Annex n Load level at normal temperatures. Conservatively $n = 0.7$ (fire) n Axial stress at ULS n Ultimate action (load) per unit length (or area) $n_{or} n_{a}$ Number of storeys Q_{a} Characteristic value of a variable action $Q_{a_{1}}(Q_{a_{a}})$ Characteristic value of a variable action per unit length or area $n_{or} n_{a}$ Number of storeys Q_{a} $Q_{a_{a}}(Q_{a_{a}})$ Characteristic value of a variable action per unit length or area n_{ot		Design moment in the respective direction
M_t Design transfer moment to column from a flat slab m Number of vertical members contributing to an effect m Mass N Axial force N Basic span-to-effective-depth ratio, <i>I/d</i> , for $K = 1.0$ Negation Axial load under fire conditions NA National Annex National Annex National Annex Negation Design value of the applied axial force (tension or compression) at ULS NDP Nationally Determined Parameter(s) as published in a country's National Annex n Load level at normal temperatures. Conservatively $n = 0.7$ (fire) n Axial stress at ULS n Relative axial force $N_{tod}/(A_c/c_{cd})$ n/ball The value of n at maximum moment resistance n/o_n f_a Number of storeys Q_k Characteristic value of a variable action (Characteristic value of an accompanying variable action) Qk1 (Qk2) Characteristic value of a variable action per unit length or area q_b Basic wind pressure Q_e (wind) Resistance; Mechanical resistance (in fire) Ref Reaction at support A Res		Moment resistance in the respective direction
mMassNAxial forceNBasic span-to-effective-depth ratio, l/d, for K = 1.0 $N_{\text{fed.fi}}$ Axial load under fire conditionsNANational Annex $N_{a'}$, N_b Longitudinal forces contributing to H_i N_{kd} Design value of the applied axial force (tension or compression) at ULSNDPNationally Determined Parameter(s) as published in a country's National Annex n Load level at normal temperatures. Conservatively $n = 0.7$ (fire) n Axial stress at ULS n Ultimate action (load) per unit length (or area) n Relative axial force $N_{tot}/(A_c f_{cd})$ n_{bal} The value of n a maximum moment resistance n_0 , n_s Number of storeys Q_k Characteristic value of a variable action Q Q_k Characteristic value of a variable action per unit length or area q_b Basic wind pressure q_p Peak wind pressure $q_p(x_c)$ Peak wind pressure $q_p(x_c)$ Peak velocity pressure at reference height z_e (wind) R Resistance; Mechanical resistance (in fire) R_A Reaction at support A R_B Reaction at support B R_d Design value of the resistance to an action r_m Ratio of first order end moments in columns at ULSSLSServiceability limit state(s) – corresponding to conditions beyond which specified service requirements are no longer met	M _t	Design transfer moment to column from a flat slab
N Axial force N Basic span-to-effective-depth ratio, <i>I/d</i> , for <i>K</i> = 1.0 Notedati Axial load under fire conditions NA National Annex N _a , N _b Longitudinal forces contributing to H_i N _{edd} Design value of the applied axial force (tension or compression) at ULS NDP Nationally Determined Parameter(s) as published in a country's National Annex n Load level at normal temperatures. Conservatively $n = 0.7$ (fire) n Axial stress at ULS n Ultimate action (load) per unit length (or area) n Relative axial force $N_{tot}/(A_c f_{co})$ n_{or} Number of storeys Q_k Characteristic value of a variable action $Q_{t1}(Q_k)$ Characteristic value of a variable action per unit length or area $q_p(x_2)$ Peak wind pressure $q_p(x_2)$ Peak wind pressure $q_p(x_2)$ Peak velocity pressure at reference height z_e (wind) R Reaction at support A R_h Reaction at support A R_h Reaction at support B R_d Design value of the resistance to an action r_m Ratio of first	m	Number of vertical members contributing to an effect
N Basic span-to-effective-depth ratio, I/d, for K = 1.0 $N_{0cd,fi}$ Axial load under fire conditions NA National Annex N_{a} , N_b Longitudinal forces contributing to H_i N_{rd} Design value of the applied axial force (tension or compression) at ULS NDP Nationally Determined Parameter(s) as published in a country's National Annex n Load level at normal temperatures. Conservatively $n = 0.7$ (fire) n Axial stress at ULS n Ultimate action (load) per unit length (or area) n Relative axial force $N_{Ed}/(A_c f_{cd})$ n_{0} , n_s Number of storeys Q_k Characteristic value of a variable action $Q_{k,1}(Q_k)$ Characteristic value of a variable action per unit length or area q_p Peak wind pressure q_p Peak wind pressure $q_p(z_p)$ Peak velocity pressure at reference height z_e , (wind) R_k Reaction at support A R_h Reaction at support A R_h Reaction at support B R_d Design value of the resistance to an action r_m	m	Mass
Noticitie Axial load under fire conditions NA National Annex National Annex Net Longitudinal forces contributing to H_i Netd Design value of the applied axial force (tension or compression) at ULS NDP Nationally Determined Parameter(s) as published in a country's National Annex n Load level at normal temperatures. Conservatively $n = 0.7$ (fire) n Axial stress at ULS n Ultimate action (load) per unit length (or area) n Relative axial force $N_{td}(A_c f_{cd})$ n_{bal} The value of n at maximum moment resistance n_0 , n_s Number of storeys Q_k Characteristic value of a variable action $Q_{k1}(Q_{k0})$ Characteristic value of a variable action per unit length or area q_p Peak wind pressure $q_p(c_n)$ Peak velocity pressure at reference height $z_{e'}$ (wind) R Resistance; Mechanical resistance (in fire) R_a Reaction at support A R_a Reaction at support A R_a Reaction at support B R_d Design value of the resistance to an action r_m Ratio of first or	N	Axial force
NA National Annex N_{ar}, N_b Longitudinal forces contributing to H_i N_{tcd} Design value of the applied axial force (tension or compression) at ULS NDP Nationally Determined Parameter(s) as published in a country's National Annex n Load level at normal temperatures. Conservatively $n = 0.7$ (fire) n Axial stress at ULS n Ultimate action (load) per unit length (or area) n Relative axial force $N_{tcl}/(A_c f_{cd})$ n_{bal} The value of n at maximum moment resistance n_0, n_s Number of storeys Q_k Characteristic value of a variable action Q_k Characteristic value of a variable action per unit length or area q_b Basic wind pressure q_p Peak wind pressure $q_p(e_u)$ Peak velocity pressure at reference height z_{e^i} (wind) R_k Resistance; Mechanical resistance (in fire) R_k Resistance is support A R_g Reaction at support B R_d Design value of the resistance to an action r_m Ratio of first order end moments in columns at ULS <tr< th=""><th>N</th><th>Basic span-to-effective-depth ratio, l/d, for $K = 1.0$</th></tr<>	N	Basic span-to-effective-depth ratio, l/d , for $K = 1.0$
NA National Annex N_{ar}, N_b Longitudinal forces contributing to H_i N_{tcd} Design value of the applied axial force (tension or compression) at ULS NDP Nationally Determined Parameter(s) as published in a country's National Annex n Load level at normal temperatures. Conservatively $n = 0.7$ (fire) n Axial stress at ULS n Ultimate action (load) per unit length (or area) n Relative axial force $N_{tcl}/(A_c f_{cd})$ n_{bal} The value of n at maximum moment resistance n_0, n_s Number of storeys Q_k Characteristic value of a variable action Q_k Characteristic value of a variable action per unit length or area q_b Basic wind pressure q_p Peak wind pressure $q_p(e_u)$ Peak velocity pressure at reference height z_{e^i} (wind) R_k Resistance; Mechanical resistance (in fire) R_k Resistance is support A R_g Reaction at support B R_d Design value of the resistance to an action r_m Ratio of first order end moments in columns at ULS <tr< th=""><th>N_{0Ed.fi}</th><th>Axial load under fire conditions</th></tr<>	N _{0Ed.fi}	Axial load under fire conditions
N_{td} Design value of the applied axial force (tension or compression) at ULS NDP Nationally Determined Parameter(s) as published in a country's National Annex n Load level at normal temperatures. Conservatively $n = 0.7$ (fire) n Axial stress at ULS n Ultimate action (load) per unit length (or area) n Relative axial force $N_{td}/(A_c f_{cd})$ n_{bal} The value of n at maximum moment resistance n_0 , n_s Number of storeys Q_k Characteristic value of a variable action Q_{k1} Characteristic value of a variable action per unit length or area q_k Characteristic value of a variable action per unit length or area q_p Basic wind pressure $q_p(z_k)$ Characteristic value of a variable action per unit length or area $q_p(z_k)$ Peak wind pressure $q_p(z_k)$ Peak velocity pressure at reference height $z_{e'}$ (wind) R Resistance; Mechanical resistance (in fire) R_A Reaction at support A R_B Reaction at support A R_B Reaction at support B R_A Retio of first order end	NA	National Annex
NDPNationally Determined Parameter(s) as published in a country's National AnnexnLoad level at normal temperatures. Conservatively $n = 0.7$ (fire)nAxial stress at ULSnUltimate action (load) per unit length (or area)nRelative axial force $N_{Ed}/(A_c f_{cd})$ n_{bal} The value of n at maximum moment resistance n_o, n_s Number of storeys Q_k Characteristic value of a variable action $Q_{k,1}(Q_{ki})$ Characteristic value of a variable action per unit length or area q_b Basic wind pressure q_p Peak wind pressure $q_p(z_e)$ Peak velocity pressure at reference height $z_{e'}$ (wind) R Resistance; Mechanical resistance (in fire) R_A Reaction at support A R_B Reaction at support B R_d Design value of the resistance to an action r Radius r_m Ratio of first order end moments in columns at ULSSLSServiceability limit state(s) – corresponding to conditions beyond which specified service requirements are no longer met	N _a , N _b	Longitudinal forces contributing to H _i
nLoad level at normal temperatures. Conservatively $n = 0.7$ (fire)nAxial stress at ULSnUltimate action (load) per unit length (or area)nRelative axial force $N_{Ed}/(A_c f_{cd})$ n_{bal} The value of n at maximum moment resistance n_0 , n_s Number of storeys Q_k Characteristic value of a variable action $Q_{k,1}(Q_{ki})$ Characteristic value of a variable action per unit length or area q_b Basic wind pressure q_b Peak wind pressure $q_p(z_e)$ Peak velocity pressure at reference height $z_{e'}$ (wind) R Resistance; Mechanical resistance (in fire) R_A Reaction at support A R_B Reaction at support B R_d Design value of the resistance to an action r Radius r_m Ratio of first order end moments in columns at ULSSLSServiceability limit state(s) – corresponding to conditions beyond which specified service requirements are no longer met	N _{Ed}	Design value of the applied axial force (tension or compression) at ULS
nAxial stress at ULSnUltimate action (load) per unit length (or area)nRelative axial force $N_{Ed}/(A_c f_{cd})$ n_{bal} The value of n at maximum moment resistance n_{or} , n_s Number of storeys Q_k Characteristic value of a variable action $Q_{k1}(Q_{ki})$ Characteristic value of a leading variable action (Characteristic value of an accompanying variable action) q_k Characteristic value of a variable action per unit length or area q_b Basic wind pressure $q_p(z_e)$ Peak wind pressure at reference height $z_{e'}$ (wind) R Resistance; Mechanical resistance (in fire) R_A Reaction at support A R_B Reaction at support B R_d Design value of the resistance to an action r_m Ratio of first order end moments in columns at ULSSLSServiceability limit state(s) – corresponding to conditions beyond which specified service requirements are no longer met	NDP	Nationally Determined Parameter(s) as published in a country's National Annex
nUltimate action (load) per unit length (or area)nRelative axial force $N_{Ed}/(A_c f_{cd})$ n_{bal} The value of n at maximum moment resistance n_0 , n_s Number of storeys Q_k Characteristic value of a variable action Q_{k1} Characteristic value of a leading variable action (Characteristic value of an accompanying variable action) q_k Characteristic value of a variable action per unit length or area q_b Basic wind pressure q_p Peak wind pressure at reference height $z_{e'}$ (wind) R Resistance; Mechanical resistance (in fire) R_A Reaction at support A R_B Reaction at support B R_d Design value of the resistance to an action r Radius r_m Ratio of first order end moments in columns at ULSSLSServiceability limit state(s) – corresponding to conditions beyond which specified service requirements are no longer met s Spacing	n	Load level at normal temperatures. Conservatively $n = 0.7$ (fire)
nRelative axial force $N_{Ed}/(A_c f_{cd})$ n_{bal} The value of n at maximum moment resistance $n_{o'} n_s$ Number of storeys Q_k Characteristic value of a variable action $Q_{k1}(Q_{ki})$ Characteristic value of a leading variable action (Characteristic value of an accompanying variable action) q_k Characteristic value of a variable action per unit length or area q_b Basic wind pressure q_p Peak wind pressure $q_p(z_e)$ Peak velocity pressure at reference height $z_{e'}$ (wind) R Resistance; Mechanical resistance (in fire) R_A Reaction at support A R_B Reaction at support B R_d Design value of the resistance to an action r Radius r_m Ratio of first order end moments in columns at ULSSLSServiceability limit state(s) – corresponding to conditions beyond which specified service requirements are no longer met s Spacing	n	Axial stress at ULS
n_{bal} The value of n at maximum moment resistance n_{or} n_s Number of storeys Q_k Characteristic value of a variable action Q_{k1} Characteristic value of a leading variable action (Characteristic value of an accompanying variable action) q_k Characteristic value of a variable action per unit length or area q_b Basic wind pressure q_p Peak wind pressure at reference height z_{e^r} (wind) R Resistance; Mechanical resistance (in fire) R_A Reaction at support A R_B Reaction at support B R_d Design value of the resistance to an action r_m Ratio of first order end moments in columns at ULSSLSServiceability limit state(s) – corresponding to conditions beyond which specified service requirements are no longer met s Spacing	n	Ultimate action (load) per unit length (or area)
Deal n_{o} , n_{s} Number of storeys Q_{k} Characteristic value of a variable action $Q_{k1}(Q_{ki})$ Characteristic value of a leading variable action (Characteristic value of an accompanying variable action) q_{k} Characteristic value of a variable action per unit length or area q_{b} Basic wind pressure q_{p} Peak wind pressure $q_{p}(z_{e})$ Peak velocity pressure at reference height z_{e} , (wind) R Resistance; Mechanical resistance (in fire) R_{A} Reaction at support A R_{B} Reaction at support B R_{d} Design value of the resistance to an action r Radius r_{m} Ratio of first order end moments in columns at ULSSLSServiceability limit state(s) – corresponding to conditions beyond which specified service requirements are no longer metsSpacing	n	Relative axial force $N_{\rm Ed}/(A_c f_{\rm cd})$
OGCharacteristic value of a variable action $Q_{k1}(Q_{ki})$ Characteristic value of a leading variable action (Characteristic value of an accompanying variable action) q_k Characteristic value of a variable action per unit length or area q_b Basic wind pressure q_p Peak wind pressure $q_p(z_e)$ Peak velocity pressure at reference height $z_{e'}$ (wind) R Resistance; Mechanical resistance (in fire) R_A Reaction at support A R_B Reaction at support B R_d Design value of the resistance to an action r Radius r_m Ratio of first order end moments in columns at ULSSLSServiceability limit state(s) – corresponding to conditions beyond which specified service requirements are no longer metsSpacing	n _{bal}	The value of <i>n</i> at maximum moment resistance
$Q_{k1}(Q_{ki})$ Characteristic value of a leading variable action (Characteristic value of an accompanying variable action) q_k Characteristic value of a variable action per unit length or area q_b Basic wind pressure q_p Peak wind pressure end $q_p(z_e)$ Peak velocity pressure at reference height z_e , (wind) R Resistance; Mechanical resistance (in fire) R_A Reaction at support A R_B Reaction at support B R_d Design value of the resistance to an action r Radius r_m Ratio of first order end moments in columns at ULSSLSServiceability limit state(s) – corresponding to conditions beyond which specified service requirements are no longer met s Spacing	n ₀ , n _s	Number of storeys
q_k Characteristic value of a variable action per unit length or area q_b Basic wind pressure $q_p(z_e)$ Peak wind pressure at reference height $z_{e'}$ (wind) R Resistance; Mechanical resistance (in fire) R_A Reaction at support A R_B Reaction at support B R_d Design value of the resistance to an action r Radius r_m Ratio of first order end moments in columns at ULS SLS Serviceability limit state(s) – corresponding to conditions beyond which specified service requirements are no longer met s Spacing	Q _k	Characteristic value of a variable action
Pasic wind pressure q_p Peak wind pressure $q_p(z_e)$ Peak velocity pressure at reference height $z_{e'}$ (wind) R Resistance; Mechanical resistance (in fire) R_A Reaction at support A R_B Reaction at support B R_d Design value of the resistance to an action r Radius r_m Ratio of first order end moments in columns at ULS SLS Serviceability limit state(s) – corresponding to conditions beyond which specified service requirements are no longer met s Spacing	$Q_{k1}(Q_{ki})$	Characteristic value of a leading variable action (Characteristic value of an accompanying variable action)
q_p Peak wind pressure $q_p(z_e)$ Peak velocity pressure at reference height z_e , (wind) R Resistance; Mechanical resistance (in fire) R_A Reaction at support A R_B Reaction at support B R_d Design value of the resistance to an action r Radius r_m Ratio of first order end moments in columns at ULS SLS Serviceability limit state(s) – corresponding to conditions beyond which specified service requirements are no longer met s Spacing	q _k	Characteristic value of a variable action per unit length or area
p Peak velocity pressure at reference height z _e , (wind) R Resistance; Mechanical resistance (in fire) RA Reaction at support A RB Reaction at support B Rd Design value of the resistance to an action r Radius rm Ratio of first order end moments in columns at ULS SLS Serviceability limit state(s) – corresponding to conditions beyond which specified service requirements are no longer met s Spacing	q _b	Basic wind pressure
R Resistance; Mechanical resistance (in fire) RA Reaction at support A RB Reaction at support B Rd Design value of the resistance to an action r Radius rm Ratio of first order end moments in columns at ULS SLS Serviceability limit state(s) – corresponding to conditions beyond which specified service requirements are no longer met s Spacing	q _p	
RA Reaction at support A RB Reaction at support B Rd Design value of the resistance to an action r Radius rm Ratio of first order end moments in columns at ULS SLS Serviceability limit state(s) – corresponding to conditions beyond which specified service requirements are no longer met s Spacing	$q_{\rm p}(z_{\rm e})$	
RB Reaction at support B Rd Design value of the resistance to an action r Radius rm Ratio of first order end moments in columns at ULS SLS Serviceability limit state(s) – corresponding to conditions beyond which specified service requirements are no longer met s Spacing	R	
R _d Design value of the resistance to an action r Radius r_m Ratio of first order end moments in columns at ULS SLS Serviceability limit state(s) – corresponding to conditions beyond which specified service requirements are no longer met s Spacing	R _A	
r Radius rm Ratio of first order end moments in columns at ULS SLS Serviceability limit state(s) – corresponding to conditions beyond which specified service requirements are no longer met s Spacing	R _B	•••
rm Ratio of first order end moments in columns at ULS SLS Serviceability limit state(s) – corresponding to conditions beyond which specified service requirements are no longer met s Spacing	R _d	5
SLS Serviceability limit state(s) – corresponding to conditions beyond which specified service requirements are no longer met s Spacing	r	
longer met s Spacing	$\frac{r_{\rm m}}{c_{\rm m}c_{\rm m}}$	
	SLS	longer met
s Snow load on a roof	5	· -
	S	Snow load on a roof

Symbol	Definition		
s _k	Characteristic ground snow load		
s _r	Radial spacing of perimeters of shear reinforcement		
s _t	Tangential spacing shear reinforcement along perimeters of shear reinforcement		
t	Thickness; Time being considered; Breadth of support		
t _o	The age of concrete at the time of loading		
ULS	Ultimate limit state(s) – associated with collapse or other forms of structural failure		
и	Perimeter of concrete cross-section, having area A _c		
и	Perimeter of that part which is exposed to drying		
и	Circumference of outer edge of effective cross-section (torsion)		
u _o	Perimeter adjacent to columns (punching shear)		
u ₁	Basic control perimeter (at 2 <i>d</i> from face of load) (punching shear)		
u1*	Reduced control perimeter at perimeter columns (at 2 <i>d</i> from face of load) (punching shear)		
u _i	Length of the control perimeter under consideration (punching shear)		
u _{out}	Perimeter at which shear reinforcement is no longer required		
V	Shear force		
$V_{\rm Ed}$	Design value of the applied shear force		
V _{Rd,c}	Shear resistance of a member without shear reinforcement		
$V_{\rm Rd,max}$	Shear resistance of a member limited by the crushing of compression struts		
$V_{\rm Rd,cmin}$	Minimum shear resistance of member considering concrete alone		
V _{Rd,s}	Shear resistance of a member governed by the yielding of shear reinforcement		
v _b	Basic wind velocity		
V _{b,0}	The fundamental basic wind velocity being the characteristic 10 minute wind velocity at 10 m above ground level in open country		
V _{b,map}	Fundamental basic wind velocity from Figure NA.1 m/s		
V _{Ed}	Punching shear stress		
V _{Ed}	Shear stress for sections without shear reinforcement (= $V_{Ed}/b_w d$)		
V _{Ed,z}	Shear stress for sections with shear reinforcement (= $V_{Ed}/b_w Z = V_{Ed}/b_w 0.9d$)		
V _{Rd,c}	Design shear resistance of concrete without shear reinforcement expressed as a stress		
V _{Rd,max}	Capacity of concrete struts expressed as a stress		
W_1	Factor corresponding to a distribution of shear (punching shear)		
W _e	Peak external wind load		
W _k	Characteristic value of wind action (NB not in the Eurocodes and should be regarded as a form of Q_k , characteristic value of a variable action)		
W _k	Characteristic unit wind load.		
W _k	Crack width		
W _{max}	Limiting calculated crack width		
X0, XA, XC XD, XF, XS	Concrete exposure classes		
x	Neutral axis depth		
x	Distance between buildings (wind)		
x	Distance of the section being considered from the centre line of the support		
х, у, г	Co-ordinates; Planes under consideration		
x	Depth of the neutral axis at the ultimate limit state after redistribution		
Z	Zone number obtained from map (snow)		
Z	Lever arm of internal forces		

Symbol	Definition	
Z	Reference height (wind)	
Z _e	Reference height for windward walls of rectangular buildings (wind)	
α	Angle; Angle of shear links to the longitudinal axis; Ratio	
a_A	A coefficient for use with a representative variable action taking into account area supported	
a_{1}, a_{2}, a_{3} a_{4}, a_{5}, a_{6}	Factors dealing with anchorage and laps of bars	
$a_{_{ m CC}}(a_{_{ m Ct}})$	A coefficient taking into account long term effects of compressive (tensile) load and the way load is applied	
a_{e}	Modular ratio = E_s/E_{cd}	
a_{n}	A coefficient for use with a representative variable action taking into account number of storeys supported	
β	Angle; Ratio; Coefficient	
β	Factor dealing with eccentricity (punching shear)	
γ	Partial factor	
$\gamma_{\rm C}$	Partial factor for concrete	
$\gamma_{\rm F}$	Partial factor for actions, F	
$\gamma_{\rm G}$	Partial factor for permanent actions, G	
$\gamma_{\rm Gk,sup}$	Partial factor to be applied to $G_{k,inf}$	
$\gamma_{\rm Gk,inf}$	Partial factor to be applied to $G_{k,sup}$	
γ_{\odot}	Partial factor for variable actions, Q	
γ _M	Partial factor for material (usually γ_{c} or γ_{s})	
$\gamma_{\rm S}$	Partial factor for reinforcing steel	
δ	Redistribution ratio equals ratio of the redistributed moment to the elastic bending moment (1 – % redistribution)	
ε _{cu}	Ultimate compressive strain in the concrete	
€ _{cu2}	Ultimate compressive strain limit in concrete which is not fully in pure axial compression assuming use of the parabolic–rectangular stress–strain relationship (numerically $\varepsilon_{cu2} = \varepsilon_{cu3}$)	
€ _{cu3}	Ultimate compressive strain limit in concrete which is not fully in pure axial compression assuming use of the bilinear stress–strain relationship	
$\varepsilon_{_{\rm SC}}$	Compressive strain in reinforcement	
$\epsilon_{\rm st}$	Tensile strain in reinforcement	
η	Factor defining effective strength (= 1 for \leq C50/60)	
η_1	Coefficient for bond conditions	
η_2	Coefficient for bar diameter	
θ	Angle; Angle of compression struts (shear)	
$\theta_{\rm i}$	Inclination used to represent imperfections	
λ	Slenderness ratio	
λ	Factor defining the height of the compression zone (= 0.8 for \leq C50/60)	
$\lambda_{\rm fi}$	Slenderness in fire	
λ _{lim}	Limiting slenderness ratio (of columns)	
$\mu_{i}, \mu_{1}, \mu_{2}$	Snow load shape factors	
μ_{fi}	Ratio of the design axial load under fire conditions to the design resistance of the column at normal temperature	
	but with an eccentricity applicable to fire conditions	
ν	Strength reduction factor for concrete cracked in shear	
ξ	Reduction factor/distribution coefficient. Factor applied to G_k in BS EN 1990 Exp. (6.10b)	
ρ	Required tension reinforcement ratio	
ρ	Density of air (wind)	
ρ'	Reinforcement ratio for required compression reinforcement, A _{s2} /bd	

Symbol	Definition
$\overline{\rho_1}$	Percentage of reinforcement lapped within 0.65l ₀ from the centre line of the lap being considered
ρ_{l}	Reinforcement ratio for longitudinal reinforcement
$\rho_{\rm ly,}\rho_{\rm lz}$	Reinforcement ratio of bonded steel in the y and z direction
$\overline{\rho_0}$	Reference reinforcement ratio $f_{ck}^{0.5'}$ 10 ⁻³
$\sigma_{\rm gd}$	Design value of the ground pressure
σ_{s}	Stress in reinforcement at SLS
σ_{s}	Absolute value of the maximum stress permitted in the reinforcement immediately after the formation of the crack
$\sigma_{_{ m SC}}(\sigma_{_{ m St}})$	Stress in compression (and tension) reinforcement
$\sigma_{\!\scriptscriptstyle m sd}$	Design stress in the bar at the ultimate limit state
$\sigma_{_{ m SU}}$	Unmodified service stress in reinforcement determined from ULS loads (See Figure C3)
$\varphi(\infty,t_0)$	Final value of creep coefficient
$arphi_{ m ef}$	Effective creep factor
ϕ	Bar diameter
ψ	Factors defining representative values of variable actions
ψ_0	Combination value of a variable action (e.g. used when considering ULS)
ψ_1	Frequent value of a variable action (e.g. used when considering whether section will have cracked or not)
ψ_2	Quasi-permanent value of a variable action (e.g. used when considering deformation)
ω	Mechanical reinforcement ratio = $A_s f_{yd} / A_c f_{cd} \le 1$

1 Introduction

1.1 Aim

The aim of this publication is to illustrate through worked examples how BS EN 1992–1–1^[1] (Eurocode 2) may be used in practice to design in-situ concrete building structures. It is intended that these worked examples will explain how calculations to Eurocode 2 may be performed. Eurocode 2 strictly consists of four parts (Parts 1–1, 1–2, 2 and 3)^[1-4] but for the purposes of this publication, Eurocode 2 refers to part 1–1 only, unless qualified. The worked examples will be carried out within the environment of other relevant publications listed below, and illustrated in Figure 1.1:

- The other three parts of Eurocode 2.
- Other Eurocodes.
- Material and execution standards.
- Publications by the concrete industry and others.

There are, therefore, many references to other documents and while it is intended that this publication, referred to as *Worked examples*, can stand alone, it is anticipated that users may require several of the other references to hand, in particular, *Concise Eurocode* $2^{[5]}$, which summarises the rules and principles that will be commonly used in the design of reinforced concrete framed buildings to Eurocode 2.

Figure 1.1 Worked examples in context

The designs are in accordance with BS EN $1992-1-1^{[1]}$, as modified by the UK National Annex^[1a] and explained in PD $6687^{[6]}$.

Generally, the calculations are cross-referenced to the relevant clauses in all four parts of Eurocode $2^{[1-4]}$ and, where appropriate, to other documents. See Figure 1.2 for a guide to presentation. References to BS $8110^{[7]}$ refer to Part 1 unless otherwise stated.

Generally, the 'simple' examples depend on equations and design aids derived from Eurocode 2. The derived equations are given in Appendix A and the design aids from Section 15 of *Concise Eurocode* $2^{[5]}$ are repeated in Appendix B.

The examples are intended to be appropriate for their purpose, which is to illustrate the use of Eurocode 2 for in-situ concrete building structures. There are simple examples to illustrate how typical hand calculations might be done using available charts and tables derived from the Code. These are followed by more detailed examples illustrating the detailed workings of the Codes. In order to explain the use of Eurocode 2, several of the calculations are presented in detail far in excess of that necessary in design calculations once users are familiar with the Code. To an extent, the designs are contrived to show valid methods of designing elements, to give insight and to help in validating computer methods. They are not necessarily the most appropriate, the most economic or the only methods of designing the members illustrated.

Sections 1 and 2		Worked examples
Cl. 6.4.4	Relevant clauses or figure numbers from BS EN 1992–1–1 (if the reference is to other parts, other Eurocodes or other documents this will be indicated)	Cl. 6.4.4
NA	From the relevant UK National Annex (generally to BS EN 1992–1–1)	NA
Cl. 6.4.4 & NA	From both BS EN 1992–1–1 and UK National Annex	CI. 6.4.4 & NA
Fig. 2.1 Section 5.2	Relevant parts of this publication	Fig. 2.1 Section 5.2
EC1-1-1: 6.4.3	From other Eurocodes: BS EN 1990, BS EN 1991, BS EN 1992–1–2, etc	EC1-1-1: 6.4.3
PD 6687 ^[6]	Background paper to UK National Annexes BS EN 1992–1	PD 6687 ^[6]
Concise	Concise Eurocode 2 ^[5]	Concise
How to: Floors ^[8]	How to design concrete structures using Eurocode 2 ^[8] : Floors	How to: Floors ^[8]
Grey shaded tables	In Appendices, derived content in tables not from Eurocode 2	

Figure 1.2 Guide to presentation

As some of the detailing rules in Eurocode 2 are generally more involved than those to BS 8110, some of the designs presented in this publication have been extended into areas that have traditionally been the responsibility of detailers. These extended calculations are not necessarily part of 'normal' design but are included at the end of some calculations. It is assumed that the designer will discuss and agree with the detailer areas of responsibility and the degree of rationalisation, the extent of designing details, assessment of curtailment and other aspects that the detailer should undertake. It is recognised that in the vast majority of cases, the rules given in detailing manuals^[8,9] will be used. However, the examples are intended to help when curtailment, anchorage and lap lengths need to be determined.

1.2 Eurocode: Basis of structural design

In the Eurocode system BS EN 1990, Eurocode: *Basis of structural design*^[10] overarches all the other Eurocodes, BS EN 1991 to BS EN 1999. BS EN 1990 defines the effects of actions, including geotechnical and seismic actions, and applies to all structures irrespective of the material of construction. The material Eurocodes define how the effects of actions are resisted by giving rules for design and detailing of concrete, steel, composite, timber, masonry and aluminium. (see Figure 1.3).

Figure 1.3 The Eurocode hierarchy

BS EN 1990 provides the necessary information for the analysis of structures including partial and other factors to be applied to the actions from Eurocode 1. It establishes the principles and requirements for the safety, serviceability and durability of structures. It describes the basis for design as follows:

EC0: 2.1

A structure shall be designed and executed (constructed) in such a way that it will, during its intended life, with appropriate degrees of reliability and in an economical way:

- Sustain all actions and influences likely to occur during execution and use.
- Remain fit for the use for which it is required.

In other words, it shall be designed using limit states principles to have adequate:

- Stability.
- Structural resistance (including structural resistance in fire).
- Serviceability.
- Durability.

For building structures, a design working life of 50 years is implied.

BS EN 1990 states that limit states should be verified in all relevant design situations: persistent, transient or accidental. No relevant limit state shall be exceeded when design values for actions and resistances are used in design. The limit states are:

- Ultimate limit states (ULS), which are associated with collapse or other forms of structural failure.
- Serviceability limit states (SLS), which correspond to conditions beyond which specified service requirements are no longer met.

All actions are assumed to vary in time and space. Statistical principles are applied to arrive at the magnitude of the partial load factors to be used in design to achieve the required reliability index (level of safety). There is an underlying assumption that the actions themselves are described in statistical terms.

1.3 Eurocode 1: Actions on structures

Actions are defined in the 10 parts of BS EN 1991 Eurocode 1: Actions on structures^[11]:

- BS EN 1991-1-1: 2002: Densities, self-weight, imposed loads for buildings
- BS EN 1991-1-2: 2002: Actions on structures exposed to fire
- BS EN 1991-1-3: 2003: Snow loads
- BS EN 1991–1–4: 2005: Wind actions
- BS EN 1991–1–5: 2003: Thermal actions
- BS EN 1991-1-6: 2005: Actions during execution
- BS EN 1991–1–7: 2006: Accidental actions
- BS EN 1991–2: 2003: Actions on structures. Traffic loads on bridges
- BS EN 1991-3: 2006: Cranes and machinery
- BS EN 1991-4: 2006: Silos and tanks

This publication is mainly concerned with designing for the actions defined by Part–1–1: *Densities, self-weight, imposed loads for buildings.*

Design values of actions and load arrangements are covered in Section 2.

1.4 Eurocode 2: Design of concrete structures

Eurocode 2: Design of concrete structures^[1–4] operates within an environment of other European and British standards (see Figure 1.3). It is governed by BS EN 1990^[10] and subject to the actions defined in Eurocodes 1^[11], 7^[12] and 8^[13]. It depends on various materials and execution standards and is used as the basis of other standards. Part 2, *Bridges*^[3], and Part 3, *Liquid retaining and containment structures*^[4], work by exception to Part 1–1 and 1–2, that is, clauses in Parts 2 and 3 confirm, modify or replace clauses in Part 1–1.

Figure 1.4 Eurocode 2 in context

1.5 National Annexes

It is the prerogative of each CEN Member State to control levels of safety in that country. As a result, some safety factors and other parameters in the Eurocodes, such as climatic conditions, durability classes and design methods, are subject to confirmation or selection at a national level. The decisions made by the national bodies become Nationally Determined Parameters (NDPs) which are published in a National Annex (NA) for each part of each Eurocode. The National Annex may also include reference to non-contradictory complementary information (NCCI), such as national standards or guidance documents.

This publication includes references to the relevant National Annexes as appropriate.

1.6 Basis of the worked examples in this publication

The design calculations in this publication are in accordance with:

- BS EN 1990, Eurocode: Basis of structural design^[10] and its UK National Annex^[10a].
- BS EN 1991, Eurocode 1: Actions on structures in 10 parts^[11] and their UK National Annexes^[11a].
- BS EN 1992–1–1, Eurocode 2 Part 1–1: Design of concrete structures General rules and rules for buildings^[1] and its UK National Annex^[1a].
- BS EN 1992–1–2, Eurocode 2 Part 1–2: Design of concrete structures General rules Structural fire design^[2] and its UK National Annex^[2a].
- PD 6687, Background paper to the UK National Annexes^[6].
- BS EN 1997, Eurocode 7: Geotechnical design Part 1. General rules^[12] and its UK National Annex^[12a].

They use materials conforming to:

- BS 8500–1: Concrete Complementary British Standard to BS EN 206–1: Method of specifying and guidance to the specifier^[14].
- BS 4449: Steel for the reinforcement of concrete Weldable reinforcing steel Bar, coil and decoiled product Specification^[15].

They make reference to several publications, most notably:

- Concise Eurocode 2 for the design of in-situ concrete framed buildings to BS EN 1992–1–1: 2004 and its UK National Annex: 2005^[S].
- How to design concrete structures using Eurocode 2^[8].

The execution of the works is assumed to conform to:

- PD 6687 Background paper to the UK National Annexes BS EN 1992–1.^[6]
- NSCS, National structural concrete specification for building construction, 3rd edition^[16] May 2004.

Or, when available

- BS EN 13670: Execution of concrete structures. Due 2010^[17]. As implemented by specifications such as:
- NSCS, National structural concrete specification for building construction, 4th edition^[18] CCIP-050, due 2010.

1.7 Assumptions

1.7.1 Eurocode 2

Eurocode 2 assumes that:

- Design and construction will be undertaken by appropriately qualified and experienced personnel.
- Adequate supervision and quality control will be provided.
- Materials and products will be used as specified.
- The structure will be adequately maintained and will be used in accordance with the design brief.
- The requirements for execution and workmanship given in EN 13670 are complied with.

1.7.2 The worked examples

Unless noted otherwise, the calculations in this publication assume:

- A design life of 50 years.
 - The use of C30/37 concrete.
 - The use of Grade A, B or C reinforcement, designated 'H' in accordance with BS 8666^[19].
 - Exposure class XC1.
 - 1 hour fire resistance.

Generally each calculation is rounded and it is the rounded value that is used in any further calculation.

1.8 Material properties

Material properties are specified in terms of their characteristic values. This usually corresponds to the lower 5% fractile of an assumed statistical distribution of the property considered.

The values of $\gamma_{\rm C}$ and $\gamma_{\rm S}$, partial factors for materials, are indicated in Table 1.1.

Table 1.1 Partial factors for materials

Design situation	γ _C – concrete	$\gamma_{\rm S}$ – reinforcing steel
ULS – persistent and transient	1.50	1.15
Accidental – non-fire	1.20	1.00
Accidental – fire	1.00	1.00
SLS	1.00	1.00

1.9 Execution

In the UK, DD ENV 13670^[22] is currently available but without its National Application Document. For building structures in the UK, the background document PD $6687^{[6]}$ considers the provisions of the National Structural Concrete Specification (NSCS)^[16] to be equivalent to those in EN 13670 for tolerance class 1. When published, BS EN 13670^[17] and, if appropriate, the corresponding National Application Document will take precedence.

Table 2.1 & NA

ECO: Table 2.1

PD 6687^[6]

Cl. 1.3

Table 3.1

BS 4449

Table 4.1, BS 8500: Table A.1

Building Regs^[20,21]

2 Analysis, actions and load arrangements

2.1 Methods of analysis

2.1.1 ULS

At the ultimate limit state (ULS) the type of analysis should be appropriate to the problem being considered. The following are commonly used:

- Linear elastic analysis.
- Linear elastic analysis with limited redistribution.
- Plastic analysis.

For ULS, the moments derived from elastic analysis may be redistributed provided that the resulting distribution of moments remains in equilibrium with the applied actions. In continuous beams or slabs with $f_{ck} \le 50$ MPa the minimum allowable ratio of the redistributed moment to the moment in the linear analysis, δ , is 0.70 where Class B or Class C reinforcement is used or 0.80 where Class A reinforcement is used.

Within the limits set, coefficients for moment and shear derived from elastic analysis may be used to determine forces in regular structures (see Appendix B). The design of columns should be based on elastic moments without redistribution.

Plastic analysis may be used for design at ULS provided that the required ductility can be assured, for example: by limiting x_u/d (to ≤ 0.25 for concrete strength classes $\le C50/60$); using Class B or C reinforcement; or ensuring the ratio of moments at intermediate supports to moments in spans is between 0.5 and 2.0.

2.1.2 SLS

At the serviceability limit state (SLS) linear elastic analysis may be used. Linear elastic analysis may be carried out assuming:

- Cross-sections are uncracked and remain plane (i.e. analysis may be based on concrete gross sections).
- Linear stress-strain relationships.
- The use of mean values of elastic modulus.

2.2 Actions

Actions refer to loads applied to the structure as defined below:

- Permanent actions are actions for which the variation in magnitude with time is negligible.
- Variable actions are actions for which the variation in magnitude with time is not negligible.
- Accidental actions are actions of short duration but of significant magnitude that are unlikely to occur on a given structure during the design working life.

Imposed deformations are not considered in this publication.

2.3 Characteristic values of actions

The values of actions given in the various parts of Eurocode 1: *Actions on structures*^[11] are taken as characteristic values. The characteristic value of an action is defined by one of the following three alternatives:

EC0: 4.1.2

■ Its mean value – generally used for permanent actions.

Cl. 5.1.1(7)

Cl. 5.6.2

- An upper value with an intended probability of not being exceeded or lower value with an intended probability of being achieved normally used for variable actions with known statistical distributions, such as wind or snow.
- A nominal value used for some variable and accidental actions.

2.4 Variable actions: imposed loads

2.4.1 General

Imposed loads on buildings are divided into categories. Those most frequently used in concrete design are shown in Table 2.1.

	Category	Description	
	Α	Areas for domestic and residential activities	
	В	Office areas	
	С	Areas of congregation	
	D	Shopping areas	
	E	Storage areas and industrial use (including access areas)	
	F	Traffic and parking areas (vehicles < 30 kN)	
	G	Traffic and parking areas (vehicles > 30 kN)	
	Н	Roofs (inaccessible except for maintenance and repair)	
	1	Roofs (accessible with occupancy categories A – D)	
	К	Roofs (accessible for special services, e.g. for helicopter landing areas)	
Table 2.1 Categories of imposed loads		y J is not used. ift loading refer to BS EN 1991–1–1 Cl. 6.2.3.	

2.4.2 Characteristic values of imposed loads

Characteristic values for commonly used imposed loads are given in Tables 2.2 to 2.8.

Table 2.2 A: domestic and residential

Sub-	Example	Imposed loads	
category		q _k (kN/m²)	Q _k (kN)
A1	All usages within self-contained dwelling units. Communal areas (including kitchens) in small ^a blocks of flats	1.5	2.0
A2	Bedrooms and dormitories, except those in self-contained single family dwelling units and in hotels and motels	1.5	2.0
A3	Bedrooms in hotels and motels; hospital wards; toilet areas	2.0	2.0
A4	Billiard/snooker rooms	2.0	2.7
A5	Balconies in single-family dwelling units and communal areas in small ^a blocks of flats	2.5	2.0
A6	Balconies in hostels, guest houses, residential clubs. Communal areas in larger ^a blocks of flats	Min. 3.0 ^b	Min. 2.0 °
A7	Balconies in hotels and motels	Min. 4.0 ^b	Min. 2.0 °

Notes

a Small blocks of flats are those with \leq 3 storeys and \leq 4 flats per floor/staircase. Otherwise they are considered to be larger blocks of flats

 ${f b}$ Same as the rooms to which they give access, but with a minimum of 3.0 kN/m² or 4.0 kN/m²

c Concentrated at the outer edge

Table 2.3

B: offices

Sub- category	Example	Imposed loads	
category		$q_{\rm k}$ (kN/m ²)	Q _k (kN)
B1	General use other than in B2	2.5	2.7
B2	At or below ground floor level	3.0	2.7

EC1-1-1:	
Tables 6.1, 6.2	
& NA.3	

EC1-1-1: Tables 6.1, 6.7, 6.9 & NA

EC1-1-1: Tables 6.1, 6.2 & NA.3

EC1-1-1: Tables 6.1, 6.2 & NA.3

Table 2.4 C: areas of congregation

Sub-	Example	Imposed load	s
category		9 _k	Q _k
C1	Areas with tables		1
C11	Public, institutional and communal dining rooms and lounges, cafes and restaurants (Note: use C4 or C5 if appropriate)	2.0	3.0
C12	Reading rooms with no book storage	2.5	4.0
C13	Classrooms	3.0	3.0
C2	Areas with fixed seats		
C21	Assembly areas with fixed seating ^a	4.0	3.6
C22	Places of worship	3.0	2.7
С3	Areas without obstacles for moving people		
C31	Corridors, hallways, aisles in institutional type buildings, hostels, guest houses, residential clubs and communal areas in larger ^b blocks of flats	3.0	4.5
C32	Stairs, landings in institutional type buildings, hostels, 3.0 4.0 guest houses, residential clubs and communal areas in larger ^b blocks of flats 4.0		4.0
C33	Corridors, hallways, aisles in other ^c buildings 4.0		4.5
C34	Corridors, hallways, aisles in other ^c buildings subjected to 5.0 4.5 wheeled vehicles, including trolleys		4.5
C35	Stairs, landings in other ^c buildings subjected to crowds	4.0	4.0
C36	Walkways – Light duty (access suitable for one person, walkway width approx 600 mm)	3.0	2.0
C37	Walkways – General duty (regular two-way pedestrian traffic)	5.0	3.6
C38	Walkways – Heavy duty (high-density pedestrian traffic including escape routes)	7.5	4.5
C39	Museum floors and art galleries for exhibition purposes	4.0	4.5
C4	Areas with possible physical activities		
C41	Dance halls and studios, gymnasia, stages ^d 5.0 3.6		3.6
C42	Drill halls and drill rooms ^d 5.0 7.0		7.0
C5	Areas subjected to large crowds		
C51	Assembly areas without fixed seating, concert halls, bars 5.0 3.6 and places of worship d .e		3.6
C52	Stages in public assembly areas ^d 7.5 4.5		4.5
	· · · · · · · · · · · · · · · · · · ·		

Key

a Fixed seating is seating where its removal and the use of the space for other purposes is improbable

b Small blocks of flats are those with \leq 3 storeys and \leq 4 flats per floor/staircase. Otherwise they are considered to be 'larger' blocks of flats

c Other buildings include those not covered by C31 and C32, and include hotels and motels and institutional buildings subjected to crowds

 ${f d}$ For structures that might be susceptible to resonance effects, reference should be made to NA.2.1

e For grandstands and stadia, reference should be made to the requirements of the appropriate certifying authority

EC1-1-1: Tables 6.1, 6.2 & NA.3

EC1-1-1:

Tables 6.3, 6.4 & NA.4, NA.5

Table 2.5 D: shopping areas

Sub- category	Example	Imposed loads	
category		q _k (kN/m²)	Q _k (kN)
D	Shopping areas		
D1	Areas in general retail shops	4.0	3.6
D2	Areas in department stores	4.0	3.6

Table 2.6

E: storage areas and industrial use (including access areas)

Sub-	Example	Imposed loads	
category		q _k (kN/m²)	Q _k (kN)
E1	Areas susceptible to accumulation of goods includ	ing access areas	
E11	General areas for static equipment not specified elsewhere (institutional and public buildings)	2.0	1.8
E12	Reading rooms with book storage, e.g. libraries	4.0	4.5
E13	General storage other than those specifieda	2.4/m	7.0
E14	File rooms, filing and storage space (offices)	5.0	4.5
E15	Stack rooms (books)	2.4/m height (min. 6.5)	7.0
E16	Paper storage and stationery stores	4.0/m height	9.0
E17	Dense mobile stacking (books) on mobile trolleys in public and institutional buildings	4.8/m height	7.0
E18	Dense mobile stacking (books) on mobile trucks in warehouses	4.8/m height (min. 15.0)	7.0
E19	Cold storage	5.0/m height (min. 15.0)	9.0
E2	Industrial use	See BS EN 1991-1-1: Tables 6.5 & 6.6	
	Forklifts Classes FL1 to FL6		
Key			

a Lower bound value given. More specific load values should be agreed with client

Table 2.7

F and G: traffic and parking areas

Sub-	Example	Imposed loads	
category		q _k (kN/m²)	Q _k (kN)
F	Traffic and parking areas (vehicles < 30 kN)		
	Traffic and parking areas (vehicles < 30 kN)	2.5	5.0
G	Traffic and parking areas (vehicles > 30 kN)		
	Traffic and parking areas (vehicles > 30 kN)	5.0	To be determined for specific use

Analysis, actions and load arrangements

Table 2.8 H, I and K: roofs

Sub-	Example		Imposed loads		
category				Q _k (kN)	
н	Roofs (inaccessible except for maintenance and repair)				
	Roof slope, α°	< 30°	0.6		
		$30^\circ < \alpha < 60^\circ$	0.6(60 - <i>a</i>)/30	0.9	
		< 60°	0		
I	Roofs (accessible with occupancy categories A – D)				
	Categories A – D		As Tables 2.2 to 2.5 specific use	according to	
к	Roofs (accessible for special services, e.g. for helicopter landing areas) Helicopter class HC1 (< 20 kN) (subject to dynamic factor $\phi = 1.4$) 20 Helicopter class HC2 (< 60 kN)		areas)		
				20	
				60	

Notes

- 1 Roofs are categorized according to their accessibility. Imposed loads for roofs that are normally accessible are generally the same as for the specific use and category of the adjacent area. Imposed loads for roofs without access are given above.
- 2 There is no category J.

Movable partitions

The self-weight of movable partitions may be taken into account by a uniformly distributed load, q_{k} , which should be added to the imposed loads of floors as follows:

- For movable partitions with a self-weight of 1.0 kN/m wall length: $q_k = 0.5 \text{ kN/m}^2$.
- For movable partitions with a self-weight of 2.0 kN/m wall length: $q_k = 0.8 \text{ kN/m}^2$.
- For movable partitions with a self-weight of 3.0 kN/m wall length: $q_k = 1.2 \text{ kN/m}^2$.

Heavier partitions should be considered separately.

2.4.3 Reduction factors

General

Roofs do not qualify for load reductions. The method given below complies with the UK National Annex but differs from that given in the Eurocode.

Area

A reduction factor for imposed loads for area, $\alpha_{\rm A'}$ may be used and should be determined using:

 $\alpha_{\rm A} = 1.0 - {\rm A}/1000 \ge 0.75$

where

A is the area (m^2) supported with loads qualifying for reduction (i.e. categories A to E as listed in Table 2.1).

EC1-1-1: 6.3.4 & NA

EC1-1-1:
6.3.1.2 (10)
& NA Exp. (NA.1)

EC1-1-1:

EC1-1-3:

5.2(3)

6.3.1.2 (11) & NA

Number of storeys

A reduction factor for number of storeys, α_n , may be used and should be determined using:

$a_{\rm n} = 1.1 - n/10$	for 1 ≤ <i>n</i> ≤ 5
$a_{\rm n} = 0.6$	for 5 < <i>n</i> ≤ 10
$a_{\rm n} = 0.5$	for <i>n</i> > 10
where	

n = number of storeys with loads qualifying for reduction (i.e. categories A to D as listed in Table 2.1).

Use

According to the UK NA, α_A and α_n may not be used together.

2.5 Variable actions: snow loads

In persistent or transient situations, snow load on a roof, *s*, is defined as being: $s = \mu_i C_e C_i s_k$

where

	where	
EC1-1-3: 5.3.1, 5.3.2 & NA	μ_1 :	= snow load shape factor, , either μ_1 or μ_2 μ_1 = undrifted snow shape factor μ_2 = drifted snow shape factor For flat roofs, 0° = α (with no higher structures close or abutting), $\mu_1 = \mu_2 = 0.8$ For shallow monopitch roofs, 0° < α < 30° (with no higher structures close or abutting), $\mu_1 = 0.8$, $\mu_2 = 0.8$ (1 + α /30) For other forms of roof and local effects refer to BS EN 1991–1–3 Sections 5.3 and 6
EC1-1-3: 5.2(7) &Table 5.1	C _e s	= exposure coefficient For windswept topography $C_e = 0.8$ For normal topography $C_e = 1.0$ For sheltered topography $C_e = 1.2$
EC1-1-3: 5.2(8)	C _t :	= thermal coefficient, $C_t = 1.0$ other than for some glass-covered roofs, or similar
EC1-1-3: & NA 2.8		 characteristic ground snow load kN/m² 0.15(0.1Z + 0.05) + (A + 100)/525
	whe	Z = zone number obtained from the map in BS EN 1991–1–3 NA Figure NA.1A = site altitude, m
		Figure NA.1 of the NA to BS EN 1991–1–3 also gives figures for $s_{\rm k}$ at 100 m a.m.s.l. associated with the zones.
		For the majority of the South East, the Midlands, Northern Ireland and the north of England apart from high ground, $s_k = 0.50 \text{ kN/m}^2$.
		For the West Country, West Wales and Ireland the figure is less. For most of Scotland

For the West Country, West Wales and Ireland the figure is less. For most of Scotland and parts of the east coast of England, the figure is more. See Figure 2.1.

Snow load is classified as a variable fixed action. Exceptional circumstances may be treated as accidental actions in which case reference should be made to BS EN 1991-1-3.

Figure 2.1 Characteristic ground snow load map (ground snow load at 100 m a.m.s.l. (kN/m²)

2.6 Variable actions: wind loads

This Section presents a very simple interpretation of Eurocode 1^[11, 11a] and is intended to provide a basic understanding with respect to rectangular-plan buildings with flat roofs. In general, maximum values are given: with more information a lower value might be used. The user should be careful to ensure that any information used is within the scope of the application envisaged. The user is referred to more specialist guidance^[23, 24] or BS EN 1991–1–4^[25] and its UK National Annex^[25a]. The National Annex includes clear and concise flow charts for the determination of peak velocity pressure, q_0 .

In essence characteristic wind load can be expressed as:

$$\begin{split} w_{k} &= c_{f} q_{p(z)} \\ \text{where} \\ c_{f} &= \text{force coefficient, which varies, but is a max. of 1.3 for overall load} \\ q_{p(z)} &= c_{e(z)} c_{eT} q_{b} \\ \text{where} \\ c_{e(z)} &= \text{exposure factor from Figure 2.3} \\ c_{eT} &= \text{town terrain factor from Figure 2.4} \\ q_{b} &= 0.006v_{b}^{2} \text{ kN/m}^{2} \\ \text{where} \\ v_{b} &= v_{b,map}c_{alt} \\ \text{where} \\ v_{b,map} &= \text{fundamental basic wind velocity from Figure 2.2} \\ c_{alt} &= \text{altitude factor, conservatively, } c_{alt} &= 1 + 0.001A \\ \text{where} \\ A &= \text{altitude a.m.s.l} \end{split}$$

Symbols abbreviations and some of the caveats are explained in the sections below, which together provide a procedure for determining wind load to BS EN 1991–1–4.

2.6.1 Determine basic wind velocity, v_b

V =	CC	C	. V.
$v_{\rm b} =$	C _{dir} C _{seasc}	on opro	ob*b,0

where

viiciv	-			
	c _{dir}	=		ional factor ervatively, c _{dir} = 1.0
			(c _{dir} is	s a minimum of 0.73 or 0.74 for wind in an easterly direction, o 120°)
	Cseaso	n =	seaso	n factor
	seaso			6 month return period, including winter, or greater,
			C _{seaso}	n = 1.00
	Corob	=	proba	bility factor
	pioo	=	1.00 f	for return period of 50 years
	V _{b,0}	=	V _{b,map}	C _{alt}
	where			
		v _{b,m}	ар =	fundamental basic wind velocity from Figure 2.2
		C _{alt}	=	altitude factor Conservatively, c _{alt} = 1 + 0.001A
				where
				A = altitude of the site in metres a.m.s.l. Where orography is significant (i.e. the site is close to a slope steeper than 0.05), refer to NA 2.5

2.6.2 Calculate basic wind pressure, $q_{\rm b}$

EC1-1-4: 4.5(1) Note 2 & NA 2.18

EC1-1-4: 4.5(1) Note 1 & NA 2.17 EC1-1-4: 4.5(1) Note 1, NA 2.17 & Fig. A.NA.1 EC1-1-4: 4.5(1) Note 1 & NA 2.17: Fig. NA.7 EC1-1-4: 4.5(1) Note 1 & NA 2.17: Fig. NA.8

EC1-1-4: 7.2.2(1), Note & NA 2.26

EC1-1-4: 4.2(1) Note 2 & NA 2.4, 2.5

EC1-1-4: 4.2(2) Note 3 & NA 2.7: Fig. NA.2

EC1-1-4: 4.2(1) Notes 4 & 5 & NA 2.8 EC1-1-4: 4.2(1) Note 2 & NA 2.4: Fig. NA.1 EC1-1-4: 4.2(2) Note 1 & NA 2.5

where		
Vb	=	as above
	_	doncity of

 $q_{\rm b} = 0.5 \rho v_{\rm b}^2$

 ρ = density of air = 1.226 kg/m³ (= 12.0 N/m³) for UK

2.6.3 Calculate peak wind pressure, $q_{p(z)}$

$q_{p(z)} = c_{e(z)} q_{p(z)}$ $= c_{e(z)} c_{e(z)}$ where	for country locations $a_{T} q_{b}$ for town locations
$q_{\rm b}$ =	as above
$c_{e(z)} =$	exposure factor derived from Figure 2.3 at height z (see below)
$C_{e,T} =$	exposure correction factor for town terrain derived from Figure 2.4
Ζ =	the height at which q_p is sought For a windward wall and when $h \le b$, q_p is calculated at the reference height $z_e = h$. For other aspect ratios $h:b$ of the windward wall, q_p , is calculated at different reference heights for each part (see BS EN 1991–1–4). where
	h = height of buildingb = breadth of building
	For leeward and side walls, z = height of building

Analysis, actions and load arrangements

2.6.4 Calculate characteristic wind load, *w*_k

 $w_{\rm k} = q_{\rm p(z)}c_{\rm f}$

Cf

where

 $q_{p(z)} = as above$

 force coefficient for the structure or structural element Generally

$$C_{pe} + C_{pi}$$

where

 $c_{pe} = (external) pressure coefficient dependent on size of area considered and zone. For areas above 1 m², <math>c_{pe,10}$ should be used.

Overall loads

However, for the determination of overall loads on buildings, the net pressure coefficients given in Table 2.9 may be used. In this case it will be unnecessary to determine internal wind pressure coefficients.

Cladding loads

For areas above 1 m², $c_{pe,10}$ should be used. $c_{pe,10}$ may be determined from Table 7.1 of BS EN 1991–1–4. See Table 2.10.

EC1-1-4:

7.8 & NA

EC1-1-4: 7.2.1(1) Note 2 & NA. 2.25

EC1-1-4: 7.2.2(2) Note 1 & NA.2.27

EC1-1-4: 7.2.2(2) Note 1 & NA.2.27, Table NA.4

EC1-1-4: 7.2.2(2) Note 1 & NA.2.27 EC1-1-4: 7.2.3, NA.2.28 & NA advisory note

BS 6399: Table 8 & Fig. 18

EC1-1-4: NA.2.28 & NA advisory note

EC1-1-4: 7.2.9(6) Note 2

EC1-1-4: NA 2.27, Table NA.4

EC1-1-4: 7.2.2(2) Table 7.1, Note 1 & NA 2.27: Tables NA.4a , NA.4b Flat roofs

For flat roofs, according to the Advisory Note in the NA some of the values of $c_{\rm pe,10}$ in Table 7.2 of BS EN 1991–1–4 (see Table 2.11) are significantly different from current practice in the UK. It recommends that designers should consider using the values in BS 6399:2 to maintain the current levels of safety and economy. See Table 2.12.

For other forms of roof refer to BS EN 1991–1–4 and the UK NA. It will also be necessary to determine internal wind pressure coefficients for the design of cladding.

 c_{pi} = internal pressure coefficient.

For no dominant openings $c_{\rm pi}$ may be taken as the more onerous of +0.2 and -0.3

Table 2.9

Net pressure coefficient, c_{pe.10}, for walls of rectangular plan buildings*

h/d	Net pressure coefficient, c _{pe,10}
5	1.3
1	1.1
≥ 0.25	0.8
Notes	

1 * in effect these values are force coefficients for determining overall loads on buildings.

2 h = height of building.

3 *b* = breadth of building (perpendicular to wind).

4 *d* = depth of building (parallel to wind).

5 Values may be interpolated.

6 Excludes funnelling.

Table 2.10

External pressure coefficient, $c_{pe,10}$, for walls of rectangular-plan buildings

Zone	Description	с _{ре,10}	с _{ре,10}	
		Max.	Min.	
Zone A	For walls parallel to the wind direction, areas within 0.2min[<i>b</i> ; 2 <i>h</i>] of windward edge		-1.2	
Zone B	For walls parallel to the wind direction, areas within 0.2min[b ; $2h$] of windward edge		-0.8	
Zone C	For walls parallel to the wind direction, areas from 0.2min[b ; 2 h] to min[b ; 2 h] of windward edge		-0.5	
Zone D	Windward wall	+0.8		
Zone E	Leeward wall		-0.7	
Zones D and E	Net	+1.3		
Notes 1 h = height of building. 2 h = breadth of building (perpendicular to wind)				

2 b = breadth of building (perpendicular to wind

EC1-1-4: 7.2, Table 7.2 & NA

Table 2.11

External pressure coefficient, c_{pe,10} for flat roofs*

Zone	Description	с _{ре,10}	
		Sharp edge at eaves	With parapet
Zone F	Within 0.1min[b; 2h] of windward edge and within 0.2min[b; 2h] of return edge (parallel to wind direction)	-1.8	-1.6
Zone G	Within 0.1min[b; 2h] of windward edge and outwith 0.2min[b; 2h] of return edge (parallel to wind direction)	-1.2	-1.1
Zone H	Roof between 0.1min[b; 2h] and 0.5min[b; 2h] from windward edge	-0.7	-0.7
Zone I	Remainder between 0.5min[b; 2h] and leeward edge	±0.2	±0.2
Notes			

1 * According to NA to BS EN 1991-1-4, this table is not recommended for use in the UK.

2 h = height of building.

3 b = breadth of building (perpendicular to wind).

Analysis, actions and load arrangements

Table 2.12

External pressure coefficient, c_{pe}, for flat roofs

Zone	one Description		c _{pe}	
		Sharp edge at eaves	With parapet	
Zone A	Within 0.1min[b; 2h] of windward edge and within 0.25min[b; 2h] of return edge (parallel to wind direction)	-2.0	-1.9	
Zone B	Within 0.1min[b; 2h] of windward edge and outwith 0.25min[b; 2h] of return edge (parallel to wind direction)	-1.4	-1.3	
Zone C	Roof between 0.1min[b; 2h] and 0.5min[b; 2h] from windward edge	-0.7	-0.7	
Zone D Remainder between 0.5min[b; 2h] and leeward edge		±0.2	±0.2	
 Notes 1 h = height of building. 2 b = breadth of building (perpendicular to wind). 				

2.6.5 Calculate the overall wind force, F_{w}

 $F_{\rm w} = c_{\rm s} c_{\rm d} \Sigma w_{\rm k} A_{\rm ref}$

where

 w_k = as above

 $c_{s}c_{d}$ = structural factor, conservatively

= 1.0

or may be derived

where

 $c_{s} = size factor$

 $c_{\rm s}$ may be derived from Exp. (6.2) or table NA.3. Depending on values of (b + h) and $(z - h_{\rm dis})$ and dividing into Zone A, B or C, a value of $c_{\rm s}$ (a factor < 1.00) may be found.

 $c_{\rm d}$ = dynamic factor

 $c_{\rm d}$ may be derived from Exp. (6.3) or figure NA.9. Depending on values of $\delta_{\rm s}$ (logarithmic decrement of structural damping) and h/b, a value of $c_{\rm d}$ (a factor > 1.00) may be found.

 $c_{\rm d}$ may be taken as 1.0 for framed buildings with structural walls and masonry internal walls, and for cladding panels and elements

 A_{ref} = reference area of the structure or structural element

2.7 Variable actions: others

Actions due to construction, traffic, fire, thermal actions, use as silos or from cranes are outside the scope of this publication and reference should be made to specialist literature.

BS 6399: Table 8 & Fig. 18

5.3.2, Exp. (5.4) & NA
EC1-1-4: 6.2(1) a), 6.2(1) c)
EC1-1-4: 6.2(1) e) & NA.2.20

EC1-1-4:

EC1-1-4: 6.3(1), Exp. (6.2) & NA.2.20, Table NA3

EC1-1-4: 6.3(1), Exp. (6.3) & NA.2.20: Fig. NA9

EC1-1-4: 5.3.2, Exp. (5.4) & NA

/	EC1-1-6, EC1-2,
	EC1-1-2, EC1-1-5,
	EC1-3 & EC1-4

2.8 Permanent actions

The densities and area loads of commonly used materials, sheet materials and forms of construction are given in Tables 2.13 to 2.15.

Actions arising from settlement, deformation and creep are outside the scope of this document but generally are to be considered as permanent actions. Where critical, refer to specialist literature.

Table 2.13 Bulk densities for soils and materials^[11, 26]

Bulk densities	kN/m ³	Bulk densities	kN/m ³
Soils		Materials	1
Clay – stiff	19–22	Concrete – reinforced	25.0
Clay – soft	16–19	Concrete – wet reinforced	26.0
Granular – loose	16–18	Glass	25.6
Granular – dense	19–21	Granite	27.3
Silty clay, sandy clay	16–20	Hardcore	19.0
Materials		Limestone (Portland stone – med. weight)	22.0
Asphalt	22.5	Limestone (marble – heavyweight)	26.7
Blocks – aerated concrete (min.)	5.0	Macadam paving	21.0
Blocks – aerated concrete (max.)	9.0	MDF	8.0
Blocks – dense aggregate	20.0	Plaster	14.1
Blocks – lightweight	14.0	Plywood	6.3
Books – bulk storage	8–11	Sandstone	23.5
Brickwork – blue	24.0	Screed – sand/cement	22.0
Brickwork – engineering	22.0	Steel/iron	77.0
Brickwork – fletton	18.0	Terracotta	20.7
Brickwork – London stock	19.0	Timber – Douglas fir	5.2
Brickwork – sand lime	21.0	Timber – European beech/oak	7.1
Chipboard	6.9	Timber – Grade C16	3.6
Concrete – aerated	10.0	Timber – Grade C24	4.1
Concrete – lightweight	18.0	Timber – Iroko/teak	6.4
Concrete – plain	24.0		

Table 2.14

Typical area loads for concrete slabs and sheet materials ^[11, 26]

Typical area loads	kN/m²	Typical area loads	kN/m ²	
Concrete slabs		Sheet materials		
Precast concrete solid units (100 mm)	2.50	Plaster skim coat	0.05	
Precast concrete hollowcore units ^a (150 mm)	2.40	Plasterboard (12.5 mm)	0.09	
Precast concrete hollowcore units ^a (200 mm)	2.87	Plasterboard (19 mm)	0.15	
Precast concrete.hollowcore units ^a (300 mm)	4.07	Plywood (12.5 mm)	0.08	
Precast concrete hollowcore units ^a (400 mm)	4.84	Plywood (19 mm)	0.12	
Ribbed slab ^b (250 mm)	4.00	Quarry tiles including mortar bedding	0.32	
Ribbed slab ^b (300 mm)	4.30	Raised floor – heavy duty	0.50	
Ribbed slab ^b (350 mm)	4.70	Raised floor – medium weight	0.40	
Waffle slab ^c – standard moulds (325 mm)	6.00	Raised floor – lightweight	0.30	
Waffle slab ^c – standard moulds (425 mm)	7.30	Render (13 mm)	0.30	
Waffle slab ^c – standard moulds (525 mm)	8.60	Screed – 50 mm	1.15	
Sheet materials		Screed – lightweight (25 mm)	0.45	
Asphalt (20 mm)	0.46	Stainless steel roofing (0.4 mm)	0.05	
Carpet and underlay	0.05	Suspended ceiling – steel	0.10	
Chipboard (18 mm)	0.12	Suspended fibreboard tiles	0.05	
Dry lining on stud (20 mm)	0.15	T&G boards (15.5 mm)	0.09	
False ceiling – steel framing	0.10	T&G boards (22 mm)	0.12	
Felt (3 layer) and chippings	0.35	Tiles – ceramic floor on bedding	1.00	
Glass – double glazing	0.52	Battens for slating and tiling	0.03	
Glass – single glazing	0.30	Tiles – clay roof (max)	0.67	
Insulation – glass fibre (150 mm)	0.03	Tiles – natural slate (thick)	0.65	
Paving stones (50 mm)	1.20	Tiles – interlocking concrete		
Plaster – two coat gypsum (12 mm)	0.21	Tiles – plain concrete	0.75	

Key
a Hollowcore figures assume no topping (50 mm structural topping ≡ 1.25 kN/m²)
b Ribbed slabs: 150 web @ 750 centres with 100 mm thick flange/slab. Web slope 1:10
c Waffle slabs: 150 ribs @ 900 centres with 100 mm thick flange/slab. Web slope 1:10

Cavity wall	(kN/m²)
Brickwork 102.5 mm	2.40
Insulation 50 mm	0.02
Blockwork 100 mm	1.40
Plaster	0.21
Total	4.0
Lightweight cladding	(kN/m²)
Insulated panel	0.20
Purlins	0.05
Dry lining on stud	0.15
Total	0.40
Curtain walling	(kN/m²)
Allow	1.00
Precast concrete cladding	(kN/m ²)
Facing	1.00
Precast panel (100 mm)	2.40
Insulation	0.05
Dry lining on stud	0.15
Total	3.60
Dry lining	(kN/m ²)
Metal studs	0.05
Plasterboard and skim $\times 2$	0.40
Total	0.45
Timber stud wall	(kN/m ²)
Timber studs	0.10
Plasterboard and skim $\times 2$	0.40
Total	0.50
Office floor	(kN/m²)
Carpet	0.03
Raised floor	0.30
Self-weight of 250 mm solid slab	6.25
Suspended ceiling	0.15
Services	0.30
Total	7.03
Office core area	(kN/m²)
Tiles and bedding, allow	1.00
Screed	2.20
Self-weight of 250 mm solid slab	6.25
Suspended ceiling	0.15
Services	0.30
Total	9.90
Stairs	(kN/m ²)
150 mm waist (≡175 @ 25 kN/m ³)	4.40
	1.88
1	
Treads 0.15 × 0.25 × 4/2 @ 25 kN/m ³	
Treads 0.15 × 0.25 × 4/2 @ 25 kN/m ³ Screed 0.05 @ 22 kN/m ³	1.10
Treads 0.15 × 0.25 × 4/2 @ 25 kN/m ³	

	(kN/m²)	Residential floor	(kN/m ²)
.5 mm	2.40	Carpet	0.05
nm	0.02	Floating floor	0.15
mm	1.40	Self-weight of 250 mm solid slab	6.25
	0.21	Suspended ceiling	0.20
	4.0	Services	0.10
cladding	(kN/m²)	Total	6.75
2	0.20	School floor	(kN/m ²)
	0.05	Carpet/flooring	0.05
stud	0.15	Self-weight of 250 mm solid slab	6.25
	0.40	Suspended ceiling	0.15
ing	(kN/m²)	Services	0.20
	1.00	Total	6.60
rete cladding	(kN/m ²)	Hospital floor	(kN/m ²)
(100 mm)	1.00		0.05
(100 mm)	2.40 0.05	Flooring	6.25
ctud	0.05	Self-weight of 250 mm solid slab	
stud	3.60	Screed	2.20
	(kN/m ²)	Suspended ceiling	0.15
	0.05	Services (but can be greater)	0.05
and skim × 2	0.40	Total	8.70
	0.45	Flat roof/external terrace	(kN/m²)
wall	(kN/m ²)	Paving or gravel, allow	2.20
	0.10	Waterproofing	0.50
and skim × 2	0.40	Insulation	0.10
	0.50	Self-weight of 250 mm solid slab ceiling	6.25
	(kN/m ²)	Suspended ceiling	0.15
	0.03	Services	0.30
	0.30	Total	9.50
250 mm solid slab	6.25	Timber pitched roof	(kN/m²)
iling	0.15	Tiles (range 0.50–0.75)	0.75
	0.30	Battens	0.05
	7.03	Felt	0.05
rea	(kN/m²)	Rafters	0.15
ding, allow	1.00	Insulation	0.05
	2.20	Plasterboard & skim	0.15
250 mm solid slab	6.25	Services	0.10
iling	0.15	Ceiling joists	0.15
	0.30	Total perpendicular to roof	1.45
	9.90	Total on plan assuming 30° pitch	1.60
	(kN/m ²)	Metal decking roof	(kN/m²)
$t (= 175 @ 25 kN/m^3)$	4.40	Insulated panel	0.20
0.25 × 4/2 @ 25 kN/m ³	1.88	Purlins	0.10
22 kN/m ³	1.10	Steelwork	0.30
	0.21	Services	0.10
bedding	1.00		
	8.60	Total	0.70

Table 2.15

2.9 Design values of actions

2.9.1 General case

The design value of an action, F_{d} , that occurs in a load case is

$$F_{\rm d} = \gamma_{\rm F} \psi F_{\rm k}$$

where

- $\gamma_{\rm F}$ = partial factor for the action according to the limit state under consideration. Table 2.16 indicates the partial factors to be used in the UK for the combinations of representative actions in building structures.
- $\psi {\rm F_k}$ may be considered as the representative action, ${\rm F_{rep'}}$ appropriate to the limit state being considered

where

 ψ = a factor that converts the characteristic value of an action into a representative value. It adjusts the value of the action to account for the nature of the limit state under consideration and the joint probability of the actions occurring simultaneously. It can assume the value of 1.0 for a permanent action or ψ_0 or ψ_1 or ψ_2 for a variable action. Table 2.17 shows how characteristic values of variable actions are converted into representative values. This table is derived from BS EN 1990^[10] and its National Annex^[10a].

 F_{ν} = characteristic value of an action as defined in Sections 2.2 and 2.3.

Table	2.1	6
-------	-----	---

Partial factors ($\gamma_{\rm F}$) for us	e in verification of limit s	states in persistent and t	ransient design situations

Limit state	Permanent actions (G _k)	Leading variable action (<i>Q</i> _{k,1})	Accompanying variable actions (Q _{k,i}) ^d
a) Equilibrium (EQU)			
	1.10 (0.9) ^a	1.50 (0.0) ^a	$\psi_{0,i}$ 1.50 (0.0) ^a
b) Strength at ULS (S1	R/GEO) not involving geo	otechnical actions	
Either			
Exp. (6.10)	1.35 (1.0) ^a	1.5	$\psi_0 1.5$
or the worst case of			
Exp. (6.10a)	1.35 (1.0) ^a	ψ_0 1.5	$\psi_0 1.5$
and			
Exp. (6.10b)	1.25 (1.0) ^a	1.5	ψ_0 1.5
c) Strength at ULS (ST	R/GEO) with geotechnica	al actions	
Worst case of			
Set B	1.35 (1.0) ^a	1.5 (0.0) ^a	
and			
Set C	1.0	1.3	
d) Serviceability			
Characteristic	1.00	1.00	$\psi_{0,i}$ 1.00
Frequent	1.00	$\psi_{1,1}$ 1.00	ψ _{2,i} 1.00
Quasi-permanent	1.00	$\psi_{2,1}$ 1.00	ψ _{2,i} 1.00
e) Accidental design s	ituations		
Exp. (6.11a)	1.0	A _d ^b	$\psi_{1,\mathrm{i}}$ (main) $\psi_{2,\mathrm{i}}$ (others)
f) Seismic			
Exp. (6.12a/b)	1.0	A _{Ed} ^c	$\psi_{2,i}$
 Key a Value if favourable (shown in brackets) b Leading accidental action, A_d, is unfactored c Seismic action, A_{Ed} d Refer to BS EN 1990: A1.2.2 & NA 		 Notes 1 The values of ψ are given in Table 2.17. 2 Geotechnical actions given in the table are based on Design Approach 1 in Clause A1.3.1(5) of BS EN 1990, which is recommended in its National Annex. 	

ECO: Tables A1.2(A), A1.2(B), A1.2(C), A1.4 & NA

2.9.2 Design values at ULS

ECO: 6.4.3.2(3)

For the ULS of strength (STR), the designer may choose between using Expression (6.10) or the worst case of Expression (6.10a) or Expression (6.10b).

Single variable action

At ULS, the design value of actions is either Exp. (6.10) 1.35 G_k + 1.5 $Q_{k,1}$ or the worst case of: Exp. (6.10a) 1.35 G_k + $\psi_{0,1}$ 1.5 $Q_{k,1}$ and Exp. (6.10b) 1.25 G_k + 1.5 $Q_{k,1}$

where

- G_k = permanent action
- $Q_{k,1}$ = single variable action
- $\psi_{0,1}$ = combination factor for a single variable load (see Table 2.17)

Table 2.17

Values of ψ factors

Action	ψ_0	ψ_1	ψ_2			
Imposed loads in buildings	Imposed loads in buildings					
Category A: domestic, residential areas	0.7	0.5	0.3			
Category B: office areas	0.7	0.5	0.3			
Category C: congregation areas	0.7	0.7	0.6			
Category D: shopping areas	0.7	0.7	0.6			
Category E: storage areas	1.0	0.9	0.8			
Category F: traffic area (vehicle weight ≤ 30 kN)	0.7	0.7	0.6			
Category G: traffic area (30 kN < vehicle weight ≤ 160 kN)	0.7	0.5	0.3			
Category H: roofs ^a	0.7	0.0	0.0			
Snow loads where altitude \leq 1000 m a.m.s.l. ^a	0.5	0.2	0.0			
Wind loads ^a	0.5	0.2	0.0			
Temperature effects (non-fire) ^a	0.6	0.5	0.0			

Key

a On roofs, imposed loads, snow loads and wind loads should not be applied together.

Notes

1 The numerical values given above are in accordance with BS EN 1990 and its UK National Annex.

2 Categories K and L are assumed to be as for Category H

Expression (6.10) leads to the use of $\gamma_F = \gamma_G = 1.35$ for permanent actions and $\gamma_F = \gamma_Q = 1.50$ for variable actions (γ_G for permanent actions is intended to be constant across all spans).

Expression (6.10) is always equal to or more conservative than the less favourable of Expressions (6.10a) and (6.10b). Expression (6.10b) will normally apply when the permanent actions are not greater than 4.5 times the variable actions (except for storage loads, category E in Table 2.17, where Expression (6.10a) always applies).

Therefore, except in the case of concrete structures supporting storage loads where $\psi_0 = 1.0$, or for mixed use, Expression (6.10b) will usually apply. Thus, for members supporting vertical actions at ULS, $1.25G_k + 1.5Q_k$ will be appropriate for most situations and applicable to most concrete structures (see Figure 2.5).

Compared with the use of Expression (6.10), the use of either Expression (6.10a) or (6.10b) leads to a more consistent reliability index across lightweight and heavyweight materials.

EC0: A1.2.2 & NA

EC1-1-1: 3.3.2

Analysis, actions and load arrangements

Figure 2.5 When to use Exp. (6.10a) or Exp. (6.10b)

Accompanying variable actions

Again the designer may choose between using Expression (6.10) or the less favourable of Expressions (6.10a) or (6.10b).

 $\psi_{0,1}^{-}$ = characteristic combination factor for 1st variable load (see Table 2.17) $\psi_{0,1}^{-}$ = characteristic combination factor for ith variable load (see Table 2.17)

In the above, $Q_{\rm k,1}$ (and $\psi_{0,i}$) refers to the leading variable action and $Q_{\rm k,i}$ (and $\psi_{0,i}$) refers to

accompanying independent variable actions. In general, the distinction between the two types of

actions will be obvious (see Figure 2.6); where it is not, each load should in turn be treated as the leading action. Also, the numerical values for partial factors given in the UK National Annex^[10a] are used in the equations above. The value of ψ_0 depends on the use of the building and should

Either

Exp. (6.10) 1.35 G_k + 1.5 $Q_{k,1}$ + $\Sigma(\psi_{0,i} \ 1.5 \ Q_{k,i})$ or the worst case of: Exp. (6.10a) 1.35 G_k + $\psi_{0,1} \ 1.5 \ Q_{k,1}$ + $\Sigma(\psi_{0,i} \ 1.5 \ Q_{k,i})$ and Exp. (6.10b) 1.25 G_k + 1.5 $Q_{k,1}$ + $\Sigma(\psi_{0,i} \ 1.5 \ Q_{k,i})$ where G_k = permanent action $Q_{k,1}$ = 1st variable action $Q_{k,1}$ = ith variable action EC0: 6.4.3.2(3)

Figure 2.6 Independent variable actions The expressions take into account the probability of joint occurrence of loads by applying the ψ_{0i} factor to the accompanying variable action. The probability that these combined actions will be exceeded is deemed to be similar to the probability of a single action being exceeded.

If the two independent variable actions $Q_{k,1}$ and $Q_{k,2}$ are associated with different spans and the use of Expression (6.10b) is appropriate, then in one set of analyses apply

 $1.25G_{k} + 1.5Q_{k,1}$ to the $Q_{k,1}$ spans and $1.25G_{k} + \psi_{0,i} 1.5Q_{k,1}$ to the $Q_{k,2}$ spans. In associated analyses apply $1.25G_{k} + \psi_{0,i} \ 1.5Q_{k,1}$ to the $Q_{k,1}$ spans and $1.25G_{k} + 1.25Q_{k2}$ to the Q_{k2} spans. See Example 2.11.2 (two variable actions)

2.9.3 Design values at SLS

EC0: 6.5 & Table A1.4

There are three combinations of actions at SLS (or load combination at SLS). These are given in Table 2.18. The combination and value to be used depends on the nature of the limit state being checked. Quasi-permanent combinations are associated with deformation, crack widths and crack control. Frequent combinations may be used to determine whether a section is cracked or not. The numeric values of ψ_0 , ψ_1 and ψ_2 are given in Table 2.17.

Colloquially

 ψ_0 has become known as the 'characteristic' value

 ψ_1 has become known as the 'frequent' value

 ψ_2 has become known as the 'quasi-permanent' value

FCO: Table A14

Table 2.18

Partial factors to be applied in the verification of the SLS

Combination	Permanent actions G _k		Variable actions Q _k	
	Unfavourable ^a	Favourable ^a	Leading ^b	Others ^b
Characteristic	G _{k,sup}	G _{k,inf}	Q _{k,1}	$\psi_{0,i}Q_{k,i}$
Frequent	G _{k,sup}	G _{k,inf}	$\psi_{1,1}Q_{k,1}$	$\psi_{2,i}Q_{k,i}$
Quasi-permanent	G _{k,sup}	G _{k,inf}	$\psi_{2,1}Q_{k,1}$	$\psi_{2,i}Q_{k,i}$

Key

a Generally $G_{k,sup}$ and $G_{k,inf}$ may be taken as G_k . See Section 2.9.5 **b** ψ factors are given in Table 2.17

2.9.4 Design values for other limit states

Load combinations are given in Table 2.16 for

- a) Equilibrium (EQU),
- b) Strength at ULS not involving geotechnical actions,
- c) Strength at ULS with geotechnical actions,
- d) Serviceability,
- e) Accidental and
- f) Seismic design situations.

2.9.5 Variations in permanent actions

When the variation of a permanent action is not small then the upper $(G_{kj,sup})$ and the lower $(G_{kj,inf})$ characteristic values (the 95% and 5% fractile values respectively) should be established. This procedure is necessary only when the coefficient of variation (= 100 × standard deviation/mean) is greater than 10. In terms of permanent actions, variations in the self-weight of concrete in concrete frames are considered small.

At ULS where the variation is not small, $\gamma_{Gk,sup}$ should be used with $G_{kj,sup}$ and $\gamma_{Gk,inf}$ with $G_{kj,inf}$. Similarly, where the variation is not small, at SLS $G_{kj,sup}$ should be used where actions are unfavourable and $G_{kj,inf}$ used where favourable.

Where checks, notably checks on static equilibrium (EQU), are very sensitive to variation of the magnitude of a permanent action from one place to another, the favourable and unfavourable parts of this action should be considered as individual actions. In such 'very sensitive' verifications $\gamma_{G,SUD}$ and $\gamma_{G,inf}$ should be used.

2.10 Load arrangements of actions: introduction

The process of designing concrete structures involves identifying relevant design situations and limit states. These include persistent, transient or accidental situations. In each design situation the structure should be verified at the relevant limit states.

In the analysis of the structure at the limit state being considered, the maximum effect of actions should be obtained using a realistic arrangement of loads. Generally variable actions should be arranged to produce the most unfavourable effect, for example to produce maximum overturning moments in spans or maximum bending moments in supports.

For building structures, design concentrates mainly on the ULS, the ultimate limit state of strength (STR), and SLS, the serviceability limit state. However, it is essential that all limit states are considered. The limit states of equilibrium (EQU), strength at ULS with geotechnical actions (STR/GEO) and accidental situations must be taken into account as appropriate.

2.11 Load arrangements according to the UK National Annex to Eurocode

In building structures, any of the following sets of simplified load arrangements may be used at ULS and SLS (See Figure 2.7).

- The more critical of:
 - a) alternate spans carrying $\gamma_G C_k + \gamma_Q Q_k$ with other spans loaded with $\gamma_G C_k$; and b) any two adjacent spans carrying $\gamma_G C_k + \gamma_Q Q_k$ with other spans loaded with $\gamma_G C_k$.
- Or the more critical of: a) alternate spans carrying $\gamma_G G_k + \gamma_Q Q_k$; with other spans loaded with $\gamma_G G_k$; and b) all spans carrying $\gamma_G G_k + \gamma_Q Q_k$.
- Or, for slabs only, all spans carrying $\gamma_G G_k + \gamma_G G_k$, provided the following conditions are met:
 - In a one-way spanning slab the area of each bay exceeds 30 m² (a bay is defined as a strip across the full width of a structure bounded on the other sides by lines of support).
 - The ratio of the variable action, Q_k , to the permanent action, G_k , does not exceed 1.25.
 - The magnitude of the variable action excluding partitions does not exceed 5 kN/m².

Where analysis is carried out for the single load case of all spans loaded, the resulting moments, except those at cantilevers, should be reduced by 20%, with a consequential increase in the span moments.

EC0: 6.4.3 (4)

ECO: 4.1.2, 4.1.2 (3)

PD 6687^[6]: 2.8.4

EC0: 3.2

Cl. 5.1.3 & NA

or (6.10b).

Figure 2.7

Load arrangements for beams and slabs according to UK NA to Eurocode

2.12 Examples of loading

6	Project details	Calculated by chg	Job no. CCIP – O41
C	Continuous beam in a domestic	Checked by web	Sheet no. 1
The Concre		Client TCC	Date Oct OS
2.12.1	Continuous beam in a domestic structure Determine the appropriate load combination and ult for a continuous beam of four 6 m spans in a dome supporting a 175 mm slab at 6 m centres.		
	→ → → → → → → → → → → → → → → → → → →	_	
	Figure 2.8 Continuous beam in a domestic structu	re	
a)	Actions	kN/m	
	Permanent action, g_k Self-weight, 175 mm thick slabs : 0.17 x 25 x 6.0 E/o self-weight downstand $800 \times 225 : 0.80 \times 0.225$ 50 mm screed @ 22 kN/m ³ : 0.05 x 22 x 6.0 Finishes and services : 0.50 x 6.0 Dividing wall 2.40 x 4.42 (200 mm dense blockwork w plaster both sides)	= 6.6 = 3.0	
	Total	g _k = 51.0	
	Variable action, q_k Imposed, dwelling @ 1.5 kN/m ² : 1.5 x 6.0 Total Ultimate load, n Assuming use of Exp. (6.10), $n = 1.35 \times 51 + 1.5 \times 9.0$ Assuming use of worst case of Exp. (6.10a) or Exp. (6.10b)		
	Exp. (6.10a): $n = 1.35 \times 51 + 0.7 \times 1.5 \times 9.0 =$ Exp. (6.10b): $n = 1.25 \times 51 + 1.5 \times 9.0 =$ In this case Exp. (6.10a) would be critical [‡]	= 78.3 = 77.3 e load <u>= 78.3</u>	
	This could also be determined from Figure 2.5 or by determining th		

i) Actions	kN/m
Permanent	
1.25 × 51.0	= 63.8
Variable	
Office use	
as leading action, $\gamma_Q Q_k = 1.5 \times 15$	= 22.5
as accompanying action, $\psi_O \gamma_Q Q_k = 0.7 \times 1.5 \times 15$	= 15.75
Shopping use	
as leading action, $\gamma_Q Q_k = 1.5 \times 24$	= 36.0
as accompanying action, $\psi_0 \gamma_0 Q_k = 0.7 \times 1.5 \times 24$	= 25.2

ii) For maximum bending moment in span AB

The arrangement and magnitude of actions of loads are shown in Figure 2.10. The variable load in span AB assumes the value as leading action and that in span CD takes the value as an accompanying action.

Figure 2.10 For maximum bending moment in span AB

iii) For maximum bending moment in span CD

The load arrangement is similar to that in Figure 2.10, but now the variable load in span AB takes its value as an accompanying action

(i.e. 15.75 kN/m) and that in span CD assumes the value as leading action (36 kN/m).

Analysis, actions and load arrangements

Analysis, actions and load arrangements

3 Slabs

3.0 General

The calculations in this section are presented in the following sub-sections:

- 3.1 A simply supported one-way slab
- 3.2 A continuous one-way slab
- 3.3 A continuous ribbed slab
- 3.4 A bay of a flat slab
- 3.5 A stair flight.

These calculations are intended to show what might be deemed typical hand calculations. They are illustrative of the Code and are not necessarily best practice. The first three sub-sections include detailing checks e.g. curtailment lengths determined strictly in accordance with the provisions of BS EN 1992–1–1. The flat slab calculation is supplemented by a commentary.

A general method of designing slabs is shown below.

- Determine design life.
- Assess actions on the slab.
- Assess durability requirements and determine concrete strength.
- Check cover requirements for appropriate fire resistance period.
- Calculate minimum cover for durability, fire and bond requirements.
- Determine which combinations of actions apply.
- Determine loading arrangements.
- Analyse structure to obtain critical moments and shear forces.
- Design flexural reinforcement.
- Check deflection.
- Check shear capacity.
- Other design checks: Check minimum reinforcement Check cracking (size or spacing of bars) Check effects of partial fixity Check secondary reinforcement.
- Check curtailment. Cl. 9.3.1.1(4), 9.2.1.3, Fig. 9.2 Check anchorage. Cl. 9.3.1.2, 8.4.4, 9.3.1.1(4)
- Check laps.

EC0 & NA Table NA.2.1

EC1 & NA

Table 4.1 BS 8500-1: Tables A4 & A5

EC2-1-2: Tables 5.8, 5.9. 5.10 & 5.11

Cl. 4.4.1

EC0 & NA Tables NA.A1.1 & NA.A1.2 (B)

Cl. 5.1.3(1) & NA Cl. 5.4, 5.5, 5.6

Cl. 6.1 Cl. 7.4

Cl. 6.2

Cl. 9.3.1.1(1), 9.2.1.1(1) Cl. 7.3, Tables 7.2N & 7.3N Cl. 9.3.1.2(2) Cl. 9.3.1.1(2), 9.3.1.4(1)

Cl. 9.2.1.5(1), 9.2.1.5(2)

3.1 Simply supported one-way slab

This calculation is intended to show a typical basic hand calculation.

C	Project details		hg Job no. CCIP – 041
C	Simply supported one-way sla	Checked by W	eb Sheet no. 1
e Concre	te Centre" DUCTS ASSOCIATION	Client TC	CC Date Oct OS
	A 175 mm thick slab is required to support so office variable action of 2.5 kN/m ² and demou (@ 2 kN/m). The slab is supported on load-bea $f_{ck} = 30$ MPa, $f_{yk} = 500$ MPa. Assume a 50-ye requirement for 1 hour resistance to fire.	ntable partitions aring block walls. ear design life and a	
	$g_k = 5.9 \text{ kN/m}$ $g_k = 5.9 \text{ kN/m}$ $f \qquad f$ 4800		
	Figure 3.1 Simply supported one-way slab		
3.1.1	Actions	kN/m ²	
	Permanent:	kN/m ²	
	Self-weight 0.175 × 25	= 4.4	EC1-1-1: Table A1
	50 mm screed	= 1.0	
	Finishes, services	= 0.5	
		Total $g_k = 5.9$	
	Variable:	- K	
	Offices, general use B1	= 2.5	EC1-1-1: Tables
	Movable partitions @ 2.0 kN/m	= 0.8	6.1, 6.2 & NA
		Total $q_k = 3.3$	EC1-1-1: 6.3.12(8
3.1.2	Cover	'K	
	Nominal cover, c _{nom} :		Exp. (4.1)
	$c_{\rm nom} = c_{\rm min} + \Delta c_{dev}$		
	where		
	$c_{\min} = \max[c_{\min,b}; c_{\min,dur}]$		
	where		Cl. 4.4.1.2(3)
	$C_{\min b}$ = minimum cover due to bond = $\frac{1}{2}$	diameter of bar	
	Assume 12 mm main bars.		
	$c_{\rm min,dur} = {\rm minimum cover due to environr}$	nental conditions	Table 4.1.
	Assuming XCI and using C30/37 concret		BS 8500-1:
	c _{min,dur} = 15 mm		Table A4.
	$\Delta c_{ m dev}$ = allowance in design for deviation.		Cl. 4.4.1.2(3)
	Assuming no measurement of cover,		
	$\Delta c_{dev} = 10 \text{ mm}$		
	$\therefore c_{nom} = 15 + 10 = 25 \text{ mm}$		

3.1: Simply supported one-way slab

	Fire:Check adequacy of section for 1 hour fire resistance (i.e. REI 60).Thickness, $h_{s,min} = 80 \text{ mm cf. } 175 \text{ mm proposed}$ \therefore 0KAxis distance, $a_{min} = 20 \text{ mm cf. } 25 + \phi/2 = 31 \text{ i.e. not critical}$ \therefore 0K \therefore choose $c_{nom} = 25 \text{ mm}$	EC2-1-2: 4.1(1), 5.1(1) & Table 5.8
3.1.3	Load combination (and arrangement) Ultimate load, n: By inspection, BS EN 1990 Exp. (6.10b) governs $\therefore n = 1.25 \times 5.9 + 1.5 \times 3.3 = 12.3 \text{ kN/m}^2$	Fig. 2.5 ECO: Exp. (6.10b)
3.1.4	Analysis Design moment: $M_{Ed} = 12.3 \times 4.8^2/8 = 35.4$ kNm Shear force: $V = 12.3 \times 4.8/2 = 29.5$ kN/m	
3.1.5	Flexural design Effective depth: d = 175 - 25 - 12/2 = 144 mm Flexure in span: $K = M_{Ed}/bd^2 f_{ck} = 35.4 \times 10^6/(1000 \times 144^2 \times 30) = 0.057$ z/d = 0.95 $z = 0.95 \times 144 = 137 \text{ mm}$ $A_s = M_{Ed}/f_{yd}z = 35.4 \times 10^6/(137 \times 500/1.15) = 594 \text{ mm}^2/\text{m}$ $(\rho = 0.41\%)$ Try H12 @ 175 B1 (645 mm ² /m)	Fig. 3.5 Appendix A1 Table C5
3.1.6	Deflection Check span-to-effective-depth ratio. Basic span-to-effective-depth ratio for $\rho = 0.41\% = 20$ $A_{s,prov}/A_{s,req} = 645/599 = 1.08$ Max. span = $20 \times 1.08 \times 144 = 3110$ mm i.e. < 4800 mm \therefore no good Consider in more detail: Allowable $I/d = N \times K \times F1 \times F2 \times F3$ where	Appendix B Table 7.4N & NA Exp. (7.17) Cl. 7.4.2,
	$\begin{split} N &= 25.6 \ (\rho = 0.41\%, \ f_{ck} = 30 \ \text{MPa}) \\ K &= 1.0 \ (\text{simply supported}) \\ \text{F1} &= 1.0 \ (b_{eff}/b_w = 1.0) \\ \text{F2} &= 1.0 \ (\text{span} < 7.0 \ \text{m}) \\ \text{F3} &= 310/ \ \sigma_{_{S}} \leq 1.5 \end{split}$	Appendix C7, Tables C10-C13

	where [‡] $\sigma_{s} = \sigma_{su} (A_{s,req}/A_{s,prov}) 1/\delta$ where $\sigma_{su} \approx 242 \text{ MPa} (\text{From Figure C3 and} g_k/q_k = 1.79, \psi_2 = 0.3, \gamma_G = 1.25)$ δ = redistribution ratio = 1.0 $\therefore \sigma_s \approx 242 \times 594/645 = 222$ $\therefore \text{F3} = 310/222 = 1.40 \le 1.5$	Cl. 7.4.2, Exp. (7.17) Table 7.4N, & NA Table NA.5: Note 5 Figure C3 Figure C3
	:. Allowable $l/d = 25.6 \times 1.40 = 35.8$ Actual $l/d = 4800/144 = 33.3$. OK	
	Use H12 @ 175 B1 (645 mm²/m)	
3.1.7	Shear By inspection, OK However, if considered critical: V = 29.5 kN/m as before $V_{Ed} = 29.5 - 0.14 \times 12.3 = 27.8 \text{ kN/m}$ $v_{Ed} = 27.8 \times 10^{3}/144 \times 10^{3} = 0.19 \text{ MPa}$ $v_{Rd,c} = 0.53 \text{ MPa}$ $\therefore \text{ No shear reinforcement required}$	Cl. 6.2.1(8) Cl. 6.2.2(1); Table C6
3.1.8	Summary of design	
	H12 @ 175 Figure 3.2 Simply supported slab: summary	
3.1.9	Detailing checks It is presumed that the detailer would take the design summarised above and detail the slab to normal best practice, e.g. to SMDSC ^[9] or to <i>How to design concrete structures using Eurocode</i> 2, ^[8] Chapter 10, <i>Detailing</i> . This would usually include dimensioning and detailing curtailment, laps, U-bars and also undertaking the other checks detailed below. See also 3.2.10 detailing checks for a continuous one-way slab.	
a)	Minimum areas Minimum area of reinforcement: $A_{s,min} = 0.26 (f_{ctm}/f_{yk}) b_t d \ge 0.0013 b_t d$ where b_t = width of tension zone $f_{ctm} = 0.30 \times f_{ck}^{0.666}$	Cl. 9.3.1.1, 9.2.1.1 Table 3.1
	[‡] See Appendix B1.5	

3.1: Simply supported one-way slab

	$(\rho = 0.15\%)$	
	H12 @ 175 B1 OK	
	Crack control:	
	OK by inspection.	Table 7.2N & N
	Maximum spacing of bars:	
	< 3h < 400 mm <u>OK</u>	Cl. 9.3.1.1.(3)
	Secondary reinforcement: 20% A _{s,req} = 0.2 × 645 = 129 mm ² /m	
	Use H10 @ 350 (224) B2	
	Edges: effects of assuming partial fixity along edge Top steel required = $0.25 \times 594 = 149 \text{ mm}^2/\text{m}$	Cl. 9.3.1.1.(2)
	Use H10 @ 350 (224) T2 B2 as U-bars	Cl. 9.3.1.2.(2)
	extending 960 mm into slab ⁵	
<i>י</i>)	Curtailment Curtailment main bars:	
	Curtailment main bars: Curtail main bars 50 mm from or at face of support.	SMDSC ^[9] :
		Fig. 6.4;
		How to $[\mathcal{B}]$:
	At supports:	Detailing
	50% of $A_{\rm g}$ to be anchored from face of support.	Cl. 9.3.1.2.(1)
	Use H12 @ 350 B1 T1 U-bars	
	In accordance with SMDSC ^[9] detail MS3 lap U-bars 500 mm with main steel, curtail T1 leg of U-bar 0.11 (= say 500 mm) from face of support.	
	⁶ A free unsupported edge is required to use 'longitudinal and transverse	Cl. 9.3.1.4.(1)

This calculation is intended to show in detail the provisions of designing a slab to Eurocode 2 using essentially the same slab as used in Example 3.1.

Continuous one-way solid slabDecide by web SectionTected by web SectionThe continuous one-way solid slabThe continuous one-way solid slabContinuous one-way solid slabThe continuous one-way solid slabA 175 mm thick continuous slab is required to support soreed, finishes, an office variable action of 2.5 kN/m² and demountable partitions(@ 2 kN/m). The slab is supported on 200 mm wide load-bearing block walls at 6000 mm centres, f_{a} = 50, f_{b} = 500 and the design life is 50 years. A fire resistance of 1 hour is required.Image: Solution of 2.5 kN/m² and demountable partitions(@ 2 kN/m). The slab is supported on 200 mm wide load-bearing block walls at 6000 mm centres, f_{a} = 50, f_{b} = 50 kN/m²Image: Solution of 2.5 kN/m² and demountable partitions(@ 2 kN/m). The slab is supported on 200 mm wide load-bearing block walls at 6000 mm centres, f_{a} = 50, f_{b} = 50 kN/m²Image: Solution of 2.5 kN/m²I	6	Project det			Calculated by	chg	Job no.	CCIP – 041
A 175 mm thick continuous slab is required to support screed, finishes, an office variable action of 2.5 kN/m ² and demountable partitions (@ 2 kN/m). The slab is supported on 200 mm wide load-bearing block walls at 6000 mm centres. $f_{ak} = 30$, $f_{yk} = 500$ and the design life is 50 years. A fire resistance of 1 hour is required. $f_{ak} = 3.3 \text{ kN/m^2}$ $g_k = 5.9 \text{ kN/m^2}$ $g_k = 5.9 \text{ kN/m^2}$ $g_k = 5.9 \text{ kN/m^2}$ $g_k = 5.9 \text{ kN/m^2}$ Figure 3.3 Continuous solid slab 3.2.1 Actions kN/m^2 Permanent: As Section 3.1.1 $g_k = 5.9$ Variable: As Section 3.1.1 $g_k = 5.9$ Variable: As Section 3.1.1 $g_k = 5.9$ Variable: As Section 3.1.2 $c_{nom} = 25 \text{ mm}$ 3.2.3 Load combination (and arrangement) Ultimate action (load): As Section 3.1.3, BS EN 1990 Exp. (6.10b) governs $\therefore n = 1.25 \times 5.9 + 1.5 \times 3.3 = 12.3 \text{ kN/m^2}$ 5.2.4 Analysis Clear span, l_n = 5800 mm $a_1 = \min[h/2; t/2] = \min[175/2; 200/2] = 87.5 \text{ mm}$	C	Conti	inuous one-way s	olid slab	Checked by	web	Sheet no.	1
an office variable action of 2.5 kN/m ² and demountable partitions (@ 2 kN/m). The elab is supported on 200 mm wide load-bearing block walls at 6000 mm centres. $f_{ck} = 30$, $f_{yk} = 500$ and the design life is 50 years. A fire resistance of 1 hour is required. $f_{cont} = 5.9 \text{ kN/m^2}$ $g_k = 5.9 \text{ kN/m^2}$ $g_k = 5.9 \text{ kN/m^2}$ $g_k = 5.9 \text{ kN/m^2}$ $g_k = 5.9 \text{ kN/m^2}$ Figure 3.3 Continuous solid slab 3.2.1 Actions kN/m^2 Permanent: As Section 3.1.1 $g_k = 5.9$ Variable: As Section 3.1.1 $g_k = 5.9$ Variable: As Section 3.1.1 $g_k = 5.9$ Variable: As Section 3.1.1 $g_k = 5.9$ $f_{cont} = 25 \text{ mm}$ 3.2.2 Cover Nominal cover, c_{nom} : As Section 3.1.2 $c_{nom} = 25 \text{ mm}$ 3.2.3 Load combination (and arrangement) Ultimate action (load): As Section 3.1.3, B5 EN 1990 Exp. (6.10b) governs $\therefore n = 1.25 \times 5.9 + 1.5 \times 3.3 = 12.3 \text{ kN/m^2}$ 3.2.4 Analysis Clear span, l_h $= 5800 \text{ mm}$ $a_1 = \min[h/2; t/2] = \min[175/2; 200/2] = 87.5 \text{ mm}$ Cl. 5.3.2.2(f)					Client	TCC	Date	0ct 03
$\frac{1}{4} = \frac{1}{5800} + \frac{1}{4} = \frac{5.9 \text{ kN/m}^2}{4}$ Figure 3.3 Continuous solid slab 3.2.1 Actions Figure 3.3 Continuous solid slab 3.2.1 Actions KN/m ² Permanent: As Section 3.1.1 $g_k = 5.9$ Variable: As Section 3.1.1 $g_k = 3.3$ 3.2.2 Cover Nominal cover, c_{nom} : As Section 3.1.2 $c_{nom} = 25 \text{ mm}$ 3.2.3 Load combination (and arrangement) Ultimate action (load): As Section 3.1.3, BS EN 1990 Exp. (6.10b) governs $\therefore n = 1.25 \times 5.9 + 1.5 \times 3.3 = 12.3 \text{ kN/m}^2$ 5.2.4 Analysis Clear span, l_n $a_1 = \min[h/2; t/2] = \min[175/2; 200/2] = 87.5 \text{ mm}$ $c_{1.5.3.2.2(1)$		an office variabl (@ 2 kN/m). The walls at 6000 p	e action of 2.5 kN/m ² a slab is supported on 7 mm centres. f _{ck} = 30, f	and demountat 200 mm wide lo _{yk} = 500 and th	ple partitions oad-bearing bl	ock		
Image: state sta					$factorem q_k = 3.3 \text{ kl}$ $factorem q_k = 5.9 \text{ kl}$	J/m ² J/m ²		
Figure 3.3 Continuous solid slab 3.2.1 Actions Rermanent: As Section 3.1.1 $g_k = 5.9$ Variable: As Section 3.1.1 $q_k = 3.3$ 3.2.2 Cover Nominal cover, c_{nom} : As Section 3.1.2 $c_{nom} = 25 \text{ mm}$ 3.2.3 Load combination (and arrangement) Ultimate action (load): As Section 3.1.3, BS EN 1990 Exp. (6.10b) governs $\therefore n = 1.25 \times 5.9 + 1.5 \times 3.3 = 12.3 \text{ kN/m}^2$ 3.2.4 Analysis Clear span, l_n $= 5800 \text{ mm}$ $a_1 = \min[h/2; t/2] = \min[175/2; 200/2] = 87.5 \text{ mm}$			-4L 5800 200	5800	*			
kN/m ² Permanent: As Section 3.1.1 $g_k = 5.9$ Variable: As Section 3.1.1 $g_k = 3.3$ ECI-1-1: 6.3.1.2(8) 3.2.2 Cover Nominal cover, c_{nom} : As Section 3.1.2 $c_{nom} = 25 \text{ mm}$ 3.2.3 Load combination (and arrangement) Ultimate action (load): As Section 3.1.3, B5 EN 1990 Exp. (6.10b) governs $\therefore n = 1.25 \times 5.9 + 1.5 \times 3.3 = 12.3 \text{ kN/m2}$ Fig. 2.5 ECO: EXP. (6.10b) Glear span, l_n $a_1 = \min[h/2; t/2] = \min[175/2; 200/2] = 87.5 \text{ mm}$ Cl. 5.3.2.2(1)			ntinuous solid slab					
Permanent: As Section 3.1.1 $g_k = \underline{5.9}$ Variable: As Section 3.1.1 $q_k = \underline{3.3}$ S.2.2 Cover a_s Section 3.1.1 $q_k = \underline{3.3}$ S.2.2 Cover Nominal cover, c_{nom} : A_s Section 3.1.2 $c_{nom} = \underline{25 \text{ mm}}$ 3.2.3 Load combination (and arrangement) Ultimate action (load): A_s Section 3.1.3, BG EN 1990 Exp. (6.10b) governs Fig. 2.5 S.2.4 Analysis Clear span, l_n $= 5800 \text{ mm}$ $a_1 = \min[h/2; t/2] = \min[175/2; 200/2] = 87.5 \text{ mm}$ Cl. 5.3.2.2(1)	3.2.1	Actions						
As Section 3.1.1 $g_k = \underline{5.9}$ Variable: As Section 3.1.1 $q_k = \underline{3.3}$ As Section 3.1.1 $q_k = \underline{3.3}$ EC1-1-1: 6.3.1.2(8) 3.2.2 Cover Nominal cover, c_{nom} : As Section 3.1.2 $c_{nom} = \underline{25 \text{ mm}}$ 3.2.3 Load combination (and arrangement) Ultimate action (load): As Section 3.1.3, BS EN 1990 Exp. (6.10b) governs Fig. 2.5 $\therefore n = 1.25 \times 5.9 + 1.5 \times 3.3 = 12.3 \text{ kN/m}^2$ Fig. 2.5 3.2.4 Analysis $Clear span, l_n$ $= 5800 \text{ mm}$ $a_1 = \min[h/2; t/2] = \min[175/2; 200/2] = 87.5 \text{ mm}$ Cl. 5.3.2.2(f)				kN/m ²	2			
Variable: As Section 3.1.1 $q_k = 3.3$ EC1-1-1: 6.3.1.2(8) 3.2.2 Cover Nominal cover, c_{nom} : As Section 3.1.2 $c_{nom} = 25 \text{ mm}$ 3.2.3 Load combination (and arrangement) Ultimate action (load): As Section 3.1.3, BS EN 1990 Exp. (6.10b) governs \therefore $n = 1.25 \times 5.9 + 1.5 \times 3.3 = 12.3 \text{ kN/m}^2$ Fig. 2.5 ECO: Exp. (6.10b) 3.2.4 Analysis Clear span, l_n $= 5800 \text{ mm}$ $a_1 = \min[h/2; t/2] = \min[175/2; 200/2]$ $= 87.5 \text{ mm}$								
As Section 3.1.1 $q_k = 3.3$ EC1-1-1: 3.2.2 Cover Nominal cover, c_{nom} : a_5 Section 3.1.2 $c_{nom} = 25 \text{ mm}$ 3.2.3 Load combination (and arrangement) Ultimate action (load): A_5 Section 3.1.3, B5 EN 1990 Exp. (6.10b) governs Fig. 2.5 ECO: \therefore $n = 1.25 \times 5.9 + 1.5 \times 3.3 = 12.3 \text{ kN/m}^2$ Fig. 2.5 ECO: 3.2.4 Analysis Clear span, l_n $= 5800 \text{ mm}$ $a_1 = \min[h/2; t/2] = \min[175/2; 200/2]$ $= 87.5 \text{ mm}$ Cl. 5.3.2.2(f)		As Section 3.1.1		$g_k = \underline{5.5}$)			
3.2.2 Cover Nominal cover, c_{nom} : 6.3.1.2(8) As Section 3.1.2 $c_{nom} = \underline{25 \text{ mm}}$ 6.3.1.2(8) 3.2.3 Load combination (and arrangement) Ultimate action (load): Fig. 2.5 As Section 3.1.3, B5 EN 1990 Exp. (6.10b) governs Fig. 2.5 $\therefore n = 1.25 \times 5.9 + 1.5 \times 3.3 = 12.3 \text{ kN/m}^2$ Fig. 2.5 S.2.4 Analysis Clear span, l_n = 5800 mm $a_1 = \min[h/2; t/2] = \min[175/2; 200/2]$ = 87.5 mm Cl. 5.3.2.2(1)		Variable:						
3.2.2 Cover Nominal cover, c_{nom} : $c_{nom} = 25 \text{ mm}$ 3.2.3 Load combination (and arrangement) Ultimate action (load): A_{s} Section 3.1.3, BS EN 1990 Exp. (6.10b) governs $\therefore n = 1.25 \times 5.9 + 1.5 \times 3.3 = 12.3 \text{ kN/m}^2$ Fig. 2.5 ECO: 3.2.4 Analysis Clear span, l_n $= 5800 \text{ mm}$ $a_1 = \min[h/2; t/2] = \min[175/2; 200/2]$ $= 87.5 \text{ mm}$ Cl. 5.3.2.2(1)		As Section 3.1.1		$q_{\rm k} = 3.3$	3			
Nominal cover, c_{nom} : As Section 3.1.2 $c_{nom} = \underline{25 \text{ mm}}$ 3.2.3 Load combination (and arrangement) Ultimate action (load): As Section 3.1.3, BS EN 1990 Exp. (6.10b) governs $\therefore n = 1.25 \times 5.9 + 1.5 \times 3.3 = 12.3 \text{ kN/m}^2$ Fig. 2.5 ECO: Exp. (6.10b) 3.2.4 Analysis Clear span, l_n $a_1 = \min[h/2; t/2] = \min[175/2; 200/2] = 87.5 \text{ mm}$ Cl. 5.3.2.2(1)	322	Cover					0.0.1.2	.(0)
As Section 3.1.2 $c_{nom} = \underline{25 \text{ mm}}$ 3.2.3 Load combination (and arrangement) Ultimate action (load): As Section 3.1.3, B5 EN 1990 Exp. (6.10b) governs Fig. 2.5 $\therefore n = 1.25 \times 5.9 + 1.5 \times 3.3 = 12.3 \text{ kN/m}^2$ Fig. 2.5 3.2.4 Analysis Clear span, l_n = 5800 mm $a_1 = \min[h/2; t/2] = \min[175/2; 200/2]$ = 87.5 mm Cl. 5.3.2.2(1)	0.2.2							
3.2.3 Load combination (and arrangement) Ultimate action (load): As Section 3.1.3, BS EN 1990 Exp. (6.10b) governs $\therefore n = 1.25 \times 5.9 + 1.5 \times 3.3 = 12.3 \text{ kN/m}^2$ 3.2.4 Analysis Clear span, l_n $a_1 = \min[h/2; t/2] = \min[175/2; 200/2]$ Exp. (6.10b)				c _{nom} = 25 mm	1			
Ultimate action (load): As Section 3.1.3, BS EN 1990 Exp. (6.10b) governs Fig. 2.5 \therefore $n = 1.25 \times 5.9 + 1.5 \times 3.3 = 12.3 \text{ kN/m}^2$ ECO: 3.2.4 Analysis Clear span, l_n = 5800 mm a_1 = min[h/2; t/2] = min[175/2; 200/2] = 87.5 mm Cl. 5.3.2.2(1)	ROR				_			
As Section 3.1.3, BS EN 1990 Exp. (6.10b) governs Fig. 2.5 \therefore n = 1.25 x 5.9 + 1.5 x 3.3 = 12.3 kN/m ² ECO: 3.2.4 Analysis Clear span, l_n = 5800 mm a_1 = min[h/2; t/2] = min[175/2; 200/2] = 87.5 mm Cl. 5.3.2.2(1)	3.2.3		•	igement)				
$\therefore n = 1.25 \times 5.9 + 1.5 \times 3.3 = 12.3 \text{ kN/m}^2$ 3.2.4 Analysis Clear span, $l_n = 5800 \text{ mm}$ $a_1 = \min[h/2; t/2] = \min[175/2; 200/2] = 87.5 \text{ mm}$ Cl. 5.3.2.2(1)			. ,	(h) acuantac			Fig. 2.	5
3.2.4 Analysis Exp. (6.10b) Clear span, l_n = 5800 mm a_1 = min[h/2; t/2] = min[175/2; 200/2] = 87.5 mm Cl. 5.3.2.2(1)			1 1				ECO:	
Clear span, l_n = 5800 mm a_1 = min[h/2; t/2] = min[175/2; 200/2]= 87.5 mmCl. 5.3.2.2(1)	301						Exp. (6	5.10Ь)
$a_1 = \min[h/2; t/2] = \min[175/2; 200/2] = 87.5 \text{ mm}$ Cl. 5.3.2.2(1)	0.2.4	•		- 5800 mm				
		1 11	21 = min[175/2·200/2]		11		CL 5.3	2.2(1)
								(')
I_{eff} = 5975 mm					••			

	Bending moment:			
	End span	M _{Fd} = 0.086 × 12.3 × 5.975 ²	= 37.8 kNm/m	Cl. 5.1.1(7)
	1st internal support	$M_{\rm Ed} = 0.086 \times 12.3 \times 5.975^2$		Table C2
	Internal spans	$M_{\rm Ed} = 0.063 \times 12.3 \times 5.975^2$		
	and supports	Lα		
	Shear:			
		V _{Fd} = 0.40 × 12.3 × 5.975	= 29.4 kN/m	
		$V_{\rm Ed} = 0.60 \times 12.3 \times 5.975$		
25	Florunal docian	5D2N		
	Flexural design:	•		
a)	End span (and 1st in Effective depth, <i>d</i> :	ternal support)		
	$d = h - c_{\text{nom}} - \phi/2$			
	= 175 - 25 - 12/2	² = 144 mm		
	Relative flexural stree			
	$K = M_{\rm Ed} / b d^2 f_{\rm ck} = 3'$	$7.8 \times 10^6 / 1000 \times 144^2 \times 30 = 0.$	061	
	K' = 0.207			Appendix A1
	or restricting x/d to (0.45		
	K' = 0.168			
		ion is under-reinforced		
		einforcement required).		
	Lever arm, z: z = (d/2) [1 + (1 - 3)]	3 53K10.51 < 0 05 #		5. 75
	. , , , , , , , , , , , , , , , , , , ,	– 3.53 × 0.061) ^{0.5}] = 0.945 <i>d</i> = 1	36 mm	Fig. 3.5 Appendix A1
	Area of steel, A_s :			
	$A_{\rm s} = M_{\rm Ed}/f_{\rm vd}z$			
		00/1.15 × 136) = 639 mm²/m		
		$(\rho = 0.44\%)$		
		Try H12 @ 175 B1 (645 mm²/m)	
b)	Internal spans and s	upports		
	Lever arm, z:			
	By inspection, $z = 0.9$	95 <i>d</i> = 0.95 × 144 = 137 mm		Fig. 3.5 Appendix A1
	Area of steel, A _s :			
	$A_{\rm s} = M_{\rm Ed}/f_{\rm yd}z$			
		0/1.15 × 137) = 465 mm²/m		
		(<i>p</i> = 0.32%)		
			0	
		Try H12 @ 225 B1 ((502 mm²/m)	
		Try H12 @ 225 B1 (o use another form of this equation:	(502 mm²/m)	

2.6	Deflection: end span	
	Check end span-to-effective-depth ratio.	A upped of the P
	Allowable $I/d = N \times K \times F1 \times F2 \times F3$	Appendix B
	where $N =$ basic effective depth to span ratio:	
	$\rho = 0.44\%$	
	$\rho = 0.44\%$ $\rho_0 = f_{ck}^{0.5} \times 10^{-3} = 0.55\%$: use Exp. (7.16a)	Cl. 7.4.2(2)
	$N = 11 + 1.5f_{ck}^{0.5} \rho_0 / \rho + 3.2f_{ck}^{0.5} (\rho_0 / \rho - 1)^{1.5}$	
	$ = 11 + 1.5 \times 30^{0.5} \times 0.55/0.44 + 3.2 \times 30^{0.5} (0.55/0.44 - 1)^{1.5} $	Exp. (7.16a)
	= 11.0 + 10.3 + 2.2 = 23.5	
		Cl. 7.4.2
	 K = structural system factor = 1.3 (end span of continuous slab) 	CI. 7.4.2
		CI 740
	F1 = flanged section factor	Cl. 7.4.2
	$= 1.0 (b_{eff}/b_w = 1.0)$	0.740
	F2 = factor for long spans associated with brittle partitions	Cl. 7.4.2
	= 1.0 (span < 7.0 m)	07405-07
	F3 = 310/ $\sigma_{\rm s} \leq 1.5$	Cl. 7.4.2, Exp. (7 Table 7.4N & N
		Table NA.5:
		Note 5
	where [‡]	F (7.17)
	$\sigma_{\rm s} = (f_{\rm yk}^{\prime} / \gamma_{\rm S}) (A_{\rm s,req}^{\prime} / A_{\rm s,prov}^{\prime}) ({\rm SLS \ loads} / {\rm ULS \ loads} (1/\delta)$	Exp. (7.17) ECO: A1.2.2
	$= f_{yd} \times (A_{s,req}/A_{s,prov}) \times (g_k + \psi_2 q_k) / (\gamma_G g_k + \gamma_Q q_k) (1/\delta)$	Table C14
	= (500/1.15) × (639/645) × [(5.9 + 0.3 × 3.3)/12.3] × 1.08 ⁶ = 434.8 × 0.99 × 0.56 × 1.08 = 260 MPa	
	$= 434.0 \times 0.39 \times 0.36 \times 1.00 = 260 \text{ Mira}$ F3 = 310/260 = 1.19	
	Note: $A_{g,prov}/A_{g,reg} \le 1.50$	Table 7.4N & N
	hove. As, prov As, req = 1.50	Table NA.5:
		Note 5
	Allowable $I/d = N \times K \times F1 \times F2 \times F3$	
	= 23.5 × 1.3 × 1.0 × 1.19	
	= 36.4	
	Мах. span = 36.4 × 144 = 5675 mm, i.e. < 5795 mm ∴ <u>No good</u>	
	Try increasing reinforcement to H12 @ 150 B1 (754 mm ² /m)	
	σ _s = 434.8 × 639/754 × 0.56 × 1.08 = 223	
	F3 = 310/223 = 1.39	
	Allowable $I/d = 23.5 \times 1.3 \times 1.0 \times 1.39$	
	= 42.5	
	* See Appendix B1.5	
	⁹ The use of Table C3 implies certain amounts of redistribution, which are defined in Table C14.	

	Max. span = 42.5 × 144 = 6120 mm, i.e. > 5795 mm 0K	
	∴ H12 @ 150 B1 (754 mm ² /m) 0K	
3.2.7	Deflection: internal span	
	Check internal span-to-effective-depth ratio.	
	Allowable I/d = N × K × F1 × F2 × F3	
	where	
	N = basic effective depth to span ratio:	
	ρ = 0.32%	
	$\rho_0 = f_{ck}^{0.5} \times 10^{-3} = 0.55\%$: use Exp. (7.16a)	Cl. 7.4.2(2)
	$N = 11 + 1.5 f_{ck}^{0.5} \rho_0 / \rho + 3.2 f_{ck}^{0.5} (\rho_0 / \rho - 1)^{1.5}$	Exp. (7.16a)
	$= 11 + 1.5 \times 30^{0.5} \times 0.55/0.32 + 3.2 \times 30^{0.5} (0.55/0.32 - 1)^{1.5}$	±
	= 11.0 + 14.1 + 10.7 = 35.8	
	K = structural system factor	
	= 1.5 (interior span of continuous slab)	Cl. 7.4.2
	F1 = flanged section factor	01. 71.2
	$= 1.0 \ (b_{eff}/b_w = 1.0)$	Cl. 7.4.2
	F2 = factor for long spans associated with brittle partitions	Cl. 7.4.2
	= 1.0 (span < 7.0 m)	
	$F3 = 310/\sigma_{s} \le 1.5$	Cl. 7.4.2, Exp. (7.17), Table 7.4N
		& NA, Table NA.5
		Note 5.
	where	F (747)
	$\sigma_{\rm s} = f_{\rm yd} \times (A_{\rm s,req}/A_{\rm s,prov}) \times (g_{\rm k} + \psi_2 q_{\rm k})/(\gamma_G g_{\rm k} + \gamma_Q q_{\rm k}) (1/\delta)$	Exp. (7.17) ECO: A1.2.2
	= (500/1.15) × (465/502) × [(5.9 + 0.3 × 3.3)/12.3] × 1.03 = 434.8 × 0.93 × 0.56 × 1.03 = 233 MPa	Table C14
	F3 = 310/233 = 1.33	
	Allowable $I/d = N \times K \times F1 \times F2 \times F3$ = 35.8 × 1.5 × 1.0 × 1.33	
	$= 39.8 \times 1.9 \times 1.0 \times 1.33$ = 71.4	
	= 71.4 Max. span = 71.4 × 144 = 10280 mm i.e. > 5795 mm 0K	
	Use H12 @ 225 B1 (502 mm ² /m) in internal spans	
3.2.8		
0.2.0		
	Design shear force, V _{Ed} :	
	At d from face of end support, K = 29.4 (0144 + 0.0875) × 12.3 = 26.6 kN/m	CI 621(P)
	$V_{Ed} = 29.4 - (0.144 + 0.0875) \times 12.3 = 26.6 \text{ kN/m}$	Cl. 6.2.1(8)
	At <i>d</i> from face of 1st interior support, $V_{-} = 441 = (0.144 \pm 0.0875) \times 12.3 = 41.3 \text{ kN/m}$	
	$V_{\rm Ed} = 44.1 - (0.144 + 0.0875) \times 12.3 = 41.3 \text{ kN/m}$	
	Shear resistance, V _{Rd,c} :	
	$V_{\text{Rd},c} = (0.18/\gamma_c)k(100\ \rho_{ }\ f_{ck})^{0.333}\ b_w d \ge 0.0035k^{1.5}f_{ck}^{-0.5}b_w d$	Cl. 6.2.2(1)

By inspection, shear at other internal supports OK.

3.2.9 Summary of design

Commentary

It is usually presumed that the detailer would take the design summarised above together with the general arrangement illustrated in Figure 3.3 and detail the slab to normal best practice. The detailer's responsibilities, standards and timescales should be clearly defined but it would be usual for the detailer to draw and schedule not only the designed reinforcement but all the reinforcement required to provide a compliant and buildable solution. The work would usually include checking the following aspects and providing appropriate detailing :

- Minimum areas
- Curtailment lengths
- Anchorages

	 Laps U-bars Rationalisation Critical dimensions Details and sections The determination of minimum reinforcement areas, curtailment lengths, anchorages and laps using the principles in Eurocode 2 is shown in detail in the following calculations. In practice these would be determined from published tables of data or by using reference texts^[8, 9]. Nonetheless the designer should check the drawing for design intent and compliance with standards. It is therefore necessary for the designer to understand and agree the principles of the detailing used. 	
3.2.10	Detailing checks	
a)	Minimum areas	
	Minimum area of longitudinal tension (flexural) reinforcement $A_{s,min} = 0.26(f_{ctm}/f_{yk}) \ b_t d \ge 0.0013 \ b_t d$ where	Cl. 9.3.1.1, 9.2.1.1
	$\begin{split} b_{\rm t} &= {\rm width \ of \ tension \ zone} \\ f_{ctm} &= 0.30 \times f_{ck}^{-0.667} \\ A_{\rm s,min} &= 0.26 \times 0.30 \times 30^{0.667} \times 1000 \times 144/500 = 216 \ {\rm mm^2/m} \\ &\qquad \qquad $	Table 3.1
	Secondary (transverse reinforcement)	Cl. 9.3.1.1(2)
	Minimum 20% $A_{s,req}$ 20% $A_{s,req} = 0.2 \times 502 = 100 \text{ mm}^2/\text{m}$	0. 9.0.1.1(2)
	Consider $A_{s,min}$ to apply as before. $A_{s,min} = 216 \text{ mm}^2/\text{m}$	SMDSC ^[9]
	Try H10 @ 350 B2 (224 mm ² /m)	
	Check edge. Assuming partial fixity exists at edges, 25% of A_s is required to extend 0.2 × the length of the adjacent span.	Cl. 9.3.1.2(2)
	A _{s,req} = 25% × 639 = 160 mm²/m A _{s,min} as before = 216 mm²/m ∴ Use H10 @ 350 (224 mm²/m) U-bars at edges	Cl. 9.3.1.1, 9.2.1.1

Curtail 0.2 \times 5975 = 1195 mm, say 1200 mm measured from face of support [‡] .	Cl. 9.3.1.2(2)
Maximum spacing of bars	
Maximum spacing of bars $< 3h < 400$ mm OK	Cl. 9.3.1.1.(3)
Crack control	
As slab < 200 mm, measures to control cracking are unnecessary.	Cl. 7.3.3(1)
However, as a check on end span:	Cl. 7.3.3(2),
Loading is the main cause of cracking,	7.3.1.5
: use Table 7.2N or Table 7.3N for $w_{\rm max}$ = 0.4 mm and $\sigma_{\rm s}$ = 241 MPa	
(see deflection check).	
Max. bar size = 20 mm	Table 7.2N &
or max. spacing = 250 mm	interpolation,
H12 @ 150 B1 OK.	Table 7.3N &
	interpolation
End supports: effects of partial fixity	
Assuming partial fixity exists at end supports, 15% of $A_{\rm g}$ is required	Cl. 9.3.1.2(2)
to extend 0.2 $ imes$ the length of the adjacent span.	
$A_{s,req} = 15\% \times 639 = 96 \text{ mm}^2/\text{m}$	
But, A _{s,min} as before = 216 mm ² /m	
(p = 0.15%)	Cl. 9.3.1.1, 9.2.1
One option would be to use bob bars, but choose to use U-bars	
Try H12 @ 450 (251 mm ² /m) U-bars at supports	
Curtail 0.2 \times 5975 = say, 1200 mm measured from face of support. [‡]	Cl. 9.3.1.2(2)
Curtailment	
i) End span, bottom reinforcement	
Assuming end support to be simply supported, 50% of A _s should	CL 0 7 4 0(4)
extend into the support.	Cl. 9.3.1.2(1)
$50\% \times 639 = 320 \text{ mm}^2/\text{m}$	
Try H12 @ 300 (376 mm ² /m) at supports	
In theory, 50% curtailment of reinforcement may take place $a_{\rm l}$ from	Cl. 9.3.1.2(1)
where the moment of resistance of the section with the remaining	Note, 9.2.1.3 (2
50% would be adequate to resist the applied bending moment. In	
practice, it is usual to determine the curtailment distance as being	
$a_{\rm I}$ from where $M_{\rm Ed} = M_{\rm Ed,max}/2$.	

Assuming $X = xI$ $0.043nI^2 = 0.4nIxI - nx^2I^2/2$ $0.043 = 0.4x - x^2/2$ $0 = 0.043 - 0.4x + x^2/2$ x = 0.128 or 0.672, say 0.13 and 0.66 \therefore at end support 50% moment occurs at 0.13 x span $0.13 \times 5975 = 777 \text{ mm}$	
Shift rule: for slabs, a ₁ may be taken as d (= 144 mm), ∴ curtail to 50% of required reinforcement at 777 – 144 = 633 mm from centreline of support. Say 500 mm from face of support A	Cl. 9.2.1.3(2), 6.2.2(5)
∴ in end span at 1st internal support 50% moment occurs at 0.66 × span 0.66 × 5975 = 3944 mm	
Shift rule: for slabs a_1 may be taken as d (= 144 mm), \therefore curtail to 50% of required reinforcement at 3944 + 144 = 4088 mm from support A or 5975 – 4088 = 987 mm from centreline of support B. Say 850 mm from face of support B	Cl. 9.2.1.3(2), 6.2.2(5)
ii) 1st interior support, top reinforcement Presuming 50% curtailment of reinforcement is required this may take place a_1 from where the moment of resistance of the section with the remaining 50% would be adequate. However, it is usual to determine the curtailment distance as being a_1 from where $M_{Ed} = M_{Ed,max}/2$.	Cl. 9.3.1.2(1) Note, 9.2.1.3(2)
Thus, for the 1st interior support supporting a UDL of n, $M_{Ed,maxT} = 0.086nl^2$; $R_B = 0.6nl$ At distance Y from end support, moment, $M_{Ed}@Y = M_{Ed,maxT} - R_AY + nY^2/2$ \therefore when $M@Y = M_{Ed,maxT}/2$ $0.086nl^2/2 = 0.086nl^2 - 0.6nlY + nY^2/2$ Assuming Y = yl $0.043nl^2 = 0.086nl^2 - 0.6nlyl + ny^2l^2/2$ $0 = 0.043 - 0.6y + y^2/2$ y = 0.077 (or 1.122), say 0.08 \therefore at end support 50% moment occurs at 0.08 x span $0.08 \times 5975 = 478$ mm	
Shift rule: for slabs, a _l may be taken as <i>d</i> 144 mm ∴ curtail to 50% of required reinforcement at 478 + 144 = 622 mm from centreline of support. <u>50% of reinforcement may be curtailed at, say,</u> <u>600 mm from either face of support B</u>	Cl. 9.2.1.3(2), 6.2.2(5)

	100% curtailment may take place a_1 from where there is no hogging moment. Thus, when M@Y = $M_{Ed,maxT}/2$ $O = 0.086nP - 0.6nIY + nY^2/2$	
	Assuming Y = yl 0 = 0.086 - 0.6y + y²/2 y = 0.166 (or 1.034), say 0.17 ∴ at end support 50% moment occurs at 0.17 × span	
	0.17 × 5975 = 1016 mm	
	Shift rule: for slabs, a_1 may be taken as d	
	\therefore curtail to 100% of required reinforcement at 1016 + 144	
	= 1160 mm from centreline of support.	
	100% of reinforcement may be curtailed at, say,	
	1100 mm from either face of support B.	
	iii) Support B bottom steel at support	
	At the support 25% of span steel required	Cl. 9.3.1.1(4), 9.2.1.5(1), 9.2.1.4(1)
	$0.25 \times 639 = 160 \text{ mm}^2$	
	A _{s.min} as before = 216 mm²/m	Cl. 9.3.1.1, 9.2.1.1
	For convenience use H12 @ 300 B1 (376 mm ² /m)	
	Auch and an and an analysis	
c)	Anchorage at end support $A = simula a tan dista the surgest at S = S^{(2)}$	Cl. 9.2.1.2(1) &
	As simply supported, 50% of A_s should extend into the support.	Note, 9.2.1.4(2)
	This 50% of A_s should be anchored to resist a force of	
	$F_{\rm E} = V_{\rm Ed} \times a_{\rm l}/z$ where	Exp. (9.3)
	V_{Ed} = the absolute value of the shear force	
	$a_1 = d$, where the slab is not reinforced for shear	Cl. 9.2.1.3(2)
	z = lever arm of internal forces	
	$F_{\rm F} = 29.4 \times d/0.95^{\ddagger}$ $d = 30.9 \text{ kN/m}$	
	Anchorage length, I _{bd} :	Cl. 8.4.4
	$l_{bd} = \alpha l_{brad} \ge l_{bmin}$	Exp. (8.4)
	where	
	α = conservatively 1.0	
	l _{b.rgd} = basic anchorage length required	
	$= (\phi/4) (\sigma_{sd}/f_{bd})$	Exp. (8.3)
	where	
	ϕ = diameter of the bar = 12 mm	
	$\sigma_{\rm sd}~=~{ m design}$ stress in the bar at the ultimate limit state	
	$= F_{\rm E}/A_{\rm s,prov}$	
	= 30.9 × 1000/376 = 81.5 MPa	
	[‡] Maximum $z = 0.947$ at mid-span and greater towards support.	

f _{bd} = ultimate bond stress	
$= 2.25 \eta_1 \eta_2 f_{\text{ct.d}}$	Cl. 8.4.2(2)
where	
η_1 = 1.0 for 'good' bond conditions and 0.7 for all other	
conditions = 1.0	
η_2 = 1.0 for bar diameter \leq 32 mm	
$f_{ct,d}^{I}$ = design tensile strength	Cl. 3.1.6(2) &
= $a_{ct} f_{ctk} / \gamma_c$. For f_{ck} = 30 MPa	NA, Tables 3.1
= 1.0 × 2.0/1.5 = 1.33 MPa	& 2.1N
∴f _{bd} = 2.25 × 1.33 = 3.0 MPa	
l _{brad} = (12/4) (81.5/1.33) = 183 mm	
$l_{\rm kmin}$ = max(10 <i>d</i> , 100 mm) = 120 mm	Exp. (8.6)
$I_{bd} = 183$ mm measured from face of support	Fig. 9.3
By inspection, using U-bars, OK	
d) Laps	
Lap H12 @ 300 U-bars with H12 @ 150 straights.	
Tension lap, $l_0 = \alpha_1 \alpha_2 \alpha_3 \alpha_5 \alpha_6 l_{brad} \alpha l_{Omin}$	Exp. (8.10)
where	
$a_1 = 1.0$ (straight bars)	Table 8.2
$a_2 = 1 - 0.15 (c_d - \phi)/\phi$	
where	F:- 8 4
$c_d = \min(\text{pitch, side cover or cover})$	Fig. 8.4
= 25 mm	
ϕ = bar diameter	
= 12 mm	Table 8.0
$a_2 = 0.84$	Table 8.2
$\alpha_3 = 1.0$ (no confinement by reinforcement)	
$lpha_5$ = 1.0 (no confinement by pressure) $lpha_6$ = 1.5	Table 8.3
$l_{b,rgd} = (\phi/4) \sigma_{sd}/f_{bd}$	Exp. (8.3)
where	
$\sigma_{\rm sd}$ = the design stress at ULS at the position from	
where the anchorage is measured.	
Assuming lap starts 500 mm from face of	
support (587.5 mm from centreline of support):	
M _{Ed} = 29.5 × 0.59 – 12.3 × 0.59 ² /2	
= 15.2 kNm	
$\sigma_{\rm sd}$ = $M_{\rm Ed}/(A_{\rm s}z)$	
= 15.2 × 10 ⁶ /(376 × 144/0.95) = 267 MPa	
f _{bd} = ultimate bond stress	Cl. 8.4.2(2)
= 2.25 $\eta_1 \eta_2 f_{ct,d}$	

3.3 Continuous ribbed slab

6	Project details	Calculated by	chg	Job no.	CCIP – 041
(C)	Continuous ribbed slab	Checked by	web	Sheet no.	1
The Concrete Centre" PART OF THE MINERAL PRODUCTS ASSOCIATION		Client	TCC	Date	0ct 09
9.0 m a action o depth a is requi mm cer reinforc excessi	ntinuous 300 mm deep ribbed slab has span and 7.5 m and is required for an office to sup of 5 kN/m ² . It is supported on wide beams the sthe slab designed in Section 4.3. One houred: internal environment. The ribs are 150 m itres. Links are required in span to facilitate ement. Assume that partitions are liable to we deflections. In order to reduce deformatio profile use $f_{ck} = 35$ MPa and $f_{yk} = 500$ MPa.	oport a variable hat are the sam r fire resistance im wide @ 900 prefabrication o b be damaged by ons yet maintain	f		
A H 550 Figure	7500 β 9000 1000 r r r 1000 r r r 1000 ε 3.8 Continuous ribbed slab example	$g_k = 4.17 \text{ kN}$ $g_k = 4.3 \text{ kN}$ $g_k = 5.0 \text{ kN}$ $g_k = 5.0 \text{ kN}$	/m²		
Notes	on ribbed slab design				
with the • Using to igno ribbed suppo bendir • Alterr over t shears spans • The ad more v • The rib (The rib beams torsio to des • Analys chang	re various established methods for analysing e solid areas: UDLs simplifies the analysis and remains pop ore the weight of the solid part of the slab in slab. (The weight of the solid area is then add rting beam). This ignores the minor effect the g in the ribbed slab. atively the weight of the solid part of the slal he whole span. This is conservative both in ter a at solid/shear interfaces but underestimate whent of computer analysis has made analysis viable and the resulting analysis more accurate bed part of the slab may be designed to spa is span d/2 into the solid areas, which are as in the orthogonal direction.) However, having ns induced in supporting beams and columns sign from centreline of support to centreline of so programs can cope with the change of sec e of stiffness along the length of the slab. Mo cted to the stiffer, solid parts at supports. H	oular. One method the analysis of t ded to the loads a solid areas have b is spread as a rms of moment a es hogging in inte a using patch loa te. n between solid a soumed to act ac to accommodat usually makes it of support. stion and therefo pments would be	l is he on the on the on UDL nd ornal ds areas. 5 e simpler re		

3.3: Continuous ribbed slab

[‡] In this case, assuming the patch load analysis is accurate, taking the weight of solid area to be spread over the whole span would overestimate span and support moments by 6–8% and shears at the solid/rib interface by 8–9%. Ignoring the weight of the solid area in the analysis of this ribbed slab would lead to underestimates of span moments by 1%, support moments by 3% and no difference in the estimation of shear at the solid shear interface. The latter may be the preferred option.

	Permanent: patch load	
	Extra over solid in beam area as patch load	
	$(0.2 \times 25 - 0.833) = 4.167$ $g_k \approx 4.17$	
	Variable	
	Imposed = 4.00*	
	Allowance for partitions = 1.00*	
	Total variable action $g_k = 5.00$	
3.3.2	Cover	
	Nominal cover, c _{nom} :	
	$c_{\rm nom} = c_{\rm min} + \Delta c_{dev}$ where	Exp. (4.1)
	$c_{\min} = \max(c_{\min,b}; c_{\min,dur})$	
	where c _{min,b} = minimum cover due to bond = diameter of bar.	Cl. 4.4.1.2(3)
	Assume 20 mm main bars and 8 mm links	
	$c_{min,dur}$ = minimum cover due to environmental conditions. Assuming XC1 and C30/37 concrete, $c_{min,dur}$ = 15 mm	Table 4.1. BS 8500-1: Table A4
	$\Delta c_{_{dev}}$ = allowance in design for deviation. Assuming no	
	measurement of cover $\Delta c_{dev} = 10$ mm	Cl. 4.4.1.2(3)
	$\therefore c_{nom} = 20 + 10$ to main bars or	
	$= 15 + 10$ to links \therefore critical	
	Fire:	EC2-1-2: 5.7.5
		LOZ 1 Z. 0.7.0
	Check adequacy of section for REI 60.	50040511
	Minimum slab thickness, $h_s = 80$ mm OK	EC2-1-2: Table
	Axis distance required	
	Minimum rib width $b_{\min} = 120 \text{ mm}$ with $a = 25 \text{ mm}$	EC2-1-2: Table
	or $b_{\min} = 200 \text{ mm with } a = 12 \text{ mm}$	
	∴ at 150 mm wide (min.) <i>a</i> = 20 mm	
	By inspection, not critical.	
	Use 25 mm nominal cover to links	
3.3.3	Load combination and arrangement	
	Ultimate load, n:	
	By inspection, Exp. (6.10b) is critical	Fig. 2.5
	$n_{\rm slab}$ = 1.25 × 4.30 + 1.5 × 5.0 = 13.38 kN/m ²	ECO: Exp. (6.10
	$n_{\text{solid areas}} = 1.25 \times (4.30 + 4.17) + 1.5 \times 5.0 = 18.59 \text{ kN/m}^2$	
	*Client requirements. See also BS EN 1991–1–1, Tables 6.1, 6.2, Cl. 6.3.2.1(8) & NA.	

 $z = (d/2) [1 + (1 - 3.53K)^{0.5}] \le 0.95d$ Appendix A1 = (257/2) (1 + 0.951) ≤ 0.95 × 257 = 251 ≤ 244 ∴ *z* = 244 mm But z = d - 0.4xAppendix A1 $\therefore x = 2.5(d - z) = 2.5(257 - 244) = 33 \text{ mm}$: By inspection, neutral axis is in flange $A_{\rm g} = M_{\rm Ed}/f_{\rm vd}z$ where $f_{\rm vd} = 500/1.15 = 434.8$ MPa $= 55.5 \times 10^{6}/(434.8 \times 244) = 523 \text{ mm}^{2}/\text{rib}$ Try 2 no. H20/rib (628 mm²/rib) b) Span A-B: Deflection Allowable $I/d = N \times K \times F1 \times F2 \times F3$ Appendix C7 where N = Basic *I/d*: check whether $\rho > \rho_0$ and whether to use Cl. 7.4.2(2) Exp. (7.16a) or Exp. (7.16b) $\rho_0 = f_{ck}^{0.5}/1000 = 35^{0.5}/1000 = 0.59\%$ $\rho = A_{\rm s}/A_{\rm c}^{\dagger} = A_{\rm s,rea}/[b_{\rm w}d + (b_{\rm eff} - b_{\rm w})h_{\rm f}]$ PD 6687^[6] where $b_{\rm w}$ = min. width between tension and compression chords. At bottom assuming 1/10 slope to rib: = 150 + 2 × (25 + 8 + 20/2)/10 = 159 mm $\rho = 523/(159 (257 + (900 - 159) \times 100))$ = 523/114963 = 0.45% $\rho < \rho_{\odot}$: use Exp. (7.16a) $N = 11 + 1.5 f_{ck}^{0.5} \rho / \rho_0 + 3.2 f_{ck}^{0.5} (\rho / \rho_0 - 1)^{1.5}]$ Exp. (7.16a) $= 11 + 1.5 \times 35^{0.5} \times 0.055/0.045 + 3.2 \times 35^{0.5}$ (0.055/0.045 - 1)^{1.5} = [11 + 10.8 + 2.0] = 22.8 Table 7.4N & K = (end span) 1.3NA, Table NA.5: Note 5 $F1 = (b_{eff}/b_w = 5.66) 0.8$ $F2 = 7.0/l_{eff} = 7.0/7.5 = (span > 7.0 m) 0.93$ Cl. 7.4.2(2) Cl. 7.4.2, Exp. (7.17) F3 = 310/ $\sigma_{e} \leq 1.5$ & NA; Table NA.5 [‡] Section 2.18 of PD 6687 ^[6] suggests that ρ in T-beams should be based on the area of concrete above the centroid of the tension steel.

	where [‡]	
	$\sigma_{s} = (f_{yk}/\gamma_{S}) (A_{s,req}/A_{s,prov}) (SLS \text{ loads/ULS loads}) (1/\delta) = 434.8(523/628) [(4.30 + 0.3 \times 5.0)/13.38]$	
	(65.3/61.7 ⁵)	
	= 434.8 × 0.83 × 0.43 × 1.06	
	= 164 MPa	
	$F3 = 310/\sigma_{g}$	
	$= 310/164 = 1.89^{\#}$ but ≤ 1.5 , therefore say 1.50	
. . F	?ermissible	
Act	cual $I/d = 7500/257 = 29.2$ $\therefore OK$	
	<u>Use 2 no. H20/rib (628 mm²/rib)</u>	
c) Sup	oport A (and D): flexure (sagging) at solid/rib interface	
	nforcement at solid/rib interface needs to be designed for both	
mor	ment and for additional tensile force due to shear (shift rule)	Cl. 9.2.1.3.(2)
E0	_{d,max} = 18.3 kNm/rib	
	_{,max} = 29.3 kNm/rib	
	solid/rib interface	
A _s :	$= M_{\rm Ed} / f_{\rm yd} z + \Delta F_{\rm td} / f_{\rm yd}$	Cl. 9.2.1.3.(2), Fig. 9.2
whe	pre	1 19: 0.2
	$z = (d/2) [1 + (1 - 3.53K)^{0.5}] \le 0.95d$ where	
	$K = M_{\rm Ed}/bd^2 f_{\rm ck}$	
	where	
	b = 900 mm	
	d = 300 - 25 - 8 - 25 - 20/2 = 232	
	assuming 8 mm links and H25B in edge beam	
	$f_{ck} = 30$	
	$= 18.3 \times 10^{6} / (900 \times 232^{2} \times 35) = 0.011$	
+ G a	e Appendix B1.5	
	e Appenaix D1.9 analysis, 15% redistribution of support moments led to redistribution of span	
mon	nents: 61.7/65.3 = 0.94.	
(7.16	oth A _{s,prov} /A _{s,req} and any adjustment to N obtained from Exp. (7.16a) or Exp. 6b) is restricted to 1.5 by Note 5 to Table NA.5 in the UK NA. Therefore, 310/ 5 restricted to 1.5.	

3.3: Continuous ribbed slab

to resist $M_{\rm Fd}$ at the shift distance, $a_{\rm I}$, from the interface.

e)	Support B (and C): flexure (hogging) at solid/rib interface Reinforcement at solid/rib interface needs to be designed for both moment and for additional tensile force due to shear (shift rule). $M_{Ed,max} = 42.4 \text{ kNm/rib max.}$ $V_{Ed,max} = 40.9 \text{ kNm/rib max.}$ $A_s = M_{Ed}/f_{yd}z + \Delta F_{td}/f_{yd}$ where $z = (245/2) [1 + (1 - 3.53 \text{ K})^{0.5}] \le 0.95d$ where $K = M_{Ed}/bd^2 f_{ck}$ $= 42.4 \times 106/(150 \times 245^2 \times 35)$	Cl. 9.2.1.3.(2) Cl. 9.2.1.3.(2)
	= 0.135 Check $K \le K'$ $K' = 0.168$ for $\delta = 0.85$ (i.e. 15% redistribution) \therefore Section under-reinforced: no compression reinforcement required $\therefore z = (245/2) (1 + 0.723) \le 232 = 211 \text{ mm}$	Appendix C, Table C4 Appendix A
	$f_{yd} = 434.8 \text{ MPa}$ $\Delta F_{td} = 0.5 V_{Ed} (\cot \theta - \cot \alpha)$	Cl. 6.2.3(7), Exp. (6.18)
	where θ = angle between the concrete compression strut and the beam axis. Assume cot θ = 2.5 (as a maximum) α = angle between shear reinforcement and the beam axis. For vertical links, cot α = 0 ΔF_{td} = 1.25V _{Ed} = 1.25 × 40.9 = 51.1 kN A_s = 42.4 × 10 ⁶ /(434.8 × 211) + 51.1 × 10 ³ /434.8 = 462 + 117 mm ² = 579 mm ² /rib	Cl. 6.2.3(1) Appendix A2; Table C6 Cl. 6.2.3(1)
	To be spread over b_{eff} where by inspection, $b_{eff} = 900$. \therefore Centre of support more critical (679 mm ² /rib required). Top steel may be spread across b_{eff} where $b_{eff} = b_w + b_{eff1} + b_{eff2} \le b$ $= b_w + 2 \times 0.1 \times 0.15 \times (l_1 + l_2)$ $= 150 + 0.03 \times (7500 + 9000) \le 900$ = 645 mm \therefore Use 2 no. H16 above rib and 3 no. H12 between (741 mm ² /rib) where 2 no. H16 and 2 no. H12 are within b_{eff}	Cl. 9.2.1.2(2) Cl. 5.3.2.1(3) Cl. 9.2.1.2(2), 5.3.2
3.3.6 a)	Flexural design, span BC Span B-C: Flexure M _{Ed} = 55.9 kNm/m = 50.3 kNm/rib	

3.3: Continuous ribbed slab

	$K = M_{\rm Ed} / bd^2 f_{\rm ck}$	
	$= 50.3 \times 10^{6}/900 \times 257^{2} \times 35$	
	= 0.02 i.e. ≤ K' (as before K' = 0.168)	
	By inspection,	
	$z = 0.95d = 0.95 \times 257 = 244 \text{ mm}$	
	By inspection, neutral axis is in flange.	
	$A_{g} = M_{\rm Ed} / f_{\rm Vd} z$	
	$= 50.3 \times 10^{6}/434.8 \times 244 = 474 \text{ mm}^{2}$	
	Try 2 no. H20/rib (628 mm²/rib)	
)	Span B–C: Deflection	C 11 C7
	Allowable $I/d = N \times K \times F1 \times F2 \times F3$	Section C7
	where	
	N = Basic I/d	Cl. 7.4.2(2)
	$\rho = 474/(159 \times 257 + (900 - 159) \times 100)$	
	= 474/114963	
	= 0.41%	
	$ ho_{O}$ = 0.59% (for f_{ck} = 30)	
	$\therefore \ ho < ho_{ m O}$ use Exp. (7.16a)	
	$N = 11 + 1.5 f_{ck}^{0.5} \rho_0 / \rho + 3.2 f_{ck}^{0.5} (\rho_0 / \rho - 1)^{1.5}$	Exp. (7.16a)
	$= 11 + 1.5 \times 35^{0.5} \times 0.055/0.041 + 3.2 \times 35^{0.5} (0.055/0.041 - 1)^{1.5}$	
	= 11 + 11.9 + 3.8 = 26.7	
	K = (internal span) 1.5	Table 7.4N, &
	F1 = $(b_{eff}/b_w = 6.0) \ 0.8$	NA, Table NA.5
	(r _{eff} r _w cite) cite	Note 5
	F2 = 7.0/1 _{eff} = 7.0/9.0 = (span > 7.0 m) 0.77	Cl. 7.4.2(2)
	$F3 = 310/\sigma_{\rm S} \le 1.5$	Cl. 7.4.2,
	where	Exp. (7.17)
	$\sigma_{\rm s}$ = ($f_{\rm yk}/\gamma_{\rm S}$) ($A_{\rm s,req}/A_{\rm s,prov}$) (SLS loads/ULS loads) (1/ δ)	& NA: Table NA
	= 434.8 × (474/628) [(4.30 + 0.3 × 5.0)/13.38](61.1/55.9)	
	= 434.8 × 0.75 × 0.43 × 1.09	
	= 153 MPa	
	$F3 = 310/\sigma_{g}$	
	= 310/153 = 2.03 therefore, say = 1.50 [‡]	NA, Table NA.5 Note 5
	∴ Permissible I/d = 26.8 × 1.5 × 0.8 × 0.77 × 1.50 = 37.1	INULE U
	Actual <i>I/d</i> = 9000/257 = 35 ∴ 0K	
	∴Use 2 H2O/rib (628 mm²/rib)	
	⁺ Both $A_{s,prov}/A_{s,reg}$ and any adjustment to N obtained from Exp. (7.16a) or	1

Resistance:	
$V_{Rd,c} = (0.18/\gamma_c)k (100 \rho_1 f_{ck})^{0.333} b_w d$	Cl. 6.2.2(1) 8
where	
$\gamma_{\rm C} = 1.5$	
$k = 1 + (200/d)^{0.5} \le 2$	
= 1 + (200/245)0.5	
= 1.90	
$\rho_{\rm I} = A_{\rm el}/b_{\rm w}d$	
where	
$A_{\rm el} = 2 \text{H16} = 402 \text{mm}^2$	
$b_{w} = 159 \text{ mm}$ as before	
d'' = 245 mm as before	
$\rho_{\rm I} = 0.0103$	
$f_{ck} = 35 \text{ MPa}$	
:. $V_{Rd,c} = (0.18/1.5) 1.9 (100 \times 0.0103 \times 35)^{0.333} \times 159 \times 245$	5
$= 0.75 \times 159 \times 245 = 29.2 \text{ kN/rib}$	
: Shear links red	zuired.
Shear links required for a distance:	<u> </u>
(37.9 – 29.2)/(13.38 × 0.9) + 245 = 722 + 245 = 967 mm	
from interface.	
Check shear capacity:	
$V_{\text{Rd.max}} = \alpha_{\text{cw}} b_{\text{w}} z \nu f_{\text{cd}} / (\cot \theta + \tan \theta)$	Exp. (6.9) &
	L. (0.0) u
where $\alpha = 10$	
$\alpha_{_{CW}}$ = 1.0 b_{_{W}} = 159 mm as before	
$p_w = 109 \text{ mm} \text{ as before}$ z = 0.9d	
$\nu = 0.6 (1 - f_{ck}/250) = 0.528$ f = 35/(5 - 23.3 MPa)	
$f_{cd} = 35/1.5 = 23.3 \text{ MPa}$ $\theta = \text{angle of inclination of strut.}$	
Rearranging formula above: (cot θ t tan θ) = α b suff (V)	
$(\cot \theta + \tan \theta) = \alpha_{cw} b_w z \nu f_{cd} / V_{Ed}$	
$= (1.0 \times 159 \times 0.9 \times 245 \times 0.528 \times 23.3)$	
$= \frac{(1.0 \times 159 \times 0.9 \times 245 \times 0.528 \times 23.3)}{41.6 \times 103}$	
$= \frac{(1.0 \times 159 \times 0.9 \times 245 \times 0.528 \times 23.3)}{41.6 \times 103}$ = 10.4	0.603(0)
$= \frac{(1.0 \times 159 \times 0.9 \times 245 \times 0.528 \times 23.3)}{41.6 \times 103}$ = 10.4 By inspection, cot ⁻¹ θ << 21.8. But cot θ restricted to 2.5 and	Cl. 6.2.3(2) 8
$= \frac{(1.0 \times 159 \times 0.9 \times 245 \times 0.528 \times 23.3)}{41.6 \times 103}$ $= 10.4$ By inspection, $\cot^{-1}\theta << 21.8$. But $\cot \theta$ restricted to 2.5 and $\therefore \tan \theta = 0.4$.	
$= \frac{(1.0 \times 159 \times 0.9 \times 245 \times 0.528 \times 23.3)}{41.6 \times 103}$ $= 10.4$ By inspection, $\cot^{-1}\theta << 21.8$. But $\cot \theta$ restricted to 2.5 and	CI. 6.2.3(2) & 5 kN ∴ OK

	Shear links: shear resistance with links	
	$V_{\text{Rd},\text{s}} = (A_{\text{sw}}/\text{s}) z f_{\text{ywd}} \cot \theta \le V_{\text{Rd},\text{max}}$ where	Ехр. (6.8)
	$A_{sw}/s = \text{area of legs of links/link spacing}$ z = 0.9d as before $f_{ywd} = 500/1.15 = 434.8$ $\cot \theta = 2.5 \text{ as before}$ $\therefore \text{ for } V_{Ed} \leq V_{Rd,s}$	
	$A_{sw}/s ≥ V_{Ed}/z f_{ywd} \cot \theta$ ≥ 37.9 × 10 ³ /(0.9 × 245 × 434.8 × 2.5) ≥ 0.158 Maximum spacing of links = 0.75d = 183 mm \therefore Use H8 @ 175 cc in 2 legs ($A_{sw}/s = 0.57$) for min. 967 mm into rib	Cl. 9.2.2(6)
3.3.8	Indirect supports As the ribs of the slab are not supported at the top of the supporting beam sections (A, B, C, D), additional vertical reinforcement should be provided in these supporting beams and designed to resist the reactions. This additional reinforcement should consist of links within the supporting beams (see Beams design, Section 4.3.9).	Cl. 9.2.5, Fig. 9.7
	Support A (and D) at solid/rib interface: $V_{Ed} = 26.5 \text{ kN/rib}$ $A_{s,req} = 26.3 \times 1000/(500/1.15) = 60 \text{ mm}^2$ This area is required in links within $h/6 = 300/6 = 50 \text{ mm}$ of the ribbed/solid interface and within $h/2 = 300/2 = 150 \text{ mm}$ of the centreline of the rib.	Fig. 9.7
	Support B (and C) at solid/rib interface: V _{Ed} = 37.9 kN/rib A _{s,req} = 37.9 × 1000/(500/1.15) = 87 mm ² placed similarly	
3.3.9	Other checks Check shear between web and flange By inspection, $V_{\rm Ed} \leq 0.4 f_{\rm ct,d}$ \therefore OK	Cl. 6.4.2 (6) & NA

	where b_{t} = width of tension zone $f_{ctm} = 0.30 \times f_{ck}^{0.666}$	Cl. 9.2.1.1, Exp. (9.1N) Table 3.1
	$A_{s,min} = 0.26 \times 0.30 \times 35^{0.666} \times 1000 \times 100/500 = 166 \text{ mm}^2/\text{m}$	
	$(\rho = 0.17\%)$	
	∴ Use A142 in flange (say OK)	BS 8666 ^[19]
	ii) Secondary reinforcement Not applicable.	
	iii) Maximum spacing of bars Maximum spacing of bars < 3 <i>h</i> < 400 mm	
	By inspection. OK	Cl. 9.3.1.1.(3)
	iv) Crack control Loading is the main cause of cracking : use Table 7.2N or Table 7.3N for $w_{\rm max} = 0.3$ mm and max. $\sigma_{\rm s} = 200$ MPa (see deflection check) Max. bar size = 25 mm or max. spacing = 250 mm OK by inspection	Cl. 7.3.3(2) Cl. 7.3.1.5 Table 7.2N Table 7.3N
	v) Effects of partial fixity Assuming partial fixity exists at end supports, 15% of A_s is required to extend 0.2 × the length of the adjacent span. $A_{s,req} = 15\% \times 525 = 79 \text{ mm}^2/\text{rib}$ For the rib in tension: $A_{s,min} = 0.26 \times 0.30 \times 30^{0.666} \times 159 \times 257/500 = 55 \text{ mm}^2/\text{rib}$	Cl. 9.3.1.2(2)
ь)	Curtailment Wherever possible simplified methods of curtailing reinforcement would be used. The following is intended to show how a rigorous assessment of curtailment of reinforcement might be undertaken.	
	i) End support A: bottom steel at support Check anchorage. As simply supported, 25% of A_s should be anchored in support. 25% × 595 = 148 mm ² Use 1 no. H2O/rib (314 mm ² /rib)	Cl. 9.3.1.1(4), 9.3.1.2(1) & Note, Cl. 9.2.1.4(1) & NA
	ii) Check anchorage length Envelope of tensile force: To resist envelope of tensile force, provide reinforcement to a_l or l_{bd} beyond centreline of support. For members without shear reinforcement, $a_l = d = 232$ By inspection, $\sigma_{sd} = 0$, $l_{bd} = l_{bd,min} = max(10\phi, 100 mm)$ iii) Indirect support	Cl. 9.3.1.1(4), 9.2.1.3(1), Cl. 9.2.1.3(2), 9.2.1.3(3), Fig. 9.2 Cl. 9.2.1.3
	iii) Indirect support As anchorage may be measured from face of indirect support, check force to be resisted at solid/rib interface: $F_s = M_{Ed}/z + F_E$	Cl. 9.3.1.1(4), 9.2.1.4(2), 9.2.1.4(3), Fig. 9.3b

3.3: Continuous ribbed slab

where	
$M_{\rm Ed} = 18.3 \rm kNm/rib$	
z = 220 as before	Exp. (9.3)
$F_{\rm E} = V_{\rm Ed} \times a_{\rm l}/z$ where	
where 20.3 kN///ib	Cl. 9.2.1.3,
$V_{\rm Ed} = 29.3 \text{ kN/rib}$ $a_1 = z \cot \theta/2$	Exp. (9.2)
$\therefore F_{\rm E} = V_{\rm Ed} \cot \theta/2$	
$r_{E} = v_{Ed} \cos \theta/2$ = 29.3 × 1.25 = 36.6 kN/rib	
$F_a = 18.6 \times 10^6 / (220 \times 10^3) + 36.6 = 121.1 \text{ kN}$	
iv) Anchorage length:	
$l_{bd} = \alpha l_{brad} \ge l_{bmin}$	Cl. 8.4.4,
where	Exp. (8.4)
α = conservatively 1.0	
$I_{b,rqd} = (\phi/4) (\sigma_{sd}/f_{bd})$	Exp. (8.3)
where $\phi = 20$	
$arphi^{ m }$ = 20 $\sigma_{ m sd}$ = design stress in the bar at the ULS	
$v_{sd} = 400$ M $r = 100$ M $r = 385$ MPa	
f_{bd} = ultimate bond stress	
$= 2.25 \eta_1 \eta_1 f_{ct,d}$	Cl. 8.4.2(2)
where	
η_1 = 1.0 for good bond conditions	
$\eta_2^{}~=$ 1.0 for bar diameter \leq 32 mm	
$f_{ct,d} = \alpha_{ct} f_{ct,k} / \gamma_C$	Cl. 3.1.6(2),
= 1.0 × 2.2/1.5	Tables 3.1,
= 1.47 MPa	2.1 & NA
$f_{bd} = 2.25 \times 1.47 = 3.31 \text{ MPa}$	50.03
$\therefore l_{brqd} = (20/4) (385/3.31) = 581 \text{ mm}$	Fig. 9.3
$l_{\rm b,min} = \max[10\phi; 100 \text{ mm}] = 200 \text{ mm}$	
∴ I _{bd} = 581 mm measured from solid/rib intersection. i.e. 31 mm beyond centreline of support [‡] .	
v) End support A: top steel	
Assuming partial fixity exists at end supports, 15% of A_s is required	Cl. 9.3.1.2(2)
to extend at least 0.2 × the length of the adjacent span ⁶ .	
$A_{\rm s,req} = 15\% \times 525 = 79 \ {\rm mm}^2/{\rm rib}$	
$A_{s,min} = 0.26 \times 0.30 \times 35^{0.666} \times 159 \times 257/500 = 68 \text{ mm}^2/\text{rib}$	Cl. 9.3.1.1 Cl. 9.2.1.1(1),
Use 2 no. H12 T1/rib in rib and 2 no. H10 T1/rib between ribs	Exp. (9.1N)
(383 mm²/rib)	
⁺ Whilst this would comply with the requirements of Eurocode 2, it is common practice	
to take bottom bars $0.5 \times a$ tension lap beyond the centreline of support (= 250 mm beyond the centreline of support; see model detail MS1 in SMDSC ^[9]).	
⁹ It is usual to curtail 50% of the required reinforcement at 0.21 and to curtail the remaining 50% at 0.31 or line of zero moment (see model detail MS2 in SMDSC ^[9]).	
	1

vi) Support B (and C): top steel	
At the centreline of support (2 no. H16 T + 3 r	10. H12 T)/rib are
required. The intention is to curtail in two stag	jes, firstly to 2 no.
H16 T/rib then to 2 no. H12 T/rib.	
Curtailment of 2 no. H16 T/rib at support	
(capacity of 2 no. H12 T/rib + shift rule):	
Assume use of 2 no. H12 T throughout in mids	pan:
Assuming $z = 211$ mm as before,	
$M_{\text{R2H12T}} = 2 \times 113 \times 434.8 \times 211$	
= 20.7 kNm/rib (23.0 kNm/m)	
(Note: section remains under-reinforced)	
From analysis M _{Ed} = 23.0 kNm/m occurs at 22	250 mm (towards A)
and 2575 mm (towards B).	
Shift rule: $\alpha_1 = z \cot \theta/2$	
Assuming $z = 211$ mm as before	
$\alpha_{\rm I} = 1.25 \times 211 = 264 \text{ mm}$	
\therefore 2 no. H12 T are adequate from 2250 + 264	= 2513 mm from B
towards A and $2575 + 263 = 2838$ mm from	
: Curtail 2 no. H16 T @ say 2600 from	
Curtailment of 3 no. H12 T/rib at support (capa	acity of 2 no. H16
T/rib + shift rule):	
$M_{\text{R2H16T}} = 2 \times 201 \times 434.8 \times 211$	
= 36.9 kNm/rib (41.0 kNm/m)	
(Note: section remains under-reinforced)	
From analysis $M_{\rm Ed}$ = 41.0 kNm/m occurs at 1 and 1180 mm	1310 mm (towards A)
(towards C).	
Shift rule: $\alpha_1 = 263$ mm as before	
\therefore 2 no. H16 T are adequate from 1310 + 26	3 = 1573 mm from B
towards A and 1180 + 263 = 1443 mm from B	
∴ Curtail 3 no. H12 at sa	
	(See Figure 3.16)
vii) Support B (and C): bottom steel at supp	ort Cl. 9.3.1.1(4
At the support 25% of span steel required	9.2.1.5(1),
$0.25 \times 628 = 157 \text{ mm}^2$	9.2.1.4(1)
Tr	y 1 no. H16 B/rib (201)
This reinforcement may be anchored into indire	ect support or carried Fig. 9.4
through.	

3.3: Continuous ribbed slab

 $l_{0 \min} = \max .10\phi \text{ or } 100 = 200$ Exp. (8.6) $I_0 = 1.0 \times 1.5 \times (20/4) \times 434.8/3.0$ = 1087 mm, say = 1200 mm SMDSC^[9] At B_A and B_C , check lap 2 no. H12 T to 2 no. H16 T in rib – full tension lap: Exp. (8.10) $l_0 = \alpha_1 \alpha_6 l_{b,rad} > l_{0,min}$ where $= 0.7 (c_d = 45 \text{ mm, i.e.} > 3\phi)$ Table 8.2 α_1 α_{c} = 1.5 (as > 50% being lapped) $l_{b,rgd} = (\phi/4) (\sigma_{sd}/f_{bd})$ where = 20 ø $\sigma_{sd} = 434.8$ $f_{
m bd}~=$ 2.1 (3.0 MPa as before but $\eta_{
m 1}$ = 0.7 for "not good bond Cl. 8.4.2 conditions") $l_{0,\min} = \max. 10\phi \text{ or } 100 = 120$ $l_0 = 0.7 \times 1.5 \times (12/4) \times 434.8/2.1$ = 651 mm, say = 700 mm SMDSC^[9] But to aid prefabrication take to solid/rib intersection 1000 mm from centre of support. At B_A and B_C , check lap 1 no. H16 B to 2 no. H20 B in rib: By inspection, nominal say, 500 mm SMDSC^[9]

d) RC detail of ribbed slab

Links not shown for clarity. Cover 25 mm to links.

This example is for the design of a reinforced concrete flat slab without column heads. The slab is part of a larger floor plate and is taken from *Guide to the design and construction of reinforced concrete flat slabs*^[27], where finite element analysis and design to Eurocode 2 is illustrated. As with the *Guide*, grid line C will be designed but, for the sake of illustration, coefficients will be used to establish design moments and shears in this critical area of the slab.

3.4.2 Cover

cnom: $c_{\rm nom} = c_{\rm min} + \Delta c_{\rm dev}$ where $c_{\min} = \max[c_{\min,b}; c_{\min,dur}; 10 \text{ mm}]$ where = 20 mm, assuming 20 mm diameter reinforcement Cminb $c_{min,dur} = 15 \text{ mm}$ for XC1 and using C3O/37 $\Delta c_{dev} = 10 \text{ mm}$

Exp. (4.1)

Table 4.1. BS 8500-1:

Table A4.

EC2-1-2:

Table 5.9

Cl. 4.4.1.2(3)

Fire:

For 2 hours resistance, $a_{\min} = 35 \text{ mm}$. not critical $\therefore c_{nom} = 20 + 10 = 30 \text{ mm}$

3.4.3 Load combination and arrangement

at supports.

73

	Punching shear force, V_{Ea} : At C2,	
	$V_{\rm Ed} = 16.6 \times 6.0 \times 9.6^{\ddagger} \times 0.63 \times 2 = 1204.8 \text{ kN}$	Table C3
	At C1 (and C3) $V_{Ed} = 16.6 \times 6.0 \times 9.6 \times 0.45 + (10 + 0.2 \times 0.3 \times 25)^{6} \times 1.25 \times 6.0$ = 516.5 kN	Table C3
3.4.5	Design grid line C	
	Effective depth, d:	
	d = 300 – 30 – 20/2 = 260 mm	
a)	Flexure: column strip and middle strip, sagging	
uj	$M_{\rm Ed} = 140.5$ kNm/m	
	$K = M_{Ed}/bd^2 f_{ck} = 140.5 \times 10^6 / (1000 \times 260^2 \times 30) = 0.069$	
	z/d = 0.94	Table C5
	$z = 0.94 \times 260 = 244 \text{ mm}$	
	$A_{s} = M_{Ed}/f_{yd}z = 140.5 \times 10^{6}/(244 \times 500/1.15) = 1324 \text{ mm}^{2}/\text{m}$	
	$(\rho = 0.51\%)$	
	Try H20 @ 200 B1 (1570 mm ² /m)	
b)	Deflection: column strip and middle strip	
	Check span-to-effective-depth ratio.	Appendix B
	Allowable $I/d = N \times K \times F1 \times F2 \times F3$	Cl. 7.4.2(2)
	where	Appendix C
	$N = 20.3 \ (\rho = 0.51\%, \ f_{ck} = 30)$	Tables C10-C13
	K = 1.2 (flat slab)	
	F1 = 1.0 (b _{eff} /b _w = 1.0) F2 = 1.0 (no brittle partitions) [#]	
	$F3 = 310/\sigma_s \le 1.5$	
	where*	Cl. 7.4.2, Exp. (7.17) Table 7.4N, &
	$\sigma_{\rm s} = \sigma_{\rm su} \left(A_{\rm s,req} / A_{\rm s,prov} \right) 1 / \delta$	NA, Table NA.5
	where (500/115) (8.5 0.7 1.0)/16.6 25.1 MP-	Note 5
	σ _{su} = (500/1.15) × (8.5 + 0.3 × 4.0)/16.6 = 254 MPa (or ≈ 253 MPa; from Figure C3	
	$G_k/Q_k = 2.1, \psi_2 = 0.3$ and $\gamma_G = 1.25$)	Fig. C3
	$\delta = \text{redistribution ratio} = 1.03$	1 19.00
	$\sigma_{e} \approx 253 \times (1324/1570)/1.03 = 207$	Fig. C14
	\therefore F3 = 310/207 = 1.50 [†]	
	: Allowable $l/d = 20.3 \times 1.2 \times 1.50 = 36.5$	
	[‡] As punching shear force (rather than a beam shear force) 'effective' span is not appropriate.	
	^S Cladding and strip of slab beyond centre of support.	
	[#] Otherwise for flat slabs $8.5/9.5 = 0.89$ as span > 8.5 m.	
	* See Appendix B1.5	Cl. 7.4.2(2)
	† In line with Note 5 to Table NA.5, 1.50 is considered to be a maximum for 310/ $\sigma_{\!_{\rm S}}$.	

$z = 0.89 \times 260 = 231 \text{ mm}$ $A_{s} = M_{Ed}/f_{yd}z = 222.3 \times 10^{6}/(231 \times 500/1.15) = \frac{2213 \text{ mm}^{2}/\text{m}}{(\rho = 0.85\%)}$ $\frac{\text{Try H20 @ 125 T1 (2512 \text{ mm}^{2}/\text{m})^{#}}{(\rho = 0.85\%)}$ d) Flexure: middle strip, hogging $M_{Ed} = 95.3 \text{ kNm/m}$ $K = M_{Ed}/bd^{2}f_{ck} = 95.3 \times 10^{6}/(1000 \times 260^{2} \times 30) = 0.069$ $z/d = 0.95$ $z = 0.95 \times 260 = 247 \text{ mm}$ $A_{s} = M_{Ed}/f_{yd}z = 95.3 \times 10^{6}/(247 \times 500/1.15) = \frac{887 \text{ mm}^{2}/\text{m}}{(\rho = 0.34\%)}$ Try H16 @ 200 T1 (1005 mm^{2}/\text{m}) e) Requirements i) In column strip, inside middle 1500 mm There is a requirement to place 50% of A_{t} within a width equal to	e C5
c) Flexure: column strip, hogging $M_{Ed} = 222.3 \text{ kNm/m}$ $K = M_{Ed}/bd^2 f_{ck} = 222.3 \times 10^6/(1000 \times 260^2 \times 30) = 0.109$ z/d = 0.89 $z = 0.89 \times 260 = 231 \text{ mm}$ $A_s = M_{Ed}/f_{yd}z = 222.3 \times 10^6/(231 \times 500/1.15) = \frac{2213 \text{ mm}^2/\text{m}}{(\rho = 0.85\%)}$ $\text{Try H20 @ 125 T1 (2512 \text{ mm}^2/\text{m})^{\#}}$ d) Flexure: middle strip, hogging $M_{Ed} = 95.3 \text{ kNm/m}$ $K = M_{Ed}/bd^2 f_{ck} = 95.3 \times 10^6/(1000 \times 260^2 \times 30) = 0.069$ z/d = 0.95 $z = 0.95 \times 260 = 247 \text{ mm}$ $A_s = M_{Ed}/f_{yd}z = 95.3 \times 10^6/(247 \times 500/1.15) = \frac{887 \text{ mm}^2/\text{m}}{(\rho = 0.34\%)}$ $\text{Try H16 @ 200 T1 (1005 \text{ mm}^2/\text{m})}$ e) Requirements i) In column strip, inside middle 1500 mm There is a requirement to place 50% of A_t within a width equal to	e C5
c) Flexure: column strip, hogging $M_{Ed} = 222.3 \text{ kNm/m}$ $K = M_{Ed}/bd^2 f_{ck} = 222.3 \times 10^6/(1000 \times 260^2 \times 30) = 0.109$ z/d = 0.89 $z = 0.89 \times 260 = 231 \text{ mm}$ $A_s = M_{Ed}/f_{yd}z = 222.3 \times 10^6/(231 \times 500/1.15) = \frac{2213 \text{ mm}^2/\text{m}}{(\rho = 0.85\%)}$ $\text{Try H20 @ 125 T1 (2512 \text{ mm}^2/\text{m})^{\#}}$ d) Flexure: middle strip, hogging $M_{Ed} = 95.3 \text{ kNm/m}$ $K = M_{Ed}/bd^2 f_{ck} = 95.3 \times 10^6/(1000 \times 260^2 \times 30) = 0.069$ z/d = 0.95 $z = 0.95 \times 260 = 247 \text{ mm}$ $A_s = M_{Ed}/f_{yd}z = 95.3 \times 10^6/(247 \times 500/1.15) = \frac{887 \text{ mm}^2/\text{m}}{(\rho = 0.34\%)}$ $\text{Try H16 @ 200 T1 (1005 \text{ mm}^2/\text{m})}$ e) Requirements i) In column strip, inside middle 1500 mm There is a requirement to place 50% of A_t within a width equal to	e C5
$K = M_{Ed}/bd^{2}f_{ck} = 222.3 \times 10^{6}/(1000 \times 260^{2} \times 30) = 0.109$ $z/d = 0.89$ $z = 0.89 \times 260 = 231 \text{ mm}$ $A_{g} = M_{Ed}/f_{yd}z = 222.3 \times 10^{6}/(231 \times 500/1.15) = \frac{2213 \text{ mm}^{2}/\text{m}}{(\rho = 0.85\%)}$ $\frac{\text{Try H20 @ 125 T1 (2512 \text{ mm}^{2}/\text{m})^{\#}}{(\rho = 0.85\%)}$ $M_{Ed} = 95.3 \text{ kNm/m}$ $K = M_{Ed}/bd^{2}f_{ck} = 95.3 \times 10^{6}/(1000 \times 260^{2} \times 30) = 0.069$ $z/d = 0.95$ $z = 0.95 \times 260 = 247 \text{ mm}$ $A_{g} = M_{Ed}/f_{yd}z = 95.3 \times 10^{6}/(247 \times 500/1.15) = \frac{887 \text{ mm}^{2}/\text{m}}{(\rho = 0.34\%)}$ $\frac{\text{Try H16 @ 200 T1 (1005 \text{ mm}^{2}/\text{m})}{(\rho = 0.34\%)}$ e) Requirements i) In column strip, inside middle 1500 mm There is a requirement to place 50\% of A _t within a width equal to	e C5
$K = M_{Ed}/bd^{2}f_{ck} = 222.3 \times 10^{6}/(1000 \times 260^{2} \times 30) = 0.109$ $z/d = 0.89$ $z = 0.89 \times 260 = 231 \text{ mm}$ $A_{g} = M_{Ed}/f_{yd}z = 222.3 \times 10^{6}/(231 \times 500/1.15) = \frac{2213 \text{ mm}^{2}/\text{m}}{(\rho = 0.85\%)}$ $\frac{\text{Try H20 @ 125 T1 (2512 \text{ mm}^{2}/\text{m})^{\#}}{(\rho = 0.85\%)}$ $M_{Ed} = 95.3 \text{ kNm/m}$ $K = M_{Ed}/bd^{2}f_{ck} = 95.3 \times 10^{6}/(1000 \times 260^{2} \times 30) = 0.069$ $z/d = 0.95$ $z = 0.95 \times 260 = 247 \text{ mm}$ $A_{g} = M_{Ed}/f_{yd}z = 95.3 \times 10^{6}/(247 \times 500/1.15) = \frac{887 \text{ mm}^{2}/\text{m}}{(\rho = 0.34\%)}$ $\frac{\text{Try H16 @ 200 T1 (1005 \text{ mm}^{2}/\text{m})}{(\rho = 0.34\%)}$ e) Requirements i) In column strip, inside middle 1500 mm There is a requirement to place 50\% of A _t within a width equal to	e C5
$z = 0.89 \times 260 = 231 \text{ mm}$ $A_{s} = M_{Ed}/f_{yd}z = 222.3 \times 10^{6}/(231 \times 500/1.15) = \frac{2213 \text{ mm}^{2}/\text{m}}{(\rho = 0.85\%)}$ $\frac{\text{Try H20 @ 125 T1 (2512 \text{ mm}^{2}/\text{m})^{\#}}{(\rho = 0.85\%)}$ $M_{Ed} = 95.3 \text{ kNm/m}$ $K = M_{Ed}/bd^{2}f_{ck} = 95.3 \times 10^{6}/(1000 \times 260^{2} \times 30) = 0.069$ $z/d = 0.95$ $z = 0.95 \times 260 = 247 \text{ mm}$ $A_{s} = M_{Ed}/f_{yd}z = 95.3 \times 10^{6}/(247 \times 500/1.15) = \frac{887 \text{ mm}^{2}/\text{m}}{(\rho = 0.34\%)}$ $\frac{\text{Try H16 @ 200 T1 (1005 \text{ mm}^{2}/\text{m})}{(\rho = 0.34\%)}$ e) Requirements i) In column strip, inside middle 1500 mm There is a requirement to place 50% of A _t within a width equal to $Table$	e C5
$A_{s} = M_{Ed}/f_{yd}z = 222.3 \times 10^{6}/(231 \times 500/1.15) = \frac{2213 \text{ mm}^{2}/\text{m}}{(\rho = 0.85\%)}$ $\frac{\text{Try H20 @ 125 T1 (2512 \text{ mm}^{2}/\text{m})^{\#}}{\text{d}}$ $M_{Ed} = 95.3 \text{ kNm/m}$ $K = M_{Ed}/bd^{2}f_{ck} = 95.3 \times 10^{6}/(1000 \times 260^{2} \times 30) = 0.069$ $z/d = 0.95$ $z = 0.95 \times 260 = 247 \text{ mm}$ $A_{s} = M_{Ed}/f_{yd}z = 95.3 \times 10^{6}/(247 \times 500/1.15) = \frac{887 \text{ mm}^{2}/\text{m}}{(\rho = 0.34\%)}$ $\frac{\text{Try H16 @ 200 T1 (1005 \text{ mm}^{2}/\text{m})}{\text{Try H16 @ 200 T1 (1005 \text{ mm}^{2}/\text{m})}}$ $e) \text{ Requirements}$ $i) \text{ In column strip, inside middle 1500 \text{ mm}}$ $\text{There is a requirement to place 50\% of } A_{t} \text{ within a width equal to}$	
$(\rho = 0.85\%) \\ \underline{\text{Try H20} @ 125 \text{ T1} (2512 \text{ mm}^2/\text{m})^{\#}}}$ d) Flexure: middle strip, hogging $M_{\text{Ed}} = 95.3 \text{ kNm/m} \\ K = M_{\text{Ed}}/bd^2 f_{ck} = 95.3 \times 10^6/(1000 \times 260^2 \times 30) = 0.069 \\ z/d = 0.95 \\ z = 0.95 \times 260 = 247 \text{ mm} \\ A_s = M_{\text{Ed}}/f_{yd}z = 95.3 \times 10^6/(247 \times 500/1.15) = \frac{887 \text{ mm}^2/\text{m}}{(\rho = 0.34\%)} \\ \underline{\text{Try H16} @ 200 \text{ T1} (1005 \text{ mm}^2/\text{m})} \\ e) \text{ Requirements} \\ \text{i) In column strip, inside middle 1500 mm} \\ \text{There is a requirement to place 50% of } A_t \text{ within a width equal to} \\ \end{bmatrix}$	
$\frac{\text{Try H20 @ 125 T1 (2512 mm^2/m)}^{\#}}{\text{d) Flexure: middle strip, hogging}}$ $M_{Ed} = 95.3 \text{ kNm/m}$ $K = M_{Ed}/bd^2 f_{ck} = 95.3 \times 10^6 / (1000 \times 260^2 \times 30) = 0.069$ $z/d = 0.95$ $z = 0.95 \times 260 = 247 \text{ mm}$ $A_{\mathfrak{s}} = M_{Ed}/f_{yd}z = 95.3 \times 10^6 / (247 \times 500/1.15) = \frac{887 \text{ mm}^2/\text{m}}{(\rho = 0.34\%)}$ $\frac{\text{Try H16 @ 200 T1 (1005 mm^2/m)}}{(\rho = 0.34\%)}$ e) Requirements i) In column strip, inside middle 1500 mm There is a requirement to place 50% of A_t within a width equal to	
d) Flexure: middle strip, hogging $M_{Ed} = 95.3 \text{ kNm/m}$ $K = M_{Ed}/bd^2 f_{ck} = 95.3 \times 10^6 / (1000 \times 260^2 \times 30) = 0.069$ z/d = 0.95 $z = 0.95 \times 260 = 247 \text{ mm}$ $A_5 = M_{Ed}/f_{yd}z = 95.3 \times 10^6 / (247 \times 500/1.15) = \frac{887 \text{ mm}^2/\text{m}}{(\rho = 0.34\%)}$ Try H16 @ 200 T1 (1005 mm ² /m) e) Requirements i) In column strip, inside middle 1500 mm There is a requirement to place 50% of A_t within a width equal to	
$M_{Ed} = 95.3 \text{ kNm/m}$ $K = M_{Ed}/bd^2 f_{ck} = 95.3 \times 10^6 / (1000 \times 260^2 \times 30) = 0.069$ $z/d = 0.95$ $z = 0.95 \times 260 = 247 \text{ mm}$ $A_s = M_{Ed}/f_{yd}z = 95.3 \times 10^6 / (247 \times 500/1.15) = \frac{887 \text{ mm}^2/\text{m}}{(\rho = 0.34\%)}$ $\frac{\text{Try H16 @ 200 T1 (1005 \text{ mm}^2/\text{m})}{(\rho = 0.34\%)}$ e) Requirements i) In column strip, inside middle 1500 mm $\text{There is a requirement to place 50\% of } A_t \text{ within a width equal to}$ $CI.9$	
$K = M_{Ed}/bd^{2}f_{ck} = 95.3 \times 10^{6}/(1000 \times 260^{2} \times 30) = 0.069$ $z/d = 0.95$ $z = 0.95 \times 260 = 247 \text{ mm}$ $A_{s} = M_{Ed}/f_{yd}z = 95.3 \times 10^{6}/(247 \times 500/1.15) = \frac{887 \text{ mm}^{2}/\text{m}}{(\rho = 0.34\%)}$ Try H16 @ 200 T1 (1005 mm ² /m) e) Requirements i) In column strip, inside middle 1500 mm There is a requirement to place 50% of A_{t} within a width equal to Cl. 9	
$z/d = 0.95$ $z = 0.95 \times 260 = 247 \text{ mm}$ $A_{s} = M_{Ed}/f_{yd}z = 95.3 \times 10^{6}/(247 \times 500/1.15) = \frac{887 \text{ mm}^{2}/\text{m}}{(\rho = 0.34\%)}$ EXAMPLE 1005 mm Try H16 @ 200 T1 (1005 mm ² /m) EXAMPLE 1500 mm There is a requirement to place 50% of A _t within a width equal to CL 9	
$z = 0.95 \times 260 = 247 \text{ mm}$ $A_{s} = M_{Ed}/f_{yd}z = 95.3 \times 10^{6}/(247 \times 500/1.15) = \frac{887 \text{ mm}^{2}/\text{m}}{(\rho = 0.34\%)}$ $\frac{\text{Try H16 @ 200 T1 (1005 \text{ mm}^{2}/\text{m})}{\text{Iry H16 @ 200 T1 (1005 \text{ mm}^{2}/\text{m})}}$ e) Requirements i) In column strip, inside middle 1500 mm There is a requirement to place 50% of A _t within a width equal to $CL = 9$	
$A_{\mathfrak{s}} = M_{\mathrm{Ed}}/f_{\mathrm{yd}}z = 95.3 \times 10^{6}/(247 \times 500/1.15) = \frac{887 \mathrm{mm}^{2}/\mathrm{m}}{(\rho = 0.34\%)}$ $\underline{\mathrm{Try} \ \mathrm{H16} \ @ \ 200 \ \mathrm{T1} \ (1005 \ \mathrm{mm}^{2}/\mathrm{m})}$ e) Requirements i) In column strip, inside middle 1500 mm There is a requirement to place 50% of A _t within a width equal to $CL \ 9$	e C5
$(\rho = 0.34\%)$ <u>Try H16 @ 200 T1 (1005 mm²/m)</u> e) Requirements i) In column strip, inside middle 1500 mm There is a requirement to place 50% of A _t within a width equal to $CI.9$	
Try H16 @ 200 T1 (1005 mm²/m) e) Requirements i) In column strip, inside middle 1500 mm There is a requirement to place 50% of A _t within a width equal to	
 e) Requirements i) In column strip, inside middle 1500 mm Cl. 9 There is a requirement to place 50% of A_t within a width equal to 	
i) In column strip, inside middle 1500 mmCl. 9There is a requirement to place 50% of A_t within a width equal to	
There is a requirement to place 50% of A_t within a width equal to	
	9.4.1(2)
0.125 of the increased with the one of the one of the operation	
0.125 of the panel width on either side of the column.	
Area required = $(3 \times 2213 + 3 \times 887)/2 \text{ mm}^2$	
$= 4650 \text{ mm}^2$	
$Over width = 2 \times 0.125 \times 6.0 \text{ m} = 1500 \text{ mm}$	
i.e. require $4650/1.5 = 3100 \text{ mm}^2/\text{m}$ for 750 mm either side of the	
column centreline.	
<u>Use H20 @ 100 T1 (3140 mm²/m)</u>	
750 mm either side of centre of support (16 no. bars)	
$(\rho = 0.60\%)$	
ii) In column strip, outside middle 1500 mm	
Area required = $3.0 \times 2213 - 16 \times 314 \text{ mm}^2$	
$= 1615 \text{ mm}^2$	
$Over width = 3000 - 2 \times 750 \text{ mm} = 1500 \text{ mm}$	
i.e. 1077 mm ² /m	
<u>Use H20 @ 250 T1 (1256 mm²/m)</u>	
in remainder of column strip	
* Note: Continuity into columns will reduce sagging moments and criticality of deflection check (see Figures 3.26 and 3.27).	
⁹ Note requirement for at least 2 bars in bottom layer to carry through column.	
[#] The hogging moment could have been considered at face of support to reduce the amount of reinforcement required.	

	iii) In middle strip Use H16 @ 200 T1 (1005 mm ² /m)	
	iv) Perpendicular to edge of slab at edge column	
	Design transfer moment to column $M_t = 0.17 \ b_e d^2 f_{ck}$ where	Cl. 9.4.2(1), I.1.2(5)
	$b_e = c_z + y = 400 + 400 = 800 \text{ mm}$	Fig. 9.9
	$M_{\rm t} = 0.17 \times 800 \times 260^2 \times 30 \times 10^{-6} = 275.8 \rm kNm$	
	$K = M_{Ed}/bd^2 f_{ck} = 275.8 \times 10^6 / (800 \times 260^2 \times 30) = 0.170$ z/d = 0.82	
	$z = 0.82 \times 260 = 213 \text{ mm}$	
	$A_{\rm s} = M_{\rm Ed}/f_{\rm yd}z = 275.8 \times 10^6/(213 \times 500/1.15) = 2978 \ {\rm mm^2/m}$	
	This reinforcement to be placed within $c_x + 2c_y = 1100$ mm	SMDSC ^[9]
	Try 10 no. H20 T1 U-bars in pairs @ 200 (3140 mm ²) local to column	
	(max. 200 mm from column)	
	Note: Where a 200 \times 200 hole occurs on face of column, b_e becomes 600 mm and pro rata, $A_{s,req}$ becomes 2233 mm ² i.e. use 4 no. H20 each side of hole (2512 mm ²).	
	v) Perpendicular to edge of slab generally Assuming that there is partial fixity along the edge of the slab, top reinforcement capable of resisting 25% of the moment in the adjacent span should be provided $0.25 \times 2213 = 553 \text{ mm}^2/\text{m}$ OK	Cl. 9.3.1.2(2), 9.2.1.4(1) & NA
	vi) Check minimum area of reinforcement	
	$A_{s,min} = 0.26 (f_{ctm}/f_{yk}) b_t d \ge 0.0013 b_t d$	Cl. 9.3.1.1, 9.2.1.
	where	
	$b_{\rm t}$ = width of tension zone	Table 3.1
	$f_{ctm} = 0.30 \times f_{ck}^{0.666}$	
	$A_{g,min} = 0.26 \times 0.30 \times 30^{0.666} \times 1000 \times 260/500 = 390 \text{ mm}^2/\text{m}$	
	$(\rho = 0.15\%)$	
	Use H12 @ 200 (565 mm²/m)	
	The reinforcement should extend 0.2h from $edge = 600 \text{ mm}$	Cl. 9.3.1.4(2)
4.6	Analysis grid line 1 (grid 3 similar) Consider grid line 1 as being $9.6/2 + 0.4/2 = 5.0$ m wide with continuous spans of 6.0 m. Column strip is $6.0/4 + 0.4/2 = 1.7$ m	
	wide. Consider perimeter load is carried by column strip only.	Cl. 5.1.1(4)

ing shear force, V_{Ed} ternal supports, as before = 516.5 kN multimate support, 516.5 × 1.18 = 609.5 kN gn grid line 1 (grid 3 similar) = 30 mm as before 20 - 30 - 20 - 20/2 = 240 mm e: column strip, sagging 95.1 kNm/m $M_{Ed}/bd^2f_{ck} = 95.1 \times 10^6/(1000 \times 240^2 \times 30) = 0.055$ 0.95 $0.95 \times 240 = 228$ mm $M_{Ed}/f_{yd}z = 95.1 \times 10^6/(228 \times 500/1.15) = 959 \text{ mm}^2/\text{m}}{(\rho = 0.40\%)}$ Try H16 @ 200 B2 (1005 mm ² /m) ition: column strip span-to-effective-depth ratio. able $I/d = N \times K \times F1 \times F2 \times F3$ $I = 26.2$ ($\rho = 0.40\%$, $f_{ck} = 30$)	Table C3 Table C5 Appendix B Appendix C7 Tables C10-C13 Cl. 7.4.2, Exp. (7.17), Table 7.41
$ 30 \text{ mm as before} $ $ 20 - 30 - 20 - 20/2 = 240 \text{ mm} $ $ e: column strip, sagging $ $ 95.1 \text{ kNm/m} $ $ M_{Ed}/bd^2 f_{ck} = 95.1 \times 10^6 / (1000 \times 240^2 \times 30) = 0.055 $ $ 0.95 \times 240 = 228 \text{ mm} $ $ M_{Ed}/f_{yd}z = 95.1 \times 10^6 / (228 \times 500/1.15) = 959 \text{ mm}^2/\text{m} $ $ (\rho = 0.40\%) $ $ Try \text{ H16 @ 200 B2 (1005 \text{ mm}^2/\text{m}) } $ $ ftion: column strip $ $ span-to-effective-depth ratio. $ $ able I/d = N \times K \times F1 \times F2 \times F3 $ $ f = 26.2 (\rho = 0.40\%, f_{ck} = 30) $	Appendix B Appendix C7 Tables C10-C13 Cl. 7.4.2, Exp.
$ 30 \text{ mm as before} $ $ 20 - 30 - 20 - 20/2 = 240 \text{ mm} $ $ e: column strip, sagging $ $ 95.1 \text{ kNm/m} $ $ M_{Ed}/bd^2 f_{ck} = 95.1 \times 10^6 / (1000 \times 240^2 \times 30) = 0.055 $ $ 0.95 \times 240 = 228 \text{ mm} $ $ M_{Ed}/f_{yd}z = 95.1 \times 10^6 / (228 \times 500/1.15) = 959 \text{ mm}^2/\text{m} $ $ (\rho = 0.40\%) $ $ Try \text{ H16 @ 200 B2 (1005 \text{ mm}^2/\text{m}) } $ $ ftion: column strip $ $ span-to-effective-depth ratio. $ $ able I/d = N \times K \times F1 \times F2 \times F3 $ $ f = 26.2 (\rho = 0.40\%, f_{ck} = 30) $	Appendix B Appendix C7 Tables C10-C13 Cl. 7.4.2, Exp.
$ 30 \text{ mm as before} $ $ 30 - 30 - 20 - 20/2 = 240 \text{ mm} $ $ e: column strip, sagging $ $ 95.1 \text{ kNm/m} $ $ M_{Ed}/bd^2 f_{ck} = 95.1 \times 10^6 / (1000 \times 240^2 \times 30) = 0.055 $ $ 0.95 $ $ 0.95 \times 240 = 228 \text{ mm} $ $ M_{Ed}/f_{yd}z = 95.1 \times 10^6 / (228 \times 500/1.15) = \frac{959 \text{ mm}^2/\text{m}}{(\rho = 0.40\%)} $ $ Try \text{ H16 @ 200 B2 (1005 \text{ mm}^2/\text{m})} $ $ rtion: column strip $ $ span-to-effective-depth ratio. $ $ able I/d = N \times K \times F1 \times F2 \times F3 $ $ f = 26.2 (\rho = 0.40\%, f_{ck} = 30) $	Appendix B Appendix C7 Tables C10–C1 Cl. 7.4.2, Exp.
$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	Appendix B Appendix C7 Tables C10–C1 Cl. 7.4.2, Exp.
Per column strip, sagging 95.1 kNm/m $M_{Ed}/bd^2 f_{ck} = 95.1 \times 10^6 / (1000 \times 240^2 \times 30) = 0.055$ 0.95 0.95 $\times 240 = 228$ mm $M_{Ed}/f_{yd}z = 95.1 \times 10^6 / (228 \times 500/1.15) = 959 \text{ mm}^2/\text{m}}{(\rho = 0.40\%)}$ Try H16 @ 200 B2 (1005 mm ² /m) rtion: column strip span-to-effective-depth ratio. able $l/d = N \times K \times F1 \times F2 \times F3$ $l' = 26.2$ ($\rho = 0.40\%$, $f_{ck} = 30$)	Appendix B Appendix C7 Tables C10–C1 Cl. 7.4.2, Exp.
$\begin{split} & M_{\rm Ed}/bd^2 f_{c\rm k} = 95.1 \times 10^6 / (1000 \times 240^2 \times 30) = 0.055 \\ & 0.95 \\ & 0.95 \times 240 = 228 \text{ mm} \\ & M_{\rm Ed}/f_{\rm yd}z = 95.1 \times 10^6 / (228 \times 500 / 1.15) = \frac{959 \text{ mm}^2/\text{m}}{(\rho = 0.40\%)} \\ & \qquad \qquad$	Appendix B Appendix C7 Tables C10–C1 Cl. 7.4.2, Exp.
$\begin{array}{l} 0.95 \\ 0.95 \times 240 &= 228 \text{ mm} \\ M_{\text{Ed}}/f_{yd}z &= 95.1 \times 10^6/(228 \times 500/1.15) \\ &= 959 \text{ mm}^2/\text{m} \\ \hline (\rho &= 0.40\%) \\ \hline \text{Try H16 @ 200 B2 (1005 \text{ mm}^2/\text{m})} \\ \hline \text{stion: column strip} \\ \text{span-to-effective-depth ratio.} \\ \text{able } l/d &= N \times K \times \text{F1} \times \text{F2} \times \text{F3} \\ l &= 26.2 (\rho = 0.40\%, f_{ck} = 30) \end{array}$	Appendix B Appendix C7 Tables C10–C1 Cl. 7.4.2, Exp.
$\begin{array}{l} 0.95 \times 240 = 228 \text{ mm} \\ M_{\text{Ed}}/f_{yd}z = 95.1 \times 10^6/(228 \times 500/1.15) = \underline{959 \text{ mm}^2/\text{m}} \\ \hline (\rho = 0.40\%) \\ \hline \text{Try H16 @ 200 B2 (1005 \text{ mm}^2/\text{m})} \\ \hline \text{span-to-effective-depth ratio.} \\ \text{able } l/d = N \times K \times \text{F1} \times \text{F2} \times \text{F3} \\ \hline l = 26.2 (\rho = 0.40\%, f_{ck} = 30) \end{array}$	Appendix C7 Tables C10–C1 Cl. 7.4.2, Exp.
$\begin{split} M_{\rm Ed}/f_{\rm yd}z &= 95.1 \times 10^6/(228 \times 500/1.15) = \frac{959 \text{ mm}^2/\text{m}}{(\rho = 0.40\%)} \\ &\qquad \qquad $	Appendix C7 Tables C10–C1 Cl. 7.4.2, Exp.
$(\rho = 0.40\%)$ <u>Try H16 @ 200 B2 (1005 mm²/m)</u> span-to-effective-depth ratio. able I/d = N × K × F1 × F2 × F3 $f = 26.2 (\rho = 0.40\%, f_{ck} = 30)$	Appendix C7 Tables C10–C1 Cl. 7.4.2, Exp.
$\frac{\text{Try H16 @ 200 B2 (1005 mm^2/m)}}{\text{span-to-effective-depth ratio.}}$ $\text{able } l/d = N \times K \times \text{F1} \times \text{F2} \times \text{F3}$ $l' = 26.2 (\rho = 0.40\%, f_{ck} = 30)$	Appendix C7 Tables C10–C1 Cl. 7.4.2, Exp.
tion: column strip span-to-effective-depth ratio. able $l/d = N \times K \times F1 \times F2 \times F3$ = 26.2 ($\rho = 0.40\%$, $f_{ck} = 30$)	Appendix C7 Tables C10–C1 Cl. 7.4.2, Exp.
span-to-effective-depth ratio. able $l/d = N \times K \times F1 \times F2 \times F3$ = 26.2 ($\rho = 0.40\%$, $f_{ck} = 30$)	Appendix C7 Tables C10–C1 Cl. 7.4.2, Exp.
ble $l/d = N \times K \times F1 \times F2 \times F3$ = 26.2 ($\rho = 0.40\%$, $f_{ck} = 30$)	Appendix C7 Tables C10–C1 Cl. 7.4.2, Exp.
= 26.2 (ρ = 0.40%, f _{ck} = 30)	Tables C10-C1 Cl. 7.4.2, Exp.
SK -	Cl. 7.4.2, Exp.
	(7.17), Table 7.4
= 1.2 (flat slab)	0 1 1 4
$1 = 1.0$ $(b_{eff}/b_{w} = 1.0)$	& NA, Table NA.5:
2 = 1.0 (no brittle partitions)	Note 5
$3 = 310/\sigma_{s} \le 1.5$	
here	
$\sigma_{\rm s} = \sigma_{\rm su} \left(A_{\rm s,req} / A_{\rm s,prov} \right) 1 / \delta$	
where $\sigma_{_{ m SU}} pprox$ 283 MPa (from Figure C3 and $G_{ m k}/Q_{ m k}$	
$\sigma_{su} \sim 200$ km a (montrigue co and $\sigma_{k} \alpha_{k}$ = 3.6, $\psi_{2} = 0.3$, $\gamma_{G} = 1.25$)	Fig. C3
δ = redistribution ratio = 1.08	Ű
	Table C14
∴ F3 = 310/250 = 1.24	Fig. C3
wable $l/d = 262 \times 12 \times 124 = 390$	
Use H16 @ 200 B2 (1005 mm ² /m)	
e: middle strip, sagging	
37.6 kNm/m	
pection, $z = 228$ mm	
	wable $l/d = 26.2 \times 1.2 \times 1.24 = 39.0$ I $l/d = 5900/240 = 24.5 \therefore 0K$ <u>Use H16 @ 200 B2 (1005 mm²/m)</u> e: middle strip, sagging 37.6 kNm/m pection, $z = 228$ mm

	By inspection, deflection OK.	
	Check minimum area of reinforcement.	
	$A_{\text{s,min}} = 0.26 \ (f_{ctm}/f_{yk}) \ b_t d \ge 0.0013 \ b_t d$ where	Cl. 9.3.1.1, 9.2
	b_{t} = width of tension zone	
	$f_{ctm} = 0.30 \times f_{ck}^{0.666}$	Table 3.1
	$A_{\text{s.min}} = 0.26 \times 0.30 \times 30^{0.666} \times 1000 \times 240/500 = 361 \text{ mm}^2/\text{m}$	
	$(\rho = 0.15\%)$	
	Use H12 @ 300 T2 (376 mm ² /m)	
	<u></u>	
d)	Flexure: column strip, hogging	
	$M_{\rm Ed} = 131.6 \rm kNm/m$	Table C5
	$\begin{split} & K = M_{\rm Ed}/bd^2 f_{\rm ck} = 131.6 \times 10^6/(1000 \times 240^2 \times 30) = 0.076 \\ & z/d = 0.928 \end{split}$	
	$z = 0.928 \times 240 = 223 \text{ mm}$	
	$A_{\rm s} = M_{\rm Ed}/f_{\rm yd}z = 131.6 \times 10^6/(223 \times 500/1.15) = 1357 \rm mm^2/m$	
	(ho = 0.56%)	
	Try H20 @ 200 T2 (1570 mm²/m) [‡]	
e)	Flexure: middle strip, hogging	
	$M_{\rm Ed} = 18.8 \rm kNm/m$	
	By inspection, $z = 228$ mm	Table C5
	$A_{s} = M_{\rm Ed}/f_{\rm yd}z = 18.8 \times 10^{6}/(228 \times 500/1.15) = 190 \rm{mm^{2}/m}$	
	$(\rho = 0.08\%)$	
	$A_{s,min}$ as before = 361 mm ² /m	Cl. 9.3.1.1, 9.2
	$(\rho = 0.15\%)$	
	Try H12 @ 300 T2 (376 mm ² /m)	
f)	Requirements	
	There is a requirement to place 50% of $A_{\rm t}$ within a width equal to 0.125	Cl. 9.4.1(2)
	of the panel width on either side of the column. As this column strip is	
	adjacent to the edge of the slab, consider one side only:	
	Area required = $(1.5 \times 1357 + 3.3 \times 190)/2 \text{ mm}^2$	
	$= 1334 \text{ mm}^2$	
	Within $= 0.125 \times 6.0 \text{ m} = 750 \text{ mm of the column centreline,}$	
	i.e. require $1334/0.75 = 1779 \text{ mm}^2/\text{m}$ for 750 mm from the column	
	centreline.	
	⁺ The hogging moment could have been considered at face of support to reduce	
	the amount of reinforcement required. This should be balanced against the effect of the presence of a 200×200 hole at some supports which would	
	the amount of reinforcement required. This should be balanced against the	

	M_{Ed}			
	Column strip, 3.0 m wide	Middle strip, 6.1 m wide		
-ve (hogging)	0.75 × 453.2/3.0	0.25 x 453.2/6.1		
	= 113.3 kNm/m	= 18.5 kNm/m		
+ve (sagging)	0.50 × 453.2/3.0	0.50 × 453.2/6.1		
	= 75.5 kNm/m	= 37.1 kNm/m		
Punching shear	force, V _{Ed} , as before.			
Design grid l				
Effective depth,				
	20 - 20/2 = 240 mm			
Flexure: column				
$M_{\rm Ed} = 75.5 \rm kNm$			Table C5	
By inspection, z		$15) - 761 \text{ mm}^2/\text{m}$		
$n_{\rm g} = m_{\rm Ed} n_{\rm yd} Z =$	75.5 × 10 ⁶ /(228 × 500/1. ⁻	$(\rho = 0.32\%)$		
	(<i>p</i> = 0.32 <i>%</i>) Try H16 @ 250 B2 (804 mm ² /m)			
Deflection: colun	Deflection: column strip			
	By inspection, OK.			
Flexure: column				
M _{Ed} = 37.1 kNm/	$M_{\rm Ed} = 37.1 \rm kNm/m$			
By inspection, z				
$A_{\rm g} = M_{\rm Ed} / f_{\rm yd} z = 37.1 \times 10^6 / (228 \times 500 / 1.15) = 374 \rm mm^2 / m$				
$(\rho = 0.55\%)$				
By inspection, d		@ 200 B2 (393 mm ² /m)		
Flexure: column				
$M_{\rm Ed} = 113.3 \rm kNrr$ $K_{\rm ed} = M_{\rm ed} / hd^2 f$		$40^2 \times 30) = 0.065$	Table C5	
$K = M_{Ed}/bd^2 f_c$ $z/d = 0.94$	$_{\rm k} = 113.3 \times 10^6 / (1000 \times 2^6)$	TU = U U U U U		
	240 = 225 mm			
_ 0.010 X I				
$A_{\rm s} = M_{\rm Ed}/f_{\rm vd}z$	= 113.3 × 10 ⁶ /(225 × 500/	′1.15) = 1158 mm²/m		
	$(\rho = 0.48\%)$			
	Try H2O	@ 250 T2 (1256 mm ² /m) [‡]		
Flexure: middle	strip, hogging			
M _{Ed} = 18.5 kNm.	/m			
By inspection, z	= 228 mm			

	$A_{g} = M_{Ed}/f_{vd}z = 18.5 \times 10^{6}/(228 \times 500/1.15) = 187 \text{ mm}^{2}/\text{m}$	
	$(\rho = 0.08\%)$	Table C5
	As before minimum area of reinforcement governs	
	$A_{\text{s.min}} = 0.26 \times 0.30 \times 30^{0.666} \times 1000 \times 240/500 = 361 \text{ mm}^2/\text{m}$	Cl. 9.3.1.1, 9.2.1.1
		0. 3.3.1.1, 3.2.1.1
	$(\rho = 0.15\%)$	
	Try H12 @ 300 B2 (376 mm²/m)	
e)	Requirements	
	Regarding the requirement to place 50% of A_t within a width equal	
	to 0.125 of the panel width on either side of the column:	
	Area required = $(3.0 \times 1158 + 6.1 \times 187)/2 \text{ mm}^2$	
	$= 2307 \text{ mm}^2$	
	Within $= 2 \times 0.125 \times 6.0 \text{ m} = 1500 \text{ mm}$ centred on the column	
	centreline,	
	i.e. require $2307/1.5 = 1538 \text{ mm}^2/\text{m}$ for 750 mm either side of the column centreline.	
	Use H20 @ 200T2 (1570 mm²/m)	
	750 mm either side of centre of support	
	$\frac{1}{(\rho = 0.60\%)}$	
	$(\rho = 0.00 \text{ to})$	
	In column strip, outside middle 1500 mm, requirement is for	
	3.0 × 1158 – 1.5 × 1570 = 1119 mm² in 1500 mm, i.e. 764 mm²/m	
	Use H16 @ 250 T2 (804 mm ² /m) in remainder of column strip	
	In middle strip: <u>Use H12 @ 300 T2 (376 mm²/m)</u>	
3.4.10	Punching shear, central column, C2	
	At C2, applied shear force, V_{Ed} = 1204.8 kN [‡]	
-)		
a)	Check at perimeter of column	
	$v_{\rm Ed} = \beta V_{\rm Ed} / u_{\rm i} d < v_{\rm Rd,max}$	Cl. 6.4.3(2),
	where	6.4.5(3)
	eta = factor dealing with eccentricity; recommended value 1.15	
	V _{Ed} = applied shear force	Fig. 6.21N & NA
	u _i = control perimeter under consideration.	
	For punching shear adjacent to interior columns	Cl. 6.4.5(3)
	$u_0 = 2(c_x + c_y) = 1600 \text{ mm}$	
	<i>d</i> = mean effective depth = (260 + 240)/2 = 250 mm	Exp. (6.32)
	$v_{\rm Ed}$ = 1.15 × 1204.8 × 10 ³ /1600 × 250 = 3.46 MPa	
	$v_{\rm Rd,max} = 0.5 \nu f_{\rm cd}$	Cl. 6.4.5(3) Note
	- myrraet. VW	
	* Column C2 is taken to be an internal column. In the case of a penultimate	
	column, an additional elastic reaction factor should have been considered.	
		1

	where	
	$\nu = 0.6(1 - f_{ck}/250) = 0.528$ $f_{cd} = \alpha_{cc} \lambda f_{ck} / \gamma_{C} = 1.0 \times 1.0 \times 30/1.5 = 20$	
	$= 0.5 \times 0.528 \times 20 = 5.28 \text{ MPa} \qquad \therefore \text{ OK}$	Table C7 [§]
1.5		
Ь)	Check shear stress at control perimeter u_1 (2 <i>d</i> from face of column)	Cl. 6.4.2
	$v_{\rm Ed} = \beta V_{\rm Ed} / u_1 d < v_{\rm Rd,c}$	
	where β , $V_{\rm Ed}$ and d as before	
	μ_{r} , ν_{Ed} and a as before $u_1 = \text{control perimeter under consideration.}$	Fig. 6.13
	For punching shear at $2d$ from interior columns	ng. ene
	$u_1 = 2(c_x + c_y) + 2\pi \times 2d = 4741 \text{ mm}$	
	$v_{\rm Ed} = 1.15 \times 1204.8 \times 10^3 / 4741 \times 250 = 1.17 \rm{MPa}$	
	$V_{Rd,c}^{La} = 0.18 / \gamma_C k (100 \rho_l f_{ck})^{0.333}$	Exp. (6.47) & NA
	where	
	$\gamma_C = 1.5$	
	$k = 1 + (200/d)^{0.5} \le 2 \ k = 1 + (200/250)^{0.5} = 1.89$	
	$\rho_{\rm l} = (\rho_{\rm ly} \rho_{\rm lz}) 0.5 = (0.0085 \times 0.0048)^{0.5} = 0.0064$	Cl. 6.4.4.1(1)
	where	
	$\rho_{\rm ly}, \rho_{\rm lz}$ = Reinforcement ratio of bonded steel in the y and	
	z direction in a width of the column plus 3 <i>d</i> each	
	side of column [#]	
	$f_{ck} = 30$ $v_{Rd,c} = 0.18/1.5 \times 1.89 \times (100 \times 0.0064 \times 30)^{0.333} = 0.61 \text{ MPa}$	
	$v_{Rd,c} = 0.1071.5 \times 1.00 \times (100 \times 0.0004 \times 0.00) = 0.01 \text{ Mila}$ \therefore Punching shear reinforcement required	Table C5*
		14010 00
c)	Perimeter at which punching shear links are no longer required	Exp. (6.54)
	$u_{out} = V_{Ed} \times \beta / (d v_{Rd,c})$	
	$u_{out} = 1204.8 \times 1.15 \times 10^3 / (250 \times 0.61) = 9085 \text{ mm}$	
	Length of column faces = $4 \times 400 = 1600$ mm	
	Radius to $u_{out} = (9085 - 1600)/2\pi = 1191 \text{ mm from face of column}$	
	Perimeters of shear reinforcement may stop $1191 - 1.5 \times 250 = 816$ m	
	from face of column	Cl. 6.4.5(4) & NA
	Shear reinforcement (assuming rectangular arrangement of links):	
	ε _{r,max} = 250 × 0.75 = 187, say = 175 mm	Cl. 9.4.3(1)
	[§] At the perimeter of the column, $v_{Rd,max}$ assumes the strut angle is 45°, i.e. that $\cot \theta = 1.0$. Where $\cot \theta = < 1.0$, $v_{Rd,max}$ is available from Table C7.	
	[#] The values used here for $ ho_{ m ly}$, $ ho_{ m lz}$ ignore the fact that the reinforcement is concentrated over the support. Considering the concentration would have given a	
	higher value of $V_{\rm Rd,c}$ at the expense of further calculation to determine $\rho_{\rm ly}$, $\rho_{\rm lz}$ at	
	3d from the side of the column.	

	Inside 2 <i>d</i> control perimeter, $s_{t,max} = 250 \times 1.5 = 375$, say 350 mm Outside control perimeter $s_{t,max} = 250 \times 2.0 = 500$ mm	Cl. 9.4.3(2)
	Assuming vertical reinforcement:	
	At the basic control perimeter, u_1 , $2d$ from the column [‡] :	
	$A_{sw} \ge (v_{Ed} - 0.75v_{Rd,c}) \ \sigma_r \ u_1 / 1.5 f_{ywd,ef})$	Exp. (6.52)
	where	
	$f_{ywd,ef} = effective design strength of reinforcement$	0.0450
	= $(250 + 0.25d) < f_{yd} = 312$ MPa For perimeter u_1	Cl. 6.4.5(1)
	$A_{sw} = (1.17 - 0.75 \times 0.61) \times 175 \times 4741/(1.5 \times 312)$	
	<u>= 1263 mm² per perimeter</u>	
	$A_{sw,min} \ge 0.08 f_{ck}^{0.5}(s_r s_t)/(1.5 f_{yk} \sin \alpha + \cos \alpha)$ where	Ехр. (9.11)
	A _{sw,min} = minimum area of a single leg of link	
	α = angle between main reinforcement and shear reinforcement; for vertical reinforcement sin α = 1.0	
	A _{sw.min} ≥ 0.08 × 30 ^{0.5} (175 × 350)/(1.5 × 500) = 36 mm ²	
	\therefore Try H8 legs of links (50 mm ²)	
	$A_{\rm sw}/u_{\rm 1} \ge 1263/4741 = 0.266 {\rm mm^2/mm}$	
	Using H8 max. spacing = min[50/0.266; 1.5 <i>d</i>]	Cl. 9.4.3
		Cl. 9.4.3(1)
	say = 175 mm centres	
d)	Check area of reinforcement > 1263 mm² in perimeters inside u_1^{\ominus}	
	1st perimeter to be > 0.3d but < 0.5d from face of column. Say 0.4d = 100 mm from face of column.	Fig. 9.10, Cl. 9.4.3(4)
	By inspection of Figure 3.23 the equivalent of 10 locations are available at 0.4 <i>d</i> from column therefore try 2 \times 10 no. H10 = 1570 mm ² .	
	By inspection of Figure 3.23 the equivalent of 18 locations are available at 1.15 <i>d</i> from column therefore try 18 no. H10 = 1413 mm ² .	
	By inspection of Figure 3.23 the equivalent of 20 locations are available at 1.90 <i>d</i> from column therefore try 20 no. H10 = 1570 mm ² .	
	By inspection of Figure 3.23 beyond $u_{\rm l}$ to $u_{\rm out}$ grid of <u>H10 at 175 x 175 OK.</u>	
	‡ Clause 6.4.5 provides Exp. (6.52), which by substituting $v_{\rm Ed}$ for $v_{\rm Rd,c}$, allows calculation of the area of required shear reinforcement, $A_{\rm sw}$ for the basic control perimeter, $u_{\rm f}$.	Cl. 6.4.5 Exp. 6.5.2
	⁶ The same area of shear reinforcement is required for all perimeters inside or outside perimeter u ₁ . See <i>Commentary on design</i> , Section 3.4.14. Punching shear reinforcement is also subject to requirements for minimum reinforcement and spacing of shear reinforcement (see Cl. 9.4.3).	Cl. 9.4.3

$v_{\rm Ed} = \beta V_{\rm Ed} / u_{\rm 1} d < v_{\rm Rd,c}$	
^v Ed = ^p ^v Ed ⁱ ^u 1 ^o ^v ^v Rd,c	
where	
eta, V_{Ed} and d as before	5 045
$u_1 = \text{control perimeter under consideration.}$	Fig. 6.15
For punching shear at 2d from edge column columns	
$u_1 = c_2 + 2c_1 + \pi \times 2d = 2771 \text{ mm}$	
$v_{\rm Ed} = 1.4 \times 609.5 \times 10^3 / 2771 \times 250 = 1.23 \text{ MPa}$	F (0.45
$v_{\rm Rd,c} = 0.18/ \gamma_{\rm C} \times k \times (100 \ \rho_{\rm l} f_{\rm ck})^{0.333}$	Exp. (6.47
where 15	
$\gamma_{\rm C} = 1.5$ k = as before = 1 +(200/250) ^{0.5} = 1.89	
$\rho_{\rm l} = (\rho_{\rm ly}, \rho_{\rm lz})^{0.5}$	
	Cl. 6.4.4.1
where $ ho_{ _{V}}, ho_{ _{Z}}$ = Reinforcement ratio of bonded steel in the y and z direction	00.1.1.1
in a width of the column plus 3 <i>d</i> each side of column.	
$ ho_{ m bv}$: (perpendicular to edge) 10 no. H20 T2 + 6 no. H12	
T2 in 2 × 750 + 400, i.e. 3818 mm ² in 1900 mm	
$\therefore \rho_{\rm by} = 3818/(250 \times 1900) = 0.0080$	
$ ho_{\rm lz}$: (parallel to edge) 6 no. H2O T1 + 1 no. T12 T1 in 400 +	
750 i.e. 1997 mm ² in 1150 mm.	
$\therefore \rho_{1z} = 1997/(250 \times 1150) = 0.0069$	
$\rho_1 = (0.0080 \times 0.0069)^{0.5} = 0.0074$	
$f_{ck} = 30$	
$v_{Rd,c} = 0.18/1.5 \times 1.89 \times (100 \times 0.0074 \times 30)^{0.333} = 0.64 \text{ MPa}$	Table C6 [‡]
: Punching shear reinforcement required	
\mathbb{C}	
$\frac{C}{1}$	
\bigcup_{i} $\frac{3d}{3} = 750 \qquad \frac{400}{3} \qquad \frac{3d}{3} = 750 \qquad \frac{3d}{4} = 750 \qquad \frac$	
H12 @ 200 U-bars 6H2OT1 @175 10H20 U-bars in pairs @ 200 cc	
H12 @ 200 U-bars 6H20T1 @175 10H20 U-bars in pairs @ 200 cc	
H12 @ 200 U-bars 6H2OT1 @175 10H20 U-bars in pairs @ 200 cc	

c)	Perimeter at which punching shear links no longer required $u_{out} = 609.5 \times 1.4 \times 10^3 / (250 \times 0.64) = 5333 \text{ mm}$ Length attributable to column faces = $3 \times 400 = 1200 \text{ mm}$ \therefore radius to u_{out} from face of column	Exp. (6.54)				
	= say (5333 – 1200)/ π = 1315 mm from face of column Perimeters of shear reinforcement may stop 1370 – 1.5 × 250 = 940 mm from face of column.					
d)	Shear reinforcement					
- 7	As before, $\sigma_{r,max} = 175$ mm; $\sigma_{t,max} = 350$ mm and $f_{ywd,ef} = 312$ MPa For perimeter u_1	Cl. 9.4.3(1), 9.4.3(2)				
	$\begin{split} A_{sw} &\geq (v_{Ed} - 0.75 v_{Rd,c}) \ s_r \ u_1 / 1.5 f_{ywd,ef} \\ &= (1.23 - 0.75 \times 0.64) \times 175 \times 2771 / (1.5 \times 312) \end{split}$	Exp. (6.52)				
	= 777 mm ² per perimeter					
	$\begin{split} A_{\rm sw,min} &\geq 0.08 \times 30^{0.5} \ (175 \times 350) / (1.5 \times 500) = 36 \ \rm mm^2 \\ A_{\rm sw} / u_1 &\geq 777 / 2771 = 0.28 \ \rm mm^2 / mm \end{split}$	Exp. (9.11)				
	Using H8 max. spacing = 50/0.28 = 178 mm cc					
	\therefore Use min. H8 (50 mm 2) legs of links at 175 mm cc around perimeters:					
	perimeters at 175 mm centres					
e)	Check area of reinforcement > 777 mm ² in perimeters inside u_1^{S} 1st perimeter to be > 0.3d but < 0.5d from face of column. Say 0.4d = 100 mm from face of column By inspection of Figure 3.27 the equivalent of 6 locations are available at 0.4d from column therefore try 2 × 6 no. H10 = 942 mm ²	Fig. 9.10, Cl. 9.4.3(4)				
	By inspection of Figure 3.27 the equivalent of 12 locations are available at 1.15 <i>d</i> from column therefore try 12 no. H10 = 942 mm ²					
	By inspection of Figure 3.27 the equivalent of 14 locations are available at 1.90 <i>d</i> from column therefore try 14 no. H10 = 1099 mm ²					
	By inspection of Figure 3.27 beyond u_1 to u_{out} grid of <u>H10 at 175 x 175 OK.</u>					
3.4.12	Punching shear, edge column with hole Check columns D1 and D3 for 200 × 200 mm hole adjacent to column. As previously described use 4 no. H20 U-bars each side of column for transfer moment.					
	Assuming internal support, $V_{\rm Ed}$ = 516.5 kN					
	risouring internal supports, r _{Ed} – orois kit					
	$^{\overline{9}}$ See Commentary on design Section 3.4.14. Punching shear reinforcement is also subject to requirements for minimum reinforcement and spacing of shear reinforcement (see Cl. 9.4.3).	Cl. 9.4.3				

- >		
a)	Check at perimeter of column $v_{Ed} = \beta V_{Ed} / u_{I} d < v_{Rd,max}$	Cl. 6.4.3(2), 6.4.5(3)
	where β = factor dealing with eccentricity; recommended value 1.4	Fig. 6.21N & NA
	V _{Ed} = applied shear force u _i = control perimeter under consideration. For punching shear	
	adjacent to edge columns $u_0 = c_2 + 3d < c_2 + 2c_1$ = 400 + 750 < 3 × 400 mm	Cl. 6.4.5(3)
	= 1150 mm	
	Allowing for hole, $u_0 = 1150 - 200 = 950 \text{ mm}$	
	d = 250 mm as before	Exp. (6.32)
	v _{Ed} = 1.4 × 516.5 × 10 ³ /950 × 250 = 3.06 MPa	
	$v_{\rm Rd,max}$ as before = 5.28 MPa $\therefore OK$	Cl. 6.4.5(3) Note
b)	Check shear stress at basic perimeter $u_{ m l}$ (2.0 <i>d</i> from face of column)	Cl. 6.4.2
	$v_{\rm Ed} = \beta V_{\rm Ed} / u_{\rm I} d < v_{\rm Rd,c}$	
	where $eta_{\mathcal{F}_d}$ and d as before	
	$\mu_1 = \text{control perimeter under consideration. For punching shear}$	Fig. 6.15
	at 2d from edge column columns	Fig. 0.15
	$u_1 = c_2 + 2c_1 + \pi \times 2d = 2771 \text{ mm}$	
	Allowing for hole	
	$200/(c_1/2)$: $x/(c_1/2 + 2d)$	Fig. 6.14
	200/200: x/(200 + 500)	
	∴ x = 700 mm	
	$u_1 = 2771 - 700 = 2071 \text{ mm}$	
	$v_{\rm Ed} = 1.4 \times 516.5 \times 10^3 / 2071 \times 250 = 1.40 \text{ MPa}$	
	$v_{\rm Rd,c} = 0.18/\gamma_{\rm C} \times k \times (100 \ \rho_{\rm l} f_{\rm ck})^{0.333}$	Exp. (6.47) & NA
	where	
	$\gamma_{\rm C} = 1.5$	
	$k = as before = 1 + (200/250)^{0.5} = 1.89$ $\rho_1 = (\rho_{1}, \rho_{12})^{0.5}$	
	where $ ho_{ m lv}$, $ ho_{ m lz}$ = Reinforcement ratio of bonded steel in the y and	
	p_{iy} , p_{iz} is the rest of the column plus 3 <i>d</i> each	
	side of column	Cl. 6.4.4.1(1)
	$ ho_{ m V}$: (perpendicular to edge) 8 no. H2O T2 + 6 no. H12	
	T2 in 2 × 720 + 400 – 200, i.e. 3190 mm ² in 1640 mm.	
	$\therefore \rho_{ _{V}} = 3190/(240 \times 1640) = 0.0081$	
	$ ho_{ m lz}$: (parallel to edge) 6 no. H2O T1 (5 no. are	
	effective) + 1 no. T12 T1 in 400 + 750 – 200, i.e.	
	1683 mm ² in 950 mm.	
	$\therefore \rho_{ _{Z}} = 1683/(260 \times 950) = 0.0068$	

	Using H8 (50 mm ²) max. spacing= min[5	50/0.3; 1.5 <i>a</i>]	
	= min[14	47; 375] = 147 mm cc <u>No good</u>	
	Try using H10, max. spacing = 78.5/0.3	54 = 231 mm cc, say 175 cc	
	\therefore Use min. H1O (78.5 mm ²) legs of links a	at 175 mm cc around perimeters:	
	Ĕ	perimeters at 175 mm centres	
	Check min. 9 no. H10 legs of links (712		
	column face.		
e)	Check area of reinforcement > 712 mm ² i	n perimeters inside u_i^{\ddagger}	
	1st perimeter to be 100 mm from face	•	Fig. 9.10,
	By inspection of Figure 3.27 the equivale	ent of 6 locations are available	Cl. 9.4.3(4)
	at 0.4d from column therefore try 2 \times	6 no. H10 = 942 mm ² .	
	By inspection of Figure 3.27 the equiva	lent of 10 locations are	
	available at 1.15 <i>d</i> from column therefore	e try 10 H10 = 785 mm².	
	By inspection of Figure 3.27 beyond 1.15	5d to u _{out} grid:	
		H10 at 175 x 175 OK.	
3.4.13	Summary of design		
	Grid C flexure		
	End supports:		
	Column strip: (max. 200 mm		
	from column)	10 no. H20 U-bars in pairs	
	(where 200×200 hole use 8 no. H20		
	T1 in U-bars in pairs) Middle strip:	H12 @ 200 T1	
	maare stilp.		
	Spans 1–2 and 2–3:		
	Column strip and middle strip:	H20 @ 200 B	
	Central support:		
	Column strip centre: for 750 mm		
	either side of support:	H20 @ 100 T1	
	Column strip outer:	H20 @ 250 T1	
	Middle strip:	H16 @ 200 T1	
	Grid 1 (and 3) flexure		
	Spans:		
	Column strip:	H16 @ 200 B2	
	Middle strip:	H12 @ 300 B2	
		_	
	[‡] See Commentary on design Section 3.4.14. Pr also subject to requirements for minimum rein		Cl. 9.4.3
	reinforcement.	to comone and spacing of shear	

Interior support: Column strip centre: Column strip outer: Middle strip:

Grid 2 flexure

Spans: Column strip: Middle strip:

Interior support: Column strip centre: Column strip outer: Middle strip: 6 no. H20 @ 175 T2 H12 @ 175 T2 H12 @ 300 T2

H16 @ 250 B2 H10 @ 200 B2

H20 @ 200 T2 H16 @ 250 T2 H12 @ 300 T2 See Figure 3.26

Punching shear

Internal (e.g. at C2):

Generally, use H10 legs of links in perimeters at max. 175 mm centres, but double up on 1st perimeter Max. tangential spacing of legs of links, s_{t,max} = 270 mm Last perimeter, from column face, min. 767 mm See Figure 3.26

Edge (e.g. at C1, C3 assuming no holes):

Generally, use H10 legs of links in perimeters at max. 175 mm centres but double up on 1st perimeter Max. tangential spacing of legs of links, s_{t,max} = 175 mm Last perimeter, from column face, min. 940 mm

Edge (e.g. at D1, D3 assuming 200 × 200 hole on face of column): Generally, use H10 legs of links in perimeters at max. 175 mm centres but double up on 1st perimeter Max. tangential spacing of legs of links, s_{t,max} = 175 mm Last perimeter, from column face, min. 1123 mm See Figure 3.27

3.4.14 Commentary on design

a) Method of analysis

The use of coefficients in the analysis would not usually be advocated in the design of such a slab. Nonetheless, coefficients may be used and, unsurprisingly, their use leads to higher design moments and shears, as shown below.

Method	Moment in 9.6 m span per 6 m bay (kNm)	Centre support moment per 6 m bay (kNm)	Centre support reaction V _{Ed} (kN)
Coefficients	842.7	952.8	1205
Continuous beam	747.0	885.6	1103
Plane frame columns below	664.8	834.0	1060
Plane frame columns above and below	616.8	798.0	1031

c)	Punching shear reinforcement	
	Arrangement of punching shear links According to the literal definition of A_{sw} in Exp. (6.52), the same area of shear reinforcement is required for all perimeters inside or outside perimeter u_1 (rather than $(A_{sw}/u_1)/s_r$ being considered as the required density of shear reinforcement on and within perimeter u_1).	Ехр. 6.52
	For perimeters inside u_1 , it might be argued that Exp. (6.50) (enhancement close to supports) should apply. However, at the time of writing, this expression is deemed applicable only to foundation bases. Therefore, large concentrations of shear reinforcement are required close to the columns – in this example, this included doubling up shear links at the 1st perimeter.	Ехр. 6.50
	Similar to BS $8110^{[7]}$ figure 3.17, it is apparent that the requirement for punching shear reinforcement is for a punching shear zone 1.5 <i>d</i>	BS 8110: Fig. 3.17
	wide. However, in Eurocode 2, the requirement has been 'simplified' in Exp. (6.52) to make the requirement for a perimeter (up to 0.75d wide). It might appear reasonable to apply the same 40%:60% rule (BS 8110 Cl. 3.7.7.6) to the first two perimeters to make doubling of punching shear reinforcement at the first perimeter unnecessary: in terms of Eurocode 2 this would mean 80% A_{sw} on the first perimeter and 120% A_{sw} on the second. Using this arrangement it would be possible to replace the designed H10 links in the first two perimeters with single H12 links.	BS 8110: Cl. 3.7.7.6
	Outside u_{1} , the numbers of links could have been reduced to maintain provision of the designed amount of reinforcement A_{sw} . A rectangular arrangement of H12 links would have been possible (within perimeter u_{1} , 350 × 175; outside u_{1} , 500 × 175). However, as the grid would need to change orientation around each column (to maintain the 0.75d radial spacing) and as the reinforcement in B2 and T2 is essentially at 175 centres, it is considered better to leave the arrangement as a regular square grid.	Cl. 9.4.3(1)
	Use of shear reinforcement in a radial arrangement, e.g. using stud rails, would have simplified the shear reinforcement requirements.	
	$V_{Ed}/V_{Rd,c}$ In late 2008, a proposal was made for the UK National Annex to include a limit of 2.0 or 2.5 on $V_{Ed}/V_{Rd,c}$ (or $v_{Ed}/v_{Rd,c}$) within punching shear requirements. It is apparent that this limitation could have major effects on flat slabs supported on relatively small columns. For instance in Section 3.4.12, edge column with hole, $V_{Ed}/V_{Rd,c} = 2.18$.	
	Curtailment of reinforcement In this design, the reinforcement would be curtailed and this would be done either in line with previous examples or, more practically, in line with other guidance ^{$[20, 21]$.}	

3.5 Stair flight

This example is for a typical stair flight.

	$\begin{split} & K &= M_{\rm Ed}/bd^2 f_{c\rm k} = 24.2 \times 10^6/(1000 \times 129^2 \times 30) \\ &= 0.048 \\ & z/d &= 0.95 \\ z &= 0.95 \times 129 \\ &= 122 \ \rm mm \\ & A_{\rm s} &= M_{\rm Ed}/f_{\rm yd} z \\ &= 24.2 \times 10^6/[(500/1.15) \times 122] \\ &= 456 \ \rm mm^2/m \ (\rho = 0.35\%) \end{split}$	Table C5
	Try H12 @ 250 (452 mm²/m) ∴ OK)	
754	Charle deflection	
3.5.4	Check deflection Allowable $l/d = N \times K \times F1 \times F2 \times F3$ where N = 32.7 K = 1.0 F1 = 1.0 F2 = 1.0 F3 = 1.0 (say) \therefore Allowable $l/d = 32.7$ Actual $l/d = 3450/129$ $= 26.7 \therefore 0K$ \therefore Provide H12 @ 250 B.	Appendix C7, Table C10 Table C11
		1

4 Beams

4.0 General

The calculations in this Section are presented in the following parts:

- 4.1 Continuous beam on pin supports a simply supported continuous beam showing what might be deemed typical hand calculations.
- 4.2 A heavily loaded L-beam.
- 4.3 A continuous wide T-beam. This example is analysed and designed strictly in accordance with the provisions of Eurocode 2.

They are intended to be illustrative of the Code and not necessarily best practice.

A general method of designing beams is shown below. In practice, several of these steps may be combined.

Determine design life.	EC0 & NA Table NA.2.1
Assess actions on the beam.	EC1 & NAs
Assess durability requirements and determine concrete strength.	Table 4.1 BS 8500–1: Tables A4, A5
Check cover requirements for appropriate fire resistance period.	EC2–1–2: Tables 5.8, 5.9, 5.10, 5.11
 Calculate minimum cover for durability, fire and bond requirements. 	Cl. 4.4.1
Determine which combinations of actions apply.	EC0 & NA Tables NA.A1.1, NA.A1.2 (B)
Determine loading arrangements.	Cl. 5.1.3(1) & NA
Analyse structure to obtain critical moments and shear forces.	Cl. 5.4, 5.5, 5.6
 Design flexural reinforcement. 	Cl. 6.1
Design flexural reinforcement.Check deflection.	Cl. 6.1 Cl. 7.4
0	
Check deflection.	Cl. 7.4
 Check deflection. Check shear capacity. Other design checks: Check minimum reinforcement. Check cracking (size or spacing of bars). Check effects of partial fixity. 	Cl. 7.4 Cl. 6.2 Cl. 9.3.1.1(1), 9.2.1.1(1) Cl. 7.3, Tables 7.2N, 7.3N Cl. 9.3.1.2(2)
 Check deflection. Check shear capacity. Other design checks: Check minimum reinforcement. Check cracking (size or spacing of bars). Check effects of partial fixity. Check secondary reinforcement. 	Cl. 7.4 Cl. 6.2 Cl. 9.3.1.1(1), 9.2.1.1(1) Cl. 7.3, Tables 7.2N, 7.3N Cl. 9.3.1.2(2) Cl. 9.3.1.1(2), 9.3.1.4(1) Cl. 9.3.1.1(4), 9.2.1.3,

4.1 Continuous beam on pin supports

This calculation is intended to show a typical hand calculation for a continuous simply supported beam using coefficients to determine moments and shears.

6	Project detail	5				Calculated by	chg	Job no.	CCIP - 041
C	Continuous beam on pin		Checked by	web	Sheet no.	1			
The Concre PART OF THE MINERAL PRO		rts				Client	TCC	Date	0ct 09
	A 450 mm deep to support offic over 2 no. 6 m s mm wide suppor 2-hour resistant	e loads of g _l pans. f _{ck} = 3 ts, a 50-yea	, = 30.2 0 MPa, ar desig	2 kN/m a f _{yk} = 50 n life ar	and q _k = 11. 20 MPa. As ad a require sheltered a	5 kN/m sume 300 ment for a environmer $\sim q_k = 11.5$	kN/m		
	€00	20	*		000	$\frac{g_k}{f} = 30$	2 kN/m		
	Figure 4.1 Cont	inuous recta	angular	beam					
	450	0,	Figure	4.2 Se	ction throu	gh beam			
4.1.1	Actions								
	Permanent $g_k = 3$	50.2 kN/m ar	1d varia	ble q _k =	11.5 kN/m				
412	Cover								
7.1.2	Nominal cover, c	:							
	$c_{\rm nom} = c_{\rm min} + \Delta c_{\rm c}$ where	dev	1					Ехр. (4.1)
		= minimum a = diameter a = minimum a Assuming	cover du of bar. / cover du XC3 (m	Assume le to env loderate	25 mm mai	conditione r cyclic we ⁻		Cl. 4.4	4.1.2(3)

4.1: Continuous beam on pin supports

saturation without de-icing salt) using C3O/37 concrete, $c_{\rm min,dur} = 25 \text{ mm}$ $\Delta c_{\rm dev} =$ allowance in design for deviation. Assuming no measurement of cover, $\Delta c_{\rm dev} = 10 \text{ mm}$ $\therefore c_{\rm nom} = 25 + 10 = 35 \text{ mm}$	Table C3 BS 8500-1 ^[14] : Table A4; How to: Building structures ^[3] Cl. 4.4.1.2(3)
Fire:Check adequacy of section for 2 hours fire resistance (i.e. REI = 120)For $b_{min} = 300$ mm, minimum axis distance, $a = 35$ mm $c_{nom} = 35$ mm	EC2-1-2: 5.6.3(1), Table 5.6
Load combination:	5. 05
\therefore n = 1.25 x 30.2 + 1.5 x 11.5 = 50.8 kN/m	Fig. 2.5 ECO: Exp. (6.10b)
Arrangement: Choose to use all-and-alternate-spans-loaded load cases, i.e. use coefficients.	Cl. 5.1.3(1) & NA Table NA.1 (option b) Table C3
The coefficients used assume 15% redistribution at supports. As the amount of redistribution is less than 20%, there are no restrictions on reinforcement grade. The use of Table 5.6 in BS EN 1992–1–2 is restricted to where redistribution does not exceed 15%.	Table C3 Cl. 5.5(4) & NA EC2-1-2: 5.6.3(1), Table 5.6
Design moments:	
$\begin{split} \dot{M}_{Ed} &= (1.25 \times 30.2 \times 0.090 + 1.5 \times 11.5 \times 0.100) \times 6.0^2 \\ &= 122.3 + 62.1 = 184.4 \text{ kNm} \\ \text{Support} \end{split}$	Appendix C1, Table C3
	Table C3
V _{AB} = 0.45 × 6.0 × 50.8 = 137.2 kN	
$V_{AB} = 0.63 \times 6.0 \times 50.8 = 192.0 \text{ kN}$	
Flexural design Effective depth: Assuming 10 mm links: d = 450 - 35 - 10 - 25/2 = 392 mm	
	concrete, $c_{min,dur} = 25 \text{ mm}$ $\Delta c_{dev} = allowance in design for deviation. Assuming no measurement of cover, \Delta c_{dev} = 10 \text{ mm}\therefore c_{nom} = 25 \pm 10 = 35 \text{ mm}Fire:Check adequacy of section for 2 hours fire resistance (i.e. REI = 120)For b_{min} = 300 \text{ mm}, minimum axis distance, a = 35 \text{ mm} \therefore 0 \text{K}c_{nom} = 35 \text{ mm}Dada combination (and arrangement)Dada combination (and arrangement)Dada combinationBy inspection, B5 EN 1990 Exp. (6.10b) governs\therefore n = 1.25 \times 30.2 \pm 1.5 \times 11.5 = 50.8 \text{ kN/m}Arangement:Choose to use all-and-alternate-spans-loaded load cases, i.e. usecoefficients.The coefficients used assume 15% redistribution at supports. As theamount of redistribution is less than 20%, there are no restrictionson reinforcement grade. The use of Table 5.6 in B5 EN 1992–1–2 isrestricted to where redistribution does not exceed 15%.AralysisM_{Ed} = (1.25 \times 30.2 \times 0.090 \pm 1.5 \times 11.5 \times 0.100) \times 6.0^2= 122.3 \pm 62.1 = 184.4 \text{ kNm}SupportM_{Ed} = 50.8 \times 0.106 \times 6.0^2 = 193.8 \text{ kNm}Area force:V_{AB} = 0.45 \times 6.0 \times 50.8 = 137.2 \text{ kN}V_{AB} = 0.63 \times 6.0 \times 50.8 = 137.2 \text{ kN}V_{AB} = 0.63 \times 6.0 \times 50.8 = 137.2 \text{ kN}V_{AB} = 0.63 \times 6.0 \times 50.8 = 137.2 \text{ kN}V_{AB} = 0.63 \times 6.0 \times 50.8 = 137.2 \text{ kN}V_{AB} = 0.63 \times 6.0 \times 50.8 = 137.2 \text{ kN}Area force:Flexural designEffective depth:Assuming 10 mm links:$

Flexure in span:		
$K = M_{Ed} / bd^2 f_{ck} = 184.4 \times 10^6 / (300 \times 3)^{10}$	092° × 00) = 0.133	Fig. 3.5
<i>z d</i> = 0.864 z = 0.864 × 392 = 338 mm		Appendix /
	$(338) - 1255 \text{ mm}^2$	Table C5
$A_{\rm g} = M_{\rm Ed}/f_{\rm yd}z = 184.4 \times 10^6/(434.8 \times 10^{10})$		
	<u>Try 3 no. H25 B (1473 mm²)</u> (<i>p</i> = 1.25%)	
Check spacing:	(p = 1.25%)	
Spacing of outer bars = $300 - 2 \times 35$	5 – 2 × 10 – 25 = 185 mm	
Assuming 10 mm diameter link,		
\therefore spacing = 98 mm		
Steel stress under quasi-permanent lo	oading:	
$\sigma_{\rm s} = (f_{\rm yk}/\gamma_{\rm S}) (A_{\rm s,req}/A_{\rm s,prov})$ (SLS load		
$= f_{yd} \times (A_{s,req}/A_{s,prov}) \times (g_k + \psi_2 q_k)$ = (500/1.15) × (1255/1473) × [(30	$(\gamma_G g_k + \gamma_Q q_k) (1/\delta)$	
= 434.8 × 0.91 × 0.66 × 0.97 = 2	, , ,	Cl. 7.3.3(2
As exposure is XC3, max. crack width v		Cl. 7.3.1(5)
: Maximum bar size = 16 mm or max.		Table 7.2N
	∴ Use 3 H25 B (1473 mm²)	
Deflection:		
Check span-to-effective-depth ratio.		Appendix
Basic span: effective depth ratio for $ ho$		Table 7.4N
$\frac{1}{d} = 18 + \left[(1.25 - 0.5)/(1.5/0.5) \right] \times (20)$		
Max. span = 24.0 × 392 = 9408 mm	<u> OK</u>	
Flexure, support:		
M _{Ed} = 193.8 kNm		
$K = M_{\rm Ed} / b d^2 f_{\rm ck}$		
where		
d = 450 – 35 – 10 – 25/2 = 392	: mm	
$K = 193.8 \times 10^6 / (300 \times 392^2 \times 30) =$	= 0.142	
By inspection, $K \leq K' (0.142 \times 0.168^{\ddagger})$		
: no compression reinforcement requi	red.	
z = 0.85d		Appendix
= 0.85 × 392 = 333 mm		Table C5
$A_{6} = M_{Ed}/f_{yd}z$ = 193.8 × 10 ⁶ /434.8 × 333 = 133	8 mm ²	
	Try 3 no. H25 T (1473 mm ²)	
	$(\rho = 1.13\%)$	
	(,0	

4.1.6	Shear	
a)	Support B (critical)	
	Shear at central support = 192.0 kN	
	At <i>d</i> from face of support ⁹	
	V _{Ed} = 192.0 - (0.300/2 + 0.392) × 50.8 = 164.50 kN	Cl. 6.2.1(8)
	$v_{\rm Ed} = V_{\rm Ed}/bd$	
	$= 164.5 \times 10^3 / (392 \times 300) = 1.40 \text{ MPa}$	
	Maximum shear capacity:	
	Assuming $f_{ck} = 30$ MPa and cot $\theta = 2.5^{\#}$	
	$v_{\rm Rd,max}^* = 3.64 \text{MPa}$	Table C7
	$v_{\rm Rd,max} > v_{\rm Ed} :: OK$	
	Shear reinforcement:	
	Assuming $z = 0.9d$	Cl. 6.2.3(1)
	$A_{sw}/s \ge V_{Ed}/(0.9d \times f_{vwd} \times \cot \theta)$	Cl. 6.2.3(3),
	≥ $164.5 \times 10^3 / (0.9 \times 392 \times (500 / 1.15) \times 2.5) = 0.429$	Exp. (6.8)
	More accurately,	
	$A_{sw}/s \ge V_{Ed}/(z \times f_{vwd} \times \cot \theta)$	Cl. 6.2.3(3),
	≥ 164.5 × 10 ³ /(333 × 1087) = 0.454	Exp. (6.8)
	Minimum shear links,	
	$A_{\text{sw,min}}/s = 0.08b_{\text{w}}f_{\text{ck}}^{0.5}/f_{\text{yk}}$	Cl. 9.2.2(5)
	= 0.08 × 300 × 30 ^{0.5} /500 = 0.263. Not critical	
	Max. spacing = 0.75d = 0.75 × 392 = 294 mm	Cl. 9.2.2(6)
	Use H8 @ 200 ($A_{sw}/_{s} = 0.50$)	
b)	Support A (and C)	
	Shear at end support = 137.2 kN	
	At face of support,	
	V _{Ed} = 137.2 - (0.150 + 0.392) × 50.8 = 109.7 kN	Cl. 6.2.1(8)
	By inspection, shear reinforcement required and cot $ heta$ = 2.5	Fig. C1a)
	$A_{sw}/s \ge V_{Ed}/(z \times f_{vwd} \times \cot \theta)$	Appendix C5.3
	≥ 109.7 × 10 ³ /[353 × (500/1.15) × 2.5] = 0.285	
	Use H8 @ 200 ($A_{sw}/_s = 0.50$) throughout [‡]	
		Cl. 6.2.1(8)
	$^{\rm S}$ Where applied actions are predominantly uniformly distributed, shear may be checked at d from the face of support. See also Section 4.2.11.	
	[#] The absolute maximum for $v_{\rm Rd,max}$ (and therefore the maximum value of $v_{\rm Ed}$) would be 5.28 MPa when cot θ would equal 1.0 and the variable strut angle would be at a maximum of 45°.	
	* For determination of $V_{\rm Rd,max}$ see Section 4.2.10.	
	[*] As maximum spacing of links is 294 mm, changing spacing of links would appear	

[‡] As maximum spacing of links is 294 mm, changing spacing of links would appear to be of limited benefit.

a) Minimum areas

 $A_{\rm s,min} = 0.26 (f_{ctm}/f_{yk}) b_{\rm t} d \ge 0.0013 b_{\rm t} d \label{eq:smin}$ where

Cl. 9.2.1.1

4.1: Continuous beam on pin supports

	b_{t} = width of tension zone	Table 3.1		
	$f_{ctm} = 0.30 \times f_{ck}^{0.666}$			
	$A_{\rm e,min} = 0.26 \times 0.30 \times 30^{0.666} \times 300 \times 392/500 = 177 \rm{mm}^2$			
ь)	How to: Detailing			
	= 1800 - 1.125 × 392			
	= 1359 mm say 1350 from A Top: curtail			
	40% main bars 0.15 <i>l</i> + $a_1 = 900 + 441$			
	= 1341 mm say 1350 from B			
	65% main bars 0.301 + $a_1 = 1800 + 441$			
	= 2241 mm say 2250 from B			
	At supports:	Cl. 9.2.1.2.(1),		
	25% of $A_{\rm g}$ to be anchored at supports	9.2.1.4(1) & NA		
	25% of 1225 mm ² = 314 mm ²	Cl. 9.2.1.5(1)		
	Use min. 2 no. H16 (402 mm ²) at supports A, B and C			
	In accordance with SMDSC $^{[9]}$ detail MB1 lap U-bars tension lap with			
	main steel			
	How to: Detailing			
c)	Summary of reinforcement details			
	<u>2H12T</u> <u>3H25</u> 2H12T			
		250		
<u>2H16 U-ba</u>		2HIG U-bars		
	3H25 2H16 2H12 2H25 1H25 1H25 2H25 2H12 2H16 2	2H25		
	TA B B B B B B B B B B B B B B B B B B B	↑ _C		
	450,800, (3H25b, 800,600,750,750,600,800, 800, 800, 800, 800, 800, 800,	0 450		
Figure 4.4 Continuous rectangular beam: reinforcement details				
	Note Subsequent detailing checks may find issues with spacing rules especially if the 'cage and splice bar' method of detailing were to be used. 2H32s T&B would be a			
	suitable alternative to 3H25s T&B.			

4.2 Heavily loaded L-beam

2.2	Cover	
a)	Nominal cover, c _{nom} , underside and side of beam	
	$c_{\rm nom} = c_{\rm min} + \Delta c_{\rm dev}$ where	Exp. (4.1)
	c _{min} = max[c _{min,b} ; c _{min,dur}] where	
	c _{min,b} = minimum cover due to bond = diameter of bar. Assume 32 mm main bars and 10 mm links	Cl. 4.4.1.2(3)
	c _{min,dur} = minimum cover due to environmental conditions. Assuming primarily XC3/XC4 exposure (moderate humidity or cyclic wet and dry); secondarily XF1 exposure (moderate water saturation without de-icing salt, vertical surfaces exposed to rain and freezing) and C30/37 concrete, c _{min,dur} = 25 mm	Table 4.1 BS 8500-1: Table A4
	Δc_{dev} = allowance in design for deviation. Assuming no measurement of cover Δc_{dev} = 10 mm	Cl. 4.4.1.2(3)
	$\therefore c_{nom} = 32 + 10 = 42 \text{ mm to main bars}$ or = 25 + 10 = 35 mm to links Use $c_{nom} = 35 \text{ mm to links}$ (giving $c_{nom} = 45 \text{ mm to main bars}$)	
b)	Fire	
	Check adequacy of section for 2 hours fire resistance REI 120.	EC2-1-2: 5.6.
	By inspection, web thickness OK.	EC2-1-2:
	Axis distance, a, required = 35 mm OK by inspection.	Table 5.6 EC2-1-2: Table 5.6
	\therefore Try 35 mm nominal cover bottom and sides to 10 mm link.	
	Nominal cover, c _{nom} , top:	
	By inspection,	Exp. (4.1)
	$c_{\rm nom} = c_{\rm min} + \Delta c_{\rm dev}$	
	where	
	c _{min} = max[c _{min,b} ; c _{min,dur}] where	
	$c_{\min,b} = \min c_{over} due to bond$	Cl. 4.4.1.2(3)
	= diameter of bar. Assume 32 mm main bars and	
	10 mm links c _{min.dur} = minimum cover due to environmental conditions.	
		Table 4.1

4.2: Heavily loaded L-beam

$\Delta c_{dev} = \text{allowance in design for deviation. Assuming no} \\ \text{measurement of cover } \Delta c_{dev} = 10 \text{ mm} \\ \therefore c_{nom} = 32 + 10 = 42 \text{ mm to main bars} \\ \text{or} = 15 + 10 = 25 \text{ mm to links} \\ \underline{\text{Use } c_{nom}} = 35 \text{ mm to links} (\text{giving } c_{nom} = 45 \text{ mm to main bars}) \\ \textbf{4.2.3 Idealisation, load combination and arrangement} \\ \text{Load combination:} \\ \text{As loads are from storage, Exp. (6.10a) is critical.} \\ \text{Idealisation.} \\ \text{Idealisation.} \\ \textbf{4.2.3 Idealisation.} \\ \text{Idealisation.} \\ \text{As loads are from storage, Exp. (6.10a) is critical.} \\ \text{Idealisation.} \\ \ \ I$	
Use $c_{nom} = 35 \text{ mm to links (giving } c_{nom} = 45 \text{ mm to main bars)}$ 4.2.3 Idealisation, load combination and arrangement Load combination: As loads are from storage, Exp. (6.10a) is critical.Table 2.5; ECO: A1.2.2, N & Exp. (6.10a)	
4.2.3 Idealisation, load combination and arrangement Load combination: As loads are from storage, Exp. (6.10a) is critical.Table 2.5; ECO: A1.2.2, N & Exp. (6.10a)	
Load combination:Table 2.5;As loads are from storage, Exp. (6.10a) is critical.ECO: A1.2.2, N& Exp. (6.10a)& Exp. (6.10a)	
Load combination:Table 2.5;As loads are from storage, Exp. (6.10a) is critical.ECO: A1.2.2, N& Exp. (6.10a)& Exp. (6.10a)	
As loads are from storage, Exp. (6.10a) is critical. ECO: A1.2.2, N & Exp. (6.10a)	
& Exp. (6.10a)	A
dealication	
Idealisation:	
This element is treated as a continuous beam framing into Cl. 5.3.1(3)	
columns 350 \times 350 [‡] \times 4000 mm long columns below.	
Arrangement: Cl. 5.1.3(1) &	
Choose to use all-and-alternate-spans-loaded. (option b)	
4.2.4 Analysis	
Analysis by computer (spreadsheet TCC 41 Continuous Beam (A+D).xls ECO:	
in <i>RC spreadsheets</i> V.3 ^[28] assuming frame action with 350 mm square A1.2.2 & NA;	
columns 4 m long fixed at base. Beam inertia based on T-section, b_{eff} (Cl. 5.3.1 (6)	
wide) with 15% redistribution at central support, limited redistribution	
of span moment and consistent redistribution of shear.	
Table 4.2 Elastic and redistributed moments, kNm	
Span number 1 2 Elastic M 1168 745	
Redistributed M 1148 684	
δ 0.98 0.92	
0 0.00 0.02	
2000	
1394 kNm	
1000	
500	
195 kNm 108 kNm	
-500	
-684 kNm	
-1000 -1148 kNm	
-1500	
Figure 4.7 Redistributed envelope, kNm	
^{\ddagger} Note: 350 × 350 is a minimum for columns requiring a fire resistance of 120 EC2-1-2:	
minutes. Table 5.2a	

$$\begin{aligned} \hline f_{g} = 0.85 \downarrow_{1} + 0.5(1+1) + 0 = 0.7 \downarrow_{2} + 0.05(1+1) + 0 \\ \hline f_{g} = 0.2 \times 3325 + 0.1 \times 7650 \le 0.2 \times 7650 \le 3325 \\ = 1430 \le 1530 \le 3325 \\ = 1430 \le 1530 \le 3325 \\ = 1430 = 0.2 \times 3325 + 0.1 \times 7650 \le 0.2 \times 7650 \le 3325 \\ = 1430 = 1430 = 0.2 \times 3325 + 0.1 \times 7650 \le 0.2 \times 7650 \le 3325 \\ = 1430 = 0.2 \times 3325 + 0.1 \times 7650 \le 0.2 \times 7650 \le 3325 \\ = 1430 = 0.2 \times 3325 + 0.1 \times 7650 \le 0.2 \times 7650 \le 3325 \\ = 1430 = 0.2 \times 3325 + 0.1 \times 7650 \le 0.2 \times 7650 \le 3325 \\ = 1430 = 0.2 \times 3325 + 0.1 \times 7650 \le 0.2 \times 7650 \le 3325 \\ = 1430 = 0.2 \times 3325 + 0.1 \times 7650 \le 0.2 \times 7650 \le 3325 \\ = 1430 = 0.2 \times 3325 + 0.1 \times 7650 \le 0.2 \times 7650 \le 3325 \\ = 1430 \times 10^{10} / (1780 \times 610) = 0.2 \times 10^{10} \times 10^{10} / (1780 \times 610) = 0.2 \times 10^{10} \times 10^{10} / (1780 \times 689^2 \times 30) \\ = 0.045 \\ \text{Restricting x/d to 0.45}, \\ K' = 0.168 \\ K \le K' : \text{ section under-reinforced and no compression reinforcement required.} \\ z = 1 \text{ lever arm} \\ = (d/2) \left[1 + (1 - 3.53K)^{0.5} \right] \le 0.95d \\ = (689(2) (1 + 0.917) \le 0.25 \times 683 \\ = 661 \le 654 \cdot z = 654 \text{ mm} \\ \text{But } z = d - 0.4x \\ \therefore \text{ by inspection, neutral axis is in flange and as x < 1.25 h_{\mu} \text{ design as rectangular section.} \\ A_{\mu} = 1160 \times 10^{0} ((434.8 \times 654) = 4037 \text{ mm}^{2} \\ \text{ fig} = 500/1.15 = 434.8 \text{ MPa} \\ = 1140 \times 10^{0} ((434.8 \times 654) = 4037 \text{ mm}^{2} \\ \text{ figs on 132 E (4020 \text{ mm}^{2}) (\text{ (say OK)} \\ \text{Check spacing of bars.} \\ \text{Spacing of bars} = (57 - 32 \text{ mm} = 25 \text{ mm} \text{ between bars} \\ \end{cases}$$

$= 4158/[350 \times 668 + (1780 - 350) \times 300]$	PD 6687 ^[6]
= 4158/662800	
= 0.63%	
$\rho_0 = f_{ck}^{0.5} / 1000 = 30^{0.5} / 1000 = 0.55\%$	
$\rho > \rho_0 \therefore$ use Exp. (7.16b)	
$N = 11 + 1.5f_{ck}^{0.5} \rho_0 / (\rho - \rho') + f_{ck}^{0.5} (\rho' / \rho_0)^{0.5} / 12$ = 11 + 1.5 (30 ^{0.5} × 0.055/(0.063 - 0) + 30 ^{0.5} (0/0.55)^{1.5} = 11 + 7.2 + 0 = 18.2	Ехр. (7.16b)
	T-11. 7 41 9 14
	Table 7.4N & NA
	Cl. 7.4.2(2),
	Appendix C7
F2= 7.0/I _{eff} (span > 7.0 m)	Cl. 7.4.2(2)
where	
l _{eff} = 9000 mm	Cl. 5.3.2.2(1)
F2 = 7.0/9.0 = 0.77	.,
	Cl. 7.4.2, Exp.
	(7.17), Table 7.4N & NA, Table NA.5 Note 5
where	
$\sigma_{\rm s}$ in simple situations = $(f_{\rm yk}^{\prime}\gamma_{\rm S}) (A_{\rm s,req}^{\prime}A_{\rm s,prov})$ (SLS loads/	Appendix B
ULS loads) (1/ δ). However in this case separate analysis	
at SLS would be required to determine $\sigma_{ m g}$. Therefore as a	
simplification use the conservative assumption:	
	Exp. (7.17)
	слр. (7.17)
$= (500/500) \times (4824/4158) = 1.16$	
: Permissible $l/d = 18.2 \times 1.3 \times 0.80 \times 0.77 \times 1.16 = 16.9$	
Actual I/d = 9000/668 = 13.5	
Permissible more than actual	
.: ОК	
∴ <u>4 no. H32 B1 + 2 no. H32 B3 (4824 mm²) OK</u>	
4.2.7 Flexural design, support B	
At centreline of support B,	
M = 1394 kNm	
From analysis, at face of support	Cl. 5.3.2.2(3)
$M_{\rm EdBA} = 1209 \rm kNm$	
$M_{EdBC} = 1315 \text{ kNm}$	
$K = M_{\rm Ed} / b_{\rm w} d^2 f_{ck}$	
$^{\pm}$ 2.18 of PD 6687 $^{[6]}$ suggests that $ ho$ in T sections should be based on the area	
* 2.18 of PD 6687. ⁶⁹ suggests that ρ in 1 sections should be based on the area of concrete above the centroid of the tension steel.	

where	
$b_w = 350 \text{ mm}$	
d = 750 - 35 - 12 - 32/2 = 687 mm	
assuming 10 mm link and H32 in support but allowing for	
H12 T in slab	
f _{ck} = 30 MPa	
∴ K = 1315 × 10 ⁶ /(350 × 687 ² × 30) = 0.265	
for δ = 0.85, K' = 0.168: to restrict x/d to 0.45, K' = 0.167	Appendix A1
: Compression steel required	Table C4
$z = (d/2) \left[1 + (1 - 3.53 \text{ K}')^{0.5}\right]$	
= (687/2) [1 + (1 – 3.53 × 0.167) ^{0.5}]	
= (687/2) (1 + 0.64) < 0.95d	
= 563 mm	
$A_{e2} = (K - K')f_{ck}bd^2/f_{ec}(d - d_2)$	Fig. 3.5,
SE OK SO E	Appendix A1,
where $d_2 = 35 + 10 + 32/2 = 61 \text{ mm}$	How to: Beams
$f_{sc} = 700(x - d_2)/x < f_{vd}$	
where x = 2.5 (<i>d</i> − <i>z</i>) = 2.5 (687 − 563) = 310 mm	
$f_{sc} = 700 \times (310 - 61)/310 < 500/1.15$	
$= 562$ MPa but limited to ≤ 434.8 MPa	
$\therefore A_{s2} = (0.265 - 0.167) \times 30 \times 350 \times 687^2 / [434.8(687 - 61)] = 1784 \text{ mm}^2$	
Try 4 no. H25 B (1964 mm ²)	
$A_{s} = M' f_{yd} z + A_{s2} f_{sc} f_{yd}$	Appendix A1
$= K' f_{ck} b d^2 / (f_{yd} z) + A_{s2} f_{sc} / f_{yd}$	
= 0.167 × 30 × 350 × 687²/(434.8 × 563) + 1570 ×	
434.8/434.8	
$= 3380 + 1784 = 5164 \text{ mm}^2$	
<u>Try 4 no. H32 T + 4 no. H25 T (5180 mm²)</u>	
This reinforcement should be spread over b _{eff}	Cl. 9.2.1.2(2),
$b_{eff} = b_{eff1} + b_w + b_{eff2}$	Fig. 9.1
	Cl. 5.3.2.1,
where	Fig. 5.3
$b_{eff1} = (0.2b_1 + 0.1l_0) \le 0.2 l_0 \le b_1$	
where	
$b_1 = \text{distance between webs/2.}$	
Assuming beams at 7000 mm cc	
= (7000 – 350)/2 = 3325 mm	
$l_0 = 0.15 \times (l_1 + l_2)$	Fig. 5.2
$= 0.15 \times (9000 + 8000) = 2550 \text{ mm}$	
· · ·	

 $b_{\rm w} = 350 \,\rm mm$ $b_{eff2} = (0.2b_2 + 0.1l_0) \le 0.2 l_0 \le b_2$ where $b_2 = 0 \text{ mm}$ $b_{eff2} = 0 \text{ mm}$ ∴ b = 1360 + 350 + 0 = 1710 mm d = 750 - 35 - 10 - 32/2 = 689 mm assuming 10 mm link and H32 in span. $f_{ck} = 30 \text{ MPa}$:. $K = 684 \times 10^6 / (1710 \times 689^2 \times 30)$ = 0.028 By inspection, $K \leq K'$: section under-reinforced and no compression Appendix A1 reinforcement required. $z = (d/2) [1 + (1 - 3.53K)^{0.5}] \le 0.95d$ Appendix A1 = (689/2) (1 + 0.95) ≤ 0.95 × 689 = 672 > 655 ∴ z = 655 mm By inspection, $x < 1.25 h_{f}$; design as rectangular section Appendix A1 $A_{g} = M_{Fd}/f_{vd}z$ $= 684 \times 10^{6} / (434.8 \times 655) = 2402 \text{ mm}^{2}$ Try 2 no. H32 B + 2 no. H25 B (2590 mm²) b) Span BC – Deflection By inspection, compared with span AB ОK 4.2.9 Flexural design, support C By inspection, use 2 no. H25 U-bars as support A. Use 2 no. H25 U-bars 4.2.10 Design for beam shear, support A At d from face of support $V_{\rm Ed} = 646 - (350/2 + 0.689) \times (1.35 \times 46.0 + 1.5 \times 63.3)$ Cl. 6.2.1(8) ECO: A1.2.2, NA & Exp. (6.10a) = 646 - 0.864 x 157.1 = 510.3 kN Check maximum shear resistance. $V_{\text{Rd, max}} = \alpha_{cw} b_w z \nu f_{cd} / (\cot \theta + \tan \theta)$ Exp. (6.9) & NA where Cl. 6.2.3 & NA $\alpha_{cw} = 1.0$ $b_{\rm w} = 350 \, \rm mm$ as before z = 0.9dCl. 6.2.3(1)

		1
	$\begin{split} \nu &= 0.6 \ (1 - f_{ck}/250) = 0.6 \ (1 - 30/250) = 0.528 \\ f_{cd} &= 30/1.5 = 20.0 \ \text{MPa} \\ \theta &= \text{angle of inclination of strut.} \\ &= 0.5 \ \text{sin}^{-1} \ \{ \nu_{\text{Ed},z} / [0.20 \ f_{ck} \ (1 - f_{ck}/250) \] \ \} \ge \text{cot}^{-1}2.5 \\ \text{where} \\ \nu_{\text{Ed},z} &= \nu_{\text{Ed}}/b_z = \nu_{\text{Ed}}/(b \times 0.9d) \\ &= 510.3 \times 10^3/(350 \times 0.9 \times 689) = 2.35 \ \text{MPa} \\ \theta &= 0.5 \ \text{sin}^{-1} \ \{ 2.35/[0.20 \times 30 \ (1 - 30/250) \] \ \} \ge \text{cot}^{-1}2.5 \\ &= 0.5 \ \text{sin}^{-1} \ (0.445) \ge \text{cot}^{-1}2.5 \\ &= 0.5 \times 26.4^{\circ} \ge 21.8^{\circ} \\ &= 21.8^{\circ} \\ \therefore \ \nu_{\text{Rd,max}} = 1.0 \times 350 \times 0.90 \times 689 \times 0.528 \times 20.0/(2.5 + 0.4) = 790 \ \text{kN} \\ & \cdot 0 \text{K} \end{split}$	Cl. 6.2.3(3) Note 1, Exp. (6.6N) & NA Cl. 2.4.2.4(1) & NA Exp. (6.9), Appendix A2
	Shear reinforcement: Shear links: shear resistance with links $V_{\text{Rd,s}} = (A_{\text{sw}}/s) z f_{\text{ywd}} \cot \theta$ $\therefore A_{\text{sw}}/s \ge V_{\text{Ed}}/z f_{\text{ywd}} \cot \theta$	Exp. (6.8)
	where $A_{sw}/s = \text{area of legs of links/link spacing}$ z = 0.9d as before $f_{ywd} = 500/1.15 = 434.8$ $\cot \theta = 2.5 \text{ as before}$	Cl. 2.4.2.4(1) & NA
	$\begin{array}{l} A_{\rm sw}/s \geq 510.3 \times 10^3/(0.9 \times 689 \times 434.8 \times 2.5) = 0.76 \\ {\rm Minimum} \ A_{\rm sw}/s = \rho_{\rm w,min} b_{\rm w} sin \ \alpha \end{array}$	Cl. 9.2.2(5), Exp. (9.4)
	where $\begin{aligned} \rho_{w,\min} &= 0.08 \times f_{ck}^{0.5} / f_{yk} = 0.08 \times 30^{0.5} / 500 \\ &= 0.00088 \\ b_w &= 350 \text{ mm as before} \\ \alpha &= \text{angle between shear reinforcement and the longitudinal} \\ &\text{axis. For vertical reinforcement sin } \alpha = 1.0 \end{aligned}$	Exp. (9.5N) & NA
	$\therefore \text{ Minimum } A_{sw}/s = 0.00088 \times 350 \times 1 = 0.03$ But, maximum spacing of links longitudinally = 0.75d = 516 mm $\therefore \text{ Try H10 @ 200 cc in 2 legs } (A_{sw}/s = 0.78)$	Cl. 9.2.2(6)
.2.11	Design for high beam shear, support B As uniformly distributed load predominates consider at <i>d</i> from face of support.	Cl. 6.2.1(8)

4.

4.2: Heavily loaded L-beam

	$V_{\rm Ed} = 1098 - (350/2 + 0.689) \times (1.35 \times 46.0 + 1.5 \times 63.3)$	
	= 1098 - 0.864 × 157.1 = 962.3 kN	
	By inspection, shear reinforcement required and cot $ heta$ < 2.5.	
	Check $V_{\rm Rd,\ max}$ (to determine $ heta$)	
	Check maximum shear resistance.	
	As before,	
	$V_{\text{Rd, max}} = \alpha_{\text{cw}} b_{\text{w}} z \nu f_{\text{cd}} / (\cot \theta + \tan \theta).$	Exp. (6.9) & NA
	where	
	$a_{_{cw}}$, $b_{_{w}}$, z, $ u$ and $f_{_{cd}}$ as before	
	$\theta = 0.5 \sin^{-1} \{ v_{\text{Ed},z} / [0.20 \ f_{ck} \ (1 - f_{ck} / 250) \] \} \ge cot^{-1}2.5$	Exp. (6.9)
	where	
	$V_{Ed,z} = V_{Ed}/bz = V_{Ed}/(b0.9d)$	Cl. 6.2.3(1)
	$= 962.3 \times 10^{3} / (350 \times 0.9 \times 687) = 4.45 \text{ MPa}$	F (6.0)
	$\theta = 0.5 \sin^{-1} \{4.45/[0.20 \times 30 (1 - 30/250)]\} \ge \cot^{-1}2.5$	Exp. (6.9)
	$= 0.5 \sin^{-1} (0.843) \ge \cot^{-1} 2.5$	
	$= 0.5 \times 57.5^{\circ} \ge 21.8^{\circ}$	
	$= 28.7^{\circ}$	
	$\cot \theta = 1.824 \text{ i.e.} > 1.0 \therefore \text{OK}$	Cl. 6.2.3(2) & NA
	$\tan \theta = 0.548$	
	$\therefore V_{\text{Rd,max}} = 1.0 \times 350 \times 0.90 \times 687 \times 0.528 \times 20.0/(1.824 + 0.548)$	
	= 963.4 kN (i.e. $V_{Rd,max} \approx V_{Ed}$)	
	(i.e. $v_{Rd,max} \approx v_{Ed}$) Shear reinforcement:	
	Shear links: shear resistance with links	
	$V_{\text{Rd,s}} = (A_{\text{sw}}/s)zf_{\text{swd}} \cot \theta$	Exp. (6.8)
	$\therefore A_{sw}/s \ge V_{Ed}/zf_{vwd} \cot \theta$	
	$A_{sw}/s \ge 962.3 \times 10^3 / (0.9 \times 687 \times 434.8 \times 1.824) = 1.96$	
	∴ Use H10 @ 150 cc in 4 legs ($A_{sw}/s = 2.09$)	
4.2.12	Design for beam shear (using design chart),	
	support B _C	
	At <i>d</i> from face of support,	Cl. 6.2.1(8)
	V _{Fd} = 794 – 0.864 × 157.1 = 658.3 kN	
	$V_{\text{Ed},z} = V_{\text{Ed}}/bz = V_{\text{Ed}}/(b0.9d)$	
	$= 658.3 \times 10^{3} / (350 \times 0.9 \times 687) = 3.04 \text{ MPa}$	
	From chart $A_{sw}/s_{read}/m$ width = 2.75	Fig. C1b)
	$A_{\rm sw}/s_{\rm reqd} = 2.75 \times 0.35 = 0.96$	
	:. Use H10 in 2 legs @ 150 mm cc ($A_{sw}/s = 1.05$)	
		1 1

4.3 Continuous wide T-beam

4.3.2	Cover	
	Nominal cover, c_{nom} :	Exp. (4.1)
	$c_{\rm nom} = c_{\rm min} + \Delta c_{\rm dev}$	Exp. (4.1)
	where $c_{\min} = \max[c_{\min,b}; c_{\min,dur}]$	
	where	
	c _{min,b} = minimum cover due to bond = diameter of bar. Assume 25 mm main bars and	Cl. 4.4.1.2(3)
	8 mm links	T 11 44
	$c_{min,dur}$ = minimum cover due to environmental conditions.	Table 4.1 BS 8500-1;
	Assuming XC1 and C30/37 concrete, $c_{min,dur} = 15 \text{ mm}$	Table A4
	Δc_{dev} = allowance in design for deviation. Assuming no	
	$\Delta c_{dev} = 10 \text{ mm}$	Cl. 4.4.1.2(3)
	$\therefore c_{nom} = 15 + 10 = 25 \text{ mm to links}$	
	or = 25 + 10 = 35 mm to main bars	
	Use 10 mm diameter links to give $c_{\rm nom}^{}$ = 35 mm to main bars	
	and 25 mm to links (as per ribbed slab design).	
	Fire:	EC2-1-2: 5.6.3
	Check adequacy of section for REI 60.	EC2-1-2:
	Axis distance required:	Table 5.6
	Minimum width $b_{min} = 120$ mm with $a = 25$ mm	EC2-1-2:
	or $b_{\min} = 200 \text{ mm with } a = 12 \text{ mm}$	Table 5.6
	∴ at 2000 mm wide (min.) a < 12 mm	
	By inspection, not critical.	
	Use 25 mm nominal cover to links	
4.3.3	Idealisation, load combination and arrangement	
	Load combination:	
	By inspection, Exp. (6.10b) is critical.	Fig. 2.5
	47.8 × 1.25 + 45.8 × 1.5 = 128.5 kN/m [‡]	ECO: Exp. (6.10b
	Idealisation:	
	This element is treated as a beam on pinned supports.	
	The beam will be provided with links to carry shear and to	
	accommodate the requirements of Cl. 9.2.5 – indirect support of	
	the ribbed slab described in Section 3.3.8.	
	Arrangement:	Cl. 5.1.3(1) &
	Choose to use all-and-alternate-spans-loaded.	NA: Table NA.1 (option b)

4.3.4 Analysis

Analysis by computer, assuming simple supports and including 15% redistribution at supports (with in this instance consequent redistribution in span moments).

Table 4.3 Elastic and redistributed moments, kNm

Span number	1	2	3	4
Elastic M	641.7	433.0	433.0	641.7
Redistributed M	606.4	393.2	393.2	606.4
δ	0.945	0.908	0.908	0.945

ECO: A1.2.2 & NA; Cl. 5.3.1 (6) 5.3.1(6)

435 Elevural decian chan AB	
 4.3.5 Flexural design, span AB a) Span AB (and DE) – Flexure 	
$M_{\rm Ed} = 606.4 \rm kNm$	
$K = M_{\rm Ed} / b d^2 f_{\rm ck}$	
where	0 5301
where $b = b_{eff} = b_{eff1} + b_w + b_{eff2}$	Cl. 5.3.2.1, Fig. 5.3
where	1.191.010
$b_{eff1} = (0.2b_1 + 0.1l_0) \le 0.2l_0 \le b_1$	
where b1 = distance between web5/2	
Referring to Figures 3.8 and 3.9	
= (7500 - 1000 - 550)/2 = 2975 mm	
$l_0 = 0.85 \times l_1 = 0.85 \times 7500 = 6375 \text{ mm}$	Fig. 5.2
$b_{eff} = 0.2 \times 2975 + 0.1 \times 6375 \le 0.2 \times 6375 \le 2975$	
$= 1232 \le 1275 \le 2975$	
= 1232 mm	
$b_{\rm m} = 2000 \rm mm$	
$b_{eff2} = (0.2b_2 + 0.1l_0) \le 0.2 l_0 \le b_2$	
$v_{eff2} = (0.222, 0.00) = 0.2, 0 = 0.2$ where	
$b_2 = \text{distance between webs/2.}$	
Referring to Figures 3.8 and 3.9	
= (9000 - 1000 - 550)/2 = 3725 mm	
$l_0 = 6375 \text{ mm} \text{ as before}$	
$b_{eff2} = 0.2 \times 3725 + 0.1 \times 6375 \le 0.2 \times 6375 \le 3725$	
= 1382 ≤ 1275 ≤ 3725	
= 1275 mm	
b = 1232 + 2000 + 1275 = 4507 mm	
d = 300 - 25 - 10 - 25/2 = 252 mm	
assuming 10 mm link and H25 in span.	
f _{ck} = 35 MPa	
$K = 606.4 \times 10^{6} / (4507 \times 252^{2} \times 35)$	
= 0.061	
K' = 0.207	Appendix A1
or restricting x/d to 0.45	r ipperioux / ii
K' = 0.168	
$K \leq K' :$ section under-reinforced and no compression	
reinforcement required.	
$z = (d/2) \left[1 + (1 - 3.53K)^{0.5}\right] \le 0.95d$	Appendix A1
$= (252/2) (1 + 0.886) \le 0.95 \times 252$	· · · · · · · · · · · · · · · · · · ·
$= (262.2)(1 + 66666) = 6666 \times 262$ = 238 $\leq 239 : z = 238$ mm	

But z = d - 0.4 xAppendix A1 \therefore x = 2.5(d - z) = 2.5(252 - 236) = 32 mm : neutral axis in flange. $A_{e}x < 1.25h_{f}$ design as rectangular section. $A_{\rm g} = M_{\rm Ed}/f_{\rm yd}z$ where f_{vd} = 500/1.15 = 434.8 MPa $= 606.4 \times 10^{6}/(434.8 \times 239) = 5835 \text{ mm}^{2}$ Try 12 no. H25 B (5892 mm²) b) Span AB – Deflection Check span-to-effective-depth ratio. Appendix B Allowable $I/d = N \times K \times F1 \times F2 \times F3$ Appendix C7 where Cl. 7.4.2(2), N = Basic l/d: check whether $\rho > \rho_0$ and whether to use Exp. Exp. (7.16a), (7.16a) or (7.16b) Exp. (7.16b) $\rho = A_{\rm g}/A_{\rm c}^{\dagger} = A_{\rm g,reg}/[b_{\rm w}d + (b_{\rm eff} - b_{\rm w})h_{\rm f}]$ PD 6687^[6] = 5835/[2000 × 252 + (4507 - 2000) × 100] = 5835/754700 = 0.77% $\rho_0 = f_{ck}^{0.5} / 1000 = 30^{0.5} / 1000 = 0.59\%$ $\rho > \rho_{\odot}$: use Exp. (7.16b) $N = 11 + 1.5 f_{ck}^{0.5} \rho_0 / (\rho - \rho') + f_{ck}^{0.5} (\rho' / \rho_0)^{0.5} / 12$ Exp. (7.16b) $= 11 + 1.5 (35^{0.5} \times 0.059/(0.077 - 0) + 35^{0.5}(0/0.59)^{1.5}$ = 11 + 6.8 + 0 = 17.8 K = (end span) = 1.3Table 7.4N & NA $F1 = (b_{eff}/b_w = 4057/2000 = 2.03) = 0.90$ Cl. 7.4.2(2), Appendix C7 F2 = 7.0/l_{eff} (span > 7.0 m) Cl. 7.4.2(2), 5.3.2.2(1) where $l_{eff} = 7100 + 2 \times 300/2 = 7400 \text{ mm}$ F2 = 7.0/7.4 = 0.95 $F3 = 310/\sigma_{e} \le 1.5$ Cl. 7.4.2, Exp. (7.17), Table 7.4N & NA, Table NA.5 where⁵ $\sigma_{s} = (f_{vk}/\gamma_{s}) (A_{s,rea}/A_{s,prov})$ (SLS loads/ULS loads) (1/ δ) Note 5 = 434.8 × (5835/5892) [(47.8 + 0.3 × 45.8)/(1.25 × 47.8 + 1.5 × 45.8)] × (1/0.945) = 434.8 × 0.99 × 0.48 × 1.06 = 219 MPa * 2.18 of PD 6687 $^{[6]}$ suggests that ho in T sections should be based on the area of concrete above the centroid of the tension steel.

⁶ See Appendix B1.5

	z = (226/2)[1 + (1 – 3.53 K') ^{0.5}]	
	$= (226/2)[1 + (1 - 3.53 \times 0.156)^{0.5}]$	
	= (226/2) (1 + 0.67) < 0.95d	
	= 189 mm	
	$A_{g} = M_{\rm Ed}/f_{\rm yd}z$	
	s = 556.4 × 10 ⁶ /(434.8 × 189) = 6770 mm ²	
	Try 14 no. H25 T (6874 mm ²)	CL 0.04.0(0)
	To be spread over b _{eff}	Cl. 9.2.1.2(2),
		Fig. 9.1
	$b_{eff} = b_{eff1} + b_w + b_{eff2}$	Cl. 5.3.2.1,
		Fig. 5.3
	where	
	$b_{eff1} = (0.2b_1 + 0.1l_0) \le 0.2l_0 \le b_1$	
	where	
	b ₁ referring to Figure 3.9	
	= (7500 – 1000 – 550)/2 = 2975 mm	
	$l_0 = 0.15 \times (l_1 + l_2) = 0.15 \times (7500 + 7500) = 2250 \text{ mm}$	
	$b_{eff1} = 0.2 \times 2975 + 0.1 \times 2250 \le 0.2 \times 2250 \le 2975$	
	= 820 ≤ 450 ≤ 2975	Fig. 5.2
	= 450 mm	1 ig. 0.2
	$b_{\rm w} = 2000 \text{ mm}$	
	b _{eff2} = 450 mm as before	
	∴ b _{eff} = 450 + 2000 + 450 = 2900 mm	
	Check cracking:	Cl. 7.3.3
	Spacing = $2900 - 2 \times (25 - 10 - 25/2)/(14 - 1) = 216 \text{ mm}$	01. 7.0.0
	$\sigma_{\rm s} = (f_{\rm yk}/\gamma_{\rm S}) (A_{\rm s,req}/A_{\rm s,prov}) ({\rm SLS \ loads}/{\rm ULS \ loads}) (1/\delta)$	
	= 434.8 × (6770/6874) [(47.8 + 0.3 × 45.8)/	
	(1.25 × 47.8 + 1.5 × 45.8) × (1/0.85)	
	= 434.8 × 0.98 × 0.48 × 1.18 = 241 MPa	
	As loading is the cause of cracking satisfy either Table 7.2N or Table 7.3N	Cl. 7.3.3(2) &
	The loading is the cause of clacking satisfy child labe 7.214 of labe 7.314	Note
	For $w_{\rm k}$ = 0.4 and $\sigma_{\rm s}$ = 240 MPa max. spacing = 250 mm \therefore OK	Table 7.3N
4.3.7	Flexural design, span BC (and CD similar)	
a)	Flexure	
	$M_{\rm Ed} = 393.2 \rm kNm$	
	$K = M_{\rm Ed} / b d^2 f_{ck}$	
	where	Cl. 5.3.2.1,
	$b = b_{eff} = b_{eff1} + b_w + b_{eff2}$	Fig. 5.3
	where	
	$b_{eff1} = (0.2b_1 + 0.1l_0) \le 0.2l_0 \le b_1$	

where $\begin{array}{l} b_{1} \text{ referring to Figure 3.9} \\ = (7500 - 1000 - 550)/2 = 2975 \text{ mm} \\ l_{0} = 0.70 \times l_{2} = 0.7 \times 7500 = 5250 \text{ mm} \\ b_{eff1} = 0.2 \times 2975 + 0.1 \times 5250 \leq 0.2 \times 5250 \leq 2975 \\ = 1120 \leq 1050 \leq 2975 \\ = 1050 \text{ mm} \\ b_{w} = 2000 \text{ mm} \\ b_{w} = 2000 \text{ mm} \\ b_{eff2} = (0.2b_{2} + 0.1l_{0}) \leq 0.2l_{0} \leq b_{2} \\ \text{where} \\ b_{2} = \text{distance between webs}/2 \\ \text{Referring to Figures 3.8 and 3.9} \\ = (9000 - 1000 - 550)/2 = 3725 \text{ mm} \\ l_{0} = 5250 \text{ mm as before} \\ \end{array}$	Fig. 5.2
$b_{eff2} = 0.2 \times 3725 + 0.1 \times 5250 \le 0.2 \times 5250 \le 3725$ = 1270 \le 1050 \le 3725 = 1270 mm	
b = 1050 + 2000 + 1270 = 4320 mm d = 252 mm as before assuming 10 mm link and H25 in span $f_{ck} = 30$ $K = 393.2 \times 10^{6} / (4320 \times 252^{2} \times 35)$ = 0.041	
By inspection, $K \leq K'$:. section under-reinforced and no compression reinforcement required.	Appendix A1
$z = (d/2) [1 + (1 - 3.53K)0.5] \le 0.95d$ = (252/2) (1 + 0.924) \le 0.95 \times 252 = 242 \times 239 \times z = 239 mm	Appendix A1
By inspection, x < 1.25 h_f : design as rectangular section	Appendix A1
A _s = M _{Ed} /f _{yd} z = 393.2 × 10 ⁶ /(434.8 × 239) = 3783 mm ² Try 8 no. H25 B (3928 mm ²)	
b) Deflection By inspection, compared to span AB OK But for the purposes of illustration: Check span-to-effective-depth ratio. Allowable $l/d = N \times K \times F1 \times F2 \times F3$ where	Appendix B Appendix C7
N = Basic I/d: check whether to use Exp. (7.16a) or (7.16b)	Cl. 7.4.2(2)

	a = 0.50% (for $f = 35$)	
	$ \rho_0 = 0.59\% \text{ (for } f_{ck} = 35) $	
	$\rho = A_{c}/A_{c}^{\dagger} = A_{s,req}/[b_{w}d + (b_{eff} - b_{w})h_{f}]$	
	where	
	$b_{\rm w} = 2000$ mm	
	$\rho = 3783/(2000 \times 252 + (4320 - 2000) \times 100)$	
	= 3783/736000	
	= 0.51%	
	$ ho$ < $ ho_{ m O}$ \therefore use Exp. (7.16a)	
	$N = 11 + 1.5 f_{ck}^{0.5} \rho_0 / \rho + 3.2 f_{ck}^{0.5} (\rho_0 / \rho - 1) 1.5$	Exp. (7.16a)
	$= 11 + 1.5 \times 35^{0.5} \times 0.059/0.051 + 3.2 \times 35^{0.5} (0.059/0.051 - 1)^{1.5}$	L.p. (1.104)
	· · · · ·	
	= 11 + 10.2 + 23.5 = 17.8	
	= 44.7	
	K = (internal span) = 1.5	Table 7.4N & NA
	$F1 = (b_{eff}/b_w = 4320/2000 = 2.16) = 0.88$	Cl. 7.4.2(2),
		Appendix C7
	F2 = 7.0/I _{eff} = 7.0/7.4 = (span > 7.0 m) = 0.95	Cl. 7.4.2(2)
	F3 = 310/ <i>o</i> _s ≤1.5	Cl. 7.4.2,
	9	Exp. (7.17)
		Table 7.4N, &
		NA, Table NA.5
		Note 5
	where ⁶	
	$\sigma_{ m s}$ = (f _{yk} / $\gamma_{ m S}$) ($A_{ m s,req}/A_{ m s,prov}$) (SLS loads/ULS loads) (1/ δ)	
	= 434.8 × (3783/3828) [(47.8 + 0.3 × 45.8)/(1.25 ×	
	47.8 + 1.5 × 45.8)] × (1/0.908)	
	= 434.8 × 0.99 × 0.48 × 1.10	
	= 227 MPa	
	$F3 = 310/\sigma_{s}$	
	= 310/227 = 1.37	
	:. Permissible $l/d = 44.7 \times 1.37 \times 0.88 \times 0.95 \times 1.37 = 70.1$	
	Actual $I/d = 7500/252 = 29.8$ OK	
	Use 8 no. H25 B (3928 mm ²)#	
c)	Hogging	
	Assuming curtailment of top reinforcement at 0.301 + a _l ,	How to: Detailing
	From analysis M _{Ed}	
	at 0.3/ from BC (& DC) = 216.9 kNm	
	at 0.3/ from CB (& CD) = 185.6 kNm	
	$K = 216.9 \times 10^{6} / (2000 \times 226^{2} \times 35) = 0.061$	
	By inspection, $K < K'$	
	$^+$ 2.18 of PD 6687 $^{[6]}$ suggests that $ ho$ in T sections should be based on the area	
	of concrete above the centroid of the tension steel.	
	⁶ See Appendix B1.5	
	[#] 12 no. H2O B (3768 mm ²) used to suit final arrangement of links.	
	•	

	$\begin{aligned} z &= (226/2)[1 + (1 - 3.53 \text{ K})^{0.5}] \\ &= (226/2)[1 + (1 - 3.53 \times 0.061)^{0.5}] \\ &= (226/2)(1 + 0.89) < 0.95d \\ &= 214 \text{ mm} < 215 \text{ mm} \\ A_s &= M_{\text{Ed}}/f_{yd}z \\ &= 216.9 \times 10^6/(434.8 \times 214) = 2948 \text{ mm}^2 \\ & \underline{\text{Use 12 no. H20 T (3748 mm}^2)} \\ & (\text{to suit links and bottom steel}) \end{aligned}$	Cl. 9.2.1.3(2)
4.3.8	Flexural design, support C	
	At centreline of support,	
	$\begin{split} M &= 516.0 \text{ kNm} \\ \text{At face of support,} \\ M_{\text{Ed}} &= 516.0 - 0.2 \times 462.6 + 0.20^2 \times 128.5/2 \\ &= 516.0 - 90.0 \\ &= 426.0 \text{ kNm} \\ \text{K} &= M_{\text{Ed}}/b_{\text{w}} d^2 f_{c\text{k}} \end{split}$	Cl. 5.3.2.2(3)
	where $b_{\rm w} = 2000 \text{ mm}$ d = 226 mm as before	
	$K = 426.0 \times 10^{6} / (2000 \times 226^{2} \times 35) = 0.119$ By inspection, $K < K'$	
	$z = (226/2) [1 + (1 - 3.53K)^{0.5}]$ = (226/2) [1 + (1 - 3.53 × 0.119)^{0.5}] = (226/2) (1 + 0.76) < 0.95d = 199 mm	
	$\begin{array}{l} A_{\rm s} &= M_{\rm Ed} / f_{\rm yd} z \\ &= 426.0 \times 10^6 / (434.8 \times 199) = 4923 \ {\rm mm^2} \\ & \underline{\rm Try \ 10 \ no. \ H25 \ T \ (4910 \ {\rm mm^2})^{\dagger}} \end{array}$	
	Design for beam shear Support A (and E) At d from face of support,	
	$V_{\rm Ed} = 394.6 - (0.400/2 + 0.252) \times 128.5 = 336.5 \rm kN$	Cl. 6.2.1(8)
	Maximum shear resistance:	
	By inspection, $V_{ m Rd,max}$ OK and cot $ heta$ = 2.5	
	⁺ 12 no. H25 used to suit final arrangement of links.	

4.3: Continuous wide T-beam

However, for the purpose of illustration: check shear capacity,	
$V_{\rm Rd,max} = \alpha_{\rm cw} b_{\rm w} z \nu f_{\rm cd} / (\cot \theta + \tan \theta)$	
where $a_{cw} = 1.0$ $b_{w} = 2000$ mm as before	Exp. (6.9) & NA
z = 0.9d $v = 0.6 [1 - f_{ck}/250] = 0.516$ $f_{cd} = 35/1.5 = 23.3 \text{ MPa}$	Cl. 6.2.3(1)
θ = angle of inclination of strut. By inspection, cot ⁻¹ $\theta \ll 21.8$. But cot θ restricted to 2.5 and \therefore tan $\theta = 0.4$.	CI. 6.2.3(2) & NA
$V_{\text{Rd,max}} = 1.0 \times 2000 \times 0.90 \times 252 \times 0.516 \times 23.3/(2.5 + 0.4)$ = 2089.5 kN $\therefore \text{ OK}$	
Shear links: shear resistance with links $V_{\text{Rd,s}} = (A_{\text{sw}}/s) z f_{\text{ywd}} \text{ cot } \theta \ge V_{\text{Ed}}$ $\therefore \text{ for } V_{\text{Ed}} \le V_{\text{Rd,s}}$ $A_{\text{sw}}/s \ge V_{\text{Ed}}/z f_{\text{ywd}} \text{ cot } \theta$	Ехр. (6.8)
where $A_{sw}/s = \text{ area of legs of links/link spacing}$ z = 0.9d as before $f_{ywd} = 500/1.15 = 434.8$ $\cot \theta = 2.5 \text{ as before}$	
$\begin{array}{l} A_{sw}/s \geq 336.5\times 10^3/(0.9\times 252\times 434.8\times 2.5) = 1.36\\ \text{Minimum } A_{sw}/s = \rho_{w,\text{min}}b_w\text{sin } \alpha \end{array}$	Cl. 9.2.2(5), Exp. (9.4)
where $\begin{aligned} \rho_{w,\min} &= 0.08 \times f_{ck}^{0.5} / f_{yk} = 0.08 \times 35^{0.5} / 500 = 0.00095 \\ b_w &= 2000 \text{ mm as before} \\ \alpha &= \text{angle between shear reinforcement and the longitudinal axis.} \\ & \text{For vertical reinforcement sin } \alpha = 1.0 \\ & \text{Minimum } A_{sw} / s = 0.00095 \times 2000 \times 1 = 1.90 \end{aligned}$	Exp. (9.5N) & NA
But, maximum spacing of links longitudinally = $0.75d = 183$ mm Maximum spacing of links laterally = $0.75d \le 600$ mm = 183 mm H1Os required to maintain 35 mm cover to H25 \therefore Use H1O @ 175 cc both ways	Cl. 9.2.2(6) Cl. 9.2.2(8)
i.e. H10 in 12 ⁶ legs @ 175 mm cc ($A_{sw}/s = 5.38$) ⁶ (2000 mm – 2 × 25 mm cover – 10 mm diameter)/175 = 11 spaces, :. 12 legs.	

ь)	Support B (and C and D) By inspection, the requirement for minimum reinforcement and, in this instance, for H10 legs of links will outweigh design requirements. Nonetheless check capacity of $A_{sw}/s = 5.38$ $V_{Rd,s} = (A_{sw}/s) z f_{ywd} \cot \theta$ $= 5.38 \times 0.9 \times 252 \times 434.8 \times 2.5 = 1326.3$ kN Maximum shear at support = 517.9 kN i.e. capacity of minimum links not exceeded.	Ехр. (6.8)
	By inspection, the requirement for indirect support of the ribs of the slab using 87 mm ² /rib within 150 mm of centreline of ribs (at 900 mm centres) and within 50 mm of rib/solid interface is adequately catered for and will not unduly effect the shear capacity of the beam. Use 150 mm centres to tie in with 900 mm centres of ribs \therefore Use H10 in 12 legs @ 150 mm cc ($A_{sw}/s = 6.28$) throughout beam	Cl. 9.2.5, Section 3.4.8
4.3.10	Check for punching shear, column B As the beam is wide and shallow it should be checked for punching shear. At B, applied shear force, $V_{Ed} = 569.1 + 517.9 = 1087.0$ kN.	
	Check at perimeter of 400×400 mm column: $v_{\rm Ed} = \beta V_{\rm Ed}/u_{\rm i}d < v_{\rm Rd,max}$ where	Cl. 6.4.3(2), 6.4.5(3)
	β = factor dealing with eccentricity; recommended value 1.15 V_{Ed} = applied shear force u_i = control perimeter under consideration. For punching shear adjacent to interior columns $u_0 = 2(c_x + c_y) = 1600$ mm	Fig. 6.21N & NA Cl. 6.4.5(3)
	d = mean d = (245 + 226)/2 = 235 mm $v_{\text{Ed}} = 1.15 \times 1087.0 \times 10^3/1600 \times 235 = 3.32 \text{ MPa}$ $v_{\text{Rd,max}} = 0.5 \nu f_{cd}$	Exp. (6.32) Cl. 6.4.5(3) Note
	where $\nu = 0.6(1 - f_{ck}/250) = 0.516$ $f_{cd} = \alpha_{cc}\lambda f_{ck}/\gamma_{c} = 1.0 \times 1.0 \times 35/1.5 = 23.3$	Exp. (6.6) & NA
	$v_{\rm Rd,max} = 0.5 \times 0.516 \times 23.3 = 6.02 \text{ MPa}$ Check shear stress at basic perimeter u_1 (2.0d from face of column): $v_{\rm Ed} = \beta V_{\rm Ed} / u_1 d < v_{\rm Rd,c}$	Table C7 [‡] Cl. 6.4.2
	where eta , $V_{\rm Ed}$ and d as before	Fig. 6.13
	$$ In this case, at the perimeter of the column, it is assumed that the strut angle is 45°, i.e. that cot θ = 1.0. In other cases, where cot θ < 1.0, $v_{\rm Rd,max}$ is available from Table C7.	

4.3: Continuous wide T-beam

$u_1 = \text{control perimeter under consideration. For punching shear}$	
at 2d from interior columns	
$= 2(c_x + c_y) + 2\pi \times 2d$	
$= 1600 + 2\pi \times 2 \times 235 = 4553 \text{ mm}$	
$v_{\rm Ed} = 1.15 \times 1087.0 \times 10^3 / 4553 \times 235 = 1.17 \rm MPa$	
$v_{\rm Rd,c} = 0.18/ \gamma_{\rm C} \times k \times (100 \ \rho_{\rm l} f_{ck})^{0.333}$	Exp. (6.47) & NA
where	
$\gamma_C = 1.5$	
$k = 1 + (200/d)^{0.5} \le 2$	
$= 1 + (200/235)^{0.5} = 1.92$	
$\rho_{\rm I} = (\rho_{\rm I_{\rm M}}, \rho_{\rm Iz})^{0.5}$	Cl. 6.4.4.1(1)
where	
$ ho_{ m lv}$, $ ho_{ m lz}$ = Reinforcement ratio of bonded steel in the y and	
z direction in a width of the column plus 3d each	
side of column.	
= 6874/(2000 × 226) = 0.0152	
$\rho_{\rm lz} = 741/(900 \times 245) = 0.0036$	
$\rho_{\rm lz} = (0.0152 \times 0.0036)^{0.5} = 0.0074$	
f _{ck} = 35	
v _{Rd,c} = 0.18/1.5 × 1.92 × (100 × 0.0074 × 35) ^{0.333} = 0.68 MPa ⁵	Table C6 [#]
\therefore punching shear reinforcement required	
Shear reinforcement (assuming rectangular arrangement of links):	
At the basic control perimeter, u_1 , $2d$ from the column:	
	Evr. (6.52)
$A_{sw} \ge (v_{Ed} - 0.75 v_{Rd,c}) \sigma_r u_1 / 1.5 f_{ywd,ef})$	Exp. (6.52)
where	
$\sigma_r = 175 \text{ mm}$	Cl. 9.4.3(1)
$f_{ywd,ef}$ = effective design strength of reinforcement	
= (250 + 0.25 <i>d</i>) < f _{yd} = 309 MPa	Cl. 6.4.5(1)
For perimeter u	
$A_{sw} = (1.17 - 0.75 \times 0.68) \times 175 \times 4553/(1.5 \times 309) = 1135 \text{ mm}^2 \text{ per}$	
perimeter	
Try 15 no. H10 (1177 mm ²)	
⁵ See Section 3.4.14 with respect to possible limit of 2.0 or 2.5 on $V_{\rm Ed}/V_{\rm Rd,c}$	
within punching shear requirements.	
$^{\#}$ $v_{ m Rd,c}$ for various values of d and $ ho_{ m l}$ is available from Table C6.	

4.3: Continuous wide T-beam

5 Columns

5.0 General

The calculations in this section illustrate:

- 5.1 Design of a non-slender edge column using hand calculation.
- 5.2 Design of a perimeter column using iteration of equations to determine reinforcement requirements.
- 5.3 Design of an internal column with high axial load.
- 5.4 Design of a slender column requiring a two-hour fire resistance.

In general, axial loads and first order moments are assumed to be available. The designs consider slenderness in order to determine design moments, $M_{\rm Ed}$. The columns are designed and checked for biaxial bending. The effects of allowing for imperfections are illustrated.

A general method of designing columns is as follows. In practice, several of these steps may be combined.

Determine design life.	EC0 & NA Table NA 2.1
Assess actions on the column.	EC1 (10 parts) & UK NAs
Determine which combinations of actions apply.	EC0 & NA Tables NA A1.1 & NA A1.2(B)
Assess durability requirements and determine concrete strength.	BS 8500–1
Check cover requirements for appropriate fire resistance period.	Approved Document B, EC2–1–2
Determine cover for fire, durability and bond.	Cl. 4.4.1
Analyse structure for critical combination moments and axial forces.	Section 5
Check slenderness and determine design moments.	Section 5.8
Determine area of reinforcement required.	Section 6.1
Check spacing of bars and links.	Sections 8 & 9

5.1 Edge column

The intention of this calculation is to show a typical hand calculation that makes reference to design charts.

		Project details		Calculated by	chg	Job no.	CCIP - 041
C	:)	Edge column		Checked by	web	Sheet no.	1
The Concre				Client	TCC	Date	0ct 09
	suppor 38.5 kt concret	mm square column on the o ts an axial load of 1620 kN Nm top and –38.5 kNm bot se is grade C30/37, f _{ck} = 30 D mm thick flat slabs are a	and first order mom tom in one direction MPa and cover, c _{nom}	ients of only [‡] . The , = 25 mm			
			e 5.1 Forces in edge	column			
5.1.1		slenderness, λ					
	Effectiv where	e length [§] , $I_0 = factor \times I$				Cl. 5.8	.3.2
		tor = from Table C16, condi	tion 2 each end			Table	C16.
		= 0.85				PD 66	87: 2.10
	1	= clear height = 3750	mm				
	$\therefore I_O = 0$	0.85 × 3750 = 3187 mm					
	Slender	ness $\lambda = l_0/i$				Exp. (5	5.14)
	5.3.2 ^S Effectiv effective	mples of load take-downs and 1st e lengths are covered in Eurocode length of most columns will be 1/2	2 Cl. 5.8.3.2 and Exp. (5.1 < 1 ₀ < 1 (see Eurocode 2 Fi	5). The gure 5.7f).		Fig. 5. PD 66	
	(5.8.3.2(in BS 811 publicatio	^{NO} Cl. 2.10 suggests that using t 3) and 5.8.3.2(5)) leads to simil O ^[7] and reproduced in Table 5.1 c on as Table C16. For simplicity, ta experience suggests that these	ar effective lengths to thi f <i>Concise Eurocode 2</i> ^[5] ai bular values are used in tl	ose tabulate nd in this his example.	d	Cl. 2.10 Cl. 5.8 5.8.3. Table 0	9.3.2(3) 2(5)

	where	
	i = radius of gyration	
	$= h/12^{0.5}$ for rectangular sections	
	$\lambda = 3187 \times 3.46/300$ = 36.8	
5.1.2	Limiting slenderness, $\lambda_{ m lim}$	
	$\lambda_{\rm lim} = 20 \ ABC/n^{0.5}$	Exp. (5.13N)
	where	
	A = 0.7 (default)	Cl. 5.8.3.1(1)
	B = 1.1 (default)	
	$C = 1.7 - r_m = 1.7 - M_{01}/M_{02}$	
	= 1.7 - 38.5/(-38.5) = 2.7	
	$n = N_{Ed}/A_c f_{cd} = 1620 \times 10^3 / (300^2 \times 0.85 \times 30/1.5)$	
	= 1.06	
	$\lambda_{\text{lim}} = 20 \ ABC/n^{0.5}$	
	$= 20 \times 0.7 \times 1.1 \times 2.7/1.06^{0.5}$	
	In this example $\lambda_{\text{lim}} = 40.4$ i.e. > 36.8 \therefore Column not slender	
513	Decien momente	
5.1.5	Design moments	(15992(1)
	$M_{\rm Ed} = \max[M_{O2}; M_{OEd} + M_2; M_{O1} + 0.5M_2]$	Cl. 5.8.8.2(1)
	where $M = M + \alpha N = \lambda \alpha N$	(15882614
	$M_{O2} = M + e_i N_{Ed} \ge e_O N_{Ed}$ where	Cl. 5.8.8.2, 6.1.4
	M = 38.5 kNm	
	$e_{\rm i} = I_{\rm O}/400$	Cl. 5.2.7, 5.2.9
	$e_0 = \max[h/30; 20] = \max[300/30; 20] = 20 \text{ mm}$	Cl. 6.1.4
	M ₀₂ = 38.5 + 1620 × 3.187/400 ≥ 0.02 × 1620	
	= 38.5 + 12.9 ≥ 32.4 kNm	
	= 51.4 kNm	
	$M_{OEd} = 0.6M_{O2} + 0.4M_{O1} \ge 0.4M_{O2}$	
	= 0.6 × 51.4 + 0.4 × (-38.5 + 12.9) ≥ 0.4 × 51.4	
	= 20.6 ≥ 20.6	
	= 20.6	
	$M_2 = O$ (column is not slender)	
	$M_{O1} = M_{O2}$	
	:. max $[M_{O2}; M_{OEd} + M_2; M_{O1} + 0.5M_2] = 51.4 \text{ kNm}$:. $M_{Ed} = 51.4 \text{ kNm}$	
5.1.4	Design using charts (see Appendix C)	
	$d_2 = c_{\text{nom}} + \text{link} + \phi/2 = 25 + 8 + 16 = 49$	
	$d_2/h = 49/300 = 0.163$	
	\therefore interpolating between $d_2/h = 0.15$ and 0.20	Figs. C5c), C5d)
	for	
	$N_{\rm Ed}/bhf_{\rm ck} = 1620 \times 10^3/(300^2 \times 30) = 0.60$	

5.1: Edge column

	$\begin{split} M_{\rm Ed}/bh^2 f_{ck} &= 51.4 \times 10^6/(300^3 \times 30) = 0.063 \\ A_{\rm s} f_{\rm yk}/bh f_{ck} &= 0.24 \\ A_{\rm s} &= 0.24 \times 300^2 \times 30/500 = 1296 \ {\rm mm}^2 \\ \underline{{\rm Try \ 4 \ no. \ H25 \ (1964 \ {\rm mm}^2)}} \end{split}$	
5.1.5	Check for biaxial bending	
	$\lambda_y / \lambda_z \approx 1.0$ i.e. $\lambda_y / \lambda_z \leq 2.0$ \therefore OK but check Exp. (5.38b)	Cl. 5.8.9 Exp. (5.38a)
	As a worst case $M_{ m Edy}$ may coexist with $e_{ m O}N_{ m Ed}$ about the orthogonal axis:	Cl. 6.1(4)
	$\frac{\frac{e_y/h_{eq}}{e_z/b_{eq}}}{\frac{e_z/h_{eq}}{E_z/M_{ed}}} = \frac{(M_{Edz}/N_{Ed})/h}{(M_{Edy}/N_{Ed})/b} = \frac{M_{Edz}}{M_{Edy}}$	Ехр. (5.38b)
	Imperfections need to be taken into account in one direction only. \therefore As a worst case for biaxial bending	Cl. 5.8.9(2)
	$M_{\rm Edz} = M + O = 38.5 \rm kNm$	
	$M_{\rm Edy} = e_O N_{\rm Ed} = 32.4 \text{ kNm}$	
	$\frac{M_{\rm Edz}}{M_{\rm Edy}} = \frac{38.5}{32.4} = 1.19 \text{ i.e.} > 0.2 \text{ and } < 5.0$	Ехр. (5.38b)
	\therefore Biaxial check required	Cl. 5.8.9(4)
	Check whether	
	$(M_{\rm Edz}/M_{\rm Rdz})^{\rm a} + (M_{\rm Edy}/M_{\rm Rdy})^{\rm a} \le 1.0$	Exp. (5.39)
	where $M_{\rm Edz} = 38.5 \; \rm kNm$	
	$M_{Edz} = 32.4 \text{ kNm}$	
	$M_{Rdz} = M_{Rdy}$	Figs. C5c), C5d)
	To determine M_{Rdz} , find $M_{Ed}/bh^2 f_{ck}$ (and therefore moment capacity) by interpolating between $d_2/h = 0.15$ (Figure C5c) and 0.20 (Figure C5d) for the proposed arrangement and co-existent axial load.	
	Assuming 4 no. H25, A _s f _{yk} /bhf _{ck} = 1964 × 500/(300 ² × 30) = 0.36	
	Interpolating for N_{Ed} /bhf _{ck} = 0.6, M_{Ed} /bh ² f _{ck} = 0.094 $\therefore M_{Rdz} = M_{Rdy} = 0.094 \times 300^3 \times 30 = 76.1 \text{ kNm}$	
	a is dependent on $N_{\rm Ed}/N_{\rm Rd}$ where $N_{\rm Ed}$ = 1620 kN as before	Cl. 5.8.9(4), Notes to Exp. (5.39)

	$\begin{split} N_{\rm Rd} &= A_c f_{cd} + A_s f_{yd} \\ &= 300^2 \times 0.85 \times 30/1.5 + 1964 \times 500/1.15 \\ &= 1530.0 + 853.9 \\ &= 2383.9 \ {\rm kN} \\ N_{\rm Ed}/N_{\rm Rd} &= 1620/2383.9 = 0.68 \\ \therefore \ a = 1.48 \ {\rm by \ interpolating \ between \ values \ given \ for \ N_{\rm Ed}/N_{\rm Rd} = 0.1, (1.0) \ {\rm and} \ N_{\rm Ed}/N_{\rm Rd} = 0.7, (1.5) \end{split}$	
	$ (M_{\rm Edz}/M_{\rm Rdz})^{a} + (M_{\rm Edy}/M_{\rm Rdy})^{a} = (38.5/76.1)^{1.48} + (32.4/76.1)^{1.48} $ = 0.36 + 0.28 = 0.64 \dots 0K. $ \underline{\cdot \cdot 4 \text{ no. H25 OK} } $	Ехр. (5.39)
5.1.6	Links Diameter min. $\phi/4 = 25/4 = 8 \text{ mm}$ Max. spacing = $0.6 \times 300 = 180 \text{ mm}$ Links at say 175 mm cc	Cl. 9.5.3 & NA Cl. 9.5.3(3), Cl. 9.5.3(4)
5.1.7	Design summary	
	4 H25 H8 links @ 175 cc 25 mm cover $f_{ck} = 30$ MPa	
	Figure 5.2 Design summary: edge column	

5.2 Perimeter column (internal environment)

This example is intended to show a hand calculation for a non-slender perimeter column using iteration (of x) to determine the reinforcement required.

2 Fire resistance Check validity of using Method A and Table 5.2a of B5 EN 1992–1–2: $l_{0,fi} = 0.7 \times 3.325$ i.e. $< 3.0 \text{ m}$. OK. $e = M_{0200}/N_{Ed} = 89.6 \times 10^6/1129.6 \times 10^3 = 79 \text{ mm}$ $e_{max} = 0.15h = 0.15 \times 300 = 45 \text{ mm}$. no good. Check validity of using Method B and Table 5.2b: $e_{max} = 0.25b = 75 \text{ mm}$. no good. Use B5 EN 1992–1–2 Annex C Tables C1–C9. Assume min. 4 no. H25 = 1964 mm ² (= 2.2%) [±] $w = A_{5,yd}/A_{c}f_{cd} = 0.022 \times (500/1.15)/(0.85 \times 30/1.5)$ = 0.56 $e = 0.25b$ and $\leq 100 \text{ mm}$ $\lambda = l_{0}/i$ where $I = inertia = bh^{3}/12$ A = area = bh h = height of section $= 300/12^{0.5} = 87 \text{ mm}$ $\lambda = 2327/87 = 276$ $n = N_{0Ed,fl}/0.7(A_{c}f_{cd} + A_{s}f_{sd})$ = 0.47 \therefore interpolate for $\lambda = 30$ and $n = 0.47$ between from Table C.5 of B5 EN 1992–1–2 ($w = 0.5, e = 0.25b$): minimum dimension, $b_{min} = 235$, and axis distance, $a = 35 \text{ mm}$ and from Table C.8 of B5 EN 1992–1–2 ($w = 1.0, e = 0.25b$): Table C.8	Check validity of using Method A and Table 5.2 <i>a</i> of B5 EN 1992–1–2: $l_{0,fi} = 0.7 \times 3.325$ i.e. < 3.0 m : 0K. $e = M_{02y}/N_{Ed} = 89.6 \times 10^6/1129.6 \times 10^3 = 79$ mm $e_{max} = 0.15h = 0.15 \times 300 = 45$ mm : no good. Check validity of using Method B and Table 5.2 <i>b</i> : $e_{max} = 0.25b = 75$ mm : no good. Use B5 EN 1992–1–2 Annex C Tables C1–C9. Assume min. 4 no. H25 = 1964 mm ² (= 2.2%) [†] $\omega = A_{e}f_{yd}/A_{c}f_{cd} = 0.022 \times (500/1.15)/(0.85 \times 30/1.5)$ = 0.56 $e = 0.25b$ and ≤ 100 mm $\lambda = l_{0}/i$ where $I = inertia = bh^3/12$ A = area = bh h = height of section b = breadth of section $b = 0.72 \times 129.6/07(A_{c}f_{cd} + A_{b}f_{yd})$ $= 0.7 \times 1129.6/07(A_{c}f_{cd} + A_{b}f_{yd})$ = 0.47 \therefore interpolate for $\lambda = 30$ and $n = 0.47$ between from Table C.5 of B5 EN 1992–1–2 ($\omega = 1.0, e = 0.25b$): minimum dimension, $b_{min} = 235$, and axis distance, $a = 35$ mm and from Table C.8 of B5 EN 1992–1–2 ($\omega = 1.0, e = 0.25b$): minimum dimension, $b_{min} = 235$, and axis distance, $a = 35$ mm and from Table C.8 of B5 EN 1992–1–2 ($\omega = 1.0, e = 0.25b$):			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Check validity of using Method A and Table 5.2 <i>a</i> of B5 EN 1992–1–2: $l_{0,fi} = 0.7 \times 3.325$ i.e. < 3.0 m : 0K. $e = M_{02y}/N_{Ed} = 89.6 \times 10^6/1129.6 \times 10^3 = 79$ mm $e_{max} = 0.15h = 0.15 \times 300 = 45$ mm : no good. Check validity of using Method B and Table 5.2 <i>b</i> : $e_{max} = 0.25b = 75$ mm : no good. Use B5 EN 1992–1–2 Annex C Tables C1–C9. Assume min. 4 no. H25 = 1964 mm ² (= 2.2%) [†] $\omega = A_{e}f_{yd}/A_{c}f_{cd} = 0.022 \times (500/1.15)/(0.85 \times 30/1.5)$ = 0.56 $e = 0.25b$ and ≤ 100 mm $\lambda = l_{0}/i$ where $I = inertia = bh^3/12$ A = area = bh h = height of section b = breadth of section $b = 0.72 \times 129.6/07(A_{c}f_{cd} + A_{b}f_{yd})$ $= 0.7 \times 1129.6/07(A_{c}f_{cd} + A_{b}f_{yd})$ = 0.47 \therefore interpolate for $\lambda = 30$ and $n = 0.47$ between from Table C.5 of B5 EN 1992–1–2 ($\omega = 1.0, e = 0.25b$): minimum dimension, $b_{min} = 235$, and axis distance, $a = 35$ mm and from Table C.8 of B5 EN 1992–1–2 ($\omega = 1.0, e = 0.25b$): minimum dimension, $b_{min} = 235$, and axis distance, $a = 35$ mm and from Table C.8 of B5 EN 1992–1–2 ($\omega = 1.0, e = 0.25b$):	.2	Fire resistance	
$ \begin{split} & _{O,\mathrm{fi}} = 0.7 \times 3.325 \text{ i.e.} < 3.0 \text{ m} \therefore 0\text{K}. \\ &= & M_{O2_{2}\mathrm{y}}/N_{Ed} = 89.6 \times 10^{6}/1129.6 \times 10^{3} = 79 \text{ mm} \\ &= & m_{ax} = 0.15h = 0.15 \times 300 = 45 \text{ mm} \therefore \text{ no good}. \\ &\text{Check validity of using Method B and Table 5.2b:} \\ &e_{max} = 0.25b = .75 \text{ mm} \therefore \text{ no good}. \\ &\text{Use BS EN 1992-1-2 Annex C Tables C1-C9.} \\ &\text{Assume min. 4 no. H25 = 1964 mm^{2} (= 2.2\%)^{\dagger} \\ & \omega = & \Lambda_{s}^{1} \sqrt{A_{c}} f_{cd} = 0.022 \times (500/1.15)/(0.85 \times 30/1.5) \\ &= & 0.56 \\ e = & 0.25b \text{ and } \le 100 \text{ mm} \\ &\lambda = & l_{0}/i \\ &\text{where} \\ &I = \text{ inertia } = bh^{3}/12 \\ &A = \text{ area} = bh \\ &h = \text{ height of section} \\ &b = breadth of section \\ &b = 0.47 \end{aligned}$	$\begin{split} l_{0,6} &= 0.7 \times 3.325 \text{ i.e.} < 3.0 \text{ m} : 0\text{K}. \\ e &= M_{02yy}/N_{Ed} = 89.6 \times 10^6/1129.6 \times 10^3 = 79 \text{ mm} \\ \text{S.33}(3) \\ e &= M_{02yy}/N_{Ed} = 89.6 \times 10^6/1129.6 \times 10^3 = 79 \text{ mm} \\ \text{S.32 & NA} \\ e_{\max} &= 0.15h = 0.15 \times 300 = 45 \text{ mm} : no good. \\ \text{Check validity of using Method B and Table 5.2b:} \\ e_{\max} &= 0.25b = 75 \text{ rm} : no good. \\ \text{Use BS EN 1992-1-2 Annex C Tables C1-C9.} \\ \text{Assume min. 4 no. H25 = 1964 mm^2 (= 2.2*)^{\frac{1}{2}} \\ \omega &= A_6 f_{yd}/A_6 f_{cd} = 0.022 \times (500/1.15)/(0.85 \times 30/1.5) \\ = 0.56 \\ e &= 0.25b \text{ and } \leq 100 \text{ mm} \\ \lambda &= l_6/i \\ \text{where} \\ I &= \text{inertia} = bh^{7}/12 \\ A &= \text{area} = bh \\ h &= \text{height of section} \\ b &= \text{breadth of section} \\ b &= \text{breadth of section} \\ = 300/12^{0.5} = 87 \text{ rmm} \\ \lambda &= 2327/87 = 276 \\ n &= N_{0Ed,R}/0.7(A_c f_{cd} + A_b f_{yd}) \\ = 0.7 \times 1129.6/0.7(300^2 \times 0.85 \times 30/1.5 + 1964 \times 500/1.15) \\ = 1129.6/2383.9 \\ = 0.47 \\ \therefore \text{ interpolate for } \lambda = 30 \text{ and } n = 0.47 \text{ between} \\ \text{from Table C.5 of BS EN 1992-1-2 } (\omega = 1.0, e = 0.25b): \\ \text{minimum dimension, } b_{\min} = 235, \text{ and axis distance, } a = 35 \text{ mm} \\ \text{and} \\ \text{from Table C.8 of BS EN 1992-1-2 } (\omega = 1.0, e = 0.25b): \\ \end{split}$			-
$e = M_{02yy}/N_{Ed} = 89.6 \times 10^{6}/1129.6 \times 10^{3} = 79 \text{ mm}$ $e_{max} = 0.15h = 0.15 \times 300 = 45 \text{ mm} \therefore \text{ no good.}$ Check validity of using Method B and Table 5.2b: $e_{max} = 0.25b = 75 \text{ mm} \therefore \text{ no good.}$ Use B6 EN 1992–1–2 Annex C Tables C1–C9. Assume min. 4 no. H25 = 1964 mm ² ($\equiv 2.2\%$) [‡] $w = A_{5}f_{yd}/A_{c}f_{cd} = 0.022 \times (500/1.15)/(0.85 \times 30/1.5)$ = 0.56 e = 0.25b and 100 mm $\lambda = I_{0}/i$ where $I = \text{ inertia} = bh^{3}/12$ $A = \text{ radius of gyration} = (I/A)^{0.5} = h/12^{0.5}$ where $I = \text{ inertia} = bh^{3}/12$ A = area = bh h = height of section $= 300/12^{0.5} = 87 \text{ mm}$ $\lambda = 2327/87 = 276$ $n = N_{0Ed,h}/0.7(A_{c}f_{cd} + A_{b}f_{yd})$ = 0.47 \therefore interpolate for $\lambda = 30$ and $n = 0.47$ between from Table C.5 of B5 EN 1992–1–2 ($w = 0.5, e = 0.25b$): minimum dimension, $b_{min} = 235$, and axis distance, $a = 35$ mm and EC2-1-2:	$e = M_{02yy}/N_{Ed} = 89.6 \times 10^{6}/1129.6 \times 10^{3} = 79 \text{ mm}$ $e_{max} = 0.15h = 0.15 \times 300 = 45 \text{ mm} \therefore \text{ no good.}$ Check validity of using Method B and Table 5.2b: $e_{max} = 0.25b = 75 \text{ mm} \therefore \text{ no good.}$ Use BS EN 1992-1-2 Annex C Tables C1-C9. Assume min. 4 no. H25 = 1964 mm ² (= 2.2%) [†] $\omega = A_{3}f_{yd}/A_{c}f_{cd} = 0.022 \times (500/1.15)/(0.85 \times 30/1.5)$ $= 0.56$ $e = 0.25b \text{ and } \le 100 \text{ mm}$ $\lambda = 1_{0}/i$ where $I = \text{ inertia = bh^{3}/12}$ $A = \text{ area = bh}$ $h = \text{ height of section}$ $b = \text{ breadth of section}$ $b = 0.7 \times 1129.6/0.7(300^{2} \times 0.85 \times 30/1.5 + 1964 \times 500/1.15)$ $= 1129.6/2383.9 = 0.47$ $\therefore \text{ interpolate for } \lambda = 30 \text{ and } n = 0.47 \text{ between}$ from Table C.5 of BS EN 1992-1-2 ($\omega = 1.0, e = 0.25b$): minimum dimension, $b_{min} = 235$, and axis distance, $a = 35 \text{ mm}$ and from Table C.8 of BS EN 1992-1-2 ($\omega = 1.0, e = 0.25b$): Table C.8		$l_{0,\mathrm{fi}} \approx 0.7 \times 3.325$ i.e. < 3.0 m \therefore OK.	EC2-1-2:
Check validity of using Method B and Table 5.2b: $e_{max} = 0.25b = 75 \text{ mm} \therefore \text{ no good.}$ Use BS EN 1992–1–2 Annex C Tables C1–C9. Assume min. 4 no. H25 = 1964 mm ² ($\equiv 2.2\%$) [†] $\omega = A_s f_{yd} / A_c f_{cd} = 0.022 \times (500/1.15)/(0.85 \times 30/1.5)$ = 0.56 $e = 0.25b \text{ and } \le 100 \text{ mm}$ $\lambda = l_0/i$ where $l_0 = 0.7 \times 3.325 = 2327 \text{ mm}$ $i = \text{ radius of gyration = (I/A)^{0.5} = h/12^{0.5}$ where $I = \text{ inertia = bh}^3/12$ A = area = bh h = height of section b = breadth of section b = breadth of section $a = 300/12^{0.5} = 87 \text{ mm}$ $\lambda = 2327/87 = 276$ $n = N_{0Ed,h}/0.7(A_c f_{cd} + A_s f_{yd})$ $= 0.7 \times 1129.6/0.7(300^2 \times 0.85 \times 30/1.5 + 1964 \times 500/1.15)$ = 1129.6/2383.9 = 0.47 \therefore interpolate for $\lambda = 30$ and $n = 0.47$ between from Table C.5 of BS EN 1992–1–2 ($\omega = 0.5$, $e = 0.25b$): minimum dimension, $b_{min} = 235$, and axis distance, $a = 35$ mm and EC2-1-2:	$\begin{aligned} EC2-1-2:\\ e_{max} &= 0.25b = 75 \text{ mm} \therefore \text{ no good.} \end{aligned}$ Use BS EN 1992–1–2 Annex C Tables C1–C9. Aesume min. 4 no. H25 = 1964 mm ² (= 2.2%) [†] $\omega = A_{g}f_{yd}/A_{c}f_{cd} = 0.022 \times (500/1.15)/(0.85 \times 30/1.5)$ = 0.56 $e = 0.25b \text{ and } \le 100 \text{ mm}$ $\lambda = \frac{1}{0}/i$ where $I_{c} = 0.7 \times 3.325 = 2327 \text{ mm}$ $i = \text{ radius of gyration} = (I/A)^{0.5} = h/12^{0.5}$ where $I = \text{ inertia } = bh^{3}/12$ A = area = bh h = height of section $= 300/A2^{0.5} = 87 \text{ mm}$ $\lambda = 2327/87 = 276$ $n = N_{0E4,h}/0.7(A_{c}f_{cd} + A_{g}f_{yd})$ = 0.47 $\therefore \text{ interpolate for \lambda = 30 \text{ and } n = 0.47 \text{ between}from Table C.5 of BS EN 1992–1–2 (\omega = 0.5, e = 0.25b):minimum dimension, b_{min} = 235, and axis distance, a = 35 \text{ mm}andfrom Table C.8 of BS EN 1992–1–2 (\omega = 1.0, e = 0.25b):EC2-1-2:$ Table C.8		$e = M_{O2yy}/N_{Ed} = 89.6 \times 10^6/1129.6 \times 10^3 = 79 \text{ mm}$	EC2-1-2:
$\begin{array}{ll} e_{\max} = 0.25b = 75 \text{ mm} \therefore \text{ no good.} \\ \text{Use BS EN 1992-1-2 Annex C Tables C1-C9.} \\ \text{Assume min. 4 no. H25 = 1964 mm^2 (= 2.2\%)^{\dagger}} \\ we = A_s f_{yd} / A_c f_{cd} = 0.022 \times (500/1.15) / (0.85 \times 30/1.5) \\ = 0.56 \\ e = 0.25b \text{ and } \le 100 \text{ mm} \\ \lambda = l_0 / i \\ \text{where} \\ l_0 = 0.7 \times 3.325 = 2327 \text{ mm} \\ i = \text{ radius of gyration} = (I/A)^{0.5} = h/12^{0.5} \\ \text{where} \\ I = \text{ inertia} = bh^3 / 12 \\ A = \text{ area} = bh \\ h = \text{ height of section} \\ b = \text{ breadth of section} \\ b = \text{ breadth of section} \\ = 300 / 12^{0.5} = 87 \text{ mm} \\ \lambda = 2327 / 87 = 276 \\ n = N_{0Ed, fl} (0.7 (A_c f_{cd} + A_s f_{yd}) \\ = 0.7 \times 1129.6 / 0.7 (300^2 \times 0.85 \times 30/1.5 + 1964 \times 500 / 1.15) \\ = 1129.6 / 2383.9 \\ = 0.47 \\ \therefore \text{ interpolate for } \lambda = 30 \text{ and } n = 0.47 \text{ between} \\ \text{ from Table C.5 of BS EN 1992-1-2 } (\omega = 0.5, e = 0.25b); \\ \text{ minimum dimension, } b_{\min} = 235, \text{ and axis distance, } a = 35 \text{ mm} \\ \text{ and} \end{array}$	$e_{\max} = 0.25b = 75 \text{ mm} \therefore \text{ no good.}$ Use BS EN 1992-1-2 Annex C Tables C1-C9. Assume min. 4 no. H25 = 1964 mm ² (= 2.2%) [‡] $\omega = A_{3}f_{3}d/A_{c}f_{cd} = 0.022 \times (500/1.15)/(0.85 \times 30/1.5) = 0.56$ $e = 0.25b \text{ and } \le 100 \text{ mm}$ $\lambda = I_{0}/i$ where $I = \text{ inertia} = bh^{3}/12$ $A = \text{ area} = bh$ $h = \text{ height of section}$ $b = \text{ breadth of section}$ $b = \text{ breadth of section}$ $a = 300/12^{0.5} = 87 \text{ mm}$ $\lambda = 2327/87 = 276$ $n = N_{0Ed,fl}/0.7(A_{c}f_{cd} + A_{5}f_{yd})$ $= 0.47$ $\therefore \text{ interpolate for } \lambda = 30 \text{ and } n = 0.47 \text{ between}$ from Table C.5 of BS EN 1992-1-2 ($\omega = 0.5, e = 0.25b$): minimum dimension, $b_{\min} = 235$, and axis distance, $a = 35 \text{ mm}$ and $EC2-1-2: Table C.5$		$e_{\max} = 0.15h = 0.15 \times 300 = 45 \text{ mm} : \text{no good.}$	
$\begin{array}{ll} e_{\max} = 0.25b = 75 \text{ mm} \therefore \text{ no good.} \\ \text{Use BS EN 1992-1-2 Annex C Tables C1-C9.} \\ \text{Assume min. 4 no. H25 = 1964 mm^2 (= 2.2\%)^{\dagger}} \\ we = A_s f_{yd} / A_c f_{cd} = 0.022 \times (500/1.15) / (0.85 \times 30/1.5) \\ = 0.56 \\ e = 0.25b \text{ and } \le 100 \text{ mm} \\ \lambda = l_0 / i \\ \text{where} \\ l_0 = 0.7 \times 3.325 = 2327 \text{ mm} \\ i = \text{ radius of gyration} = (I/A)^{0.5} = h/12^{0.5} \\ \text{where} \\ I = \text{ inertia} = bh^3 / 12 \\ A = \text{ area} = bh \\ h = \text{ height of section} \\ b = \text{ breadth of section} \\ b = \text{ breadth of section} \\ = 300 / 12^{0.5} = 87 \text{ mm} \\ \lambda = 2327 / 87 = 276 \\ n = N_{0Ed, fl} (0.7 (A_c f_{cd} + A_s f_{yd}) \\ = 0.7 \times 1129.6 / 0.7 (300^2 \times 0.85 \times 30/1.5 + 1964 \times 500 / 1.15) \\ = 1129.6 / 2383.9 \\ = 0.47 \\ \therefore \text{ interpolate for } \lambda = 30 \text{ and } n = 0.47 \text{ between} \\ \text{ from Table C.5 of BS EN 1992-1-2 } (\omega = 0.5, e = 0.25b); \\ \text{ minimum dimension, } b_{\min} = 235, \text{ and axis distance, } a = 35 \text{ mm} \\ \text{ and} \end{array}$	$e_{\max} = 0.25b = 75 \text{ mm} \therefore \text{ no good.}$ Use BS EN 1992-1-2 Annex C Tables C1-C9. Assume min. 4 no. H25 = 1964 mm ² (= 2.2%) [‡] $\omega = A_{3}f_{3}d/A_{c}f_{cd} = 0.022 \times (500/1.15)/(0.85 \times 30/1.5) = 0.56$ $e = 0.25b \text{ and } \le 100 \text{ mm}$ $\lambda = I_{0}/i$ where $I = \text{ inertia} = bh^{3}/12$ $A = \text{ area} = bh$ $h = \text{ height of section}$ $b = \text{ breadth of section}$ $b = \text{ breadth of section}$ $a = 300/12^{0.5} = 87 \text{ mm}$ $\lambda = 2327/87 = 276$ $n = N_{0Ed,fl}/0.7(A_{c}f_{cd} + A_{5}f_{yd})$ $= 0.47$ $\therefore \text{ interpolate for } \lambda = 30 \text{ and } n = 0.47 \text{ between}$ from Table C.5 of BS EN 1992-1-2 ($\omega = 0.5, e = 0.25b$): minimum dimension, $b_{\min} = 235$, and axis distance, $a = 35 \text{ mm}$ and $EC2-1-2: Table C.5$		Check validity of using Method B and Table 5.2b:	EC2-1-2:
Annex C Assume min. 4 no. H25 = 1964 mm ² ($\equiv 2.2\%$) [‡] $\omega = A_{s}f_{yd}/A_{c}f_{cd} = 0.022 \times (500/1.15)/(0.85 \times 30/1.5)$ = 0.56 $e = 0.25b \text{ and } \le 100 \text{ mm}$ $\lambda = l_{0}/i$ where $l_{0} = 0.7 \times 3.325 = 2327 \text{ mm}$ $i = \text{radius of gyration} = (I/A)^{0.5} = h/12^{0.5}$ where $I = \text{inertia} = bh^{3}/12$ A = area = bh h = height of section b = breadth of section b = breadth of section $= 300/12^{0.5} = 87 \text{ mm}$ $\lambda = 2327/87 = 276$ $n = N_{0\text{Ed,ff}}/0.7(A_{c}f_{cd} + A_{s}f_{yd})$ $= 0.7 \times 1129.6/0.7(300^{2} \times 0.85 \times 30/1.5 + 1964 \times 500/1.15)$ = 1129.6/2383.9 = 0.47 \therefore interpolate for $\lambda = 30$ and $n = 0.47$ between from Table C.5 of B5 EN 1992-1-2 ($\omega = 0.5, e = 0.25b$): minimum dimension, $b_{\min} = 235$, and axis distance, $a = 35$ mm and EC2-1-2:	Assume min. 4 no. H25 = 1964 mm ² (= 2.2%) [†] $\omega = A_{s}f_{yd}/A_{c}f_{cd} = 0.022 \times (500/1.15)/(0.85 \times 30/1.5)$ = 0.56 $e = 0.25b \text{ and } \le 100 \text{ mm}$ $\lambda = l_{0}/i$ where $l_{0} = 0.7 \times 3.325 = 2327 \text{ mm}$ $i = \text{ radius of gyration} = (I/A)^{0.5} = h/12^{0.5}$ where $I = \text{ inertia} = bh^{3}/12$ A = area = bh h = height of section $= 300/12^{0.5} = 87 \text{ mm}$ $\lambda = 2327/87 = 276$ $n = N_{0Ed,ff}(0.7(A_{c}f_{cd} + A_{s}f_{yd}))$ $= 0.7 \times 1129.6/2383.9$ = 0.47 \therefore interpolate for $\lambda = 30$ and $n = 0.47$ between from Table C.5 of B5 EN 1992–1–2 ($\omega = 0.5$, $e = 0.25b$): minimum dimension, $b_{min} = 235$, and axis distance, $a = 35$ mm and from Table C.8 of B5 EN 1992–1–2 ($\omega = 1.0$, $e = 0.25b$): Table C.8			5.3.3
Assume min. 4 no. H25 = 1964 mm ² (≡ 2.2%) [‡] $\omega = A_s f_{yd} / A_c f_{cd} = 0.022 \times (500/1.15) / (0.85 \times 30/1.5)$ = 0.56 $e = 0.25b \text{ and } \le 100 \text{ mm}$ $\lambda = l_0 / i$ where $l_0 = 0.7 \times 3.325 = 2327 \text{ mm}$ $i = \text{ radius of gyration} = (I/A)^{0.5} = h/12^{0.5}$ where $I = \text{ inertia} = bh^3 / 12$ A = area = bh h = height of section b = breadth of section b = breadth of section $a = 300/12^{0.5} = 87 \text{ mm}$ $\lambda = 2327/87 = 276$ $n = N_{0Ed,fi} / 0.7 (A_c f_{cd} + A_s f_{yd})$ $= 0.7 \times 1129.6 / 0.7 (300^2 \times 0.85 \times 30/1.5 + 1964 \times 500/1.15)$ = 1129.6 / 2383.9 = 0.47 \therefore interpolate for $\lambda = 30$ and $n = 0.47$ between from Table C.5 of B5 EN 1992-1-2 ($\omega = 0.5, e = 0.25b$): minimum dimension, $b_{min} = 235$, and axis distance, $a = 35$ mm and EC2-1-2:	Assume min. 4 no. H25 = 1964 mm ² (= 2.2%) [‡] $\omega = A_{s}f_{yd}/A_{c}f_{cd} = 0.022 \times (500/1.15)/(0.85 \times 30/1.5)$ = 0.56 $e = 0.25b$ and ≤ 100 mm $\lambda = l_{0}/i$ where $l_{0} = 0.7 \times 3.325 = 2327$ mm $i = radius of gyration = (I/A)^{0.5} = h/12^{0.5}$ where $I = inertia = bh^{3}/12$ A = area = bh h = height of section b = breadth of section b = breadth of section b = breadth of section $= 300/12^{0.5} = 87$ mm $\lambda = 2327/87 = 276$ $n = N_{0Ed,h}/0.7(A_{c}f_{cd} + A_{s}f_{yd})$ $= 0.7 \times 1129.6/0.7(300^{2} \times 0.85 \times 30/1.5 + 1964 \times 500/1.15)$ = 1129.6/2383.9 = 0.47 \therefore interpolate for $\lambda = 30$ and $n = 0.47$ between from Table C.5 of B5 EN 1992–1–2 ($\omega = 0.5, e = 0.25b$): minimum dimension, $b_{min} = 235$, and axis distance, $a = 35$ mm and from Table C.8 of B5 EN 1992–1–2 ($\omega = 1.0, e = 0.25b$): Table C.8		Use BS EN 1992–1–2 Annex C Tables C1–C9.	
$\begin{split} & \omega = A_{s}f_{yd}/A_{c}f_{cd} = 0.022 \times (500/1.15)/(0.85 \times 30/1.5) \\ &= 0.56 \\ e &= 0.25b \text{ and } \le 100 \text{ mm} \\ & \lambda = l_{0}/i \\ & \text{where} \\ & l_{0} = 0.7 \times 3.325 = 2327 \text{ mm} \\ & i = \text{radius of gyration} = (I/A)^{0.5} = h/12^{0.5} \\ & \text{where} \\ & I = \text{inertia} = bh^{3}/12 \\ & A = \text{area} = bh \\ & h = \text{height of section} \\ & b = \text{breadth of section} \\ & b = \text{breadth of section} \\ & a = 300/12^{0.5} = 87 \text{ mm} \\ & \lambda = 2327/87 = 276 \\ & n = N_{0Ed,fh}/0.7(A_{c}f_{cd} + A_{g}f_{yd}) \\ &= 0.7 \times 1129.6/0.7(300^{2} \times 0.85 \times 30/1.5 + 1964 \times 500/1.15) \\ &= 1129.6/2383.9 \\ &= 0.47 \\ & \therefore \text{ interpolate for } \lambda = 30 \text{ and } n = 0.47 \text{ between} \\ & \text{from Table C.5 of BS EN 1992-1-2 } (\omega = 0.5, e = 0.25b); \\ & \text{minimum dimension, } b_{\min} = 235, \text{ and axis distance, } a = 35 \text{ mm} \\ & \text{and} \\ \end{split}$	$\begin{split} & \omega = \Lambda_{efyd} / \Lambda_{efod}^{-} = 0.022 \times (500/1.15) / (0.85 \times 30/1.5) \\ &= 0.56 \\ e = 0.25b \text{ and } \le 100 \text{ mm} \\ & \lambda = I_{0} / i \\ \text{where} \\ & I_{0} = 0.7 \times 3.325 = 2327 \text{ mm} \\ & i = \text{ radius of gyration} = (I/A)^{0.5} = h/12^{0.5} \\ & \text{where} \\ & I = \text{ inertia} = bh^{3} / 12 \\ & \Lambda = \text{ area} = bh \\ & h = \text{ height of section} \\ & = 300 / 12^{0.5} = 87 \text{ mm} \\ & \lambda = 2327 / 87 = 276 \\ & n = N_{0Ed,f} / 0.7 (\Lambda_{cf_{cd}} + \Lambda_{ef_{yd}}) \\ &= 0.7 \times 1129.6 / 0.7 (300^{2} \times 0.85 \times 30 / 1.5 + 1964 \times 500 / 1.15) \\ &= 1129.6 / 2383.9 \\ &= 0.47 \\ & \therefore \text{ interpolate for } \lambda = 30 \text{ and } n = 0.47 \text{ between} \\ & \text{ from Table C.5 of BS EN 1992-1-2 } (\omega = 0.5, e = 0.25b): \\ & \text{ minimum dimension, } b_{\min} = 235, \text{ and axis distance, } a = 35 \text{ mm} \\ & \text{ and} \\ & \text{ From Table C.8 of BS EN 1992-1-2 } (\omega = 1.0, e = 0.25b): \\ & \text{ Table C.8} \end{split}$		Assume min, 4 no, H25 = 1964 mm ² (≡ 2,2%) [‡]	
= 0.56 e = 0.25b and ≤ 100 mm λ = l ₀ /i where $l_0 = 0.7 \times 3.325 = 2327 \text{ mm}$ i = radius of gyration = (I/A) ^{0.5} = h/12 ^{0.5} where I = inertia = bh ³ /12 A = area = bh h = height of section b = breadth of section = 300/12 ^{0.5} = 87 mm λ = 2327/87 = 276 n = N _{0E4,fl} (0.7(A _c c _{cd} + A _s f _{yd}) = 0.7 × 1129.6/0.7(300 ² × 0.85 × 30/1.5 + 1964 × 500/1.15) = 1129.6/2383.9 = 0.47 ∴ interpolate for λ = 30 and n = 0.47 between from Table C.5 of BS EN 1992-1-2 (ω = 0.5, e = 0.25b): minimum dimension, b _{min} = 235, and axis distance, a = 35 mm and EC2-1-2:	$= 0.56$ $e = 0.25b \text{ and } \le 100 \text{ mm}$ $\lambda = l_0/i$ where $l_0 = 0.7 \times 3.325 = 2327 \text{ mm}$ $i = \text{radius of gyration} = (I/A)^{0.5} = h/12^{0.5}$ where $I = \text{inertia} = bh^3/12$ $A = \text{area} = bh$ $h = \text{height of section}$ $b = \text{breadth of section}$ $a = 300/12^{0.5} = 87 \text{ mm}$ $\lambda = 2327/87 = 276$ $n = N_{\text{OEd,ff}}/0.7(A_cf_{cd} + A_sf_{yd})$ $= 0.7 \times 1129.6/0.7(300^2 \times 0.85 \times 30/1.5 + 1964 \times 500/1.15)$ $= 1129.6/2383.9$ $= 0.47$ \therefore interpolate for $\lambda = 30$ and $n = 0.47$ between from Table C.5 of BS EN 1992-1-2 ($\omega = 0.5, e = 0.25b$): minimum dimension, $b_{\min} = 235$, and axis distance, $a = 35 \text{ mm}$ and $EC2-1-2:$ Table C.5			
$\begin{array}{lll} \lambda = I_0/i \\ \text{where} \\ I_0 &= 0.7 \times 3.325 = 2327 \text{ mm} \\ i &= \text{radius of gyration} = (I/A)^{0.5} = h/12^{0.5} \\ \text{where} \\ I &= \text{inertia} = bh^3/12 \\ A &= \text{area} = bh \\ h &= \text{height of section} \\ b &= \text{breadth of section} \\ a &= 300/12^{0.5} = 87 \text{ mm} \end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{split} \lambda &= l_0/i \\ \text{where} \\ l_0 &= 0.7 \times 3.325 = 2327 \text{ mm} \\ i &= \text{radius of gyration} = (I/A)^{0.5} = h/12^{0.5} \\ \text{where} \\ I &= \text{inertia} = bh^3/12 \\ A &= \text{area} = bh \\ h &= \text{height of section} \\ b &= \text{breadth of section} \\ a &= 300/12^{0.5} = 87 \text{ mm} \end{split}$ $\begin{split} \lambda &= 2327/87 = 276 \\ n &= N_{\text{OEA},\text{f}}/0.7(A_c f_{cd} + A_s f_{yd}) \\ &= 0.7 \times 1129.6/0.7(300^2 \times 0.85 \times 30/1.5 + 1964 \times 500/1.15) \\ &= 1129.6/2383.9 \\ &= 0.47 \end{split}$ $\therefore \text{ interpolate for } \lambda &= 30 \text{ and } n = 0.47 \text{ between} \\ \text{from Table C.5 of BS EN 1992-1-2 (} \omega = 0.5, e = 0.25b): \\ \text{minimum dimension, } b_{\text{min}} &= 235, \text{ and axis distance, } a = 35 \text{ mm} \\ \text{and} \\ \text{from Table C.8 of BS EN 1992-1-2 (} \omega = 1.0, e = 0.25b): \\ \hline \text{Table C.8} \end{split}$		= 0.56	
where $l_0 = 0.7 \times 3.325 = 2327 \text{ mm}$ $i = \text{radius of gyration} = (I/A)^{0.5} = h/12^{0.5}$ where $I = \text{inertia} = bh^{3}/12$ A = area = bh h = height of section e = breadth of section $a = 300/12^{0.5} = 87 \text{ mm}$ $\lambda = 2327/87 = 276$ $n = N_{\text{OEd,ff}}/0.7(A_cf_{cd} + A_sf_{yd})$ $= 0.7 \times 1129.6/0.7(300^2 \times 0.85 \times 30/1.5 + 1964 \times 500/1.15)$ = 1129.6/2383.9 = 0.47 $\therefore \text{ interpolate for } \lambda = 30 \text{ and } n = 0.47 \text{ between}$ from Table C.5 of BS EN 1992–1–2 ($\omega = 0.5, e = 0.25b$): minimum dimension, $b_{\min} = 235$, and axis distance, $a = 35 \text{ mm}$ and EC2-1-2:	where $l_0 = 0.7 \times 3.325 = 2327 \text{ mm}$ $i = \text{radius of gyration} = (I/A)^{0.5} = h/12^{0.5}$ where $I = \text{inertia} = bh^3/12$ A = area = bh h = height of section b = breadth of section $= 300/12^{0.5} = 87 \text{ mm}$ $\lambda = 2327/87 = 276$ $n = N_{0\text{Ed,ff}}(0.7(A_cf_{cd} + A_sf_{yd}))$ $= 0.7 \times 1129.6/0.7(300^2 \times 0.85 \times 30/1.5 + 1964 \times 500/1.15))$ = 1129.6/2383.9 = 0.47 \therefore interpolate for $\lambda = 30$ and $n = 0.47$ between from Table C.5 of BS EN 1992-1-2 ($\omega = 0.5$, $e = 0.25b$): minimum dimension, $b_{\min} = 235$, and axis distance, $a = 35 \text{ mm}$ and from Table C.8 of BS EN 1992-1-2 ($\omega = 1.0$, $e = 0.25b$): Table C.8		$e \approx 0.25b$ and ≤ 100 mm	
$I_{0} = 0.7 \times 3.325 = 2327 \text{ mm}$ $i = \text{radius of gyration} = (I/A)^{0.5} = h/12^{0.5}$ where $I = \text{inertia} = bh^{3}/12$ $A = \text{area} = bh$ $h = \text{height of section}$ $b = \text{breadth of section}$ $a = 300/12^{0.5} = 87 \text{ mm}$ $\lambda = 2327/87 = 276$ $n = N_{\text{OEd,ff}}/0.7(A_{c}f_{cd} + A_{s}f_{yd})$ $= 0.7 \times 1129.6/0.7(300^{2} \times 0.85 \times 30/1.5 + 1964 \times 500/1.15)$ $= 1129.6/2383.9$ $= 0.47$ $\therefore \text{ interpolate for } \lambda = 30 \text{ and } n = 0.47 \text{ between}$ from Table C.5 of BS EN 1992-1-2 ($\omega = 0.5$, $e = 0.25b$): minimum dimension, $b_{min} = 235$, and axis distance, $a = 35$ mm and $EC2-1-2:$	$\begin{split} l_{0} &= 0.7 \times 3.325 = 2327 \text{ mm} \\ i &= \text{radius of gyration} = (I/A)^{0.5} = h/12^{0.5} \\ \text{where} \\ I &= \text{inertia} = bh^{3}/12 \\ A &= \text{area} = bh \\ h &= \text{height of section} \\ b &= \text{breadth of section} \\ a &= 300/12^{0.5} = 87 \text{ mm} \end{split}$ $\begin{aligned} \lambda &= 2327/87 = 276 \\ n &= N_{OEd,fl}/0.7(A_{c}f_{cd} + A_{s}f_{yd}) \\ &= 0.7 \times 1129.6/0.7(300^{2} \times 0.85 \times 30/1.5 + 1964 \times 500/1.15) \\ &= 1129.6/2383.9 \\ &= 0.47 \\ \therefore \text{ interpolate for } \lambda &= 30 \text{ and } n = 0.47 \text{ between} \\ \text{from Table C.5 of BS EN 1992-1-2 (} \omega &= 0.5, e = 0.25b): \\ \text{minimum dimension, } b_{min} &= 235, \text{ and axis distance, } a &= 35 \text{ mm} \\ \text{and} \\ \text{from Table C.8 of BS EN 1992-1-2 (} \omega &= 1.0, e = 0.25b): \\ \end{split}$		$\lambda = I_0/i$	
i = radius of gyration = $(I/A)^{0.5} = h/12^{0.5}$ where I = inertia = $bh^3/12$ A = area = bh h = height of section b = breadth of section = $300/12^{0.5} = 87$ mm $\lambda = 2327/87 = 276$ n = $N_{\text{OEd,fl}}/0.7(A_cf_{cd} + A_sf_{yd})$ = $0.7 \times 1129.6/0.7(300^2 \times 0.85 \times 30/1.5 + 1964 \times 500/1.15)$ = $1129.6/2383.9$ = 0.47 ∴ interpolate for $\lambda = 30$ and $n = 0.47$ between from Table C.5 of BS EN 1992-1-2 ($\omega = 0.5$, $e = 0.25b$): minimum dimension, $b_{\min} = 235$, and axis distance, $a = 35$ mm and EC2-1-2: EC2-1-2:	i = radius of gyration = $(I/A)^{0.5} = h/12^{0.5}$ where I = inertia = $bh^3/12$ A = area = bh h = height of section b = breadth of section = $300/12^{0.5} = 87$ mm $\lambda = 2327/87 = 276$ n = $N_{0Ed,fl}/0.7(A_cf_{cd} + A_{g}f_{yd})$ = $0.7 \times 1129.6/0.7(300^2 \times 0.85 \times 30/1.5 + 1964 \times 500/1.15)$ = $1129.6/2383.9$ = 0.47 \therefore interpolate for $\lambda = 30$ and $n = 0.47$ between from Table C.5 of BS EN 1992-1-2 ($\omega = 0.5$, $e = 0.25b$): minimum dimension, $b_{min} = 235$, and axis distance, $a = 35$ mm and from Table C.8 of BS EN 1992-1-2 ($\omega = 1.0$, $e = 0.25b$): Table C.8			
where $I = \text{inertia} = bh^{3}/12$ $A = \text{area} = bh$ $h = \text{height of section}$ $b = \text{breadth of section}$ $= 300/12^{0.5} = 87 \text{ mm}$ $\lambda = 2327/87 = 276$ $n = N_{0\text{Ed,ff}}/0.7(A_{c}f_{cd} + A_{s}f_{yd})$ $= 0.7 \times 1129.6/0.7(300^{2} \times 0.85 \times 30/1.5 + 1964 \times 500/1.15)$ $= 1129.6/2383.9$ $= 0.47$ $\therefore \text{ interpolate for } \lambda = 30 \text{ and } n = 0.47 \text{ between}$ from Table C.5 of BS EN 1992–1–2 ($\omega = 0.5$, $e = 0.25b$): minimum dimension, $b_{\min} = 235$, and axis distance, $a = 35$ mm and $EC2-1-2:$	where $I = \text{inertia} = bh^{3}/12$ $A = \text{area} = bh$ $h = \text{height of section}$ $b = \text{breadth of section}$ $= 300/12^{0.5} = 87 \text{ mm}$ $\lambda = 2327/87 = 276$ $n = N_{\text{OEd,ff}}/0.7(A_cf_{cd} + A_sf_{yd})$ $= 0.7 \times 1129.6/0.7(300^2 \times 0.85 \times 30/1.5 + 1964 \times 500/1.15)$ $= 1129.6/2383.9$ $= 0.47$ $\therefore \text{ interpolate for } \lambda = 30 \text{ and } n = 0.47 \text{ between}$ from Table C.5 of BS EN 1992-1-2 ($\omega = 0.5$, $e = 0.25b$): minimum dimension, $b_{\min} = 235$, and axis distance, $a = 35$ mm and from Table C.8 of BS EN 1992-1-2 ($\omega = 1.0$, $e = 0.25b$): Table C.8			
$I = \text{inertia} = bh^{3}/12$ $A = \text{area} = bh$ $h = \text{height of section}$ $b = \text{breadth of section}$ $= 300/12^{0.5} = 87 \text{ mm}$ $\lambda = 2327/87 = 276$ $n = N_{0\text{Ed,ff}}/0.7(A_{c}f_{cd} + A_{s}f_{yd})$ $= 0.7 \times 1129.6/0.7(300^{2} \times 0.85 \times 30/1.5 + 1964 \times 500/1.15)$ $= 1129.6/2383.9$ $= 0.47$ $\therefore \text{ interpolate for } \lambda = 30 \text{ and } n = 0.47 \text{ between}$ from Table C.5 of BS EN 1992–1–2 ($\omega = 0.5$, $e = 0.25b$): minimum dimension, $b_{\min} = 235$, and axis distance, $a = 35$ mm and $EC2-1-2:$	$I = \text{inertia} = bh^{3}/12$ $A = \text{area} = bh$ $h = \text{height of section}$ $b = \text{breadth of section}$ $= 300/12^{0.5} = 87 \text{ mm}$ $\lambda = 2327/87 = 276$ $n = N_{\text{OEd,f}}/0.7(A_c f_{cd} + A_s f_{yd})$ $= 0.7 \times 1129.6/0.7(300^{2} \times 0.85 \times 30/1.5 + 1964 \times 500/1.15)$ $= 1129.6/2383.9$ $= 0.47$ $\therefore \text{ interpolate for } \lambda = 30 \text{ and } n = 0.47 \text{ between}$ from Table C.5 of BS EN 1992–1–2 ($\omega = 0.5, e = 0.25b$): minimum dimension, $b_{\min} = 235$, and axis distance, $a = 35$ mm and from Table C.8 of BS EN 1992–1–2 ($\omega = 1.0, e = 0.25b$): Table C.8			5.3.3(3)
$A = \operatorname{area} = bh$ $h = \operatorname{height} \text{ of section}$ $b = \operatorname{breadth} \text{ of section}$ $= 300/12^{0.5} = 87 \text{ mm}$ $\lambda = 2327/87 = 276$ $n = N_{0Ed,fl}/0.7(A_cf_{cd} + A_sf_{yd})$ $= 0.7 \times 1129.6/0.7(300^2 \times 0.85 \times 30/1.5 + 1964 \times 500/1.15)$ $= 1129.6/2383.9$ $= 0.47$ $\therefore \text{ interpolate for } \lambda = 30 \text{ and } n = 0.47 \text{ between}$ from Table C.5 of BS EN 1992–1–2 ($\omega = 0.5$, $e = 0.25b$): minimum dimension, $b_{min} = 235$, and axis distance, $a = 35$ mm and $EC2-1-2:$	A = area = bh h = height of section b = breadth of section $= 300/12^{0.5} = 87 \text{ mm}$ $\lambda = 2327/87 = 276$ $n = N_{0Ed,fl}/0.7(A_cf_{cd} + A_sf_{yd})$ $= 0.7 \times 1129.6/0.7(300^2 \times 0.85 \times 30/1.5 + 1964 \times 500/1.15)$ = 1129.6/2383.9 = 0.47 \therefore interpolate for $\lambda = 30$ and $n = 0.47$ between from Table C.5 of BS EN 1992–1–2 ($\omega = 0.5$, $e = 0.25b$): minimum dimension, $b_{min} = 235$, and axis distance, $a = 35$ mm and from Table C.8 of BS EN 1992–1–2 ($\omega = 1.0$, $e = 0.25b$): Table C.8			
h = height of section b = breadth of section = 300/120.5 = 87 mm λ = 2327/87 = 276 n = N0Ed,fl/0.7(Acfcd + Asfyd) = 0.7 × 1129.6/0.7(3002 × 0.85 × 30/1.5 + 1964 × 500/1.15) = 1129.6/2383.9 = 0.47 ∴ interpolate for λ = 30 and n = 0.47 between from Table C.5 of BS EN 1992–1–2 (ω = 0.5, e = 0.25b): minimum dimension, bmin = 235, and axis distance, a = 35 mm and EC2-1-2: EC2-1-2: Table C.5	h = height of section b = breadth of section = $300/12^{0.5} = 87 \text{ mm}$ $\lambda = 2327/87 = 276$ n = $N_{0Ed,ft}/0.7(A_cf_{cd} + A_sf_{yd})$ = $0.7 \times 1129.6/0.7(300^2 \times 0.85 \times 30/1.5 + 1964 \times 500/1.15)$ = $1129.6/2383.9$ = 0.47 ∴ interpolate for $\lambda = 30$ and $n = 0.47$ between from Table C.5 of BS EN 1992-1-2 ($\omega = 0.5$, $e = 0.25b$): minimum dimension, $b_{min} = 235$, and axis distance, $a = 35$ mm and from Table C.8 of BS EN 1992-1-2 ($\omega = 1.0$, $e = 0.25b$): Table C.8			
b = breadth of section = $300/12^{0.5} = 87 \text{ mm}$ $\lambda = 2327/87 = 276$ $n = N_{0Ed,fl}/0.7(A_cf_{cd} + A_sf_{yd})$ = $0.7 \times 1129.6/0.7(300^2 \times 0.85 \times 30/1.5 + 1964 \times 500/1.15)$ = $1129.6/2383.9$ = 0.47 ∴ interpolate for $\lambda = 30$ and $n = 0.47$ between from Table C.5 of BS EN 1992–1–2 ($\omega = 0.5$, $e = 0.25b$): minimum dimension, $b_{min} = 235$, and axis distance, $a = 35$ mm and EC2-1-2: Table C.5	b = breadth of section = $300/12^{0.5} = 87 \text{ mm}$ $\lambda = 2327/87 = 276$ n = $N_{0Ed,fl}/0.7(A_cf_{cd} + A_sf_{yd})$ = 0.7 × 1129.6/0.7($300^2 \times 0.85 \times 30/1.5 + 1964 \times 500/1.15$) = 1129.6/2383.9 = 0.47 \therefore interpolate for $\lambda = 30$ and $n = 0.47$ between from Table C.5 of BS EN 1992–1–2 ($\omega = 0.5$, $e = 0.25b$): minimum dimension, $b_{min} = 235$, and axis distance, $a = 35$ mm and from Table C.8 of BS EN 1992–1–2 ($\omega = 1.0$, $e = 0.25b$): Table C.8			
$= 300/12^{0.5} = 87 \text{ mm}$ $\lambda = 2327/87 = 276$ $n = N_{0Ed,fl}/0.7(A_c f_{cd} + A_s f_{yd})$ $= 0.7 \times 1129.6/0.7(300^2 \times 0.85 \times 30/1.5 + 1964 \times 500/1.15)$ $= 1129.6/2383.9$ $= 0.47$ $\therefore \text{ interpolate for } \lambda = 30 \text{ and } n = 0.47 \text{ between}$ from Table C.5 of BS EN 1992–1–2 ($\omega = 0.5$, $e = 0.25b$): minimum dimension, $b_{min} = 235$, and axis distance, $a = 35$ mm and EC2-1-2:	$= 300/12^{0.5} = 87 \text{ mm}$ $\lambda = 2327/87 = 276$ $n = N_{0Ed,ft}/0.7(A_c f_{cd} + A_s f_{yd})$ $= 0.7 \times 1129.6/0.7(300^2 \times 0.85 \times 30/1.5 + 1964 \times 500/1.15)$ $= 1129.6/2383.9$ $= 0.47$ $\therefore \text{ interpolate for } \lambda = 30 \text{ and } n = 0.47 \text{ between}$ from Table C.5 of BS EN 1992–1–2 ($\omega = 0.5, e = 0.25b$): minimum dimension, $b_{min} = 235$, and axis distance, $a = 35$ mm and from Table C.8 of BS EN 1992–1–2 ($\omega = 1.0, e = 0.25b$): Table C.8		-	
$\begin{array}{ll} n = & N_{OEd,fl}/O.7(A_c f_{cd} + A_s f_{yd}) \\ = & 0.7 \times 1129.6/0.7(300^2 \times 0.85 \times 30/1.5 + 1964 \times 500/1.15) \\ = & 1129.6/2383.9 \\ = & 0.47 \\ \hline & \therefore \text{ interpolate for } \lambda = 30 \text{ and } n = 0.47 \text{ between} \\ & \text{from Table C.5 of B5 EN 1992-1-2 } (\omega = 0.5, e = 0.25b): \\ & \text{minimum dimension, } b_{min} = 235, \text{ and axis distance, } a = 35 \text{ mm} \\ & \text{and} \end{array}$	$n = N_{0Ed,fl}/0.7(A_c f_{cd} + A_s f_{yd})$ $= 0.7 \times 1129.6/0.7(300^2 \times 0.85 \times 30/1.5 + 1964 \times 500/1.15)$ $= 1129.6/2383.9$ $= 0.47$ $\therefore \text{ interpolate for } \lambda = 30 \text{ and } n = 0.47 \text{ between}$ from Table C.5 of BS EN 1992–1–2 ($\omega = 0.5, e = 0.25b$): minimum dimension, $b_{min} = 235$, and axis distance, $a = 35$ mm and from Table C.8 of BS EN 1992–1–2 ($\omega = 1.0, e = 0.25b$): EC2-1-2: Table C.8			
$= 0.7 \times 1129.6/0.7(300^{2} \times 0.85 \times 30/1.5 + 1964 \times 500/1.15)$ $= 1129.6/2383.9$ $= 0.47$ ∴ interpolate for λ = 30 and n = 0.47 between from Table C.5 of B5 EN 1992–1–2 (ω = 0.5, e = 0.25b): minimum dimension, b _{min} = 235, and axis distance, a = 35 mm and EC2-1-2:	= 0.7 × 1129.6/0.7(300 ² × 0.85 × 30/1.5 + 1964 × 500/1.15) = 1129.6/2383.9 = 0.47 ∴ interpolate for λ = 30 and n = 0.47 between from Table C.5 of BS EN 1992–1–2 (ω = 0.5, e = 0.25b): minimum dimension, b_{min} = 235, and axis distance, a = 35 mm and from Table C.8 of BS EN 1992–1–2 (ω = 1.0, e = 0.25b): EC2-1-2: Table C.8		$\lambda = 2327/87 = 276$	
= 1129.6/2383.9= 0.47∴ interpolate for λ = 30 and n = 0.47 betweenfrom Table C.5 of BS EN 1992–1–2 ($ω = 0.5$, $e = 0.25b$):minimum dimension, $b_{min} = 235$, and axis distance, $a = 35$ mmandEC2-1-2:	= 1129.6/2383.9 = 0.47 ∴ interpolate for λ = 30 and n = 0.47 between from Table C.5 of BS EN 1992–1–2 ($ω$ = 0.5, e = 0.25b): minimum dimension, b _{min} = 235, and axis distance, a = 35 mm and from Table C.8 of BS EN 1992–1–2 ($ω$ = 1.0, e = 0.25b): EC2-1-2: Table C.8		$n = N_{OEd,ff}/O.7(A_c f_{cd} + A_{s} f_{yd})$	EC2-1-2: 5.3.3(2
= 0.47 ∴ interpolate for λ = 30 and n = 0.47 between from Table C.5 of BS EN 1992–1–2 (ω = 0.5, e = 0.25b): minimum dimension, b _{min} = 235, and axis distance, a = 35 mm and EC2-1-2:	= 0.47 ∴ interpolate for λ = 30 and n = 0.47 between from Table C.5 of BS EN 1992–1–2 ($ω$ = 0.5, e = 0.25b): minimum dimension, b _{min} = 235, and axis distance, a = 35 mm and from Table C.8 of BS EN 1992–1–2 ($ω$ = 1.0, e = 0.25b): EC2-1-2: Table C.8			
$\therefore \text{ interpolate for } \lambda = 30 \text{ and } n = 0.47 \text{ between} $ from Table C.5 of BS EN 1992–1–2 ($\omega = 0.5$, $e = 0.25b$): minimum dimension, $b_{\min} = 235$, and axis distance, $a = 35$ mm and EC2-1-2:	∴ interpolate for $\lambda = 30$ and $n = 0.47$ between from Table C.5 of BS EN 1992–1–2 ($\omega = 0.5$, $e = 0.25b$): minimum dimension, $b_{min} = 235$, and axis distance, $a = 35$ mm and from Table C.8 of BS EN 1992–1–2 ($\omega = 1.0$, $e = 0.25b$): EC2-1-2: Table C.8			
from Table C.5 of BS EN 1992–1–2 ($\omega = 0.5$, $e = 0.25b$):Table C.5minimum dimension, $b_{min} = 235$, and axis distance, $a = 35$ mmEC2-1-2:	from Table C.5 of BS EN 1992–1–2 ($\omega = 0.5$, $e = 0.25b$): Table C.5 minimum dimension, $b_{min} = 235$, and axis distance, $a = 35$ mm and and EC2-1-2: from Table C.8 of BS EN 1992–1–2 ($\omega = 1.0$, $e = 0.25b$): Table C.8			FC0 4 0
minimum dimension, $b_{min} = 235$, and axis distance, $a = 35$ mm and EC2-1-2:	minimum dimension, $b_{min} = 235$, and axis distance, $a = 35$ mm and EC2-1-2: from Table C.8 of BS EN 1992–1–2 ($\omega = 1.0$, $e = 0.25b$): Table C.8			
	from Table C.8 of BS EN 1992–1–2 (ω = 1.0, e = 0.25b): Table C.8			IADIE 0.0
from Table C.8 of BS EN 1992–1–2 ($\omega = 1.0, e = 0.25b$): Table C.8			and	EC2-1-2:
	$\frac{1}{10}$ Lising 4 no H2O gives $w = 0.34$ n = 0.54 and $k = -310$ mm \cdot no good		from Table C.8 of BS EN 1992–1–2 ($\omega = 1.0, e = 0.25b$):	Table C.8
	± 11 sing 4 no H2O gives $w = 0.34$ n = 0.54 and b = 310 mm \cdot no good			
	\pm Using 4 no. H2O gives $\omega = 0.34$ n = 0.54 and b = 310 mm \cdot no good			
			$$ Using 4 no. H2O gives $\omega = 0.34$, $n = 0.54$ and $b_{\min} = 310$ mm \therefore no good.	

5.2: Perimeter column

	b _{min} = 185, and a = 30 mm	
	:. for $\omega = 0.56$, $b_{\min} = 228$, and	
	a = 35 mm OK to use Method B but use min. 4 no. H25	
5.2.3	Structural design: check slenderness Effective length, I _o :	
	$l_0 = 0.5l \left[1 + k_1/(0.45 + k_1)\right]^{0.5} \left[1 + k_2/(0.45 + k_2)\right]^{0.5}$ where	Exp. (5.15)
	$k_1, k_2 = relative stiffnesses top and bottom$	
	But conservatively, choose to use tabular method ⁶ . For critical direction, the column is in condition 2 at top and condition 3 at bottom (pinned support). $l_0 = 0.95 \times 3325 = 3158 \text{ mm}$	Table C16
	Slenderness ratio, λ : $\lambda = l_0/i$ where $i = \text{radius of gyration} = (I/A)^{0.5} = h/12^{0.5}$	Cl. 5.8.3.2(1)
	$\lambda = 3158 \times 12^{0.5}/300 = 36.5$ $\lambda = 36.5$	
	Limiting slenderness ratio, λ_{lim} $\lambda_{lim} = 2O \ ABC/n^{0.5}$ where	Cl. 5.8.3.1(1) & NA
	$A = 1/(1 + 0.2 \phi_{ef}). \text{ Assume } 0.7$ $B = (1 + 2 A_s f_{yd} / A_c f_{cd})^{0.5}$ $= (1 + 2\omega)^{0.5}$ Assuming min. 4 no. H25 (for fire) $\omega = 0.56 \text{ as before}$ $B = (1 + 2 \times 0.56)^{0.5} = 1.46$	Cl. 5.8.4 Cl. 5.8.3.1(1)
	$C = 1.7 - r_{m}$ where $r_{m} = M_{01}/M_{2}$ Assuming conservatively that $M_{01} = 0$ $r_{m} = 0$	Cl. 5.8.3.1(1)
	C = 1.7 $n = N_{Ed} / A_c f_{cd}$ $= 1129.6 \times 10^3 / (300^2 \times 0.85 \times 30/1.5)$ = 0.74 [§] See footnote to Section 5.1.1.	

5.2: Perimeter column

 $f_{ck} = 30$ b = 300 h = 300 d_c = depth of compression zone $= \lambda x$ Exp. (3.19) = 0.8x < hwhere x = depth to neutral axis = 35 + 8 + 25/2 = 55 mm assuming H25 da = 1.5 $\gamma_{\rm C}$ σ_{ec} , (σ_{et}) = stress in reinforcement in compression (tension) Table 2.1N $f_{cd} = \alpha_{cc} \eta f_{ck} / \gamma_C$ 0 h n. axis e_v $\sigma_{\rm st}$ 0 a) Strain diagram b) Stress diagram Figure 5.4 Section in axial compression and bending Fig. 6.1 Try x = 200 mm $\varepsilon_{cu} = \varepsilon_{cu2} = 0.0035$ $\varepsilon_{sc} = \frac{0.0035 \times (x - d_2)}{x} = \frac{0.0035 \times (200 - 55)}{200}$ = 0.0025 $\sigma_{\rm sc}$ = 0.0025 × 200000 ≤ $f_{\rm vk}/\gamma_{\rm S}$ = 500 ≤ 500/1.15 = 434.8 MPa $\varepsilon_{st} = 0.0035(h - x - d_2)/x = 0.0035(300 - 200 - 55)/200$ = 0.0008 $\sigma_{\rm st} = 0.0008 \times 200000 \le 500/1.15$ = 160 MPa $A_{\rm sN}/2 = \frac{1129.6 \times 10^3 - 0.85 \times 1.0 \times 30 \times 300 \times 200 \times 0.8/(1.5 \times 10^3)}{434.8 - 160}$ $=\frac{(1129.6-816.0)\times10^3}{274.8}=1141 \text{ mm}^2$

$$A_{abl}/2 = \frac{985 \times 10^{3} - 0.85 \times 10 \times 30 \times 200 \times 200 \times 0.8 (300/2 - 200 \times 0.802)(15 \times 10^{3})}{(300/2 - 55) (434.8 + 160)}$$

$$= \frac{(98.5 - 57.1) \times 10^{6}}{95 \times 594.8} = 733 \text{ mm}^{2}$$
Similarly for x = 210 mm
 $\xi_{ca} = 0.00235$
 $\xi_{ac} = 0.0026$ $\therefore a_{ac} = 434.8$
 $\xi_{ac} = 0.0006$ $\therefore a_{ac} = 434.8$
 $\xi_{ac} = 0.0006$ $\therefore a_{ac} = 120 \text{ MPs}$
 $A_{abl}/2 = \frac{(1129.6 - 556.8) \times 10^{3}}{434.8 - 120} = 8666 \text{ mm}^{2}$
 $A_{abl}/2 = \frac{(98.5 - 56.5) \times 10^{6}}{95 \times 564.8} = 796 \text{ mm}^{2}$
Similarly for x = 212 mm
 $a_{ac} = 434.8$
 $\epsilon_{ac} = 0.00054 \div \epsilon_{ac} = 109 \text{ MPs}$
 $A_{abl}/2 = \frac{(98.5 - 56.3) \times 10^{5}}{95 \times 543.8} = 812 \text{ mm}^{2}$
 $A_{abl}/2 = \frac{(98.5 - 56.3) \times 10^{5}}{95 \times 543.8} = 812 \text{ mm}^{2}$
 $\therefore \text{ as } A_{abl}/2 = A_{abl}/2 \times A_{abl}/2 \times 122 \text{ mm is approximately correct and}$
 $A_{abl} = \frac{A_{abl}}{95 \times 543.8} = 816 \text{ mm}^{2}$
 $\therefore \text{ as } A_{abl}/2 = A_{abl}/2 \times A_{abl}/2 \times 98.5 \text{ Nm}.$
Assuming $e_{cb} \approx 10.20 \text{ abidial bending}$
Expression $a = 1 \text{ as a worst case for load case 2:}$
 $(M_{Eal}/M_{ebl})^{a} + (M_{Eal}/M_{ebl})^{a} = (21.4/98.5)^{1} + (68.7/98.5)^{1} = 0.91 \text{ i.e. (1.0)}$
5.2.7 Linke
Minimum size links = 25/4 = 6.25, say 8 \text{ mm}
 $\text{Spacing: minimum of}$
 $a) 0.6 \times 200 \times 25 = 3000 \text{ mm},$
 $b) 0.6 \times 300 \text{ mm}$
 $b) 0.6 \times 400 \text{ mm} = 240 \text{ mm}$
Lise H8 *@* 175 mm cc

5.2: Perimeter column

5.2.8 Design summary

4 H25

H8 links @ 175 cc $c_{\rm nom}$ = 35 mm to links

Figure 5.5 Design summary: perimeter column

5.3 Internal column

The flat slab shown in Example 3.4 (reproduced as Figure 5.6) is part of an 8-storey structure above ground with a basement below ground. The problem is to design column C2 between ground floor and 1st floor.

Т

Floors: $g_k = 8.5$, $q_k = 4.0$	Section 3.4
In keeping with Section 3.4 use coefficients to determine loads in take-down.	Section 3.4
Consider spans adjacent to column C2: Along grid C, consider spans to be 9.6 m and 8.6 m and C2 to be the internal of 2-span element. Therefore elastic reaction factor = 0.63 + 0.63 = 1.26 Along grid 2 consider spans to be 6.0 m and 6.2 m and internal of multiple span. Elastic reaction factor = 0.5 + 0.5 = 1.00	Table C3

Load take-down for column C2.

ltem	Calculation	G _k		Q _k	
		From item	Cumulative total	From item	Cumulative total
Roof	$= [erf_{y} \times (l_{z1} + l_{z2})/2] \times [erf_{z} \times (l_{y1} + l_{y2})/2] \times$				
	$ \begin{vmatrix} (g_k + q_k) \\ = [1.0 \times (6.0 + 6.2)/2] \times [1.26 \times (9.6 + 8.6)/2] \times (8.5 + 0.6) \end{vmatrix} $				
	= 69.9 × (8.5 + 0.6) =	594.5		42.0	
Col 8 – R	$=\pi (0.465/2)^2 \times (4.5 - 0.3) \times 25 =$	17.9	612.4		42.0
8th	$= 1.0 \times (6.0 + 6.2)/2 \times 1.26 \times (9.6 + 8.6)/2 \times (8.5 + 4.0) =$	594.5		279.7	
Col 7 – 8	as before	17.9	1224.8		321.7
7th	a.b.	594.5		279.7	
Col 6 – 7	a.b.	17.9	1837.2		601.4
6th	a.b.	594.5		279.7	
Col 5 – 6	a.b.	17.9	2449.6		881.1
5th	a.b.	594.5		279.7	
Col 4 – 5	= 0.5 × 0.5 × (4.5 – 0.3) × 25 =	26.3	3070.4		1160.8
4th	as before	594.5		279.7	
Col 3 – 4	a.b.	26.3	3691.2		1440.5
3rd	a.b.	594.5		279.7	
Col 2 – 3	a.b.	26.3	4312.0		1720.2
2nd	a.b.	594.5		279.7	
Col 1 – 2	a.b.	26.3	4932.8		1999.7
1st	a.b.	594.5		279.8	
Col G – 1	a.b.	26.3	5553.6		2279.5
At above g	round floor		5553.6		2279.5

- - - - - - - - - -		
	Design axial load, ground–1st floor, N _{Ed} Axial load to Exp. (6.10)	
a)	$N_{\rm Ed} = \gamma_G \mathcal{C}_{\rm k} + \gamma_Q \mathcal{Q}_{\rm kl} + \psi_Q \gamma_Q \mathcal{Q}_{\rm kl}$	ECO:
	- Ed 76° k · 70° ki · 4070° ki	Exp. (6.10) & NA
	where	ECO:
	$\gamma_G = 1.35$	A1.2.2 & NA
	$\gamma_{Q} = 1.50$	
	$\psi_{0,1} = 0.7$ (offices)	
	$Q_{k1} = $ leading variable action (subject to reduction factor α_A or α_n) $Q_{k1} = $ accompanying action (subject to α_A or α_n)	EC1-1-1:
	$\alpha_{ki} = 2000 mpanying 20000 (cargood to \alpha_A of \alpha_n)$	6.3.1.2 (10), 6.3.1.2 (11), & NA
	where 1 4/1000 > 0.75	
	$\alpha_A = 1 - A/1000 \ge 0.75$ = 1 - 9 × 69.9/1000 = 0.37 ≥ 0.75	
	= 0.75	
	$a_n = 1.1 - n/10$ for $1 \le n \le 5$	
	$= 0.6$ for $5 \le n \le 10$ and	
	= 0.5 for n > 10	
	where	
	n = number of storeys supported	
	$a_{\rm n}^{}$ = 0.6 for 8 [‡] storeys supported	
	: as $\alpha_n < \alpha_A$, use $\alpha_n = 0.6$	
	Assuming the variable action of the roof is an independent variable action:	
	N _{Ed} = 1.35 × 5553.6 + 1.5 × (2279.5 – 42.0) × 0.6 + 0.7 × 1.5 × 42.0	
	= 1.35 × 5553.6 + 1.5 × 2237.5 + 0.7 × 1.5 × 42.0	
	= 7497.4 + 2013.8 + 44.1	
	= 9555.3 kN	
	To Exp. (6.10), N _{Ed} = 9555.3 kN	
ь)	Axial load to Exp. (6.10a)	
	$N_{\rm Ed} = \gamma_G G_{\rm k} + \psi_{O,1} \gamma_Q Q_{\rm k1} + \psi_{O,1} \gamma_Q Q_{\rm ki}$	ECO:
	= 1.35 × 5553.6 + 0.7 × 1.5 × 0.6 (279.8 + 1999.7)	Exp. (6.10a)
	= 7497.4 + 1436.1	& NA
	= 8933.4 kN	
	To Exp. (6.10a), N _{Ed} = 8933.4 kN	
c)	Axial load to Exp. (6.10b)	
	$N_{\rm Ed} = \xi \gamma_G G_{\rm k} + \gamma_Q Q_{\rm k1} + \psi_{\rm O,1} \gamma_Q Q_{\rm k1}$	ECO:
		Exp. (6.10)
	$\frac{1}{4}$ According to BS EN 1991–1–1 6.3.1.2 ^[11] the imposed load on the roof is category	& NA
	H and therefore does not qualify for reduction factor a_n .	
1		

5.3: Internal column

5.3.5 Summary of design forces in column C2 ground-1st

Design forces

Method	N _{Ed}	M _{yy} about grid 2	M _{zz} about grid C
Using Exp. (6.10)	9555.3 kN	97.7 kNm	26.5 kNm
Using Exp. (6.10a)	8933.4 kN	95.7 kNm	26.3 kNm
Using Exp. (6.10b)	9000.0 kN	76.4 kNm	19.4 kNm

Notes:

1) To determine maximum 1st order moments in the column, maximum out-ofbalance moments have been determined using variable actions to one side of the column only. The effect on axial load has, conservatively, been ignored.

2) It may be argued that using coefficients for the design of the slab and reactions to the columns does not warrant the sophistication of using Exps (6.10a) and (6.10b). Nevertheless, there would appear to be some economy in designing the column to Exp. (6.10a) or Exp. (6.10b) rather than Exp. (6.10). The use of Exp. (6.10a) or Exp. (6.10b) is perfectly valid and will be followed here.

To avoid duplicate designs for both Exps (6.10a) and (6.10b), a worse case of their design forces will be used, thus:

 $N_{\rm Ed} = 9000$ kN, $M_{\rm W} = 95.7$ kNm, $M_{\rm zz} = 26.3$ kNm

5.3.6	Design: cover	
	$c_{\rm nom} = c_{\rm min} + \Delta c_{dev}$	Exp. (4.1)
	where $c_{\min} = \max[c_{\min,b}; c_{\min,dur}]$	
	where $c_{min,b}$ = diameter of bar. Assume 32 mm bars and 8 mm links. = 32 - 8 = 24 mm to link	Cl. 4.4.1.2(3)
	$c_{min,dur} = minimum cover due to environmental conditions.Assume XC1.$	
	$c_{\min,dur} = 15 \text{ mm}$	BS 8500-1: Table A4
	$c_{ m min}~=24$ mm, say 25 mm to link $\Delta c_{ m dev}=10$ mm	
	$\therefore c_{\text{nom}} = 25 + 10 \qquad = 35 \text{ mm}$	Cl. 4.4.1.3 & NA
5.3.7	Design: fire resistance	
	Check validity of using Method A and Table 5.2a	EC2-1-2: 5.3.2, Table 5.2a
a)	Check $I_{0,fi} \leq 3.0 \text{ m}$ where	
	$I_0 = \text{effective length of column in fire}$ = 0.5 × clear height	
	$= 0.5 \times (4500 - 300)$ = 2100 mm OK	
Ы	= 2100 mm OK Check $e \le e_{max} = 0.15h = 0.15 \times 500 = 75$ mm	
U)	$e = M_{OEd,fl} / N_{OEd,fl}$	EC2-1-2: 5.3.2(2)
	$= M_0 / N_{Ed}$ = 99.5 × 10 ⁶ /8933 × 10 ³ = 11 mm <u>OK</u>	
c)	Check amount of reinforcement \leq 4%OKAssuming $\mu_{\rm fl} = 0.7$	
	$b_{\min} = 350$ with	EC2-1-2: Table 5.2a
	$a_{\min} = 40 \text{ mm}$ For fire using Method A and Table 5.2a is valid	14010 0124
5.3.8	Structural design: check slenderness	
	Effective length, l_0 : $l_0 = 0.5l [1 + k_1/(0.45 + k_1)]^{0.5} [1 + k_2/(0.45 + k_2)]^{0.5}$ where	Exp. (5.15)
	k_1 and k_2 are relative flexibilities at top and bottom of the column.	
	$k_{\rm i} = (EI_{col}/I_{col})/\Sigma(2EI_{beam}/I_{beam}) \ge 0.1$	PD 6687 ^{[6]‡}
	$^{\rm 4}$ PD 6687 states that to allow for cracking, the contribution of each beam should be taken as $2 EI/l_{\rm beam}$	

5.3: Internal column

	Critical direction is where $k_{\rm I}$ and $k_{\rm 2}$ are greatest i.e. where slab spans	How to ^[8] :
	are greater $b d \frac{3}{11}$	Columns
	$k_1 = k_2 = \frac{b_{1c}d_{1c}^{3}/L_{1c}}{2b_{23}d_{23}^{3}/L_{23} + 2b_{21}d_{21}^{3}/L_{21}}$	
	$= (0.5^{4}/4.5)/(2 \times 6.1 \times 0.3^{3}/8.6 + 2 \times 6.1 \times 0.3^{3}/9.6)$	
	= (0.0625)/(0.0383 + 0.0343)	
	= 0.86	
	$l_0 = 0.5 (4500 - 300) [1 + 0.86/(0.45 + 0.86)]^{0.5} [1 + 0.86/(0.45 + 0.86)]^{0.5}$	
	$l_0 = 0.5 \times 4200 \times 1.66$	
	= 0.828 × 4200 = 3478 mm	
	Slenderness ratio, λ :	Cl. 5.8.3.2(1)
	$\lambda = l_O/i$ where	
	<i>i</i> = radius of gyration = $(I/A)^{0.5} = h/12^{0.5}$	
	:. $\lambda = 3478 \times 12^{0.5}/500 = 24.1$	
	Limiting slenderness ratio, λ_{lim} :	Cl. 5.8.3.1(1) & NA
	$\lambda_{\text{lim}} = 20 \ ABC/n^{0.5}$	Exp. (5.13N)
	where $A = 1/(1 + 0.2 \text{ d})$ Assume 0.7 as non-default	
	A = 1/(1 + 0.2 ϕ_{ef}). Assume 0.7 as per default B = (1 + 200) ^{0.5} . Assume 1.1 as per default	
	$C = 1.7 - r_{\rm m}$ where	
	$r_{\rm m} = M_{\rm Ol}/M_2 = -84.9/109.3 = -0.78$	
	C = 1.7 + 0.78 = 2.48	
	$n = N_{\rm Ed} / A_c f_{cd}$	
	$= 8933 \times 10^{3} / (500^{2} \times 0.85 \times 50/1.5)$ $= 1.26$	
	$\therefore \lambda_{\text{lim}} = 20 \times 0.7 \times 1.1 \times 2.48 / 1.26^{0.5} = 34.0$	
	: as $\lambda < \lambda_{ ext{lim}}$ column is not slender	
	and 2nd order moments are not required	
530	Design moments, M _{Ed}	
0.0.0	$M_{Ed} = M + e_i N_{Ed} \ge e_o N_{Ed}$	Cl. 5.8.8.2(1),
	MEd = MAR CIAEd = COAEd	6.1(4)
	where	
	M = moment from 1st order analysis	
	$e_{i}N_{Ed}$ = effect of imperfections	Cl. 5.8.8.2(1)

where $e_i = l_0/400$ $e_0 N_{Ed} = minimum \ eccentricity$ where $e_0 = h/30 \ge 20 \ mm$ $M_{Edyy} = 95.7 + (3570/400) \times 8933 \times 10^{-3} \ge 0.02 \times 8933$ $= 95.7 + 79.7 \ge 178.7$ $= 175.4 < 178.7 \ kNm$ $M_{Edzz} = 18.8 + 79.7 \ge 178.7$ $= 178.7 \ kNm$ \therefore Both critical.	Cl. 5.2.7 Cl. 6.1(4)
However, imperfections need only be taken in one direction – where they have the most unfavourable effect \therefore Use $M_{\text{Edzz}} = 178.7$ with $M_{\text{Edyy}} = 95.7$ kNm	Cl. 5.8.9(2)
5.3.10 Design using charts $M_{Edyy}/bh^2 f_{ck} = 178.9 \times 10^6 / (500^3 \times 50) = 0.03$ $N_{Ed}/bh f_{ck} = 9000 \times 10^3 / (500^2 \times 50) = 0.72$ Choice of chart based on d_2/h	Figs C5a) to C5e)
where $d_2 = depth to centroid of reinforcement in half section assuming 12 bar arrangement with H32s d_2 = 35 + 8 + (32/2) + (2/6) [500 + 2 \times (35 + 8 + 32/2)/3]= 59 + (1/3) \times 127= 101$	
$\therefore d_2/h = 101/500 = 0.2$ $\underbrace{\text{Use Figure C5d}}_{d_2}$ $\underbrace{\textbf{Use Figure C5d}}_{q_2}$	
Figure 5.9 Depth, d_2 , to centroid of reinforcement in half section From Figure C5d) $A_s f_{yk} / bh f_{ck} = 0.30$ $A_s = 0.29 \times 500 \times 500 \times 50/500$ $= 7500 \text{ mm}^2$ Try 12 no. H32 (9648 mm ²) [‡]	Fig. C5d)
$^{\pm}$ Using design actions to Exp. (6.10) would have resulted in a requirement for 8500 $\rm mm^2.$	

5.3: Internal column

5.4 Small perimeter column subject to two-hour fire resistance

This calculation is intended to show a small slender column subject to a requirement for 2-hour fire resistance. It is based on the example shown in Section 4.2.

	where	
	c _{min,b} = diameter of bar. Assume 32 mm main bars and 10 mm links	
	$c_{\text{min.dur}} = \text{minimum cover due to environmental conditions.}$	
	Assuming primarily XC3/XC4, secondarily XF1,	
	$c_{\rm min,dur} = 25 \text{ mm}$	Cl. 4.4.1.2(3)
	$\Delta c_{ m dev}$ = allowance in design for deviation	BS 8500-1 ^[14] :
	= 10 mm	Table A4
	$\therefore \text{ Try } c_{\text{nom}} = 32 + 10 = 42 \text{ mm to main bars}$	
	or $= 25 + 10 = 35$ mm to 8 mm links	
	Try $c_{\rm nom} = 35$ mm to 8 mm links.	
5.4.2	Fire resistance	
a)	Check adequacy of section for R120 to Method A	
	Axis distance available = 43 mm + $\phi/2$	
	Required axis distance to main bars, <i>a</i> for 350 mm square column For $\mu = 0.5$, $a = 45$ mm; and	EC1-1-2: 5.3.1(1) & NA 5.3.2,
	For $\mu_{fi} = 0.5$, $a = 45$ mm; and for $\mu_{fi} = 0.7$, $a = 57$ mm, providing:	Table 5.2a
	• 8 bars used – OK but check later	
	• $I_{0,\mathrm{fi}} \leq 3 \mathrm{m} - \mathrm{OK}$ but check	
	• $e \le e_{max} = 0.15h = 0.15 \times 350 = 52 \text{ mm}$	
	but $e = M_{OEd,fi}/N_{OEd,fi}$	
	$= 0.7 \times 146.1 \times 10^{6} / 0.7 \times 1824.1 \times 10^{3}$	
	= 80 mm ∴ no good Try Method B	
b)	Check adequacy of section for R120 to Method B	EC2-1-2: 5.3.3,
	Determine parameters <i>n</i> , ω , and <i>e</i> , and check λ_{ft} .	Table 5.2b
	Assume 4 no. H32 + 4 no. H25 = (5180 mm ² : 4.2%) (say 4.2% OK – integrity OK)	Cl. 9.5.2(3)
	$n = N_{\text{DEd}, \text{f}} / 0.7 (A_c f_{cd} + A_s f_{yd})$	EC2-1-2: Exp.
	v	(5.8a)
	= 0.7 × 1824.1 × 10 ³ /0.7 (350 × 350 × a_{cc} × f_{ck} / γ_{C} + 5180 × 500/ γ_{S}) = 1276.9 × 10 ³ /0.7 (350 × 350 × 0.85 × 30/1.5 + 5180 × 500/1.15)	
	$= 1276.9 \times 10^{3}/0.7 (2082.5 + 2252.0)$	
	= 0.42 OK	
	ω = mechanical ratio	EC2-1-2: 5.3.3(2)
	$= A_{s} f_{yd} / A_{c} f_{cd} \le 1.0$	
	= 2252/2082	
	$= 1.08 \ge 1$	
	But say within acceptable engineering tolerance \therefore use $\omega = 1.0$ OK e = first order eccentricity	EC2-1-2: Exp.
	$= M_{\text{OEd},\text{ff}} / N_{\text{OEd},\text{ff}}$	(5.8b)

5.4: Small perimeter column

 $= 0.7 \times 146.1 \times 10^{6}/0.7 \times 1824.1 \times 10^{3}$ EC2-1-2: 2.4.2(3) = 80 mm as before = 0.23h. ОK $\lambda_{_{\mathrm{fl}}} =$ slenderness in fire $= I_{Off}/i$ where EC2-1-2: 5.3.2(2) I_{Off} = effective length of column in fire = 0.71 = 0.7 × 4000 = 2800 mm Note 2 i = radius of gyration= h/3.46 for a rectangular section $\therefore \lambda_{\rm fi} = 2800/(350/3.46)$ = 27.7 < 30 .:. OK Table 5.2b valid for use in this case. Interpolating from BS EN 1992–1–2 Table 5.2b for n = 0.42 and ω = 1.0, column width = 350 mm and axis distance = say, 48 mm : Axis distance = 43 mm + $\phi/2$ is OK c) As additional check, check adequacy of section to Annex B3 and EC2-1-2: Annex C 5.3.3(1), Annex C Using BS EN 1992-1-2 Table C.8 & NA For $\omega = 1.0, e = 0.25b, R120, \lambda = 30$ EC2-1-2: and interpolating between n = 0.3 and n = 0.5, Annex C(2) $b_{\min} = 350 \text{ mm}, a_{\min} = 48 \text{ mm}.$: Axis distance = 43 mm + $\phi/2$ is OK : 4 no. H32 + 4 no. H25 with 35 mm cover to 8 mm links (a = 55 mm min.) OK5.4.3 Structural design: check slenderness about z axis Effective length, I_{Ω} , about z axis: $l_{0z} = 0.5l \left[1 + k_1/(0.45 + k_1)\right]^{0.5} \left[1 + k_2/(0.45 + k_2)\right]^{0.5}$ Exp. (5.15) where PD 6687: 2.10 = clear height between restraints 1 = 4000 - 300/2 = 3850 mm k_1, k_2 = relative flexibilities of rotational restraints at ends 1 and 2 respectively $= [EI_{col}/I_{col}]/[2EI_{beam1}/I_{beam1} + 2EI_{beam2}/I_{beam2}] \ge 0.1$ k_1 Cl. 5.8.3.2(3) PD 6687 where Treating beams as rectangular and cancelling E throughout: $= 3504/(12 \times 3850) = 3.25 \times 10^5$ I_{col}/l_{col} $I_{\text{beam1}}/I_{\text{beam1}} = 8500 \times 300^3/12 \times 6000$ $= 31.8 \times 10^{5}$ $I_{\text{beam2}}/I_{\text{beam2}} = O$ $k_1 = 3.25/(2 \times 31.8) = 0.051 \ge 0.1$ $k_1 = 0.1$ k_2 = by inspection (pinned end assumed) = ∞

	∴ I _{Oz} = 0.5 × 3850 × [1 + 0.1/(0.45 + 0.1)] ^{0.5} [1 + ∞/(0.45 + ∞)] ^{0.5} = 0.5 × 3850 × 1.087 × 1.41 = 0.77 × 3850 = 2965 mm	
	Glass deriverse station 1.	(15930(1)
	Slenderness ratio, λ_z :	Cl. 5.8.3.2(1)
	$\lambda_z = l_{Oz}/i$	
	where	
	i = radius of gyration = h/3.46	
	$\lambda_z = 3.46 l_{0z}/h = 3.46 \times 2965/350$ = 29.3	
	Limiting slenderness ratio, λ_{lim} :	Cl. 5.8.3.1(1)
	$\lambda_{\lim,z} = 20 \ ABC/n^{0.5}$	Exp. (5.13N)
	where	
	A = 0.7	
	$\mathcal{B} = 1.1^{\ddagger}$	
	$C = 1.7 - r_{\rm m}$	
	where	
	$r_{\rm m} = M_{O1}/M_{O2}$	
	say $M_{O1} = O$ (pinned end) $\therefore r_m = O$	
	C = 1.7 - 0 = 1.7	
	$n = \text{relative normal force} = N_{\text{Ed}}/A_c f_{cd}$	
	$= 1824.1 \times 10^{3} / (350^{2} \times 0.85 \times 30/1.5)$	
	= 0.88	
	$\therefore \ \lambda_{\lim,z} = 20 \times 0.7 \times 1.1 \times 1.7/0.88^{0.5}$	
	$\therefore \text{ As } \lambda_z > \lambda_{\text{lim},z} \text{ column is slender about } z \text{ axis.}$	
5.4.4	Check slenderness on y axis	
	Effective length, l_0 , about z axis:	
		Even (515)
	$I_{0y} = 0.5I_{y} \left[1 + k_{1}/(0.45 + k_{1})\right]^{0.5} \left[1 + k_{2}/(0.45 + k_{2})\right]^{0.5}$	Exp. (5.15)
	where deep bright between perturbints	
	l_y = clear height between restraints	
	= 4000 + 300/2 - 750 = 3400 mm	
	k_1 = relative column flexibility at end 1	
	$= (I_{col}/I_{col})/[\Sigma 2(I_{beam}/I_{beam})]$	
	where	
	$I_{col}/I_{col} = 350^4/12 \times 3400 = 3.68 \times 10^5$	
	‡ On first pass the default value for B is used. It should be noted that in the	
	final design $\omega = A_{c}f_{u}/A_{c}f_{d} = 6432 \times (500/1.15) / (350^{2} \times 30 \times 0.85/1.5) =$	Cl. 5.8.3.1(1),
	2796/2082 = 1.34. So $B = (1 + 2 \omega)^{0.5} = (1 + 1.34)^{0.5} = 1.92$ and the column	& NA,
	would not have been deemed 'slender'. $B = 1.1$ relates approximately to a column with $f = 30$ MBa and $a = 0.4\%$	EC2-1-2: 5.3.3(2)
	with f_{ck} = 30 MPa and ρ = 0.4%.	
	* PD 6687 states that to allow for cracking, the contribution of each beam	20 6697*
	should be taken as 2EI/I _{beam}	PD 6687*

Treating beams as rectangular	
$I_{beamAB}/I_{beamAB} = 350 \times 750^3/[12 \times (9000 - 350)]$	
$= 14.2 \times 10^5$	
$I_{beamBC}/I_{beamBC} = 350 \times 750^3/[12 \times (8000 - 350)]$	
$= 16.1 \times 10^5$	
$k_1 = 3.68/(2 \times (16.1 + 14.2) = 0.060 \ge 0.1$	
k ₁ = 0.1	
$k_2 = \infty$ (pinned end assumed)	
∴I _{0v} = 0.5 × 3400 [1 + 0.1/(0.45 + 0.1)] ^{0.5} [1 + ∞/(0.45 + ∞)] ^{0.5}	Exp. (5.15)
= 0.5 × 3400 × 1.087 × 1.41	
= 0.77 × 3400 = 2620 mm	
Slenderness ratio, λ_y :	
$\lambda_{y} = 3.46 l_{0y}/h = 3.46 \times 2620/350 = 25.9$	
Limiting slenderness ratio, $\lambda_{ m lim}$:	
$\lambda_{\rm lim,v} = \lambda_{\rm lim,z} = 27.9$	
iim,y iim,z As $\lambda_{ m y} < \lambda_{ m lim,y}$ column not slender in y axis.	
<u> </u>	
5.4.5 Design moments: M _{Edz} about <i>z</i> axis	
$M_{\rm Edz} = \max[M_{O2}; M_{OEd} + M_2; M_{O1} + 0.5M_2]$	Cl. 5.8.8.2
where	
$M_{O2} = M_{\rm z} + e_{\rm i} N_{\rm Ed} \ge e_{\rm O} N_{\rm Ed}$	Cl. 5.8.8.2(1), 6.1.4
where	0.1.4
$M_z = 146.1$ kNm from analysis	
$e_i N_{Ed} = effect of imperfections$	
where	
$e_{\rm i} = l_{\rm O}/400$	Cl. 5.2.7
$e_0 = 20 \text{ mm}$	
$\therefore M_{02} = 146.1 + (2965/400) \times 1824.1 \ge 0.02 \times 1824.1$	
= 146.1 + 13.4 > 36.5	
<u>= 159.5 kNm</u>	
M_{OEd} = equivalent 1st order moment at about z axis at about	
mid-height may be taken as M_{Oez} where	
$M_{Oez} = (0.6M_{O2} + 0.4M_{O1}) \ge 0.4M_{O2}$	Cl. 5.8.8.2(2)
= 0.6 × 159.5 + 0.4 × 0 ≥ 0.4 × 159.5 <u>= 95.7 kNm</u>	
M_2 = nominal 2nd order moment = $N_{\rm Ed}e_2$	Cl. 5.8.8.2(3)
where $e_2 = (1/r) l_0^2 / 10$	
	Cl. 5.8.8. 3
where $1/r = curvature = K K [f /(F \times 0.45d)]$	Exp. (5.34)
$1/r = curvature = K_v K_{\varphi} [f_{yd}/(E_{\varphi} \times 0.45d)]$ where	LAP. (0.04)
$K_v = a$ correction factor for axial load	
$= (n_{\rm u} - n)/(n_{\rm u} - n_{\rm pal})$	
$-(n_{u}-n_{u})(n_{u}-n_{bal})$	

where	
$n_{\mu} = 1 + \omega$	
where	
ω = mechanical ratio	
$= A_{s}f_{yd}/A_{c}f_{d}$	
= 1.08 as before	
$n_{\mu} = 2.08$	
$n = N_{\rm Ed}/A_c f_{\rm cd}$	
= 1824.1/2082 = 0.88	
n _{bal} = the value of n at maximum moment resistance	
= 0.40 (default)	
$K_{\rm v} = (2.08 - 0.88)/(2.08 - 0.40)$	
= 1.20/1.68 = 0.71	
$K_{\rm m} = a$ correction factor for creep	
$= 1 + \beta \varphi_{ef}$	
where	
$\beta = 0.35 + (f_{ck}/200) - (\lambda/150)$	
= 0.35 + 30/200 - 29.3/150	
= 0.35 + 0.15 - 0.195	
= 0.305	
$arphi_{ef}$ = effective creep coefficient [‡]	Cl. 5.8.4(2)
$= \varphi_{(\infty,tO)} M_{O,Eap} / M_{OEd}$	
с -	
where $arphi_{(\infty, ext{t} \mathcal{O})}$ = final creep coefficient	Cl. 3.1.4(2)
= from Figure 3.1 for inside conditions	Fig. 3.1a
h = 350 mm, C30/37, t _o = 15	0
≈ 2.4	
M _{O,Eqp} = 1st order moment due to quasi- permanent loads	
$\approx \frac{G_{\rm k} + \varphi_2 Q_{\rm k}}{\xi \gamma_G G_{\rm k} + \varphi_0 \gamma_Q Q_{\rm k}} \times M_{\rm z} + e_{\rm i} N_{\rm Ed}$	
63.3 + 0.8 × 46.0	
$= \frac{65.3 + 0.3 \times 46.0}{1.35 \times 63.3 + 1.5 \times 46.0} \times M_z + e_i N_{Ed}$	
$=\frac{100.1}{154.5} \times 146.1 + 13.4$	
= 108.1 kNm	
$M_{OEd} = M_{O2} = 159.5 \text{ kNm}$	
[*] With reference to Exp. (5.13N), φ_{ef} may be taken as equal to 2.0. However, for the purpose of illustration the full derivation is shown here.	Exp. (5.1.3N)

purpose of illustration the full derivation is shown here.

Exp. (5.1.3N)

 $= 68.7 \, \text{kNm}$ M_{2} = 0 (as column is not slender not slender about y axis). $\therefore M_{\rm Edv} = 127.9 \text{ kNm}$ 5.4.7 Design in each direction using charts In z direction: $N_{\rm Ed}/bhf_{ck} = 1824.1 \times 10^3/(350^2 \times 30)$ = 0.50 $M_{\rm Ed}/bh^2 f_{\rm ck} = 159.5 \times 10^6 / (350^3 \times 30)$ = 0.124Assuming 8 bar arrangement, centroid of bars in half section: $d_2 \ge 35 + 8 + 16 + (350/2 - 35 - 8 - 16) \times 1/4$ Fig. C4e) ≥ 59 + 29 = 88 mm $d_2/h = 0.25$ From Figure C4e) Fig. C4e) $A_{\rm e}f_{\rm vk}/bhf_{\rm ck} = 0.50$ $= 0.50 \times 350^2 \times 30/500 = 3675 \text{ mm}^2$ A ∴ 4 no. H32 + 4 no. T25 (5180 mm²) 0K. In y direction: $M_{\rm Ed}/bh^2 f_{\rm ck} = 127.9 \times 10^6/(350^3 \times 30)$ = 0.10 $N_{\rm Ed}/bhf_{\rm ck} = 0.50$ From Figure C4e) $A_{\rm s}f_{\rm vk}/bhf_{\rm ck} = 0.34$ $= 0.34 \times 3502 \times 30/500 = 2499 \text{ mm}^2$ A_ : 4 no. H32 + 4 no. T25 (5180 mm²) OK. 5.4.8 Check biaxial bending $\lambda_{v} \approx \lambda_{z} \therefore OK.$ Exp. (5.38a) $e_z = M_{Edv}/N_{Ed}$ $e_v = M_{\rm Edz}/N_{\rm Ed}$ $\frac{e_y' h_{eq}}{e_z' b_{eq}} = \frac{M_{Edz}}{M_{Edy}} = \frac{159.5}{127.9} = 1.25$ Exp. (5.38b) : need to check biaxial bending $(M_{\rm Edz}/M_{\rm Rdz})^{a} + (M_{\rm Edy}/M_{\rm Rdy})^{a} \le 1.0$ Exp. (5.39) where $M_{\rm Rdz} = M_{\rm Rdy} = \text{moment resistance}$. Fig. C4e) Using Figure C4e) $A_{\rm s}f_{\rm vk}/bhf_{\rm ck} = 5180 \times 500/(350^2 \times 30)$ = 0.70 for $N_{\rm Ed}/bhf_{\rm ck} = 0.50$ $M_{\rm Ed}/bh^2 f_{\rm ck} = 0.160$ $\therefore M_{\rm Rd} = 0.160 \times 350^3 \times 30$

	= 205.8 kNm	
	a depends on N _{Ed} /N _{Rd}	
	where	
	$N_{Rd} = A_c f_{cd} + A_s f_{yd}$	
	= 2082.5 + 2252.2	
	∴ <i>a</i> = 1.27	
	$(159.5/205.8)^{1.27} + (114.5/205.8)^{1.27} = 0.72 + 0.47$	Cl. 5.8.9(4)
	= 1.19	
	: No good	
	∴ Try 8 no. T32 (6432 mm ²)	
	For $A_s f_{yk} / bh f_{ck} = 6432 \times 500 / (350^2 \times 30)$	
	= 0.88	
	for $N_{\rm Ed}/bhf_{ck} = 0.50$	
	$M_{\rm r} J/bh^2 f_{\rm sk} = 0.187$	Fig. C4e)
	$\therefore M_{\text{Rd}} = 240.5 \text{ kNm}$	
	Check biaxial bending	
	$(159.5/245.7)^{1.27} + (114.5/245.7)^{1.27} = 0.59 + 0.39 = 0.98 \text{ OK}$	
5.4.9	Check maximum area of reinforcement	
5.4.9	$A_{g}/bd = 6432/350^{2} = 5.2\% > 4\%$	Cl. 9.5.2(3) & NA
5.4.9	$A_{g}/bd = 6432/350^{2} = 5.2\% > 4\%$ However, if laps can be avoided in this single lift column then the	Cl. 9.5.2(3) & NA
5.4.9	$A_s/bd = 6432/350^2 = 5.2\% > 4\%$ However, if laps can be avoided in this single lift column then the integrity of the concrete is unlikely to be affected and 5.2% is	
5.4.9	$A_{g}/bd = 6432/350^{2} = 5.2\% > 4\%$ However, if laps can be avoided in this single lift column then the	Cl. 9.5.2(3) & NA PD 6687: 2.19
	$A_{\rm s}/bd = 6432/350^2 = 5.2\% > 4\%$ However, if laps can be avoided in this single lift column then the integrity of the concrete is unlikely to be affected and 5.2% is considered OK. OK	
	$A_{s}/bd = 6432/350^{2} = 5.2\% > 4\%$ However, if laps can be avoided in this single lift column then the integrity of the concrete is unlikely to be affected and 5.2% is considered OK. <u>OK</u> Design of links	PD 6687: 2.19
	$A_{s}/bd = 6432/350^{2} = 5.2\% > 4\%$ However, if laps can be avoided in this single lift column then the integrity of the concrete is unlikely to be affected and 5.2% is considered OK. <u>OK</u> Design of links Diameter min. = $32/4 = 8$ mm	PD 6687: 2.19 Cl. 9.5.3 & NA
	$A_{s}/bd = 6432/350^{2} = 5.2\% > 4\%$ However, if laps can be avoided in this single lift column then the integrity of the concrete is unlikely to be affected and 5.2% is considered OK. <u>OK</u> Design of links	PD 6687: 2.19
	$A_{s}/bd = 6432/350^{2} = 5.2\% > 4\%$ However, if laps can be avoided in this single lift column then the integrity of the concrete is unlikely to be affected and 5.2% is considered OK. <u>OK</u> Design of links Diameter min. = $32/4 = 8$ mm	PD 6687: 2.19 Cl. 9.5.3 & NA Cl. 9.5.3(3),
5.4.10	$A_{g}/bd = 6432/350^{2} = 5.2\% > 4\%$ However, if laps can be avoided in this single lift column then the integrity of the concrete is unlikely to be affected and 5.2% is considered OK. OK Design of links Diameter min. = 32/4 = 8 mm Spacing max. = 0.6 × 350 = 210 mm $\therefore \text{ Use H8 @ 200 mm cc}$	PD 6687: 2.19 Cl. 9.5.3 & NA Cl. 9.5.3(3),
5.4.10	$A_{s}/bd = 6432/350^{2} = 5.2\% > 4\%$ However, if laps can be avoided in this single lift column then the integrity of the concrete is unlikely to be affected and 5.2% is considered OK. <u>OK</u> Design of links Diameter min. = $32/4 = 8$ mm Spacing max. = $0.6 \times 350 = 210$ mm	PD 6687: 2.19 Cl. 9.5.3 & NA Cl. 9.5.3(3),
5.4.10	$A_{g}/bd = 6432/350^{2} = 5.2\% > 4\%$ However, if laps can be avoided in this single lift column then the integrity of the concrete is unlikely to be affected and 5.2% is considered OK. <u>OK</u> Design of links Diameter min. = $32/4 = 8$ mm Spacing max. = $0.6 \times 350 = 210$ mm \therefore Use H8 @ 200 mm cc Design summary	PD 6687: 2.19 Cl. 9.5.3 & NA Cl. 9.5.3(3),
5.4.10	$A_{g}/bd = 6432/350^{2} = 5.2\% > 4\%$ However, if laps can be avoided in this single lift column then the integrity of the concrete is unlikely to be affected and 5.2% is considered OK. <u>OK</u> Design of links Diameter min. = $32/4 = 8$ mm Spacing max. = $0.6 \times 350 = 210$ mm \therefore Use H8 @ 200 mm cc Design summary 8 H32	PD 6687: 2.19 Cl. 9.5.3 & NA Cl. 9.5.3(3),
5.4.10	$A_{g}/bd = 6432/350^{2} = 5.2\% > 4\%$ However, if laps can be avoided in this single lift column then the integrity of the concrete is unlikely to be affected and 5.2% is considered OK. <u>OK</u> Design of links Diameter min. = $32/4 = 8$ mm Spacing max. = $0.6 \times 350 = 210$ mm \therefore Use H8 @ 200 mm cc Design summary	PD 6687: 2.19 Cl. 9.5.3 & NA Cl. 9.5.3(3),
5.4.10	$A_{s}/bd = 6432/350^{2} = 5.2\% > 4\%$ However, if laps can be avoided in this single lift column then the integrity of the concrete is unlikely to be affected and 5.2% is considered OK. <u>OK</u> $Design of links$ Diameter min. = $32/4 = 8$ mm Spacing max. = $0.6 \times 350 = 210$ mm $\therefore Use H8 @ 200 \text{ mm cc}$ Design summary $8 \text{ H32}_{H8 \text{ links } @ 200 \text{ cc}}$	PD 6687: 2.19 Cl. 9.5.3 & NA Cl. 9.5.3(3),
5.4.10	$A_{s}/bd = 6432/350^{2} = 5.2\% > 4\%$ However, if laps can be avoided in this single lift column then the integrity of the concrete is unlikely to be affected and 5.2% is considered OK. <u>OK</u> $Design of links$ Diameter min. = $32/4 = 8$ mm Spacing max. = $0.6 \times 350 = 210$ mm $\therefore Use H8 @ 200 \text{ mm cc}$ Design summary $8 H32$ H8 links @ 200 cc 35 mm cover to link	PD 6687: 2.19 Cl. 9.5.3 & NA Cl. 9.5.3(3),
5.4.10	$A_{g}/bd = 6432/350^{2} = 5.2\% > 4\%$ However, if laps can be avoided in this single lift column then the integrity of the concrete is unlikely to be affected and 5.2% is considered OK. OK $OEsign of links$ Diameter min. = 32/4 = 8 mm Spacing max. = 0.6 × 350 = 210 mm $\therefore Use H8 @ 200 \text{ mm cc}$ Design summary $BH32$ $H32$ $H8 links @ 200 cc$ $35 mm cover to link$ No laps in column section $Note$	PD 6687: 2.19 Cl. 9.5.3 & NA Cl. 9.5.3(3),
5.4.10	$A_{g}/bd = 6432/350^{2} = 5.2\% > 4\%$ However, if laps can be avoided in this single lift column then the integrity of the concrete is unlikely to be affected and 5.2% is considered OK. OK $OEsign of links$ Diameter min. = $32/4 = 8$ mm Spacing max. = $0.6 \times 350 = 210$ mm $\therefore Use H8 @ 200 \text{ mm cc}$ Design summary $B H32$ H8 links @ 200 cc 35 mm cover to link No laps in column section $Note$ The beam should be checked for torsion.	PD 6687: 2.19 Cl. 9.5.3 & NA Cl. 9.5.3(3),
5.4.10	$A_{g}/bd = 6432/350^{2} = 5.2\% > 4\%$ However, if laps can be avoided in this single lift column then the integrity of the concrete is unlikely to be affected and 5.2% is considered OK. OK $OEsign of links$ Diameter min. = 32/4 = 8 mm Spacing max. = 0.6 × 350 = 210 mm $\therefore Use H8 @ 200 \text{ mm cc}$ Design summary $BH32$ $H32$ $H8 links @ 200 cc$ $35 mm cover to link$ No laps in column section $Note$	PD 6687: 2.19 Cl. 9.5.3 & NA Cl. 9.5.3(3),

6 Walls

6.0 General

Walls are defined as being vertical elements whose lengths are four times greater than their thicknesses. Their design does not differ significantly from the design of columns in that axial loads and moments about each axis are assessed and designed for.

The calculations in this section illustrate the design of a single shear wall.

Generally, the method of designing walls is as follows. In practice, several of these steps may be combined.

Determine design life.	EC0 & NA Table NA 2.1
Assess actions on the wall.	EC1 (10 parts) & UK NAs
Determine which combinations of actions apply.	EC0 & NA: Tables NA A1.1 & NA: A1.2(B)
Assess durability requirements and determine concrete strength.	BS 8500–1
Check cover requirements for appropriate fire resistance period.	Approved Document B EC2–1–2
Determine cover for fire, durability and bond.	Cl. 4.4.1
Analyse structure for critical combination moments and axial forces.	Section 5
Check slenderness and determine design moments.	Section 5.8
Determine area of reinforcement required.	Section 6.1
Check spacing of bars.	Sections 8 & 9

6.1 Shear wall

Example 6.1 shows the design of a simple linear shear wall as typically used in mediumrise buildings. Similar principles may be applied to walls that are shaped as C, L, T, Z and rectangles in-plan, but issues of limiting flange dimensions and shear at corners need to be addressed. The example shows only ULS design as, apart from minimum areas of steel to control cracking, SLS issues are generally non-critical in medium-rise structures. For shear walls in high-rise structures, reference should be made to specialist literature^[29].

The example is intended to show how a shear wall providing part of the lateral stability in one direction in a medium rise structure might be designed by hand.

Axial loads and first order moments are determined. The design considers slenderness in order to determine design moments, $M_{\rm Ed'}$ in the plane perpendicular to the wall. The effects of allowing for imperfections are also illustrated.

6.1.1 Actions

1.1	ACTIONS				
			Permanent actions	Variable actions	
			\mathcal{G}_k	9 _k	Section 2.8
			kN/	m ²	JECHON 2.0
	Roof	Paving 40 mm Waterproofing Insulation Suspended ceiling Services Self-weight 200 mm slab	1.00 0.50 0.10 0.15 0.30 5.00		
		Imposed load	7.05	0.60	Section 2.4.2
	Floor slabs	Carpet Raised floor Suspended ceiling Services Self-weight 200mm slab	0.03 0.30 0.15 0.30 5.00 5.78		Section 2.8
		Imposed load		2.50	Section 2.4.2
	Ground floor slab (ground bearing) Stairs	Carpet Raised floor Services Self-weight 200mm slab Imposed load 150 waist @ 30	0.03 0.30 0.15 5.00 5.48 4.40	3.00	Section 2.4.2 Section 2.8
		Treads 0.15 × 0.25 × 25 × 4/2 = Screed 0.05 × 22 = Plaster Tiles and bedding Imposed load	1.88 1.10 0.21 1.00 8.59	2.50	Section 2.4.2
	Cavity wall	102mm brickwork 50mm insulation 100mm blockwork Plaster	2.37 0.02 1.40 0.21 4.00		Section 2.8
	RC wall	200 mm wall Plaster both sides	5.00 0.42 5.42		Section 2.8
	Wind	w _k =		1.10	EC1-1-4 & NA

612	load t	ake-down				
0.1.2	Load take-down Consider whole wall.					,
	ltem	Calculation		′k Cum. total	G From item	k Cum. total
	Roof	(6.0/2 + 2.5/2) × (4.4 + 1.5/2) × (7.05	Tronnicom		nonnuonn	
	1001	+ 0.6) =	154.3		13.1	
	Roof	$(6.0/2) \times (1.3/2) \times (7.05 + 0.6) =$	13.7		1.2	
	Wall	3.3 × 4.4 × 5.42 =	78.7			
	110.11		246.7		14.3	
		At above 3rd floor	2.00	246.7	1110	14.3
	3rd floor	(6.0/2) × (1.3/2 + 4.4 + 1.5/2) ×				
		(5.78 + 2.5) =	100.6		43.5	
	Landing	(2.5/2 × 1.5/2) × (5.78 + 2.5)	11.6		5.0	
	Wall	a. b.	78.7			
	Stair	say 1.1 x 4.4 (8.59 + 2.5)	41.6		12.1	
		· · · ·	232.5		60.6	
		At above 2nd floor		479.2		74.9
	2nd floor	, landing, wall and stair a. b.	232.5		60.6	
		At above 1st floor		711.7		135.5
	1st floor,	landing, wall and stair a. b.	232.5		60.6	
		At above ground floor		944.2		196.1
	Ground f	foor assume 1 m all round =				
		2 × (1.3/2 + 4.40 + 1.5/2) × (5.48 + 3.0) =	63.6		34.8	
	250 mm	wall to foundation $4.4 \times 0.2 \times 0.6 \times 25 =$	13.2			
			76.8			
		At above foundation		1021.0		230.9
6.1.3	Design	actions due to vertical load a	at groui	1d–1st		
	$G_{\rm k} = 944$	1.2 $G_{\rm k}/{\rm m} = 94$	4.2/4.4 =	214.6 kN/m		
	$Q_{\rm k} = \alpha_{\rm n} >$	< 196.1				
	where	11				
		1.1 - n/10				
	where $n = no.$ of storeys qualifying for reduction [‡]					
	= 3					(11) & NA
	= 1.1 - 3/10 = 0.8					
	$\therefore Q_k = 0.8 \times 196.1 = 156.9 \text{ kN}$ $Q_k/m = 156.9/4.4 = 35.7 \text{ kN/m}$					
	+					
	C (areas	storeys supporting Categories A (residential . of congregation) and D (shopping), but exclud I), F (traffic), G (traffic) and H (roofs).				

Check relative stiffness of lift shaft and wall ${\rm A}$ to determine share of load on wall ${\rm A}.$

Lift shaft: $I_{LS} = 2.4^4/12 - 2.0^4/12 - 0.2 \times 1.6^3/12$ = 1.36 m⁴ Wall A: $I_{WallA} = 0.2 \times 4.4^3/12$ = 1.41 m⁴ where I = inertia

:. Wall A takes 1.41/(1.41 + 1.36) = 51% of wind load.

Check shear centre to resolve the effects of torsion. Determine centre of gravity, CoG_1 of the lift shaft.

 $\therefore \alpha_{m} = 0.71$ $\therefore \theta_{i} = 0.67 \times 0.71/200$ = 0.0024 $N_{\rm b}, N_{\rm a}$ = axial forces in members below and above $(N_{\rm h} - N_{\rm a}) =$ axial load from each level At roof level $= 30.4 \times 14.5 - 1.3 \times 2.5 - 3.6 \times 4.8 = 420.3 \text{ m}^3$ Area $Perimeter = 2 \times (30.4 + 14.5)$ = 89.8 m $(N_a - N_b) = axial load from roof level$ = 420.3 × (7.05 + 0.6) + 89.8 × 0.9 × 4.0 = 3286.4 + 252.2 kN At 3rd floor $(N_a - N_b) = 420.3 \times (5.78 + 2.5) + 89.8 \times 3.3 \times 4.0 = 3615.7 + 1050.8 \text{ kN}$ At 2nd floor $(N_a - N_b) = 3615.7 + 1050.8 \text{ kN}$ At 1st floor $(N_{a} - N_{b}) = 3615.7 + 1050.8 \text{ kN}$ $H_{\rm IP} = 0.0024 \times (3286.4 + 252.2) = 7.9 + 0.6 = 8.5 \text{ kN}$ $H_{i3} = H_{i2} = H_{i1} = 0.0024 \times (3615.7 + 1050.8) = 8.7 + 2.5 = 11.2 \text{ kN}$ Characteristic design moment at ground floor, $M_{\nu} = 8.5 \times 13.2 + 11.2 \times (9.90 + 6.60 + 3.30)$ = 112.2 + 221.8 = 334.0 kNm As before, wall A resists 51% of this moment. Resolving into couple using 1 m either end of wall, ∴ G_{kH}^S = 0.51 × 334.0/3.4 = ± 50.1 kN i.e. $G_{kH} = \pm 50.1 \text{ kN/m}$ 6.1.6 Check for global second order effects To check whether the building might act as a sway frame check Cl. 5.8.3.3(1) Exp. (5.18) $F_{V,Ed} \leq k_1 \frac{n_s}{n_s + 1.6} = \frac{\Sigma E_{cd} I_c}{L^2}$ where $F_{V,Ed}$ = Total vertical load (on braced and bracing members) where Floor area = $(30.7 - 2 \times 0.15) \times 14.4 - (2 \times 0.15) - 3.6$ × 4.8 – 1.3 × 2.5 = 428.6 - 20.5 = 408.1

 $^{\rm 6}$ As $H_{\rm i}$ derives mainly from permanent actions its resulting effects are considered as being a permanent action too.

Load	6			G _k	Q _k	
	roof: 408	(7.05 + 0.	6) =	2876	245	
	floors: 3 × 4			7075	3060	
			or and above			
	-		· + 14.1) × 4.0			
	0.00 1 0.0)	X 2 X (00.1		13705	3305	
Impo	ised load re	duction 20	% (see 6.2.3		661	
				13705	2644	
	1770	5	150644			
∴r _{v,}	_{Ed} ≈13705 =2246		1.5 X 2644			
le le	= 2240 = 0.31	0 KIN				
k _l		er of store				Cl. 5.8.2(6) & NA
n _s		luding roof				7-11-74
E _{cd}) 2. = 27.5 GPa	9		Table 3.1, 5.8.6(3) & NA
L _{cd}			g members	4		0.0.0(0) 4 11/1
°c		3 direction	9 11101110010			
			-1 = 2.77 m ⁴	(See Section	on 6.1.4)	
	0	V direction		(000 0000		
			ence to Figu	re 6.4		
	-15'					- I
h x d	Area, A	X	Ax	Ax ²	I	
2.4 × 2.4 =	5.76	1.2	6.912	8.294	2.765	
-2.0 × 2.0 =	-4.00	1.2	-4.800	-5.760	-1.333	
-1.6 × 0.2 =	-0.32	2.3	-0.732	-1.683	-0.001	
	1.44		1.38	0.851	1.431	
	as before (6	$5.1.4$). $\overline{x} = 1$	1.38/1.44			
, in the second s	10 101010 (0		0.956 m			
1	$I_{1.5} = I_{N11} =$					
	110		.44 x 0.956	6		
	= 0.965	5 m ⁴				
L = to	otal height	of building	above level d	of moment i	restraint	
	1.7 (see Fig					
Check						
$k_{\rm l}\left(\frac{1}{n_{\rm s}}\right)$	$\left(\frac{n_{s}}{s+1.6}\right) \times$	$\left(\frac{\Sigma E_{cd}}{L^2}l_c\right)$	on weak I	E–W axis:		
= 0	, 31 x [4/(4	(+1.6) x 2	27500 × 10 ³	⁵ x (0.965/	14.7 ²)	
	72 <i>00</i> kN			(2.000))	
		: no nee	d to design	for 2nd ord	ler effects	
	v,⊏a					

$$\begin{split} k_{\rm w} &= EI/l = E \times 4400 \times 200^3 / (12 \times 3300) \\ &= E \times 8.88 \times 10^5 \\ k_{\rm s} &= EI/2I = E \times 5800 \times 200^3 / (2 \times 12 \times 6000) \\ &= E \times 3.22 \times 10^5 \\ M &= 302.8 \times 8.88 / (2 \times 8.8 + 3.22) \\ &= 302.8 \times 0.42 \\ &= 121.2 \text{ kNm} \\ \text{i.e. } 121.2/4.40 \\ &= 27.5 \text{ kNm/m @ ULS} \\ \\ \text{Similarly, assuming imposed load is an accompanying action:} \\ \text{FEM} &= 5.8 (1.35 \times 5.78 + 0.7 \times 1.5 \times 2.5) \times 6^2 / 8 \\ &= 5.8 \times 10.4 \times 6^2 / 8 = 271.4 \text{ kNm} \\ \therefore M &= 271.4 \times 0.42 / 4.40 \\ &= 25.9 \text{ kNm/m @ ULS} \end{split}$$

Section A–A @ ground floor

By inspection not critical - nominal moment.

Section B–B @ 1st

Consider the landing influences half of wall (2.2 m long) and that this section of wall is subject to supporting half the slab considered before at 1st floor level at Section A-A.

=

i.e. 63.8/2.2

= 31.6 kNm/m @ ULS

	$\begin{array}{l} \mbox{Combinations of actions at ground-1st floor} \\ \mbox{At ULS, for maximum axial load, W_k is leading variable action} \\ \mbox{N_{Ed}} = 1.35$ (G14.6 + 1.5$ (Here 1.5$ (Her$	Cl. 5.8.8.2(1), 6.1.4 Cl. 5.2(7), 5.2(9) Cl. 6.1.4
b)	At ULS, for minimum axial load, W_k is leading variable action $N_{Ed} = 1.0 \times 214.6 - 1.35 \times 50.1 - 1.5 \times 502.9 + 0 \times 35.7$ = -607.4 kN/m (tension) $M_{Ed} = 28.4^{\ddagger} + 0.0058 \times 607.4 \ge 0.020 \times 602.4$ $= 28.4 + 3.5 \ge 23.0$ = 31.9 kNm/m	
с)	At ULS, for maximum out of plane bending assuming Q_k is leading variable action $N_{Ed} = 1.35 (214.6 + 50.1) + 1.5 \times 35.7 + 1.5 \times 0.5 \times 502.9$ = 357.3 + 53.6 + 377.2 = 788.1 kN/m $M_{Ed} = 31.6 + 0.0058 \times 788.1 \ge 0.020 \times 788.1$ $= 31.6 + 4.6 \ge 15.8$ = 36.2 kNm/m or $N_{Ed} = 1.0 \times 214.6 - 1.35 \times 50.1 - 0 \times 31.2 - 1.5 \times 0.5 \times 502.9$ = 214.6 - 67.6 - 0 - 377.2 = -230.2 kN/m (tension) $M_{Ed} = 31.6 + 0.0058 \times 230.2$ = 33.0 kNm/m	
d)	Design load cases Consolidate c) into a) and b) to consider two load cases: and $ \frac{M_{Ed} = 36.2 \text{ kN/m (out of plane)}}{N_{Ed} = -607.4 \text{ kN/m,}} \frac{M_{Ed} = 36.2 \text{ kN/m (out of plane)}}{M_{Ed} = 36.2 \text{ kN/m (out of plane)}} $ * Strictly incompatible with $Q_k = 0$. However, allow $Q_k = 0$.	

	-	I and moment: Ist principles, referring to Figure 6.12 and ignoring Im concrete in tension,	
		$= (\sigma_{st1} + \sigma_{st2}) \times A_s/2$ $= (\sigma_{st1} - \sigma_{st2}) \times A_s/2 \times (d - d_2)$	
	so $\sigma_{\rm st1} + \sigma_{\rm st}$ and $\sigma_{\rm st1} - \sigma_{\rm st}$	$P_{2} = 2N_{Ed}/A_{g}$ $P_{2} = 2M_{Ed}/[(d - d_{2})A_{g}]$	
	$\begin{array}{ccc} \ddots & A_{\mathfrak{s}} & & \\ & \sigma_{\mathfrak{st1}} & \\ \ddots & A_{\mathfrak{s}} & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $	$= 2N_{Ed}/A_{s} + 2M_{Ed}/[(d - d_{2})A_{s}]$ $= (N_{Ed}/\sigma_{st1}) + M_{Ed}/(d - d_{2})\sigma_{st1}$ $= f_{yk}/\gamma_{5} = 500/1.15 = 434.8$ $= 607.4 \times 10^{3}/434.8 + 36.2 \times 10^{6}/[(157 - 43) \times 434.8]$ $= 1397 + 730$ $= 2127 \text{ mm}^{2}$ $= 2N_{Ed}/A_{s} - \sigma_{st1} = 571.7 - 434.8 = 136 \text{ MPa}$ Il concrete is in tension zone and may be ignored. <u>Use 6 no. H16 @ 200 cc both sides for at least</u> 1 m each end of wall (2412 mm^{2}).	
6.1.14	Horizontal r $A_{s, hmin} = 0.00$ = 200 \therefore re Spacing ≤ 400 Links not require	Cl. 9.6.3(1) & NA Cl. 9.6.3(2) Cl. 9.6.4(1)	
6.1.15	Permanent and $G_{\rm k}$ = 1021	Use H10 @ 300 (262 mm ² /m) both sides. Insion at top of foundation variable: .0/4.4 = 232.0 kN/m .9/4.4 = 52.5 kN/m	Section 6.1.2
	Resolved into co	× 14.1 × [14.1/2 + 0.6] = 1855.3 kN/m ouple 1 m either end of wall 5.3/3.4 = ±545.7 kN/m	Section 6.1.4
	Global imperfec $M_k = 8.5$ = 365	tions: x 13.8 + 11.2 x (10.5 + 7.2 + 3.9 + 0.6)	Section 6.1.5

	At ULS for maximum axial tension W_k is lead imposed load:	
	$N_{\rm Ed}$ = 1.0 x 232.0 - 1.35 x 54.9 - 1.5 x 545.7 + 0 x 52.5 = -660.7 kN/m	
		Cl. 6.1.4
	$M_{\rm Ed}$ = nominal = $e2N_{\rm Ed}$ = 0.02 × 660.7 = 13.2 kNm/m	CI. 0.1.4
	As before	
	$A_{g} = \frac{N_{Ed}}{f_{yk}/\gamma_{M}} + \frac{M_{Ed}}{(d-d_{2})f_{yk}/\gamma_{M}}$	
	5× ··· = 5× ···	
	$= 660.7 \times 10^{3}/434.8 + 13.2 \times 10^{6}/[(157 - 43) \times 434.8]$	
	= 1520 + 266	
	= 1786 mm^2 i.e. not critical	
	: Use 6 no. H16 @ 200 cc b.s. for at least 1 m either end of wall	
	<u>(2412 mm²).</u>	
6.1.16	Check for axial compression at top of foundation	
•••••	At ULS for maximum axial compression W_k is lead imposed load:	
	N _{Ed} = 1.35 × 232.0 + 1.35 × 54.9 + 1.5 × 545.7 + 0.7 × 1.5 × 52.5	
	= 1261.0 kN/m	
	$M_{\rm Ed}$ = nominal = $e^{2}N_{\rm Ed}$ = 0.02 × 1261.0	Cl. 6.1.4
	= 25.2 kNm/m	
	By inspection not critical (minimum reinforcement required).	Section 6.1.13
	: tension critical as above.	
C 4 45		
6.1.17	Design: cover below ground	
	$c_{\rm nom} = c_{\rm min} + \Delta c_{\rm dev}$	
	where $= max[a + a + a]$	Evp (41)
	$c_{\min} = \max[c_{\min,b}; c_{\min,dur}]$	Exp. (4.1)
	where c _{min.b} = diameter of bar = 16 mm vertical or 10 mm lacers	
	$c_{\min,b}$ = for assumed Aggressive Chemical Environment for	BS 8500-1
	Concrete (ACEC) class AC1 ground conditions	Ann <i>e</i> x A ^[14] ,
	= 25 mm	How to: Building
		structures ^[8]
	$\Delta c_{dev} = 10 \text{ mm}$	
	$c_{\text{nom}} = 25 + 10 = 35 \text{ mm to lacers}$	
	(45 mm to vertical bars)	
	In order to align vertical bars from foundation into Gnd–1st floor lift	
	as starter bars, locally increase thickness of wall to say	
	250 mm thick with $c_{\text{nom}} = 50 \text{ mm}$	

$= 0.51 \times [125.0 + 11.2 \times 25.8]$ = 0.51 × 414.0 = 211 kNm
Restoring moment
$M_{k} = (1021.0 + 5.0 \times 1.2 \times 0.9 \times 25 + 0 \times 230.9) \times (0.3 + 2.2)$ = 2890 kNm
At ULS of EQU,
Overturning moment
= $fn(\gamma_{Q,1}Q_{k1} + \gamma_{G,sup}G_k)$ ECO: Table = $1.5 \times 2073.5 + 1.1 \times 211.0 = 3342.4$ kNm A1.2(A) & NA
Restoring moment
$= fn(\gamma_{G,inf}G_k) = 0.9 \times 2890 = 2601 \text{ kNm i.e.} > 1818.4 \text{ kNm} \qquad \qquad \text{ECO:}$ Table A1.2(A) $\therefore \text{ no good} \qquad \& \text{ NA}$
Try 1.05 m outstand
Restoring moment
$M_{\rm k} = 2890 (1.05 + 2.2) / (0.3 + 2.2)$ = 3757.0 kNm
At ULS, restoring moment $= 0.9 \times 357.0$
= 3381.3 kNm ∴OK. Use 1.05 m outstand to wall.
6.1.19 Design summary
H12 @ 400 b.s + 12 + 12 + 12 + 12 + 12 + 12 + 12 + 1
Figure 6.13 Wall design summary

7 References and further reading

References

- BRITISH STANDARDS INSTITUTION. BS EN 1992–1–1, Eurocode 2 Part 1–1: Design of concrete structures – General rules and rules for buildings. BSI, 2004.
 National Annex to Eurocode 2 – Part 1–1. BSI, 2005.
- 2 BRITISH STANDARDS INSTITUTION. BS EN 1992–1–2, Eurocode 2 Part 1–2: Design of concrete structures General rules Structural fire design. BSI, 2004.
 2a National Annex to Eurocode 2 Part 1–2. BSI, 2005.
- BRITISH STANDARDS INSTITUTION. BS EN 1992–2, Eurocode 2 Part 2: Design of concrete structures Bridges. BSI, 2005.
 Ba National Annex to Eurocode 2 Part 2. BSI, 2007.
- BRITISH STANDARDS INSTITUTION. BS EN 1992–3, Eurocode 2 Part 3: Design of concrete structures Liquid-retaining and containment structures. BSI, 2006.
 4a National Annex to Eurocode 2 Part 3. BSI, 2007.
- 5 R S NARAYANAN & C H GOODCHILD. The Concrete Centre. *Concise Eurocode 2*. CCIP-005. TCC, 2006.
- 6 BRITISH STANDARDS INSTITUTION. PD 6687 Background paper to the UK National Annexes BS EN 1992–1. BSI, 2006.
- 7 BRITISH STANDARDS INSTITUTION. BS 8110 Structural use of concrete Part 1: Code of practice for design and construction. BSI,1997.
- 8 BROOKER, O et al. *How to design concrete structures using Eurocode 2*. CCIP-006. The Concrete Centre, 2006. Updated for download only 2009.
- **9** THE INSTITUTION OF STRUCTURAL ENGINEERS/THE CONCRETE SOCIETY/DTI. *Standard method of detailing structural concrete*, Third Edition. IStructE, 2006.
- BRITISH STANDARDS INSTITUTION. BS EN 1990, Eurocode: Basis of structural design. BSI, 2002.
 National Annex to Eurocode. BSI, 2004.
- BRITISH STANDARDS INSTITUTION. BS EN 1991, Eurocode 1: Actions on structures (10 parts). BSI, 2002–2006.
 National Annexes to Eurocode 1. BSI, 2005–2008 and in preparation.
- BRITISH STANDARDS INSTITUTION. BS EN 1997–1, Eurocode 7. Geotechnical design. General rules. BSI, 2004.
 National Annex to Eurocode 7 BS EN 1997–1. BSI, 2007.
- BRITISH STANDARDS INSTITUTION. BS EN 1998–1, Eurocode 8. Design of structures for earthquake resistance. General rules. Seismic actions for buildings. BSI, 2004.
 National Annex to Eurocode 8 BS EN 1998–1. BSI, 2008.
- 14 BRITISH STANDARDS INSTITUTION. BS 8500–1: Concrete Complementary British Standard to BS EN 206–1: Method of specifying and guidance to the specifier. BSI, 2002.
- 15 BRITISH STANDARDS INSTITUTION. BS 4449: Steel for the reinforcement of concrete Weldable reinforcing steel – Bar, coil and decoiled product – Specification. BSI, 2005.
- **16** CONSTRUCT. *National structural concrete specification for building construction*, Third Edition, CS 152. The Concrete Society on behalf of Construct, 2004.
- **17** BRITISH STANDARDS INSTITUTION. BS EN 13670: *Execution of concrete structures Part 1: Common.* BSI, in preparation, due 2010.
- **18** CONSTRUCT. *National structural concrete specification for building construction,* Fourth edition, in preparation.

- **19** BRITISH STANDARDS INSTITUTION. BS 8666: 2005, Scheduling, dimensioning, bending and cutting of steel for reinforcement: Specification. BSI, 2005.
- **20** THE QUEEN'S PRINTER OF ACTS OF PARLIAMENT, *The Building Regulations 2000.* The Stationery Office Limited, 2000.
- **21** THE STATIONERY OFFICE LIMITED (TSO), Building (Amendment) (No 2) Regulations 2002 and the Building (Approved Inspectors etc.) (Amendment) Regulations 2002. TSO, 2002.
- 22 BRITISH STANDARDS INSTITUTION. DD ENV 13670–1: 2000: Execution of concrete structures: Common. BSI, 2000.
- 23 COOK, N. Designers guide to EN 1991–4 Actions on structures. Wind actions. Thomas Telford, London, 2007.
- 24 DCLG. Guide to the use of EN 1991–1–4 Wind actions. DCLG Publications, 2006. www.communities.gov.uk/planningandbuilding/planningbuilding/ buildingregulationsresearch/buildingdivisionresearch/
- 25 BRITISH STANDARDS INSTITUTION. BS EN 1991–1–4: Eurocode 1. Actions on structures. General actions. Wind actions. BSI, 2005.
 25a National Annex to Eurocode 1 – Part 1–4. BSI, 2008.
- 26 BROOKER, O. *Concrete buildings scheme design manual,* (EC2 edition). CCIP-051. The Concrete Centre, 2009.
- 27 THE CONCRETE SOCIETY. Technical Report 64, *Guide to the design and construction of RC flat slabs*, CCIP-022. The Concrete Society, 2007.
- 28 GOODCHILD, C H & WEBSTER, R M. RC spreadsheets v3, CCIP-008CD. User guide to RC spreadsheets V3, CCIP-008. The Concrete Centre, 2006.
- 29 IRWIN, A W. Design of shear wall buildings, Report R102. CIRIA, 1984.
- **30** THE CONCRETE CENTRE. *Worked examples to Eurocode 2, Volume 2*. CCIP-042. In preparation.
- **31** MOSELEY, B, BUNGEY, J & HULSE, R. *Reinforced concrete design to Eurocode 2*, Sixth Edition. Palgrave McMillan, 2007.
- 32 THE CONCRETE SOCIETY. Deflections in concrete slabs and beams. TR 58. The Concrete Society, 2005.
- **33** BEEBY, A. Modified proposals for controlling deflections by means of ratios of span to effective depth, Technical Report 456, Cement and Concrete Association, Wexham Springs, 1971.
- 34 ALLEN, A H. Reinforced concrete design to BS 8110 simply explained. Spon, London, 1988.
- **35** INSTITUTION OF STRUCTURAL ENGINEERS. *Manual for the design of concrete building structures to Eurocode 2.* IStructE, 2006.

Further reading

- BEEBY A W & NARAYANAN R S. Designers guide to the Eurocodes EN 1992–1–1 and EN 1992–1–2 Eurocode 2: Design of concrete structures. General rules and rules for buildings and structural fire design. Thomas Telford, 2005.
- BRITISH STANDARDS INSTITUTION. PP 1990:2007. Structural Eurocodes, Extracts from the structural Eurocodes for students of structural design, second edition. BSI, London, 2007.
- HENDY C R & SMITH D A., Designers guide to the Eurocodes EN 1992–2 Eurocode 2: Design of concrete structures. Part 2: Concrete bridges, Thomas Telford, 2007.
- THE CONCRETE SOCIETY. Technical Report 64, Guide to the design and construction of RC flat slabs, CCIP-022. The Concrete Society, 2007.

Appendix A: Derived formulae

A1 Flexure: beams and slabs

A1.1 Singly reinforced sections

The rectangular stress block shown below in Figure A1 may be used.

Figure A1 Strains and forces in a section

For grades of concrete up to C50/60, $\varepsilon_{_{\rm CU}}$ = 0.0035, η = 1 and λ = 0.8

$$f_{cd} = \alpha_{cc} f_{ck} / \gamma_{C} = 0.85 f_{ck} / 1.5$$
$$f_{yd} = f_{yk} / \gamma_{S} = f_{yk} / 1.15 = 0.87 f_{yk}$$

For singly reinforced sections, the design equations can be derived as follows:

Lever arm, z

$$F_{c} = (0.85 f_{ck}/1.5) b (0.8x) = 0.453 f_{ck} bx$$

$$F_{st} = 0.87 A_{s} f_{vk}$$

Consider moment[‡], *M*, about the centre of the tension force:

 $M = 0.453f_{ck}bxz$ Now z = d - 0.4x $\therefore \quad x = 2.5(d - z)$ $M = 0.453f_{ck}b2.5(d - z)z$ $= 1.1333 (f_{ck}bzd - f_{ck}bz^2)$ Let $K = M/bd^2f_{ck}$ $= 1.1333 (f_{ck}bzd - f_{ck}bz^2)/bd^2f_{ck}$ $= 1.1333(zd - z^2)/d^2$ $\therefore 0 = 1.1333[(z/d)^2 - (z/d)] + K$ $= (z/d)^2 - (z/d) + 0.88235K$

^{\ddagger} In practice the design moment, $M_{\rm Ed}$ would be used.

Solving the quadratic equation:

$$z/d = [1 + (1 - 3.529K)^{0.5}]/2$$
$$z = d[1 + [1 - 3.529K)^{0.5}]/2$$

Table C5

Table 3.1

It is considered good practice in the UK to limit z/d to a maximum of 0.95d. (This guards against relying on very thin sections of concrete which at the extreme top of a section may be of questionable strength.) Tables giving values of z/d and x/d for values of K may be used.

Area of reinforcement, A_s

Taking moments about the centre of the compression force:

 $M = 0.87A_{s}f_{yk}z$ $A_{s} = M/(0.87f_{vk}z)$

Limiting value of relative flexural compressive stress, K'

Assuming no redistribution takes place, a limiting value (on the strength of concrete in compression) for K can be calculated (denoted K') as follows.

 $\begin{aligned} \varepsilon_{cu3} &= \text{ concrete strain} = 0.0035 \\ \varepsilon_{s} &= \text{ reinforcement strain} \\ &= 500/(1.15 \times 200 \times 10^{3}) = 0.0022 \end{aligned}$

From strain diagram, Figure A1

= 0.0035d/(0.0035 + 0.0022)= 0.6d

From equations above:

х

 $M = 0.453f_{ck} bxz$ $M' = 0.453f_{ck} b 0.6d (d - 0.4 \times 0.6 d)$ $= 0.207f_{ck} b d^{2}$ $\therefore K' = 0.207$

It is often considered good practice to limit the depth of the neutral axis to avoid 'overreinforcement' (i.e. to ensure that the reinforcement is yielding at failure, thus avoiding brittle failure of the concrete). Often x/d is limited to 0.45. This is referred to as the balanced section because at the ultimate limit state the concrete and steel reach their ultimate strains at the same time^[31]. This is not a Eurocode 2 requirement and is not accepted by all engineers.

Nonetheless for x = 0.45d

From equations above: $M = 0.453 f_{ck} bxz$

 $M' = 0.453f_{ck} \ b \ 0.45d \ (d - 0.4 \times 0.45d)$ = 0.167f_{ck} \ bd^2 $\therefore \ K' = 0.167$

x/d is also restricted by the amount of redistribution carried out. For $f_{\rm ck} \le 50$ MPa $\delta \ge 0.4 + (0.6 + 0.0014 \varepsilon_{\rm cu}) x_{\rm u}/d$

where

- *d* = redistributed moment/elastic bending moment before redistribution
- x_{μ} = depth of the neutral axis at ULS after redistribution
- $\varepsilon_{\rm cu}$ = compressive strain in the concrete at ULS

This gives the values in Table A1.

Cl. 5.5(4)

186

Table A1

Limits on ${\it K}'$ with respect to redistribution ratio, δ

δ	1	0.95	0.9	0.85	0.8	0.75	0.7
% redistribution	0	5	10	15	20	25	30
K'	0.208	0.195	0.182	0.168	0.153	0.137	0.120

If K > K' the section should be resized or compression reinforcement is required. In line with consideration of good practice outlined above, **this publication adopts a maximum value of** K' = 0.167.

A1.2 Compression reinforcement, A_{s2}

The majority of beams used in practice are singly reinforced, and these beams can be designed using the formula derived above. In some cases, compression reinforcement is added in order to:

- Increase section strength where section dimensions are restricted, i.e. where K > K'
- To reduce long term deflection
- To decrease curvature/deformation at ultimate limit state

Figure A3 Beam with compression reinforcement

With reference to Figure A1, there is now an extra force $F_{\rm sc} = 0.87 A_{\rm s2} f_{\rm yk}$

The area of tension reinforcement can now be considered in two parts, the first part to balance the compressive force in the concrete, the second part to balance the force in the compression steel. The area of tension reinforcement required is therefore:

$$A_{\rm s} = K' f_{\rm cu} b d^2 / (0.87 f_{\rm yk} z) + A_{\rm s2}$$

where

z is calculated using K' instead of K

 A_{s2} can be calculated by taking moments about the centre of the tension force:

$$\begin{split} M &= M' + 0.87 f_{yk} \, A_{s2} \, \left(d - d_2\right) \\ M &= K' \, f_{cu} \, bd^2 + 0.87 f_{yk} \, A_{s2} \, \left(d - d_2\right) \end{split}$$

Rearranging: $A_{s2} = (K - K')f_{ck} bd^2 / [0.87 f_{vk} (d - d_2)]$

A2 Shear

A2.1 Shear resistance (without shear reinforcement), $V_{\rm Rd,c}$

 $V_{\text{Rd,c}} = [C_{\text{Rd,c}} k (100\rho 1 f_{ck})^{1/3} + k_1 \sigma_{cp}] b_w d \ge (v_{\min} + k_1 \sigma_{cp}) b_w d$ where $C_{\text{Rd,c}} = 0.18/\gamma_{\text{C}} = 0.18/1.5 = 0.12$ $k = 1 + (200/d)^{0.5} \le 2.0$

$$\rho_{1} = A_{s}/(b_{w}d) \leq 0.02$$

$$k_{1} = 0.15$$

$$\sigma_{cp} = 0 \text{ for non-prestressed concrete}$$

$$v_{min} = 0.035k^{1.5} f_{ck}^{0.5}$$

$$\therefore V_{Rd,c} = 0.12k(100 \ \rho_{1} f_{ck})^{1/3} \ b_{w}d \geq 0.035k^{1.5} f_{ck}^{0.5} \ b_{w}d$$

A2.2 Shear capacity

The capacity of a concrete section with vertical shear reinforcement to act as a strut, V_{Rd.max}:

 $V_{\rm Rd,max} = \alpha_{\rm cw} b_{\rm w} Z \nu_1 f_{\rm cd} / (\cot \theta + \tan \theta)$

where

 $\alpha_{cw} = 1.0$ $\nu_1 = \nu = 0.6 \left[1 - f_{ck} / 250 \right]$ $f_{cd} = \alpha_{cc} f_{ck} / \gamma_{C} = 1.00 \times f_{ck} / 1.5$ $\therefore V_{\text{Rd,max}} = 0.40 \ b_{\text{w}} z f_{\text{ck}} \left[1 - f_{\text{ck}} / 250 \right] / (\cot \theta + \tan \theta)$

Rearranging this equation gives:

 $\theta = 0.5 \sin^{-1} \left[v_{\text{Edz}} / (0.20 f_{ck} \left[1 - f_{ck} / 250 \right] \right] \ge \cot^{-1} 2.5$

where

 $v_{\rm Edz} = V_{\rm Ed}/bz = V_{\rm Fd}/(b0.9d)$

In most cases, where cot $\theta = 2.5$, $\theta = 21.8^{\circ}$

 $v_{\rm Rd,max,cot\ \theta = 2.5} = 0.138 b_{\rm w} z f_{\rm ck} \left[1 - f_{\rm ck}/250\right]$

or

 $v_{\rm Rd,max,cot \ \theta = 2.5} = 0.138 f_{\rm ck} \left[1 - f_{\rm ck} / 250 \right]$

where

 $V_{\text{Rd,max,cot }\theta = 2.5} = V_{\text{Rd,max,cot }\theta = 2.5} /(bz)$ $= V_{\text{Rd,max,cot }\theta = 2.5} /(0.9bd)$

Where cot θ > 2.5, the angle of the strut and $v_{\rm Rd,max}$ should be calculated, or $v_{\rm Rd,max}$ may be looked up in tables or charts (e.g. Table C7 or Figure C1).

Shear reinforcement A2.3

 $V_{\text{Rd,s}} = (A_{\text{sw}}/s)zf_{\text{ywd}}(\cot \theta + \cot \alpha)\sin \alpha \ge V_{\text{Ed}}$

where

 A_{sw} = cross-sectional area of the shear reinforcement

S = spacing

- z = lever arm (approximate value of 0.9d may normally be used)
- $f_{ywd} = f_{ywk}/\gamma_{S} = design yield strength of the shear reinforcement$ $<math>\alpha = angle of the links to the longitudinal axis. For vertical links,$
 - - $\cot \alpha = 0$ and $\sin \alpha = 1.0$

Rearranging for vertical links:

 $A_{sw}/s \ge V_{Ed}/zf_{wwd} \cot \theta$ or

$$A_{sw}/s \ge v_{Ed,z} b_w/f_{ywd} \cot \theta$$

Minimum area of shear reinforcement

 $A_{sw,min}/(sb_w \sin \alpha) \ge 0.08 f_{ck}^{0.5}/f_{vk}$

where

s = longitudinal spacing of the shear reinforcement

 $b_{\rm w}$ = breadth of the web

Exp. (6.9)

Cl. 6.2.3(3) Note 1, Exp. (6.6N) & NA

Exp. (6.13)

Exp. (9.5N) & NA

 $\alpha~=$ angle of the shear reinforcement to the longitudinal axis of the member. For vertical links sin α = 1.0.

Rearranging for vertical links:

 $A_{sw,min}/s \ge 0.08b_w \sin \alpha f_{ck}^{0.5}/f_{yk}$

A3 Columns

For axial load $N_{\rm Ed} = f_{\rm cd}bd_{\rm c} + A_{\rm s2}\sigma_{\rm sc} - A_{\rm s1}\sigma_{\rm st}$

But as
$$A_{s2} = A_{s1} = A_{sN}/2$$

 $N_{Ed} = f_{cd}bd_c + A_{sN}(\sigma_{sc} - \sigma_{st})/2$
 $N_{Ed} - f_{cd}bd_c = A_{sN}(\sigma_{sc} - \sigma_{st})/2$
 $(N_{Ed} - f_{cd}bd_c)/(\sigma_{sc} - \sigma_{st}) = A_{sN}/2$
 $A_{sN}/2 = (N_{Ed} - f_{cd}bd_c)/(\sigma_{sc} - \sigma_{st})$

$$\therefore A_{\rm sN}/2 = (N_{\rm Ed} - \alpha_{\rm cc} \eta f_{\rm ck} b d_{\rm c}/\gamma_{\rm C})/(\sigma_{\rm sc} - \sigma_{\rm st})$$

For moment about centre of column

$$\begin{split} M_{\rm Ed} &= f_{\rm cd} b d_{\rm c} (h/2 - d_{\rm c}/2) + A_{\rm s2} \sigma_{\rm sc} (h/2 - d_{\rm 2}) + A_{\rm s1} \sigma_{\rm st} (h/2 - d_{\rm 2}) \\ \text{But as } A_{\rm s2} &= A_{\rm s1} = A_{\rm sM}/2 \\ M_{\rm Ed} &= f_{\rm cd} b d_{\rm c} (h/2 - d_{\rm c}/2) + A_{\rm sM} (\sigma_{\rm sc} + \sigma_{\rm st}) (h/2 - d_{\rm 2})/2 \\ M_{\rm Ed} &= f_{\rm cd} b d_{\rm c} (h/2 - d_{\rm c}/2) = A_{\rm sM} (\sigma_{\rm sc} + \sigma_{\rm st}) (h/2 - d_{\rm 2})/2 \\ [M_{\rm Ed} - f_{\rm cd} b d_{\rm c} (h/2 - d_{\rm c}/2)]/(\sigma_{\rm sc} + \sigma_{\rm st}) (h/2 - d_{\rm 2}) = A_{\rm sM}/2 \end{split}$$

::
$$A_{sM}/2 = [M_{Ed} - \alpha_{cc}\eta f_{ck}bd_c(h/2 - d_c/2)/\gamma_C]/[(\sigma_{sc} + \sigma_{st})(h/2 - d_2)]$$

Solution Iterate x such that $A_{sN} = A_{sM}$

Note

For sections wholly in compression, the strain is limited such that average strain $\leq \varepsilon_{cs} = 0.00175$ (assuming bilinear stress–strain relationship).

Cl. 6.1(6), Fig. 6.1, Table 3.1

Appendix B: Serviceability limit state

B1 Deflection

In many cases, particularly with slabs, deflection is critical to design.

Eurocode 2, Cl. 7.4 allows for deflection to be controlled by using span:depth ratio (L/d) checks in accordance with Cl. 7.4.2 or by calculation in accordance with Cl. 7.4.3. It is important to differentiate between the various methods used in checking deformation as they will each give different answers. Three popular methods are discussed below. Only that described in Section B1.1 below is suitable for hand calculation.

B1.1 TCC method^[5,19]

The in-service stress of reinforcement, σ_s , is used to determine a factor, 310/ σ_s , which is used to modify the basic span: effective depth ratio as allowed in Cl. 7.4.2(2) of Eurocode 2^[2] and moderated by the National Annex^[2a]. This method, highlighted as factor F3 in *Concise Eurocode* 2^[5], is intended to be used in hand calculations to derive (conservative) values of σ_s from available ULS moments. In accordance with Note 5 of Table NA.5 of the UK NA^[2a], the ratio for $A_{s,orov}/A_{s,reg}$ is restricted to 1.5: in effect this limits the factor 310/ σ_s to 1.5.

$$\sigma_{\rm s} = (f_{\rm yk}/\gamma_{\rm S}) (w_{\rm qp}/w_{\rm ult}) (A_{\rm s,req}/A_{\rm s,prov}) / \delta \le 310/1.5$$

where

 f_{yk} = characteristic strength of reinforcement = 500 MPa

 $\dot{\gamma}_{\rm S}$ = partial factor for reinforcement = 1.15

w_{ap} = quasi-permanent load (UDL assumed)

w_{perm} = ultimate load (UDL assumed)

 $A_{s,reg}$ = area of reinforcement required

 $A_{s,prov}$ = area of reinforcement provided

s = redistribution ratio

B1.2 RC Spreadsheets method^[28]

The RC spreadsheets TCCxx.xls ^[28] use the span: depth method of checking deformation but use an accurate method for determining $\sigma_{\rm s}$ (see B3.2 below), which again is used to determine the moderating factor = 310/ $\sigma_{\rm s}$. Again, in accordance with Note 5 of Table NA.5 of the UK NA^[2a], the ratio for $A_{\rm s,prov}/A_{\rm s,red}$ is restricted to 1.5: in effect this limits the factor 310/ $\sigma_{\rm s}$ to 1.5.

Separate analyses using quasi-permanent loads need to be carried out. For each span, an SLS neutral axis depth is determined, then σ_c and σ_s are derived for the quasi-permanent load conditions. The factor σ_s is used in accordance with Eurocode $2^{[2]}$ and the current National Annex^[2a], to modify the basic span:effective depth ratio.

Whilst this method gives a more accurate and less conservative assessment of $\sigma_{s'}$ it is only suitable for computer spreadsheet applications. See also Appendix B5.

In the analysis of slabs and beams, supports are usually assumed to be pinned. In reality supports have some continuity, especially at end supports. Usually, nominal top steel is assumed and provided in the top of spans and is used in the determination of section properties.

B1.3 Rigorous analysis

Rigorous analysis, such as that used in the series of RC Spreadsheets TCCxxR.xls may be used to assess deformation in accordance with Eurocode 2, Cl. 7.4.3.

[‡] See Appendix B1.5

In the spreadsheets, sections at 1/20th points along the length of a span are checked to determine whether the flexural tensile stress in the section is likely to exceed the tensile strength of the concrete during either construction or service life: separate analyses are undertaken using frequent loads, quasi-permanent and temporary loads. If the flexural tensile strength is exceeded under frequent loads, then the section is assumed to be cracked and remain cracked: cracked section properties are used to determine the radius of curvature for that 1/20th of span. If flexural tensile strength is not exceeded, un-cracked section properties are used.

Radii of curvature are calculated for each 1/20th span increment of the element using the relevant properties and moments derived from analysis of quasi-permanent actions. Deformation is calculated from the increments' curvatures via numerical integration over the length of each span.

The method is in accordance with The Concrete Society's publication TR58^[32]. Again the method is suitable only for computer applications and not for hand calculation.

B1.4 Differing results

During 2008, it became increasingly apparent that there are inconsistencies between the results given by the rigorous calculation method and span:depth methods described in Eurocode 2. Using the rigorous method gives deflections that are greater than would be expected from the assumptions stated for *L/d* methods i.e. deflection limits of *L*/250 overall (see CL. 7.4.1(4)) or *L*/500 after construction (see CL. 7.4.1(5)). It is suspected that this disparity is the same as that experienced between span:depth and calculation methods in BS 8110: a disparity that was recognised as long ago as $1971^{[33]}$. The rigorous method described above relies on many assumptions and is largely uncalibrated against real structures. As noted in TR58, there is an urgent need for data from actual structures so that methods may be calibrated. It should be noted that the rigorous analysis method observations were made using frequent loads where, in accordance with Eurocode 2, quasi-permanent loads are called for.

End spans are usually critical. With respect to the rigorous analysis method, it has been suggested that for end-spans, the TCC and RC-spreadsheet methods result in deflections close to the limits stated in Eurocode 2, provided that a nominal end-support restraining moment is present where none is assumed in analysis. Caution is therefore necessary in true pinned end-support situations but where some continuity exists, this disparity may be addressed by ensuring that appropriate amounts of reinforcement, in accordance with the Code and National Annex, are provided at end supports.

The NDP for Cl. 9.2.1.2(1) in the UK NA^[2a] to BS EN 1992–1–2 stipulates that 25% of end span moment should be used to determine end support reinforcement. This is usually accommodated by providing 25% of end span bottom steel as top steel at end supports. It is on this basis that the calculations in this publication are considered as being further substantiated.

B1.5 Note regarding factor 310/ σ_s (factor F3)

At the time of publication (December 2009) the authors were aware of a probable change to UK NA^[2a] Table NA.5 which, in effect, would mean that the factor $310/\sigma_s$ (F3) = $A_{s,prov}/A_{s,req} \le 1.5$, thus disallowing the accurate method outlined in Sections 3.1, 3.2, 3.3, 3.4, 4.3 and Appendices B1.1, B1.2 and C7.

B2 Neutral axis at SLS

To find x, neutral axis, and services stresses σ_c and σ_s for a concrete section, at SLS, consider the cracked section in Figure B1

Figure B1 Cracked concrete section at SLS

From first principles, for a fully cracked transformed section, Total area of section, $A = bx + A_s \alpha_e + A_{s2}(\alpha_e - 1)$

1st moment of area, $A_y = bx^2/2 + A_s d\alpha_e + A_{s2} d_2(\alpha_e - 1)$

For a slab, b = 1000, therefore

 $A = 1000x + A_{s}\alpha_{e} + A_{s2}(\alpha_{e} - 1)$ $A_{v} = 500x^{2} + A_{s}d\alpha_{e} + A_{s2}d_{2}(\alpha_{e} - 1)$

Neutral axis depth, x

$$x = A_y/A$$

= [500x² + A_sda_e + A_{s2}d₂(a_e - 1)]/[1000x + A_sa_e + A_{s2}(a_e - 1)]

Therefore

$$\begin{aligned} x[1000x + A_{s}\alpha_{e} + A_{s2}(\alpha_{e} - 1)] &= [500x^{2} + A_{s}d\alpha_{e} + A_{s2}d_{2}(\alpha_{e} - 1)] \\ 0 &= [500x^{2} + A_{s}d\alpha_{e} + A_{s2}d_{2}(\alpha_{e} - 1)] - x[1000x + A_{s}\alpha_{e} + A_{s2}(\alpha_{e} - 1)] \\ &= 500x^{2} - x[1000x] + A_{s}d\alpha_{e} + A_{s2}d_{2}(\alpha_{e} - 1)] - x[A_{s}\alpha_{e} + A_{s2}(\alpha_{e} - 1)] \\ &= -500x^{2} - x[A_{s}\alpha_{e} + A_{s2}(\alpha_{e} - 1)] + [A_{s}d\alpha_{e} + A_{s2}d_{2}(\alpha_{e} - 1)] \end{aligned}$$

Solving the quadratic

$$x = -b \pm b^{2} - 4\alpha C_{0}^{(0.5)}/2a$$
$$x = \frac{-[A_{s}\alpha_{e} + A_{s2}(\alpha_{e} - 1) \pm \{[A_{s}\alpha_{e} + A_{s2}(\alpha_{e} - 1)]^{2} + 4 \times 500 \times [A_{s}d\alpha_{e} + A_{s2}d_{2}(\alpha_{e} - 1)]\}^{0.5}]}{(2 \times 500)}$$

or transposing,

$$x = \frac{\left[-(\alpha_{\rm e} - 1)A_{\rm s2} - \alpha_{\rm e}A_{\rm s} + \left\{\left[(\alpha_{\rm e} - 1)A_{\rm s2} + \alpha_{\rm e}A_{\rm s}\right]^2 + 2000\left[(\alpha_{\rm e} - 1)A_{\rm s2}d_2 + \alpha_{\rm e}A_{\rm s}d\right]\right\}^{0.5}\right]}{1000}$$

$$x = \frac{\left[-(\alpha_{\rm e} - 1)A_{\rm s2} - \alpha_{\rm e}A_{\rm s} + \left\{\left[(\alpha_{\rm e} - 1)A_{\rm s2} + \alpha_{\rm e}A_{\rm s}\right]^2 + 2b\left[(\alpha_{\rm e} - 1)A_{\rm s2}d_{\rm 2} + \alpha_{\rm e}A_{\rm s}d\right]\right\}^{0.5}\right]}{b}$$

This expression is used in the RC spreadsheets^[28].

B3 SLS stresses in concrete, σ_c , and reinforcement, σ_s

B3.1 Singly reinforced section

Consider the singly reinforced section in Figure B2.

Consider moments about F_c:

$$\begin{split} & \mathcal{M}_{\rm qp} = F_{\rm s} z = F_{\rm s} (d - x/3) \\ & F_{\rm s} = \mathcal{M}_{\rm qp} / (d - x/3) \\ & \sigma_{\rm s} = \mathcal{M}_{\rm qp} / [A_{\rm s} (d - x/3)] \\ & \sigma_{\rm s} A_{\rm s} = \mathcal{M}_{\rm qp} / (d - x/3) = xb \, \sigma_{\rm c} / 2 \\ & \sigma_{\rm c} = 2 \, \sigma_{\rm s} A_{\rm s} / xb \end{split}$$

B3.2 Doubly reinforced section

Consider the singly reinforced section in Figure B3.

Consider moment, $M_{qp'}$ about bottom reinforcement, $A_s^{[34]}$. $M_{qp} = A_{s2}(d - d_2)(\alpha_e - 1)\{(x - d_2)/x\} \sigma_c + \sigma_c b(x/2)(d - x/3)$ Therefore $\sigma_c = M_{qp} / [A_{s2}(d - d_2)(\alpha_e - 1)]\{(x - d_2)/x\} + b(x/2)(d - x/3)]$ And from stress diagram $\sigma_s = \sigma_c \alpha_e(d - x)/x$

Appendix C: Design aids

The following tables, text and figures have been derived from Eurocode 2 and are provided as design aids for designers in the UK. These design aids have been referenced in the text and generally have been taken from Section 15 of *Concise Eurocode* $2^{[S]}$.

C1 Design values of actions

For the ULS of strength (STR) where there is a single variable action use either:

- $1.35G_k + 1.5Q_k$ Exp. (6.10) from BS EN 1990^[10] or the worse case of
- $1.35G_k + \psi_0 1.5Q_k$ Exp. (6.10a) and
- 1.25*G*_k + 1.5*Q*_k Exp. (6.10b)

where $\psi_0 = 1.0$ for storage, 0.5 for snow but otherwise 0.7, see Table 2.2.

In most cases Exp. (6.10b) will be appropriate, except for storage where the use of Exp. (6.10a) is likely to be more onerous.

For the SLS of deformation, quasi-permanent loads should be applied. These are $1.0G_k + \psi_2 Q_k$ where ψ_2 is dependent on use, e.g. 0.3 for offices and residential and 0.7 for storage.

C2 Values of actions

The values of actions (i.e. loads) are defined in Eurocode $1^{[11]}$. The parts of Eurocode 1 are given in Table C1. These values are taken as characteristic values. At the time of publication, the UK National Annexes to these parts are in various states of readiness.

As PD 6687^[6] makes clear, until the appropriate European standards become available, designers may consider using current practice or current British Standards in conjunction with Eurocode 2, provided they are compatible with Eurocode 2 and that the resulting reliability is acceptable.

BS EN 1991–1–1 states that the density of concrete is 24 kN/m³, reinforced concrete, 25 kN/m³ and wet reinforced concrete, 26 kN/m³.

Table C1 The parts of Eurocode 1^[11]

Reference	Title
BS EN 1991-1-1	Densities, self-weight and imposed loads
BS EN 1991-1-2	Actions on structures exposed to fire
BS EN 1991-1-3	Snow loads
BS EN 1991-1-4	Wind actions
BS EN 1991-1-5	Thermal actions
BS EN 1991-1-6	Actions during execution
BS EN 1991-1-7	Accidental actions due to impact and explosions
BS EN 1991-2	Traffic loads on bridges
BS EN 1991-3	Actions induced by cranes and machinery
BS EN 1991-4	Actions in silos and tanks

C3 Analysis

Analysis is dealt with in Section 5 of *Concise Eurocode 2*. Where appropriate the coefficients given in Tables C2 and C3 can be used to determine design moments and shear for slabs and beams at ULS.

Table C2

Coefficients for use with one-way spanning slabs to Eurocode 2

Coefficient Location								
	End suppor	t/slab conn	ection		Internal supports and spans			
	Pinned end support Continuous				ſ			
	Outer support	Near middle of end span	Outer support	Near middle of end span	At 1st interior support	At middle of interior spans	At interior supports	
Moment	0.0	0.086	- 0.04	0.075	- 0.086	0.063	- 0.063	
Shear	0.40	_	0.46	_	0.60:0.60	_	0.50:0.50	

Notes

- 1 Applicable to one-way spanning slabs where the area of each bay exceeds 30 m², $Q_k \le 1.25G_k$ and $q_k \le 5$ kN/m², substantially uniform loading (at least 3 spans, minimum span ≥ 0.85 maximum (design) span.
- **2** Design moment = coeff x n x span² and design shear = coeff x n x span where n is a UDL with a single variable action = $\gamma_G g_k + \psi \gamma_O g_k$ where g_k and g_k are characteristic permanent and variable actions in kN/m.

3 Basis: Yield line design (assumed 20% redistribution^[7])

Table C3

Coefficients for use with beams (and one-way spanning slabs) to Eurocode 2

Coefficient	Location							
	Outer support	Near middle of end span	At 1st interior support	At middle of interior spans	At interior supports			
Moment g _k and q _k	25% span ^a	—	0.094	—	0.075			
Moment g_k	_	0.090	_	0.066	_			
Moment q_k	_	0.100	_	0.086	_			
Shear	0.45	_	0.63:0.55	_	0.50:0.50 ^b			

Notes

- 1 For beams and slabs, 3 or more spans. (They may also be used for 2-span beams but support moment coefficient = 0.106 and internal shear coefficient = 0.63 both sides).
- **2** Generally $Q_k \le G_{k'}$ and the loading should be substantially uniformly distributed. Otherwise special curtailment of reinforcement is required.
- **3** Minimum span ≥ 0.85 x maximum (and design) span.
- **4** Design moment at supports = $coeff \times n \times span^2$

or in spans = (coeff $g_k \times \gamma_G g_k$ + coeff $q_k \times \psi \gamma_O q_k$) x span².

5 Design shear at centreline of supports = coeff x *n* x span where *n* is a UDL with a single variable action = $\gamma_C g_k + \psi \gamma_Q q_k$ where g_k and q_k are characteristic permanent and variable actions in kN/m.

 $\gamma_{\rm G}$ and $\psi\gamma_{\rm O}$ are dependent on use of BS EN 1990, Expressions (6.10), (6.10a) or (6.10b). See Section C1.

6 Basis: All- and alternate-spans-loaded cases as UK National Annex and 15% redistribution at supports.

Key

- **a** At outer support '25% span' relates to the UK Nationally Determined Parameter for Eurocode 2, Cl. 9.2.1.2(1) for minimum percentage of span bending moment to be assumed at supports in beams in monolithic construction. 15% may be appropriate for slabs (see Eurocode 2, Cl. 9.3.1.2).
- **b** For beams of five spans, 0.55 applies to centre span.

C4 Design for bending

Determine whether $K \leq K'$ or not (i.e. whether under-reinforced or not).

where

 $K = M_{\rm Ed} / (bd^2 f_{\rm ck})$

where

 $d = \text{effective depth} = h - \text{cover} - \phi/2$

b = width of section in compression

K' may be determined from Table C4 and is dependent on the redistribution ratio used.

Table C4

Values for K'

Redistribution ratio, δ	z/d for K' ^a	K'a	1 – δ
1.00	0.76 (0.82)	0.208 (0.168)	0%
0.95	0.78 (0.82)	0.195 (0.168)	5%
0.90	0.80 (0.82)	0.182 (0.168)	10%
0.85	0.82	0.168	15%
0.80	0.84	0.153	20%
0.75	0.86	0.137	25%
0.70	0.88	0.120	30%

Note

Class A reinforcement is restricted to a redistribution ratio, $\delta \leq 0.8$

Key

a It is recommended that x/d is limited to 0.45^[35]. As a consequence z/d is limited to a minimum of 0.820 and K' to a minimum of 0.168.

If $K \leq K'$, section is **under-reinforced**.

For rectangular sections:

 $A_{s1} = M_{Ed}/f_{yd}z$ where

 A_{s1} = area of tensile reinforcement

 $M_{\rm Ed}$ = design moment

$$f_{\rm yd} = f_{\rm yk}/\gamma_{\rm S} = 500/1.15 = 434.8$$
 MPa

- $z = d[0.5 + 0.5(1 3.53K)^{0.5}] \le 0.95d$
 - Values of z/d (and x/d) may be taken from Table C5

For flanged beams where $x < 1.25h_{f}$,

 $A_{s1} = \overline{M}_{Ed}/f_{yd}z$ where x = depth to neutral axis. Values of x/d may be taken from Table C5 h_t = thickness of flange

For flanged beams where $x \ge 1.25h_{\rm fr}$ refer to How to design concrete structures using Eurocode $2^{[8]}$.

How to: Beams^[8]

■ If K > K', section is **over-reinforced** and requires compression reinforcement. $A_{s2} = (M_{Ed} - M')/f_{sc}(d - d_2)$ where $A_{s2} = \text{compression reinforcement}$ If $d_2/x > 0.375$ then the term A_{s2} should be replaced by the term $1.6(1 - d_2/x) A_{s2}$ $M' = K'bd^2f_{ck}$ $f_{sc} = 700(x_u^- d_2)/x_u \le f_{yd}$ where $d_2 = \text{effective depth to compression reinforcement}$ $x_u = (\delta - 0.4)d$ where δ = redistribution ratio

Total area of steel $A_{s1} = M'/(f_{yd}z) + A_{s2} f_{sc}/f_{vd}$

Table C5

Values of z/d and x/d for singly reinforced rectangular sections

κ	z/d	x/d	(1 – δ) _{max} ^a
0.04	0.950 ^b	0.125	30%
0.05	0.950 ^b	0.125	30%
0.06	0.944	0.140	30%
0.07	0.934	0.165	30%
0.08	0.924	0.191	30%
0.09	0.913	0.217	30%
0.10	0.902	0.245	30%
0.11	0.891	0.272	30%
0.12	0.880	0.301	30%
0.13	0.868	0.331	27%
0.14	0.856	0.361	24%
0.15	0.843	0.393	21%
0.16	0.830	0.425	18%
0.17	0.816 ^c	0.460 ^c	14%
0.18	0.802 ^c	0.495 ^c	11%
0.19	0.787 ^c	0.533 ^c	7%
0.20	0.771 °	0.572 ^c	3%
0.208	0.758 ^c	0.606 ^c	0%

Note

 $f_{\rm ck} \le 50$ MPa

Key

a Maximum allowable redistribution

b Practical limit

C It is recommended that x/d is limited to 0.450^[35]. As a consequence z/d is limited to a minimum of 0.820 and K' to 0.168.

C5 Design for beam shear

C5.1 Requirement for shear reinforcement

If $v_{\rm Ed} > v_{\rm Rd,c}$ then shear reinforcement is required where

 $v_{\rm Ed} = V_{\rm Ed}/b_{\rm w}d$, for sections without shear reinforcement (i.e. slabs)

 $v_{\rm Rd,c}$ = shear resistance without shear reinforcement, from Table C6.

Table C6

Shear resistance without shear reinforcement, v_{Rd,c} (MPa)

$ \rho_{l} = A_{sl} / b_{w} d $	Effective depth d (mm)										
^b w ^a	≤ 200	225	250	275	300	350	400	450	500	600	750
≤ 0.25%	0.54	0.52	0.50	0.48	0.47	0.45	0.43	0.41	0.40	0.38	0.36
0.50%	0.59	0.57	0.56	0.55	0.54	0.52	0.51	0.49	0.48	0.47	0.45
0.75%	0.68	0.66	0.64	0.63	0.62	0.59	0.58	0.56	0.55	0.53	0.51
1.00%	0.75	0.72	0.71	0.69	0.68	0.65	0.64	0.62	0.61	0.59	0.57
1.25%	0.80	0.78	0.76	0.74	0.73	0.71	0.69	0.67	0.66	0.63	0.61
1.50%	0.85	0.83	0.81	0.79	0.78	0.75	0.73	0.71	0.70	0.67	0.65
1.75%	0.90	0.87	0.85	0.83	0.82	0.79	0.77	0.75	0.73	0.71	0.68
≥ 2.00%	0.94	0.91	0.89	0.87	0.85	0.82	0.80	0.78	0.77	0.74	0.71

Notes

1 Table derived from Eurocode 2 and UK National Annex.

2 Table created for f_{ck} = 30 MPa assuming vertical links.

3 For $\rho_{\rm I} \ge 0.4\%$ and

$f_{\rm ck}$ = 25 MPa, apply factor of 0.94	$f_{\rm ck}$ = 40 MPa, apply factor of 1.10	$f_{\rm ck}$ = 50 MPa, apply factor of 1.19
$f_{ck} = 35$ MPa, apply factor of 1.05	$f_{ck} = 45$ MPa, apply factor of 1.14	Not applicable for $f_{ck} > 50$ MPa

C5.2 Section capacity check

If $v_{\rm Ed,z} > v_{\rm Rd,max}$ then section size is inadequate

where

 $v_{\rm Ed,z} = V_{\rm Ed}/b_{\rm w}z = V_{\rm Ed}/b_{\rm w}0.9d$, for sections with shear reinforcement

 $v_{\text{Rd,max}}$ = capacity of concrete struts expressed as a stress in the vertical plane

- $= V_{\rm Rd,max}/b_{\rm w}z$
- $= V_{\rm Rd,max}/b_{\rm w}0.9d$

 $v_{\text{Rd,max}}$ can be determined from Table C7, initially checking at cot θ = 2.5. Should it be required, a greater resistance may be assumed by using a larger strut angle, θ .

Table C7

Capacity of concrete struts expressed as a stress, v_{Rd,max}

	v _{Rd,max} (MPa)								
$\cot \theta$ 2.	2.50	2.14	1.73	1.43	1.19	1.00	reduction factor, ν		
θ 2.	2.18°	25°	30°	35°	40°	45°			
20 2	2.54	2.82	3.19	3.46	3.62	3.68	0.552		
25 3	3.10	3.45	3.90	4.23	4.43	4.50	0.540		
30 3	3.64	4.04	4.57	4.96	5.20	5.28	0.528		
35 4	4.15	4.61	5.21	5.66	5.93	6.02	0.516		
40 4	4.63	5.15	5.82	6.31	6.62	6.72	0.504		
45 5	5.09	5.65	6.39	6.93	7.27	7.38	0.492		
50 5	5.52	6.13	6.93	7.52	7.88	8.00	0.480		

Notes

1 Table derived from Eurocode 2 and UK National Annex assuming vertical links, i.e. $\cot \alpha = 0$

2 $\nu = 0.6[1 - (f_{ck}/250)]$

3 $v_{\text{Rd,max}} = \nu f_{\text{cd}}(\cot \theta + \cot \alpha)/(1 + \cot^2 \theta)$

C5.3 Shear reinforcement design

 $A_{sw}/s \ge v_{Ed,z}b_w/f_{ywd} \cot \theta$

where A_{sw} = area of shear reinforcement (vertical links assumed)

s = spacing of shear reinforcement

 $v_{\rm Ed,z} = V_{\rm Ed}/b_{\rm w}z$, as before

 $b_{\rm w}$ = breadth of the web

 $f_{\rm ywd} = f_{\rm ywk}/\gamma_{\rm S}$ = design yield strength of shear reinforcement

Generally $A_{sw}/s \ge v_{Ed,z}b_w$ /1087 where $f_{wwk} = 500$ MPa, $\gamma_S = 1.15$ and cot $\theta = 2.5$

Alternatively, A_{sw}/s per metre width of b_w may be determined from Figure C1a) or C1b) as indicated by the blue arrows in Figure C1a). These figures may also be used to estimate the value of cot θ .

Beams are subject to a minimum shear link provision. Assuming vertical links, $A_{swmin}/sb_w \ge 0.08 f_{ck}^{-0.5}/f_{vk}$ (see Table C8).

Table C8 Values of A_{swmin}/sb_w for beams for vertical links and f_{yk} = 500 MPa and compatible resistance, v_{Rd}

Concrete class	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
$A_{\rm sw,min}/sb_{\rm w}$ for beams (x 10 ³)	0.72	0.80	0.88	0.95	1.01	1.07	1.13
v _{Rd} for A _{sw,min} /sb _w (MPa)	0.78	0.87	0.95	1.03	1.10	1.17	1.23

Figure C1a) Diagram to determine A_{sw}/s required (for beams with high shear stress)

Figure C1b)

Diagram to determine A_{sw}/s required (for slabs and beams with low shear stress)

C6 Design for punching shear

Determine if punching shear reinforcement is required, initially at u_1 , then if necessary at subsequent perimeters, u_{i} . If $v_{Ed} > v_{Rd,c}$ then punching shear reinforcement is required where

$$_{\rm Ed} = \beta V_{\rm Ed} / u_{\rm i} d$$

where

- u_i^{LS} = length of the perimeter under consideration
- = mean effective depth d
- $v_{\rm Rd,c}$ = shear resistance without shear reinforcement (see Table C6)

For vertical shear reinforcement

$$(A_{sw}/s_r) = u_1(v_{Ed} - 0.75 v_{Rd,c})/(1.5 f_{ywd,ef})$$

where $a_{rd} = -2rc_2$ of shear reinforcement in one

- = area of shear reinforcement in one perimeter around the column. A_{sw}
 - For A_{sw,min} see Concise Eurocode 2, Section 10.4.2 and for layout see Section 12.4.3

= radial spacing of perimeters of shear reinforcement

 u_1 = basic control perimeter 2*d* from column face

= effective design strength of reinforcement = $(250 + 0.25d) \le f_{vwd}$. For Grade f_{vwd,ef} 500 shear reinforcement see Table C9

Table C9

S,

Values of f_{vwd.ef} for grade 500 reinforcement

d	150	200	250	300	350	400	450
f _{ywd,ef}	287.5	300	312.5	325	337.5	350	362.5

At the column perimeter, check $v_{\rm Ed} \leq V_{\rm Rdmax}$ for cot θ = 1.0 given in Table C7.

Concise: 10.4.2, 12.4.3

C7 Check deflection

In general, the SLS state of deflection may be checked by using the span-to-effective-depth approach. More critical appraisal of deformation is outside the scope of this publication. To use the span-to-effective-depth approach, verify that:

Allowable $l/d = N \times K \times F1 \times F2 \times F3 \ge actual l/d$

where

- N = basic span-to-effective-depth ratio derived for K = 1.0 and ρ' = 0 from Section 10.5.2 of *Concise Eurocode* 2 or Table C10 or Figure C2
- K = factor to account for structural system. See Table C11
- F1 = factor to account for flanged sections. When $b_{eff}/b_w = 1.0$, factor F1 = 1.0. When b_{eff}/b_w is greater than 3.0, factor F1 = 0.80.

For values of $b_{\rm eff}/b_{\rm w}$ between 1.0 and 3.0, interpolation may be used (see Table C12) where

*b*_{eff} is defined in Section 5.2.2 of *Concise Eurocode 2*

 $b_{w} =$ width of web

In I beams b_{w} = minimum width of web in tensile area.

- In tapered webs b_{w} = width of web at centroid of reinforcement in web.
- F2 = factor to account for brittle partitions in association with long spans. Generally F2
 = 1.0 but if brittle partitions are liable to be damaged by excessive deflection, F2
 should be determined as follows:

a) in flat slabs in which the longer span is greater than 8.5 m, F2 = $8.5/l_{eff}$ b) in beams and other slabs with spans in excess of 7.0 m, F2 = $7.0/l_{eff}$ Values of F2 may be taken from Table C13

F3 = factor to account for service stress in tensile reinforcement = $310/\sigma_s \le 1.5$ Conservatively, if a service stress, σ_s , of 310 MPa is assumed for the designed area of reinforcement, $A_{s,req}$ then F3 = $A_{s,prov}/A_{s,req} \le 1.5$.

More accurately, ‡ the serviceability stress, $\sigma_{\!_{\rm S}}$ may be estimated as follows:

$$\sigma_{s} = f_{yk} / \gamma_{s} [(G_{k} + \psi_{2}Q_{k})/(1.25G_{k} + 1.5Q_{k})] [A_{s,req}/A_{s,prov}] (1/\delta)$$
or

$$\sigma_{\rm s} = \sigma_{\rm su} \left[A_{\rm s,req} / A_{\rm s,prov} \right] (1/\delta)$$

where $\sigma_{\rm su}$

- = the unmodified SLS steel stress, taking account of $\gamma_{\rm M}$ for reinforcement and of going from ultimate actions to serviceability actions
 - $= 500/\gamma_{\rm S}(G_{\rm k} + \psi_2 Q_{\rm k})/(1.25G_{\rm k} + 1.5Q_{\rm k})$

 $\sigma_{\rm su}$ may be estimated from Figure C3 as indicated by the blue arrow

 $A_{s,req}/A_{s,prov}$ = area of steel required divided by area of steel provided.

 $(1/\delta)$ = factor to 'un-redistribute' ULS moments so they may be used in this SLS verification (see Table C14)

Actual l/d = actual span divided by effective depth, d.

Concise: 10.5.2

Concise: 5.2.2

Table 7.4N

Table C10

Basic ratios of span-to-effective-depth, N, for members without axial compression

Required	f _{ck}						
reinforcement, $ ho$	20	25	30	35	40	45	50
0.30%	25.9	32.2	39.2	46.6	54.6	63.0	71.8
0.40%	19.1	22.4	26.2	30.4	35.0	39.8	45.0
0.50%	17.0	18.5	20.5	23.0	25.8	28.8	32.0
0.60%	16.0	17.3	18.5	19.8	21.3	23.1	25.2
0.70%	15.3	16.4	17.4	18.5	19.6	20.6	21.7
0.80%	14.8	15.7	16.6	17.6	18.5	19.4	20.4
0.90%	14.3	15.2	16.0	16.8	17.7	18.5	19.3
1.00%	14.0	14.8	15.5	16.3	17.0	17.8	18.5
1.20%	13.5	14.1	14.8	15.4	16.0	16.6	17.3
1.40%	13.1	13.7	14.2	14.8	15.3	15.8	16.4
1.60%	12.9	13.3	13.8	14.3	14.8	15.2	15.7
1.80%	12.7	13.1	13.5	13.9	14.3	14.8	15.2
2.00%	12.5	12.9	13.3	13.6	14.0	14.4	14.8
2.50%	12.2	12.5	12.8	13.1	13.4	13.7	14.0
3.00%	12.0	12.3	12.5	12.8	13.0	13.3	13.5
3.50%	11.9	12.1	12.3	12.5	12.7	12.9	13.1
4.00%	11.8	11.9	12.1	12.3	12.5	12.7	12.9
4.50%	11.7	11.8	12.0	12.2	12.3	12.5	12.7
5.00%	11.6	11.8	11.9	12.1	12.2	12.4	12.5
Reference reinforcement ratio, ρ_0	0.45%	0.50%	0.55%	0.59%	0.63%	0.67%	0.71%

Notes

1 Where $\rho = A_s/bd$.

2 For T-sections ρ is the area of reinforcement divided by the area of concrete above the centroid of the tension reinforcement.

3 The values for span-to-effective-depth have been based on Table 7.4N in Eurocode 2, using K = 1 (simply supported) and $\rho' = 0$ (no compression reinforcement required).

4 The span-to-effective-depth ratio should be based on the shorter span in two-way spanning slabs and the longer span in flat slabs.

Figure C2 Basic span-to-effective depth ratios, N, for K = 1, $\rho' = 0$

Table C11

K factors to be applied to basic ratios of span-to-effective-depth

Structural system		κ
Beams	Slabs	
Simply supported beams	One- or two-way spanning simply supported slabs	1.0
End span of continuous beams	End span of one-way spanning continuous slabs, or two-way spanning slabs continuous over one long edge	1.3
Interior spans of continuous beams	Interior spans of continuous slabs	1.5
_	Flat slabs (based on longer span)	1.2
Cantilevers	Cantilever	0.4

Table C12

Factor F1, modifier for flanged beams

b _{eff} /b _w	1.0	1.5	2.0	2.5	≥ 3.0
Factor	1.00	0.95	0.90	0.85	0.80

Table C13

Factor F2, modifier for long spans supporting brittle partitions

Span, m	l _{eff}	≤ 7.0	7.5	8.0	8.5	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0
Flat slabs	$8.5/l_{eff}$	1.00	1.00	1.00	1.00	0.94	0.85	0.77	0.71	0.65	0.61	0.57	0.53
Beams and other slabs	7.0/l _{eff}	1.00	0.93	0.88	0.82	0.78	0.70	0.64	0.58	0.54	0.50	0.47	0.44

Table C14

Average redistribution used	20%	15%	10%	5%	0%	-5%	-10%	-15%	-20%	-25%	-30%
Redistribution ratio used, δ	1.20	1.15	1.10	1.05	1.00	0.95	0.90	0.85	0.80	0.75	0.70
(1/δ)	83%	87%	91%	95%	100%	105%	111%	118%	125%	133%	143%

$(1/\delta)$ factor to be applied to unmodified σ_{su} to allow for redistribution used

Notes

1 Where coefficients from Table C2 have been used in design and where $Q_k \approx 1.25G_k$, the coefficients in Table C2 may be considered to represent moment distribution of:

-8% near middle of end span with pinned end support

-22% at first interior support, as a worst case

+3% near middle of internal spans, as a worst case

-28% at interior supports, as a worst case.

2 Where coefficients from Table C3 have been used in design and where $Q_k \approx G_k$, the coefficients in Table C3 may be considered to represent moment redistribution of:

+3% near middle of end span with pinned end support, as a worst case

+9% near middle of internal spans, as a worst case

-15% at all interior supports.

C8 Control of cracking

Cracking may be controlled by restricting either maximum bar diameter or maximum bar spacing to the relevant diameters and spacings given in Table C15. The appropriate SLS stress in reinforcement, σ_{s} , may be determined as outlined for F3 in Section C7.

Minimum areas and aspects of detailing should be checked.

Table C15

Steel stress (MPa) $\sigma_{\! m s}$	Maximum bar	size (mm)		Maximum bar spacing (mm)		
	w _k = 0.3 mm	w _k = 0.4 mm		w _k = 0.3 mm	w _k = 0.4 mm	
160	32	40		300	300	
200	25	32		250	300	
240	16	20	OR	200	250	
280	12	16		150	200	
320	10	12		100	150	
360	8	10		50	100	

Maximum bar diameters ϕ or maximum bar spacing for crack control

Notes

1 The 'normal' limit of 0.3 mm may be relaxed to 0.4 mm for XO and XC1 exposure classes if there is no specific requirement for appearance.

2 Table assumptions include $c_{\text{nom}} = 25 \text{ mm}$ and $f_{\text{ct,eff}} (= f_{\text{ctm}}) = 2.9 \text{ MPa}$.

C9 Design for axial load and bending

C9.1 General

In columns, design moments $M_{\rm Ed}$ and design applied axial force $N_{\rm Ed}$ should be derived from analysis, consideration of imperfections and, where necessary, 2nd order effects.

It is necessary to calculate effective lengths in order to determine whether a column is slender (see Eurocode 2, Cl. 5.8.3.2 and Expression (5.15)). The effective length of most columns will be $l/2 < l_0 < l$ (see Eurocode 2 Figure 5.7f). PD 6687^[6] Cl. 2.10 suggests that using the procedure outlined in Eurocode 2 (5.8.3.2(3) and 5.8.3.2(5)) leads to similar effective lengths to those tabulated in BS $8110^{[7]}$ as reproduced below as Table C16. Experience suggests that these tabulated values are conservative.

Table C16

Effective	length La:	conservative	factors fo	r braced	columns
LITCOUVE	Cing cin co.	conscivative	1001010	i biuccu	cotannis

End conditi	on	End condition at	t bottom		
at top		1	2		3
1		0.75	0.80		0.90
2		0.80	0.85		0.95
3		0.90	0.95		1.00
Key Condition 1	overall dept Where the o in order to s	h of the column in column is connecte satisfy this conditio	the plane consider d to a foundation t n	ed his should be de	at least as deep as the esigned to carry moment
Condition 2		h of the column in			shallower than the not less than half the
Condition 3	Column cor rotation	nected to member	s that do not provi	de more than no	ominal restraint to
					e 2 ^[35] . The values are se to those values that

C9.2 Design by calculation

Assuming two layers of reinforcement, A_{s1} and A_{s2} , the total area of steel required in a column, A_{s1} , may be calculated as shown below.

For axial load

$$A_{\rm sN}/2 = (N_{\rm Ed} - \alpha_{\rm cc} \eta f_{\rm ck} b d_{\rm c}/\gamma_{\rm C})/(\sigma_{\rm sc} - \sigma_{\rm st})$$

where

 $A_{\rm sN}$ = total area of reinforcement required to resist axial load using this method.

$$A_{sN} = A_{s1} + A_{s2}$$
 and $A_{s1} = A_{s2}$

where

 $A_{s1}(A_{s2}) =$ area of reinforcement in layer 1 (layer 2)

would be derived if the contribution from adjacent columns were ignored.

 $N_{\rm Ed}$ = design applied axial force

 $a_{cc}^{cc} = 0.85$

- $\eta^{\circ} = 1 \text{ for } \le C50/60$
- b = breadth of section
- d_c = effective depth of concrete in compression = $\lambda x \leq h$

Concise: Fig. 6.4 where

 λ = 0.8 for \leq C50/60 x = depth to neutral axis h = height of section $\sigma_{sr'}(\sigma_{st})$ = stress in compression (and tension) reinforcement

For moment

$$A_{sM}/2 = [M_{Ed} - \alpha_{cc}\eta f_{ck}bd_c(h/2 - d_c/2)/\gamma_C]/[(h/2 - d_2)(\sigma_{sc} + \sigma_{st})]$$

where

$$A_{\rm sM}$$
 = total area of reinforcement required to resist moment using this method $A_{\rm sM}$ = $A_{\rm s1}$ + $A_{\rm s2}$ and $A_{\rm s1}$ = $A_{\rm s2}$

Where reinforcement is not concentrated in the corners, a conservative approach is to calculate an effective value of d_2 as illustrated in Figures C4a) to e).

Solution: iterate x such that $A_{sN} = A_{sM}$

C9.3 Rectangular column charts

Alternatively A_s may be estimated from column charts.

Figures C4a) to C4e) give non-dimensional design charts for symmetrically reinforced rectangular columns where reinforcement is assumed to be concentrated in the corners.

In these charts:

 $\begin{array}{ll} \alpha_{cc} = & 0.85 \\ f_{ck} & \leq & 50 \ {\rm MPa} \\ f_{yk} & \leq & 500 \ {\rm MPa} \\ {\rm Simplified \ stress \ block \ assumed} \end{array}$

 $A_{\rm s}$ = total area of reinforcement required = $(A_{\rm s}f_{\rm yk}/bhf_{\rm ck})bhf_{\rm ck}/f_{\rm yk}$

where

 $(A_s f_{yk}/bhf_{ck})$ is derived from the appropriate design chart interpolating as necessary between charts for the value of d_2/h for the section.

b = breadth of section

h = height of section

Where reinforcement is not concentrated in the corners, a conservative approach is to calculate an effective value of d_2 as illustrated in Figures C4a) to e).

 d_2 = effective depth to steel in layer 2

Appendix C: Design aids

Figure C4b) Rectangular columns d₂/h = 0.10

Figure C4c) Rectangular columns $d_2/h = 0.15$

Figure C4d) Rectangular columns $d_2/h = 0.20$

Appendix C: Design aids

Figure C4e) Rectangular columns d₂/h = 0.25

C9.4 Biaxial bending in rectangular columns

As a first step, separate design in each principal direction, disregarding biaxial bending, may be undertaken. No further check is necessary if $0.5 \le \lambda_y/\lambda_z \le 2.0$ and, for rectangular sections, $0.2 \ge (e_y/h_{eq})/(e_z/b_{eq})$ or $(e_y/h_{eq})/(e_z/b_{eq}) \ge 5.0$. Otherwise see Section 5.6.3 of *Concise Eurocode 2*.

Concise: 5.6.3

For square columns $(e_y/h_{eq})/(e_z/b_{eq}) = M_{Edy}/M_{Edz}$.

C9.5 Circular column charts

In a similar manner to C9.3, the area of reinforcement for circular columns A_s may be estimated from the charts in Figures C5a) to C5d).

In these charts:

- $a_{cc} = 0.85$
- $f_{\rm ck}^{--} \leq 50 \, {\rm MPa}$

$$f_{\rm vk} = 500 \, \rm MPa$$

 A_{s} = total area of reinforcement required

 $= (A_s f_{yk} / h^2 f_{ck}) h^2 f_{ck} / f_{yk}$

where $(A_s f_{yk}/h^2 f_{ck})$ is derived from the appropriate design chart interpolating as necessary. d/h = effective depth/overall diameter.

C9.6 Links

Links in columns should be at least 8 mm or maximum diameter of longitudinal bars/4 in diameter and adjacent to beams and slabs spaced at the least of:

- 12 times the minimum diameter of the longitudinal bar,
- 60% of the lesser dimension of the column, or
- 240 mm.

Figure C5b) Circular columns *d/h* = 0.7

Appendix C: Design aids

Figure C5d) Circular columns d/h = 0.9

Eurocode 2 resources

Publications

Concise Eurocode 2

CCIP-005, The Concrete Centre, 2006 A handbook for the design of in-situ concrete buildings to Eurocode 2 and its UK National Annex

How to design concrete structures using Eurocode 2

CCIP-004, The Concrete Centre, 2006 Guidance for the design and detailing of a broad range of concrete elements to Eurocode 2

Economic concrete frame elements to Eurocode 2

CCIP-025, The Concrete Centre, 2009 A selection of reinforced concrete frame elements in multi-storey buildings

Precast Eurocode 2: Design manual

CCIP-014, British Precast Concrete Federation, 2008 A handbook for the design of precast concrete building structures to Eurocode 2 and its National Annex

Precast Eurocode 2: Worked examples

CCIP-034, British Precast Concrete Federation, 2008 Worked examples for the design of precast concrete buildings to Eurocode 2 and its National Annex

Concrete buildings scheme design manual CCIP-051, The Concrete Centre 2009

A handbook for the ISructE chartered membership examination, based on EC2

Properties of concrete for use in Eurocode 2

CCIP-029, The Concrete Centre, 2008 How to optimize the engineering properties of concrete in design to Eurocode 2

Standard method of detailing structural concrete

Institution of Structural Engineers/The Concrete Society, 2006 A manual for best practice

Manual for the design of concrete building structures to Eurocode 2

Institution of Structural Engineers, 2006 A manual for the design of concrete buildings to Eurocode 2 and its National Annex

BS EN 1992-1-1, Eurocode 2 – Part 1-1: Design of concrete structures – General rules and rules for buildings British Standards Institution, 2004 National Annex to Eurocode 2 – Part 1-1

British Standards Institution, 2005

Software

RC spreadsheets: V3. User guide and CD CCIP-008. The Concrete Centre, 2006 Excel spreadsheets for design to BS 8110 and Eurocode 2 and its UK National Annex

Websites

Eurocode 2 – www.eurocode2.info Eurocodes Expert – www.eurocodes.co.uk The Concrete Centre – www.concretecentre.com Institution of Structural Engineers – www.istructe.org

Members of the Steering Group

Alan Baxter & Associates (Chairman) John Mason Stuart Alexander WSP Group plc Pal Chana Mineral Products Association – Cement Charles Goodchild The Concrete Centre Tony Jones Arup Andy Lyle NRM Consultants Richard Moss Powell Tolner Associates Nary Narayanan Clark Smith Partnership Richard Shipman DCLG Robert Vollum Imperial College, University of London Russ Wolstenholme WS Atkins & DTI Project Officer Rod Webster Concrete Innovation and Design

Members of the Concrete Industry Eurocode 2 Group (CIEG)

John Moore	Consultant (Chairman)	
Clive Budge	British Precast Concrete Federation	
Pal Chana	Mineral Products Association – Cement	
John Clarke	The Concrete Society	
Colin Cleverly	Construct	
Charles Goodchild	The Concrete Centre	
Haig Gulvanessian	BRE	
Geoff Harding	DCLG	
Tom Harrison	Mineral Products Association – Concrete	
Tony Jones	Arup	
John Mason	Alan Baxter & Associates	
Richard Moss	Powell Tolner Associates	
Nary Narayanan	Clark Smith Partnership	
Richard Shipman	DCLG	
Martin Southcott	Consultant	
Russ Wolstenholme	WS Atkins	
Rod Webster	Concrete Innovation and Design	

Initial section drafts

1	Introduction	Nary Narayanan
2	Analysis, actions and load arrangements	Nary Narayanan
3	Slabs	Charles Goodchild
4	Beams	Charles Goodchild, Rod Webster
5	Columns	Tony Jones, Jens Tandler
6	Walls	Tony Jones, Jens Tandler
Ap	pendix A: Derivation of formulae	Charles Goodchild, Rod Webster, Owen Brooker
Ар	pendix B: Serviceability limit state	Charles Goodchild, Nary Narayanan
Ap	pendix C: Design aids	Charles Goodchild, Rod Webster

Worked Examples to Eurocode 2: Volume 1

This publication gives examples of the design to Eurocode 2 of common reinforced concrete elements in reinforced concrete framed buildings.

With extensive clause referencing, readers are guided through design examples to Eurocode 2 and other relevant Eurocodes and references. The publication, which includes design aids, aims to help designers with the transition to design to Eurocodes.

Volume 1 Worked Examples to Eurocode 2 is part of a range of resources available from The Concrete Centre to assist engineers with design to Eurocodes. For more information visit **www.eurocode2.info**. Charles Goodchild is principal structural engineer for The Concrete Centre where he promotes efficient concrete design and construction. Besides project managing and authoring this publication he has undertaken many projects to help with the introduction of Eurocode 2 to the UK.

CCIP-041 Published December 2009 ISBN 1-904818-84-7 Price Group P

Riverside House, 4 Meadows Business Park, Station Approach, Blackwater, Camberley, Surrey GU17 9AB Tel: +44((0)126 606800 Fax: +44 (0)1276 606801 www.concretecentre.com