Worked Examples to Eurocode 2: Volume 1

For the design of in-situ concrete elements in framed buildings to BS EN 1992-1-1: 2004 and its UK National Annex: 2005

CH Goodchild BSC CEng MCIOB MIStructe et al

Arrangemeriv
Choose to use all-and-alternate-spr
mputer (spreadsheet TCC 41 Continuous Beam ($A+D$) Analysis by computer (sp. 3320 assuming frame action witr T-section. .xls in RC spreadsnee long fixed at base. Beam inertia bited redistribution square columns 4 m distribution at central support, limited $b_{\text {eff }}$ wide) with 15% reais etent redistribution of shear.

Foreword

The introduction of European standards to UK construction is a significant event as, for the first time, all design and construction codes within the EU will be harmonised. The ten design standards, known as the Eurocodes, will affect all design and construction activities as all current British Standards for structural design are due to be withdrawn in 2010.

The cement and concrete industry recognised the need to enable UK design professionals to use Eurocode 2, Design of concrete structures, quickly, effectively, efficiently and with confidence. Supported by government, consultants and relevant industry bodies, the Concrete Industry Eurocode 2 Group (CIEG) was formed in 1999 and this Group has provided the guidance for a coordinated and collaborative approach to the introduction of Eurocode 2.

As a result, a range of resources are being delivered by the concrete sector (see www.eurocode2.info). The aim of this publication, Worked Examples to Eurocode 2:Volume 1 is to distil from Eurocode 2, other Eurocodes and other sources the material that is commonly used in the design of concrete framed buildings.

These worked examples are published in two parts. Volume 2 will include chapters on Foundations, Serviceability, Fire and Retaining walls.

Acknowledgements

The original ideas for this publication emanates from the research project `Eurocode 2: Transition from UK to European concrete design standards', which was led by the BCA and part funded by the DTI under their PII scheme and was overseen by a Steering Group and the CIEG. The work has been brought to fruition by The Concrete Centre from early initial drafts by various authors listed on the inside back cover. The concrete industry acknowledges and appreciates the support given by many individuals, companies and organisations in the preparation of this document. These are listed on the inside back cover.

We gratefully acknowledge the authors of the initial drafts and the help and advice given by Robin Whittle in checking the text. Thanks are also due to Gillian Bond, Kevin Smith, Sally Huish and the design team at Michael Burbridge Ltd for their work on the production.

The copyright of British Standards extracts reproduced in this document is held by the British Standards Institution (BSI). Permission to reproduce extracts from British Standards is granted by BSI under the terms of Licence No: 2009RM010. No other use of this material is permitted. This publication is not intended to be a replacement for the standard and may not reflect the most up-to-date status of the standard. British Standards can be obtained in PDF or hard copy formats from the BSI online shop: http://shop.bsigroup.com or by contacting BSI Customer Services for hard copies only:
Tel:+44 (0)20 8996 9001, Email: cservices@bsigroup.com.

Published by The Concrete Centre, part of the Mineral Products Association

Riverside House, 4 Meadows Business Park, Station Approach, Blackwater, Camberley, Surrey CU17 9AB
Tel: +44 (0)1276 606800 Fax: +44 (0)1276 606801 www.concretecentre.com
The Concrete Centre is part of the Mineral Products Association, the trade association for the aggregates, asphalt, cement, concrete, lime, mortar and silica sand industries. www.mineralproducts.org

Cement and Concrete Industry Publications (CCIP) are produced through an industry initiative to publish technical guidance in support of concrete design and construction. CCIP publications are available from the Concrete Bookshop at www.concretebookshop.com Tel: +44 (0)7004-607777

CCIP-041

Published December 2009
ISBN 978-1-9046818-84-7
Price Group P
© MPA - The Concrete Centre
All advice or information from MPA - The Concrete Centre is intended only for use in the UK by those who will evaluate the significance and limitations of its contents and take responsibility for its use and application. No liability (including that for negligence) for any loss resulting from such advice or information is accepted by MPA - The Concrete Centre or its subcontractors, suppliers or advisors. Readers should note that the publications from MPA - The Concrete Centre are subject to revision from time to time and should therefore ensure that they are in possession of the latest version.

Printed by Michael Burbridge Ltd, Maidenhead, UK.

Worked Examples to Eurocode 2: Volume 1 Contents

	Symbols	ii
1	Introduction	1
1.1	Aim	1
1.2	Eurocode: Basis of structural design	3
1.3	Eurocode 1: Actions on structures	4
1.4	Eurocode 2: Design of concrete structures	4
1.5	National Annexes	5
1.6	Basis of the worked examples in this publication	5
1.7	Assumptions	6
1.8	Material properties	6
1.9	Execution	6
2	Analysis, actions and load arrangements	7
2.1	Methods of analysis	7
2.2	Actions	7
2.3	Characteristic values of actions	7
2.4	Variable actions: imposed loads	8
2.5	Variable actions: snow loads	12
2.6	Variable actions: wind loads	13
2.7	Variable actions: others	17
2.8	Permanent actions	18
2.9	Design values of actions	21
2.10	Load arrangement of actions: introduction	25
2.11	Load arrangements according to the UK National Annex to Eurocode	25
2.12	Examples of loading	27
3	Slabs	35
3.0	General	35
3.1	Simply supported one-way slab	36
3.2	Continuous one-way solid slab	40
3.3	Continuous ribbed slab	52
3.4	Flat slab	71
3.5	Stair flight	95

4	Beams	97
4.0	General	97
4.1	Continuous beam on pin supports	98
4.2	Heavily loaded L-beam	104
4.3	Continuous wide T-beam	119
5	Columns	134
5.0	General	134
5.1	Edge column	135
5.2	Perimeter column (internal environment)	139
5.3	Internal column	146
5.4	Small perimeter column subject to two-hour fire resistance	157
6	Walls	166
6.0	General	166
6.1	Shear wall	167
7	References and further reading	183
	ndix A: Derived formulae	185
	ndix B: Serviceability limit state	190
	ndix C: Design aids	194
Volume 2 (published separately)		
Foundations		
Special details: strut \& tie		
Serviceability		
Fire		
Retaining wall		
References and further reading		
Appendix A: Derived formulae		
Appendix B: Design aids		

Symbols and abbreviations used in this publication

Symbol	Definition
A	Cross-sectional area; Accidental action
A	Site altitude, m (snow)
A	Altitude of the site in metres above mean sea level (wind)
A, B, C	Variables used in the determination of $\lambda_{\text {lim }}$
A_{c}	Cross-sectional area of concrete
A_{d}	Design value of an accidental action
$A_{\text {Ed }}$	Design value of a seismic action
$A_{\text {ref }}$	Reference area of the structure or structural element (wind)
A_{s}	Cross-sectional area of reinforcement
$A_{s, \text { min }}$	Minimum cross-sectional area of reinforcement
$A_{\text {s.prov }}$	Area of steel provided
$A_{\text {s,req }}$	Area of steel required
$A_{s 1}$	Area of reinforcing steel in layer 1
A_{52}	Area of compression steel (in layer 2)
$A_{\text {sl }}$	Area of the tensile reinforcement extending at least $l_{\text {bd }}+d$ beyond the section considered
$A_{\text {SM }}\left(A_{\text {SN }}\right)$	Total area of reinforcement required in symmetrical, rectangular columns to resist moment (axial load) using simplified calculation method
$A_{\text {sw }}$	Cross-sectional area of shear reinforcement; Area of punching shear reinforcement in one perimeter around the column
$A_{\text {sw,min }}$	Minimum cross-sectional area of shear reinforcement; Minimum area of punching shear reinforcement in one perimeter around the column
$A_{\text {t }}$	Area of tensile reinforcement in flat slab column strips
a	Distance, allowance at supports
a	Axis distance from the concrete surface to the centre of the bar (fire)
a	An exponent (in considering biaxial bending of columns)
a	Projection of the footing from the face of the column or wall
a_{1}	Distance by which the location where a bar is no longer required for bending moment is displaced to allow for the forces from the truss model for shear. ('Shift' distance for curtailment)
a_{1}, a_{2},	Distance from edge of support to centre of support
a_{1}, b_{1}	Dimensions of the control perimeter around an elongated support (punching shear)
a.m.s.l.	Altitude above mean sea level
b	Overall width of a cross-section, or flange width in a T- or L-beam
b	Breadth of building (wind)
$b_{\text {e }}$	Effective width of a flat slab (adjacent to perimeter column)
$b_{\text {eff }}$	Effective width of a flange
$\underline{b e q}\left(h_{\text {eq }}\right)$	Equivalent width (height) of column $=b(h)$ for rectangular sections
$b_{\text {min }}$	Minimum width of web on T-, l- or L-beams
$b_{\text {t }}$	Mean width of the tension zone. For a T-beam with the flange in compression, only the width of the web is taken into account
$b_{\text {w }}$	Width of the web on T-, I- or L-beams. Minimum width between tension and compression chords
b_{1}	Half of distance between adjacent webs of downstand beams
$C_{\text {e }}$	Exposure coefficient (snow)
$C_{\text {t }}$	Thermal coefficient (snow)
$C_{\text {w }}$	Shear centre

Symbol Definition

c_{1}, c_{2}	Dimensions of a rectangular column. For edge columns, c_{1} is measured perpendicular to the free edge (punching shear)
$C_{\text {alt }}$	Altitude factor (wind)
$c_{\text {d }}$	Dynamic factor (wind)
${ }^{\text {dir }}$	Directional factor (wind)
$C_{C_{\text {eflat }}}$	Exposure factor (wind)
c_{f}	Force coefficient (wind)
${ }_{\text {cmin }}$	Minimum cover, (due to the requirements for bond, $c_{\text {min,b }}$ or durability $c_{\text {min,dur }}$)
$C_{\text {nom }}$	Nominal cover. Nominal cover should satisfy the minimum requirements of bond, durability and fire
$C_{\text {pe }}$	(External) pressure coefficient (wind)
${ }^{\text {ce, } 10}$	(External) pressure coefficient for areas > $1 \mathrm{~m}^{2}$ (wind)
${ }^{\text {pi }}$	Internal pressure coefficient (wind)
${ }^{\text {prob }}$	Probability factor (wind)
$\mathrm{C}_{\text {season }}$	Season factor (wind)
c_{s}	Size factor (wind)
$c_{y^{\prime}} c_{x}$	Column dimensions in plan
$\Delta C_{\text {dev }}$	Allowance made in design for deviation
D	Diameter of a circular column; Diameter
d	Effective depth to tension steel
d_{2}	Effective depth to compression steel
${ }_{c}$	Effective depth of concrete in compression
E	Effect of action; Integrity (in fire); Elastic modulus
$E_{\text {cd }}$	Design value of modulus of elasticity of concrete
$E_{\text {cm }}$	Secant modulus of elasticity of concrete
EI	Bending stiffness
$E_{\text {s }}$	Design value of modulus of elasticity of reinforcing steel
Exp.	Expression
EQU	Static equilibrium
e	Eccentricity
e_{0}	Minimum eccentricity in columns
e_{2}	Deflection (used in assessing M_{2} in slender columns)
e_{i}	Eccentricity due to imperfections
$e_{y^{\prime}}, e_{z}$	Eccentricity, $M_{\mathrm{Ed}} / V_{\mathrm{Ed}}$ along y and z axes respectively (punching shear)
F1	Factor to account for flanged sections (deflection)
F2	Factor to account for brittle partitions in association with long spans (deflection)
F3	Factor to account for service stress in tensile reinforcement (deflection)
F	Action
FEM	Fixed end moment
$F_{c}\left(F_{s}\right)$	Force in concrete (steel)
$F_{\text {d }}$	Design value of an action
$F_{\text {E }}$	Tensile force in reinforcement to be anchored
$F_{\text {k }}$	Characteristic value of an action
$F_{\text {rep }}$	Representative action ($=\mathrm{y} \mathrm{F}_{\mathrm{k}}$ where $\mathrm{y}=$ factor to convert characteristic to representative action)
$F_{\text {s }}$	Tensile force in reinforcement
$F_{\text {td }}$	Design value of the tensile force in longitudinal reinforcement
$\Delta F_{\text {td }}$	Additional tensile force in longitudinal reinforcement due to the truss shear model

Symbol	Definition
$F_{\mathrm{V}, \mathrm{Ed}}$	Total vertical load (on braced and bracing members)
$F_{\text {w }}$	Resultant characteristic force due to wind. (See section 2.6)
$f_{\text {bd }}$	Ultimate bond stress
$f_{c d}$	Design value of concrete compressive strength
$f_{c k}$	Characteristic compressive cylinder strength of concrete at 28 days
$f_{\text {ct, }}$	Design tensile strength of concrete ($\alpha_{\text {ct }} f_{c t, k} / \gamma_{c}$)
$f_{\text {ct, }}$	Characteristic axial tensile strength of concrete
$f_{\text {ctm }}$	Mean value of axial tensile strength of concrete
$f_{s c}$	Compressive stress in compression reinforcement at ULS
$f_{y d}$	Design yield strength of longitudinal reinforcement, $A_{s l}$
$f_{\text {yk }}$	Characteristic yield strength of reinforcement
$f_{\text {ywd }}$	Design yield strength of the shear reinforcement
$f_{\text {ywdef }}$	Effective design strength of punching shear reinforcement
$f_{\text {ywk }}$	Characteristic yield strength of shear reinforcement
C^{\prime}	Characteristic value of a permanent action
$\mathrm{C}_{\text {k,sup }}$	Upper characteristic value of a permanent action
$G_{\text {k,inf }}$	Lower characteristic value of a permanent action
$9{ }^{\text {k }}$	Characteristic value of a permanent action per unit length or area
H_{i}	Horizontal action applied at a level
H	Height of building (wind)
h	Overall depth of a cross-section; Height
$h_{\text {ave }}$	Obstruction height (wind)
$h_{\text {dis }}$	Displacement height (wind)
$h_{\text {f }}$	Depth of footing; Thickness of flange
$h_{\text {s }}$	Depth of slab
I	Second moment of area of concrete section; Inertia
I	Insulation (in fire)
i	Radius of gyration
K	$M_{\mathrm{Ed}} / \mathrm{bd}{ }^{2} \mathrm{c}_{\mathrm{ck}}$. A measure of the relative compressive stress in a member in flexure
K	Factor to account for structural system (deflection)
K^{\prime}	Value of K above which compression reinforcement is required
k_{v}	A correction factor for axial load
k_{ϕ}	A correction factor for creep
k	Coefficient or factor
k	Relative flexibility or relative stiffness
1	Clear height of column between end restraints
1	Height of the structure in metres
1 (or L)	Length; Span
l_{0}	Effective length (of columns)
l_{0}	Distance between points of zero moment
10	Design lap length
$l_{0, f i}$	Effective length under fire conditions
l_{b}	Basic anchorage length
$l_{\text {bd }}$	Design anchorage length
$l_{\text {b,eq }}$	Equivalent anchorage length
$l_{\text {b,min }}$	Minimum anchorage length
iv	

Symbol	Definition
$l_{\text {b,rad }}$	Basic anchorage length
$l_{\text {eff }}$	Effective span
$I_{\text {n }}$	Clear span
$\underline{l_{y},} l_{z}$	Spans of a two-way slab in the y and z directions
M	Bending moment. Moment from first order analysis
M^{\prime}	Moment capacity of a singly reinforced section (above which compression reinforcement is required)
$M_{0, \text { Eqp }}$	First order bending moment in quasi permanent load combination (SLS)
M_{01}, M_{02}	First order end moments at ULS including allowances for imperfections
$M_{\text {OEd }}$	Equivalent first order moment including the effect of imperfections (at about mid height)
$M_{\text {OEd,fi }}$	First order moment under fire conditions
M_{2}	Nominal second order moment in slender columns
$M_{\text {Ed }}$	Design value of the applied internal bending moment
$M_{\text {Edy }} M_{\text {Edz }}$	Design moment in the respective direction
$M_{\text {Rdy }} M_{\text {Rdz }}$	Moment resistance in the respective direction
$M_{\text {t }}$	Design transfer moment to column from a flat slab
m	Number of vertical members contributing to an effect
m	Mass
N	Axial force
N	Basic span-to-effective-depth ratio, $/ / d$, for $K=1.0$
$N_{\text {OEd,fi }}$	Axial load under fire conditions
NA	National Annex
$N_{\mathrm{a}^{\prime}} N_{\mathrm{b}}$	Longitudinal forces contributing to H_{i}
N_{Ed}	Design value of the applied axial force (tension or compression) at ULS
NDP	Nationally Determined Parameter(s) as published in a country's National Annex
n	Load level at normal temperatures. Conservatively $n=0.7$ (fire)
n	Axial stress at ULS
n	Ultimate action (load) per unit length (or area)
n	Relative axial force $N_{\text {Ed }} /\left(A_{c} f_{\text {cd }}\right)$
$n_{\text {bal }}$	The value of n at maximum moment resistance
n_{0}, n_{s}	Number of storeys
Q_{k}	Characteristic value of a variable action
$\mathrm{Q}_{\mathrm{k} 1}\left(\mathrm{Q}_{\mathrm{k}}\right)$	Characteristic value of a leading variable action (Characteristic value of an accompanying variable action)
$q_{\text {k }}$	Characteristic value of a variable action per unit length or area
$q_{\text {b }}$	Basic wind pressure
q_{p}	Peak wind pressure
$q_{p}\left(z_{e}\right)$	Peak velocity pressure at reference height $z_{\mathrm{e}^{\prime}}$ (wind)
R	Resistance; Mechanical resistance (in fire)
$R_{\text {A }}$	Reaction at support A
$R_{\text {B }}$	Reaction at support B
$R_{\text {d }}$	Design value of the resistance to an action
r	Radius
$r_{\text {m }}$	Ratio of first order end moments in columns at ULS
SLS	Serviceability limit state(s) - corresponding to conditions beyond which specified service requirements are no longer met
s	Spacing
5	Snow load on a roof

Symbol	Definition
s_{k}	Characteristic ground snow load
s_{r}	Radial spacing of perimeters of shear reinforcement
$s_{\text {t }}$	Tangential spacing shear reinforcement along perimeters of shear reinforcement
t	Thickness; Time being considered; Breadth of support
t_{0}	The age of concrete at the time of loading
ULS	Ultimate limit state(s) - associated with collapse or other forms of structural failure
u	Perimeter of concrete cross-section, having area A_{c}
u	Perimeter of that part which is exposed to drying
\underline{u}	Circumference of outer edge of effective cross-section (torsion)
u_{0}	Perimeter adjacent to columns (punching shear)
u_{1}	Basic control perimeter (at 2d from face of load) (punching shear)
$u_{1}{ }^{*}$	Reduced control perimeter at perimeter columns (at 2d from face of load) (punching shear)
u_{i}	Length of the control perimeter under consideration (punching shear)
$u_{\text {out }}$	Perimeter at which shear reinforcement is no longer required
V	Shear force
$V_{\text {Ed }}$	Design value of the applied shear force
$\underline{V_{\text {Rd, }, ~}}$	Shear resistance of a member without shear reinforcement
$V_{\text {Rd,max }}$	Shear resistance of a member limited by the crushing of compression struts
$V_{\text {Rd,cmin }}$	Minimum shear resistance of member considering concrete alone
$V_{\text {Rd, }}$	Shear resistance of a member governed by the yielding of shear reinforcement
$v_{\text {b }}$	Basic wind velocity
$v_{b, 0}$	The fundamental basic wind velocity being the characteristic 10 minute wind velocity at 10 m above ground level in open country
$V_{\text {b,map }}$	Fundamental basic wind velocity from Figure NA. $1 \mathrm{~m} / \mathrm{s}$
$V_{\text {Ed }}$	Punching shear stress
$V_{\text {Ed }}$	Shear stress for sections without shear reinforcement ($=V_{\mathrm{Ed}} / b_{w}{ }^{\text {d }}$)
$v_{\text {Ed, }}$	Shear stress for sections with shear reinforcement ($\left.=V_{\mathrm{Ed}} / b_{\mathrm{w}} \mathrm{F}^{\prime}=V_{\mathrm{Ed}} / b_{\mathrm{w}} 0.9 d\right)$
$V_{\text {Rd, }}$	Design shear resistance of concrete without shear reinforcement expressed as a stress
$V_{\text {Rd,max }}$	Capacity of concrete struts expressed as a stress
W_{1}	Factor corresponding to a distribution of shear (punching shear)
$W_{\text {e }}$	Peak external wind load
$W_{\text {k }}$	Characteristic value of wind action (NB not in the Eurocodes and should be regarded as a form of Q_{k}, characteristic value of a variable action)
$w_{\text {k }}$	Characteristic unit wind load.
w_{k}	Crack width
$w_{\text {max }}$	Limiting calculated crack width
$\begin{aligned} & \mathrm{XO}, \mathrm{XA}, \mathrm{XC} \\ & \mathrm{XD}, \mathrm{XF}, \mathrm{XS} \end{aligned}$	Concrete exposure classes
x	Neutral axis depth
x	Distance between buildings (wind)
x	Distance of the section being considered from the centre line of the support
x, y, z	Co-ordinates; Planes under consideration
x_{u}	Depth of the neutral axis at the ultimate limit state after redistribution
Z	Zone number obtained from map (snow)
z	Lever arm of internal forces

Symbol	Definition
z	Reference height (wind)
$z_{\text {e }}$	Reference height for windward walls of rectangular buildings (wind)
α	Angle; Angle of shear links to the longitudinal axis; Ratio
$\alpha_{\text {A }}$	A coefficient for use with a representative variable action taking into account area supported
$\begin{aligned} & \alpha_{1}, \alpha_{2}, \alpha_{3} \\ & \alpha_{4}, \alpha_{5}, \alpha_{6} \\ & \hline \end{aligned}$	Factors dealing with anchorage and laps of bars
$\alpha_{\text {cc }}\left(\alpha_{\text {ct }}\right)$	A coefficient taking into account long term effects of compressive (tensile) load and the way load is applied
$\alpha_{\text {e }}$	Modular ratio $=E_{\mathrm{s}} / E_{\mathrm{cd}}$
$\alpha_{\text {n }}$	A coefficient for use with a representative variable action taking into account number of storeys supported
β	Angle; Ratio; Coefficient
β	Factor dealing with eccentricity (punching shear)
γ	Partial factor
γ_{C}	Partial factor for concrete
γ_{F}	Partial factor for actions, F
γ_{G}	Partial factor for permanent actions, C
$\gamma_{\text {Gk, sup }}$	Partial factor to be applied to $G_{k, \text { inf }}$
$\gamma_{\text {Gk,inf }}$	Partial factor to be applied to $G_{k, \text { sup }}$
γ_{Q}	Partial factor for variable actions, Q
$\gamma_{\text {M }}$	Partial factor for material (usually γ_{C} or γ_{S})
$\gamma_{\text {S }}$	Partial factor for reinforcing steel
δ	Redistribution ratio equals ratio of the redistributed moment to the elastic bending moment ($1-\%$ redistribution)
$\varepsilon_{\text {cu }}$	Ultimate compressive strain in the concrete
$\varepsilon_{\text {cu2 }}$	Ultimate compressive strain limit in concrete which is not fully in pure axial compression assuming use of the parabolic-rectangular stress-strain relationship (numerically $\varepsilon_{\text {cu2 }}=\varepsilon_{\text {cu3 }}$)
$\varepsilon_{\text {cu3 }}$	Ultimate compressive strain limit in concrete which is not fully in pure axial compression assuming use of the bilinear stress-strain relationship
$\varepsilon_{s c}$	Compressive strain in reinforcement
$\varepsilon_{\text {st }}$	Tensile strain in reinforcement
η	Factor defining effective strength ($=1$ for \leq C50/60)
η_{1}	Coefficient for bond conditions
η_{2}	Coefficient for bar diameter
θ	Angle; Angle of compression struts (shear)
θ_{i}	Inclination used to represent imperfections
λ	Slenderness ratio
λ	Factor defining the height of the compression zone ($=0.8$ for \leq C50/60)
$\lambda_{\text {fi }}$	Slenderness in fire
$\lambda_{\text {lim }}$	Limiting slenderness ratio (of columns)
$\mu_{\mathrm{i}^{\prime}} \mu_{1}, \mu_{2}$	Snow load shape factors
$\mu_{\text {fi }}$	Ratio of the design axial load under fire conditions to the design resistance of the column at normal temperature but with an eccentricity applicable to fire conditions
v	Strength reduction factor for concrete cracked in shear
ξ	Reduction factor/distribution coefficient. Factor applied to G_{k} in BS EN 1990 Exp. (6.10b)
ρ	Required tension reinforcement ratio
ρ	Density of air (wind)
ρ^{\prime}	Reinforcement ratio for required compression reinforcement, $A_{52} / b d$

Symbol	Definition
ρ_{1}	Percentage of reinforcement lapped within $0.65 l_{0}$ from the centre line of the lap being considered
ρ_{l}	Reinforcement ratio for longitudinal reinforcement
$\rho_{\text {ly }, ~}, \rho_{\text {lz }}$	Reinforcement ratio of bonded steel in the y and z direction
ρ_{0}	Reference reinforcement ratio $f_{\text {ck }} 0.5{ }^{\prime} 10^{-3}$
σ_{gd}	Design value of the ground pressure
$\sigma_{\text {s }}$	Stress in reinforcement at SLS
$\sigma_{\text {s }}$	Absolute value of the maximum stress permitted in the reinforcement immediately after the formation of the crack
$\sigma_{\text {sc }}\left(\sigma_{\text {st }}\right)$	Stress in compression (and tension) reinforcement
$\sigma_{\text {sd }}$	Design stress in the bar at the ultimate limit state
$\sigma_{\text {su }}$	Unmodified service stress in reinforcement determined from ULS loads (See Figure C3)
$\varphi\left(\infty, t_{0}\right)$	Final value of creep coefficient
$\varphi_{\text {ef }}$	Effective creep factor
ϕ	Bar diameter
ψ	Factors defining representative values of variable actions
ψ_{0}	Combination value of a variable action (e.g. used when considering ULS)
ψ_{1}	Frequent value of a variable action (e.g. used when considering whether section will have cracked or not)
ψ_{2}	Quasi-permanent value of a variable action (e.g. used when considering deformation)
${ }^{\omega}$	Mechanical reinforcement ratio $=A_{s} f_{\text {yd }} / A_{c} f_{c d} \leq 1$

1 Introduction

1.1 Aim

The aim of this publication is to illustrate through worked examples how BS EN 1992-1-1[1] (Eurocode 2) may be used in practice to design in-situ concrete building structures. It is intended that these worked examples will explain how calculations to Eurocode 2 may be performed. Eurocode 2 strictly consists of four parts (Parts 1-1, 1-2, 2 and 3) ${ }^{[1-4]}$ but for the purposes of this publication, Eurocode 2 refers to part $1-1$ only, unless qualified. The worked examples will be carried out within the environment of other relevant publications listed below, and illustrated in Figure 1.1:

- The other three parts of Eurocode 2.
- Other Eurocodes.
- Material and execution standards.
- Publications by the concrete industry and others.

There are, therefore, many references to other documents and while it is intended that this publication, referred to as Worked examples, can stand alone, it is anticipated that users may require several of the other references to hand, in particular, Concise Eurocode $2^{[5]}$, which summarises the rules and principles that will be commonly used in the design of reinforced concrete framed buildings to Eurocode 2.

Figure 1.1

Worked examples in context

The designs are in accordance with BS EN 1992-1-1[1], as modified by the UK National Annex[19] and explained in PD 6687 ${ }^{[6]}$.

Generally, the calculations are cross-referenced to the relevant clauses in all four parts of Eurocode $2^{[1-4]}$ and, where appropriate, to other documents. See Figure 1.2 for a guide to presentation. References to $\mathrm{BS} 8110^{[7]}$ refer to Part 1 unless otherwise stated.

Generally, the 'simple' examples depend on equations and design aids derived from Eurocode 2. The derived equations are given in Appendix A and the design aids from Section 15 of Concise Eurocode $2{ }^{[5]}$ are repeated in Appendix B.

The examples are intended to be appropriate for their purpose, which is to illustrate the use of Eurocode 2 for in-situ concrete building structures. There are simple examples to illustrate how typical hand calculations might be done using available charts and tables derived from the Code. These are followed by more detailed examples illustrating the detailed workings of the Codes. In order to explain the use of Eurocode 2, several of the calculations are presented in detail far in excess of that necessary in design calculations once users are familiar with the Code. To an extent, the designs are contrived to show valid methods of designing elements, to give insight and to help in validating computer methods. They are not necessarily the most appropriate, the most economic or the only methods of designing the members illustrated.

Sections 1 and 2		Worked examples
Cl. 6.4.4	Relevant clauses or figure numbers from BS EN 1992-1-1 (if the reference is to other parts, other Eurocodes or other documents this will be indicated)	Cl. 6.4.4
NA	From the relevant UK National Annex (generally to BS EN 1992-1-1)	NA
Cl. 6.4.4 \& NA	From both BS EN 1992-1-1 and UK National Annex	Cl. 6.4.4 \& NA
Fig. 2.1 Section 5.2	Relevant parts of this publication	Fig. 2.1 Section 5.2
EC1-1-1: 6.4.3	From other Eurocodes: BS EN 1990, BS EN 1991, BS EN 1992-1-2, etc	EC1-1-1: 6.4.3
PD 6687 ${ }^{[6]}$	Background paper to UK National Annexes BS EN 1992-1	PD 6687 ${ }^{[6]}$
Concise	Concise Eurocode $2^{[5]}$	Concise
How to: Floors ${ }^{[8]}$	How to design concrete structures using Eurocode $2^{[8]}$: Floors	How to: Floors ${ }^{[8]}$
Grey shaded tables	In Appendices, derived content in tables not from Eurocode 2	

Figure 1.2
Guide to presentation
As some of the detailing rules in Eurocode 2 are generally more involved than those to BS 8110, some of the designs presented in this publication have been extended into areas that have traditionally been the responsibility of detailers. These extended calculations are not necessarily part of 'normal' design but are included at the end of some calculations. It is assumed that the designer will discuss and agree with the detailer areas of responsibility and the degree of rationalisation, the extent of designing details, assessment of curtailment and other aspects that the detailer should undertake. It is recognised that in the vast majority of cases, the rules given in detailing manuals ${ }^{[8,9]}$ will be used. However, the examples are intended to help when curtailment, anchorage and lap lengths need to be determined.

1.2 Eurocode: Basis of structural design

In the Eurocode system BS EN 1990, Eurocode: Basis of structural design ${ }^{[10]}$ overarches all the other Eurocodes, BS EN 1991 to BS EN 1999. BS EN 1990 defines the effects of actions, including geotechnical and seismic actions, and applies to all structures irrespective of the material of construction. The material Eurocodes define how the effects of actions are resisted by giving rules for design and detailing of concrete, steel, composite, timber, masonry and aluminium. (see Figure 1.3).

Figure 1.3
The Eurocode hierarchy

BS EN 1990 provides the necessary information for the analysis of structures including partial and other factors to be applied to the actions from Eurocode 1. It establishes the principles and requirements for the safety, serviceability and durability of structures. It describes the basis for design as follows:

A structure shall be designed and executed (constructed) in such a way that it will, during its intended life, with appropriate degrees of reliability and in an economical way:

- Sustain all actions and influences likely to occur during execution and use.
- Remain fit for the use for which it is required.

In other words, it shall be designed using limit states principles to have adequate:

- Stability.
- Structural resistance (including structural resistance in fire).
- Serviceability.
- Durability.

For building structures, a design working life of 50 years is implied.
BS EN 1990 states that limit states should be verified in all relevant design situations: persistent, transient or accidental. No relevant limit state shall be exceeded when design values for actions and resistances are used in design. The limit states are:

- Ultimate limit states (ULS), which are associated with collapse or other forms of structural failure.
- Serviceability limit states (SLS), which correspond to conditions beyond which specified service requirements are no longer met.

All actions are assumed to vary in time and space. Statistical principles are applied to arrive at the magnitude of the partial load factors to be used in design to achieve the required reliability index (level of safety). There is an underlying assumption that the actions themselves are described in statistical terms.

1.3 Eurocode 1: Actions on structures

Actions are defined in the 10 parts of BS EN 1991 Eurocode 1: Actions on structures ${ }^{[11]}$:
BS EN 1991-1-1: 2002: Densities, self-weight, imposed loads for buildings
BS EN 1991-1-2: 2002: Actions on structures exposed to fire
BS EN 1991-1-3: 2003: Snow loads
BS EN 1991-1-4: 2005: Wind actions
BS EN 1991-1-5: 2003: Thermal actions
BS EN 1991-1-6: 2005: Actions during execution
BS EN 1991-1-7: 2006: Accidental actions
BS EN 1991-2: 2003: Actions on structures. Traffic loads on bridges
BS EN 1991-3: 2006: Cranes and machinery
BS EN 1991-4: 2006: Silos and tanks
This publication is mainly concerned with designing for the actions defined by Part-1-1: Densities, self-weight, imposed loads for buildings.

Design values of actions and load arrangements are covered in Section 2.

1.4 Eurocode 2: Design of concrete structures

Eurocode 2: Design of concrete structures ${ }^{[1-4]}$ operates within an environment of other European and British standards (see Figure 1.3). It is governed by BS EN 1990[10] and subject to the actions defined in Eurocodes $7^{[11]}, 77^{[12]}$ and $8{ }^{[13]}$. It depends on various materials and execution standards and is used as the basis of other standards. Part 2, Bridges ${ }^{[3]}$, and Part 3, Liquid retaining and containment structures ${ }^{[4]}$, work by exception to Part $1-1$ and $1-2$, that is, clauses in Parts 2 and 3 confirm, modify or replace clauses in Part 1-1.

Figure 1.4
Eurocode 2 in context

1.5 National Annexes

It is the prerogative of each CEN Member State to control levels of safety in that country. As a result, some safety factors and other parameters in the Eurocodes, such as climatic conditions, durability classes and design methods, are subject to confirmation or selection at a national level. The decisions made by the national bodies become Nationally Determined Parameters (NDPs) which are published in a National Annex (NA) for each part of each Eurocode. The National Annex may also include reference to non-contradictory complementary information (NCCI), such as national standards or guidance documents.

This publication includes references to the relevant National Annexes as appropriate.

1.6 Basis of the worked examples in this publication

The design calculations in this publication are in accordance with:

- BS EN 1990, Eurocode: Basis of structural design ${ }^{[10]}$ and its UK National Annex ${ }^{[10 a]}$.
- BS EN 1991, Eurocode 1: Actions on structures in 10 parts ${ }^{[11]}$ and their UK National Annexes ${ }^{[11 a]}$.
- BS EN 1992-1-1, Eurocode 2 - Part 1-1: Design of concrete structures - General rules and rules for buildings ${ }^{[1]}$ and its UK National Annex ${ }^{[17]}$.
■ BS EN 1992-1-2, Eurocode 2 - Part 1-2: Design of concrete structures - General rules Structural fire design ${ }^{[2]}$ and its UK National Annex ${ }^{[2 a]}$.
- PD 6687, Background paper to the UK National Annexes ${ }^{[6]}$.
- BS EN 1997, Eurocode 7: Geotechnical design - Part 1. General rules ${ }^{[12]}$ and its UK National Annex ${ }^{[12 a]}$.

They use materials conforming to:

- BS 8500-1: Concrete - Complementary British Standard to BS EN 206-1: Method of specifying and guidance to the specifier ${ }^{[14]}$.
- BS 4449: Steel for the reinforcement of concrete - Weldable reinforcing steel - Bar, coil and decoiled product - Specification ${ }^{[15]}$.

They make reference to several publications, most notably:

- Concise Eurocode 2 for the design of in-situ concrete framed buildings to BS EN 1992-1-1: 2004 and its UK National Annex: 2005 ${ }^{[5]}$.
- How to design concrete structures using Eurocode $2{ }^{[8]}$.

The execution of the works is assumed to conform to:
■ PD 6687 Background paper to the UK National Annexes BS EN 1992-1. [6]

- NSCS, National structural concrete specification for building construction, 3rd edition ${ }^{[16]}$ May 2004.

Or, when available

- BS EN 13670: Execution of concrete structures. Due 2010[17]. As implemented by specifications such as:
- NSCS, National structural concrete specification for building construction, 4th edition ${ }^{[18]}$ CCIP-050, due 2010.

1.7 Assumptions

CI. 1.3

PD 6687 ${ }^{[6]}$

1.7.1 Eurocode 2

Eurocode 2 assumes that:

- Design and construction will be undertaken by appropriately qualified and experienced personnel.

■ Adequate supervision and quality control will be provided.

- Materials and products will be used as specified.
- The structure will be adequately maintained and will be used in accordance with the design brief.

■ The requirements for execution and workmanship given in EN 13670 are complied with.

1.7.2 The worked examples

Unless noted otherwise, the calculations in this publication assume:

ECO: Table 2.1

Table 3.1

BS 4449

Table 4.1,
BS 8500: Table A. 1

Building Regs ${ }^{[20,21]}$
\square A design life of 50 years.

- The use of C30/37 concrete.
- The use of Grade A, B or C reinforcement, designated 'H' in accordance with BS 8666[19].

Exposure class XC1.

- 1 hour fire resistance.

Generally each calculation is rounded and it is the rounded value that is used in any further calculation.

1.8 Material properties

Material properties are specified in terms of their characteristic values. This usually corresponds to the lower 5% fractile of an assumed statistical distribution of the property considered.

The values of γ_{C} and γ_{S}, partial factors for materials, are indicated in Table 1.1.

Table 1.1
Partial factors for materials

Design situation	$\boldsymbol{\gamma}_{\mathrm{C}}$-concrete	$\boldsymbol{\gamma}_{\mathrm{S}}$ - reinforcing steel
ULS - persistent and transient	1.50	1.15
Accidental - non-fire	1.20	1.00
Accidental - fire	1.00	1.00
SLS	1.00	1.00

1.9 Execution

In the UK, DD ENV 13670[22] is currently available but without its National Application Document. For building structures in the UK, the background document PD $6687{ }^{[6]}$ considers the provisions of the National Structural Concrete Specification (NSCS) ${ }^{[16]}$ to be equivalent to those in EN 13670 for tolerance class 1. When published, BS EN $13670{ }^{[17]}$ and, if appropriate, the corresponding National Application Document will take precedence.

2 Analysis, actions and load arrangements

2.1 Methods of analysis

2.1.1 ULS

At the ultimate limit state (ULS) the type of analysis should be appropriate to the problem being considered. The following are commonly used:

- Linear elastic analysis.
- Linear elastic analysis with limited redistribution.
- Plastic analysis.

For ULS, the moments derived from elastic analysis may be redistributed provided that the resulting distribution of moments remains in equilibrium with the applied actions. In continuous beams or slabs with $f_{c k} \leq 50 \mathrm{MPa}$ the minimum allowable ratio of the redistributed moment to the moment in the linear analysis, δ, is 0.70 where Class B or Class C reinforcement is used or 0.80 where Class A reinforcement is used.

Within the limits set, coefficients for moment and shear derived from elastic analysis may be used to determine forces in regular structures (see Appendix B). The design of columns should be based on elastic moments without redistribution.

Plastic analysis may be used for design at ULS provided that the required ductility can be assured, for example: by limiting x_{u} / d (to ≤ 0.25 for concrete strength classes $\leq C 50 / 60$); using Class B or C reinforcement; or ensuring the ratio of moments at intermediate supports to moments in spans is between 0.5 and 2.0.

2.1.2 SLS

At the serviceability limit state (SLS) linear elastic analysis may be used. Linear elastic analysis may be carried out assuming:

- Cross-sections are uncracked and remain plane (i.e. analysis may be based on concrete gross sections).
■ Linear stress-strain relationships.
- The use of mean values of elastic modulus.

2.2 Actions

Actions refer to loads applied to the structure as defined below:

- Permanent actions are actions for which the variation in magnitude with time is negligible.
- Variable actions are actions for which the variation in magnitude with time is not negligible.

EC1-1-1: 2.1

EC1-1-1:
2.2, 3.3.1(2)

EC1-1-7

2.3 Characteristic values of actions

The values of actions given in the various parts of Eurocode 1: Actions on structures ${ }^{[11]}$ are taken as characteristic values. The characteristic value of an action is defined by one of the following ECO: 4.1.2 three alternatives:
Accidental actions are actions of short duration but of significant magnitude that are unlikely to occur on a given structure during the design working life.

Cl. 5.1.1(7)

Cl. 5.5.4 \& NA
Cl. 5.1.1
Cl. 5.6.2

Imposed deformations are not considered in this publication.

■ Its mean value - generally used for permanent actions.

An upper value with an intended probability of not being exceeded or lower value with an intended probability of being achieved - normally used for variable actions with known statistical distributions, such as wind or snow.
■ A nominal value - used for some variable and accidental actions.

2.4 Variable actions: imposed loads

2.4.1 General

Imposed loads on buildings are divided into categories. Those most frequently used in concrete design are shown in Table 2.1.

EC1-1-1:
Tables 6.1, 6.7, 6.9
\& NA

EC1-1-1:
Tables 6.1, 6.2
\& NA. 3

EC1-1-1:

Tables 6.1, 6.2
\& NA. 3

2.4.2 Characteristic values of imposed loads

Characteristic values for commonly used imposed loads are given in Tables 2.2 to 2.8.
Table 2.2
A: domestic and residential

Subcategory	Example	Imposed loads	
		$q_{\mathrm{k}}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	$Q_{k}(\mathrm{kN})$
A1	All usages within self-contained dwelling units. Communal areas (including kitchens) in smalla blocks of flats	1.5	2.0
A2	Bedrooms and dormitories, except those in self-contained single family dwelling units and in hotels and motels	1.5	2.0
A3	Bedrooms in hotels and motels; hospital wards; toilet areas	2.0	2.0
A4	Billiard/snooker rooms	2.0	2.7
A5	Balconies in single-family dwelling units and communal areas in small ${ }^{\mathbf{a}}$ blocks of flats	2.5	2.0
A6	Balconies in hostels, guest houses, residential clubs. Communal areas in larger blocks of flats	Min. $3.0{ }^{\text {b }}$	Min. $2.0{ }^{\text {c }}$
A7	Balconies in hotels and motels	Min. $4.0{ }^{\text {b }}$	Min. $2.0{ }^{\text {c }}$
Notes a Small blocks of flats are those with ≤ 3 storeys and ≤ 4 flats per floor/staircase. Otherwise they are considered to be larger blocks of flats b Same as the rooms to which they give access, but with a minimum of $3.0 \mathrm{kN} / \mathrm{m}^{2}$ or $4.0 \mathrm{kN} / \mathrm{m}^{2}$ c Concentrated at the outer edge			

Table 2.3
B: offices

Sub- category	Example	Imposed loads	
		$\boldsymbol{q}_{\mathbf{k}}(\mathbf{k N / m} \mathbf{m})$	$\mathbf{Q}_{\mathbf{k}}(\mathbf{k N})$
B1	General use other than in B2	2.5	2.7
B2	At or below ground floor level	3.0	2.7

Category	Description
A	Areas for domestic and residential activities
B	Office areas
C	Areas of congregation
D	Shopping areas
E	Storage areas and industrial use (including access areas)
F	Traffic and parking areas (vehicles < 30 kN)
G	Traffic and parking areas (vehicles > 30 kN)
H	Roofs (inaccessible except for maintenance and repair)
I	Roofs (accessible with occupancy categories A - D)
K	Roofs (accessible for special services, e.g. for helicopter landing areas)
Notes	
$\mathbf{1}$ Category J is not used.	
2 For forklift loading refer to BS EN 1991-1-1 Cl. 6.2.3.	

Categories of imposed loads

2 For forklift loading refer to BS EN 1991-1-1 Cl. 6.2.3.

Table 2.4
C: areas of congregation

Subcategory	Example	Imposed loads	
		$q_{\text {k }}$	Q_{k}
C1	Areas with tables		
C11	Public, institutional and communal dining rooms and lounges, cafes and restaurants (Note: use C4 or C5 if appropriate)	2.0	3.0
C12	Reading rooms with no book storage	2.5	4.0
C13	Classrooms	3.0	3.0
C2	Areas with fixed seats		
C21	Assembly areas with fixed seating ${ }^{\text {a }}$	4.0	3.6
C22	Places of worship	3.0	2.7
C3	Areas without obstacles for moving people		
C31	Corridors, hallways, aisles in institutional type buildings, hostels, guest houses, residential clubs and communal areas in larger ${ }^{\text {b }}$ blocks of flats	3.0	4.5
C32	Stairs, landings in institutional type buildings, hostels, guest houses, residential clubs and communal areas in larger ${ }^{\text {b }}$ blocks of flats	3.0	4.0
C33	Corridors, hallways, aisles in other ${ }^{\text {c }}$ buildings	4.0	4.5
C34	Corridors, hallways, aisles in other ${ }^{\mathrm{c}}$ buildings subjected to wheeled vehicles, including trolleys	5.0	4.5
C35	Stairs, landings in other ${ }^{\mathbf{c}}$ buildings subjected to crowds	4.0	4.0
C36	Walkways - Light duty (access suitable for one person, walkway width approx 600 mm)	3.0	2.0
C37	Walkways - General duty (regular two-way pedestrian traffic)	5.0	3.6
C38	Walkways - Heavy duty (high-density pedestrian traffic including escape routes)	7.5	4.5
C39	Museum floors and art galleries for exhibition purposes	4.0	4.5
C4	Areas with possible physical activities		
C41	Dance halls and studios, gymnasia, stages ${ }^{\text {d }}$	5.0	3.6
C42	Drill halls and drill rooms ${ }^{\text {d }}$	5.0	7.0
C5	Areas subjected to large crowds		
C51	Assembly areas without fixed seating, concert halls, bars and places of worship ${ }^{\text {d,e }}$	5.0	3.6
C52	Stages in public assembly areas ${ }^{\text {d }}$	7.5	4.5
Key a Fixed seating is seating where its removal and the use of the space for other purposes is improbable b Small blocks of flats are those with ≤ 3 storeys and ≤ 4 flats per floor/staircase. Otherwise they are considered to be 'larger' blocks of flats			
c Other bui institutio d For struc e For grand certifying	dings include those not covered by C31 and C32, and includ al buildings subjected to crowds ures that might be susceptible to resonance effects, referenc tands and stadia, reference should be made to the requirem authority	hotel shoul nts of	ls and to NA riate

EC1-1-1:
Tables 6.1, 6.2
\& NA. 3

D: shopping areas

Table 2.5

Sub- category	Example	Imposed loads	
		$\boldsymbol{q}_{\mathbf{k}}\left(\mathbf{k N} / \mathrm{m}^{2}\right)$	$\mathbf{Q}_{\mathrm{k}}(\mathrm{kN})$
D	Shopping areas	4.0	3.6
D1	Areas in general retail shops	4.0	3.6
D2	Areas in department stores		

Table 2.6
EC1-1-1:
Tables 6.3, 6.4
\& NA. 4, NA. 5

Tables 6.1, 6.2
\& NA. 3

E: storage areas and industrial use (including access areas)

Subcategory	Example	Imposed loads	
		$q_{\mathrm{k}}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	$Q_{\mathrm{k}}(\mathrm{kN})$
E1	Areas susceptible to accumulation of goods including access areas		
E11	General areas for static equipment not specified elsewhere (institutional and public buildings)	2.0	1.8
E12	Reading rooms with book storage, e.g. libraries	4.0	4.5
E13	General storage other than those specifieda	2.4/m	7.0
E14	File rooms, filing and storage space (offices)	5.0	4.5
E15	Stack rooms (books)	2.4/m height (min. 6.5)	7.0
E16	Paper storage and stationery stores	4.0/m height	9.0
E17	Dense mobile stacking (books) on mobile trolleys in public and institutional buildings	4.8/m height	7.0
E18	Dense mobile stacking (books) on mobile trucks in warehouses	4.8/m height (min . 15.0)	7.0
E19	Cold storage	5.0/m height (min. 15.0)	9.0
E2	Industrial use	See BS EN 1991-1-1: Tables 6.5 \& 6.6	
	Forklifts Classes FL1 to FL6		
Key a Lower bound value given. More specific load values should be agreed with client			

Table 2.7
F and G: traffic and parking areas

Subcategory	Example	Imposed loads	
		$q_{\mathrm{k}}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	$Q_{k}(\mathrm{kN})$
F	Traffic and parking areas (vehicles < 30 kN)		
	Traffic and parking areas (vehicles < 30 kN)	2.5	5.0
G	Traffic and parking areas (vehicles > 30 kN)		
	Traffic and parking areas (vehicles > 30 kN)	5.0	To be determined for specific use

Table 2.8
H, I and K: roofs

Subcategory	Example		Imposed loads	
			$\boldsymbol{q}_{\mathrm{k}}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	$Q_{k}(\mathrm{kN})$
H	Roofs (inaccessible except for maintenance and repair)			
	Roof slope, α°	$<30^{\circ}$	0.6	0.9
		$30^{\circ}<\alpha$	0.6(60- α / 30	
		< 60°	0	
I	Roofs (accessible with occupancy categories A - D)			
	Categories A - D		As Tables 2.2 to 2.5 according to specific use	
K	Roofs (accessible for special services, e.g. for helicopter landing areas)			
	Helicopter class HC1 (< 20 kN) (subject to dynamic factor $\phi=1.4$)		-	20
	Helicopter class HC2 (<60 kN)		--	60

Notes

1 Roofs are categorized according to their accessibility. Imposed loads for roofs that are normally accessible are generally the same as for the specific use and category of the adjacent area. Imposed loads for roofs without access are given above.

EC1-1-1:
6.3.4 \& NA

2 There is no category J.

Movable partitions

The self-weight of movable partitions may be taken into account by a uniformly distributed load, q_{k}, which should be added to the imposed loads of floors as follows:

EC1-1-1:
6.3.1.2 (8) \& NA

- For movable partitions with a self-weight of $1.0 \mathrm{kN} / \mathrm{m}$ wall length:
$q_{\mathrm{k}}=0.5 \mathrm{kN} / \mathrm{m}^{2}$.
- For movable partitions with a self-weight of $2.0 \mathrm{kN} / \mathrm{m}$ wall length: $q_{\mathrm{k}}=0.8 \mathrm{kN} / \mathrm{m}^{2}$.
- For movable partitions with a self-weight of $3.0 \mathrm{kN} / \mathrm{m}$ wall length: $q_{\mathrm{k}}=1.2 \mathrm{kN} / \mathrm{m}^{2}$.

Heavier partitions should be considered separately.

2.4.3 Reduction factors

General

Roofs do not qualify for load reductions. The method given below complies with the UK National Annex but differs from that given in the Eurocode.

Area

A reduction factor for imposed loads for area, $\alpha_{A^{\prime}}$, may be used and should be determined using:
$\alpha_{\mathrm{A}}=1.0-\mathrm{A} / 1000 \geq 0.75$
where
A is the area $\left(\mathrm{m}^{2}\right)$ supported with loads qualifying for reduction (i.e. categories A to E as listed in Table 2.1).

EC1-1-1:
6.3.1.2 (11) \& NA

Number of storeys

A reduction factor for number of storeys, α_{n}, may be used and should be determined using:
$\alpha_{\mathrm{n}}=1.1-n / 10$
for $1 \leq n \leq 5$
$\alpha_{\mathrm{n}}=0.6$
for $5<n \leq 10$
$\alpha_{\mathrm{n}}=0.5$
for $n>10$
where
$n=$ number of storeys with loads qualifying for reduction (i.e. categories A to D as listed in Table 2.1).

Use

According to the UK NA, α_{A} and α_{n} may not be used together.

2.5 Variable actions: snow loads

In persistent or transient situations, snow load on a roof, s, is defined as being:
$s=\mu_{\mathrm{i}} C_{\mathrm{e}} C_{\mathrm{t}} s_{\mathrm{k}}$
where
$\mu_{\mathrm{i}}=$ snow load shape factor, , either μ_{1} or μ_{2} $\mu_{1}=$ undrifted snow shape factor
$\mu_{2}=$ drifted snow shape factor
For flat roofs, $0^{\circ}=\alpha$ (with no higher structures close or abutting),
$\mu_{1}=\mu_{2}=0.8$
For shallow monopitch roofs, $0^{\circ}<\alpha<30^{\circ}$ (with no higher structures close or abutting), $\mu_{1}=0.8, \mu_{2}=0.8(1+\alpha / 30)$ For other forms of roof and local effects refer to BS EN 1991-1-3 Sections 5.3 and 6
$C_{e}=$ exposure coefficient
For windswept topography $C_{e}=0.8$
For normal topography $C_{e}=1.0$
For sheltered topography $C_{e}=1.2$
$C_{t}=$ thermal coefficient, $C_{t}=1.0$ other than for some glass-covered roofs, or similar
$s_{k}=$ characteristic ground snow load $\mathrm{kN} / \mathrm{m}^{2}$
$=0.15(0.1 Z+0.05)+(A+100) / 525$
where
$Z=$ zone number obtained from the map in BS EN 1991-1-3 NA Figure NA. 1
$A=$ site altitude, m
Figure NA. 1 of the NA to BS EN 1991-1-3 also gives figures for s_{k} at 100 m a.m.s.l. associated with the zones.

For the majority of the South East, the Midlands, Northern Ireland and the north of England apart from high ground, $s_{\mathrm{k}}=0.50 \mathrm{kN} / \mathrm{m}^{2}$.

For the West Country, West Wales and Ireland the figure is less. For most of Scotland and parts of the east coast of England, the figure is more. See Figure 2.1.

Snow load is classified as a variable fixed action. Exceptional circumstances may be treated as accidental actions in which case reference should be made to BS EN 1991-1-3.

Figure 2.1
Characteristic ground snow load map (ground snow load at 100 m a.m.s.l. (kN/m²)

2.6 Variable actions: wind loads

This Section presents a very simple interpretation of Eurocode $1[11,11 \mathrm{a}]$ and is intended to provide a basic understanding with respect to rectangular-plan buildings with flat roofs. In general, maximum values are given: with more information a lower value might be used. The user should be careful to ensure that any information used is within the scope of the application envisaged. The user is referred to more specialist guidance ${ }^{[23,24]}$ or BS EN 1991-1-4 ${ }^{[25]}$ and its UK National Annex[25a]. The National Annex includes clear and concise flow charts for the determination of peak velocity pressure, q_{p}.

In essence characteristic wind load can be expressed as:
$w_{k}=c_{f} q_{p(z)}$
where
$c_{f}=$ force coefficient, which varies, but is a max. of 1.3 for overall load
$q_{\mathrm{p}(\mathrm{z})}=c_{\mathrm{e}(\mathrm{Z})} c_{\mathrm{e} T} q_{\mathrm{b}}$
where
$c_{\mathrm{e}(\mathrm{z})}=$ exposure factor from Figure 2.3
$C_{\mathrm{e} T}=$ town terrain factor from Figure 2.4
$q_{\mathrm{b}}=0.006 \mathrm{v}_{\mathrm{b}}{ }^{2} \mathrm{kN} / \mathrm{m}^{2}$
where
$v_{\mathrm{b}}=v_{\mathrm{b}, \text { map }} C_{\text {alt }}$
where
$v_{\text {b,map }}=$ fundamental basic wind velocity from Figure 2.2
$C_{\text {alt }}=$ altitude factor, conservatively, $C_{\text {alt }}=1+0.001 \mathrm{~A}$
where
$A=$ altitude a.m.s.l
Symbols abbreviations and some of the caveats are explained in the sections below, which together provide a procedure for determining wind load to BS EN 1991-1-4.

EC1-1-3: NA Fig. NA. 1

EC1-1-4:
Fig. NA. 1

2.6.1 Determine basic wind velocity, v_{b}

EC1-1-4:
4.2(1) Note 2
\& NA 2.4, 2.5

EC1-1-4:

4.2(2) Note 3
\& NA 2.7: Fig. NA. 2
EC1-1-4:
4.2(1) Notes 4 \& 5
\& NA 2.8
EC1-1-4:
4.2(1) Note 2
\& NA 2.4: Fig. NA. 1

EC1-1-4:

4.2(2) Note 1
\& NA 2.5

EC1-1-4: 4.5(1)
Note 2 \& NA 2.18
$v_{\mathrm{b}}=C_{\text {dir }} C_{\text {season }} C_{\text {prob }} V_{b, 0}$
where

```
                    \(c_{\text {dir }}=\) directional factor
            Conservatively, \(\mathrm{C}_{\text {dir }}=1.0\)
            ( \(c_{\text {dir }}\) is a minimum of 0.73 or 0.74 for wind in an easterly direction,
            \(30^{\circ}\) to \(120^{\circ}\) )
    \(c_{\text {season }}=\) season factor
            For a 6 month return period, including winter, or greater,
            \(c_{\text {season }}=1.00\)
    \(c_{\text {prob }}=\) probability factor
            \(=1.00\) for return period of 50 years
    \(v_{\mathrm{b}, 0}=v_{\mathrm{b}, \text { map }} C_{\mathrm{alt}}\)
    where
            \(v_{b, \text { map }}=\) fundamental basic wind velocity from Figure 2.2
            \(C_{\text {alt }}=\) altitude factor
                Conservatively, \(c_{\text {alt }}=1+0.001 \mathrm{~A}\)
                where
                \(A=\) altitude of the site in metres a.m.s.l.
                    Where orography is significant (i.e. the site is close to a slope
                    steeper than 0.05 ), refer to NA 2.5
```


2.6.2 Calculate basic wind pressure, q_{b}

$q_{\mathrm{b}}=0.5 \rho v_{\mathrm{b}}^{2}$
where
$v_{\mathrm{b}}=$ as above
$\rho=$ density of air

$$
=1.226 \mathrm{~kg} / \mathrm{m}^{3}\left(=12.0 \mathrm{~N} / \mathrm{m}^{3}\right) \text { for UK }
$$

2.6.3 Calculate peak wind pressure, $q_{p(z)}$

$q_{\mathrm{p}(z)}=c_{\mathrm{e}(z)} q_{\mathrm{b}}$ for country locations
$=c_{\mathrm{e}(z)} c_{\mathrm{e} T} q_{\mathrm{b}}$ for town locations
where
$q_{\mathrm{b}}=$ as above
$c_{\mathrm{e}(z)}=$ exposure factor derived from Figure 2.3 at height z (see below)
$c_{\mathrm{e}, \mathrm{T}}=$ exposure correction factor for town terrain derived from Figure 2.4
$z=$ the height at which q_{p} is sought
For a windward wall and when $h \leq b, q_{p}$ is calculated at the reference height $z_{e}=h$. For other aspect ratios $h: b$ of the windward wall, q_{p}, is calculated at different reference heights for each part (see BS EN 1991-1-4).
where
$h=$ height of building
$b=$ breadth of building
For leeward and side walls,
$z=$ height of building

Note
Subject to altitude correction.

Figure 2.2
Map of fundamental basic wind velocity, $v_{b, \text { map }}(\mathrm{m} / \mathrm{s})$

EC1-1-4: 4.2(1)
Note 2 \& NA 2.4: Fig. NA. 1

Note
Generally $\boldsymbol{h}_{\mathrm{dis}}=\mathbf{0}$. For terrain category IV (towns etc.) see BS EN 1991-1-4: A.5.

Figure 2.3
Exposure factor $c_{e(z)}$ for sites in country or town terrain

EC1-1-4: 4.5(1)
Note 1 \& NA 2.17: Fig. NA. 7

Figure 2.4
Multiplier for exposure correction for sites in town terrain

EC1-1-4: 4.5(1)
Note 1 \& NA 2.17: Fig. NA. 8

2.6.4 Calculate characteristic wind load, w_{k}

$$
w_{k}=q_{p(z)} c_{f}
$$

where

$$
\begin{aligned}
q_{\mathrm{p}(z)}= & \text { as above } \\
c_{\mathrm{f}}= & \text { force coefficient for the structure or structural element } \\
& \text { Generally } \\
= & c_{\mathrm{pe}}+c_{\mathrm{pi}}
\end{aligned}
$$

where
$c_{\mathrm{pe}}=($ external) pressure coefficient dependent on size of area considered and zone. For areas above $1 \mathrm{~m}^{2}, c_{\mathrm{pe}, 10}$ should be used.

Overall loads

For the walls of rectangular-plan buildings, $C_{\mathrm{pe}, 10}$ may be determined from Table 7.1 of BS EN 1991-1-4.

However, for the determination of overall loads on buildings, the net pressure coefficients given in Table 2.9 may be used. In this case it will be unnecessary to determine internal wind pressure coefficients.

EC1-1-4:
7.2.1(1) Note 2 \& NA. 2.25

EC1-1-4:

7.2.2(2) Note 1 \&

NA.2.27

EC1-1-4:

7.2.2(2) Note 1 \&

NA.2.27, Table NA. 4

Cladding loads

For areas above $1 \mathrm{~m}^{2}, c_{\mathrm{pe}, 10}$ should be used. $\mathrm{c}_{\mathrm{pe}, 10}$ may be determined from Table 7.1 of BS EN 1991-1-4. See Table 2.10.

7,8 \& NA

EC1-1-4:
7.2.3, NA. 2.28 \& NA
advisory note

BS 6399:

Table 8 \& Fig. 18

EC1-1-4:

NA.2.28 \& NA
advisory note
EC1-1-4:
7.2.9(6) Note 2

EC1-1-4:
NA 2.27, Table NA. 4

EC1-1-4:

7.2.2(2) Table 7.1,

Note 1 \& NA 2.27:
Tables NA.4a, NA.4b

EC1-1-4:
7.2, Table 7.2 \& NA

Flat roofs

For flat roofs, according to the Advisory Note in the NA some of the values of $C_{\mathrm{pe}, 10}$ in Table 7.2 of BS EN 1991-1-4 (see Table 2.11) are significantly different from current practice in the UK. It recommends that designers should consider using the values in BS 6399:2 to maintain the current levels of safety and economy. See Table 2.12.
For other forms of roof refer to BS EN 1991-1-4 and the UK NA.
It will also be necessary to determine internal wind pressure coefficients for the design of cladding.
$c_{\mathrm{pi}}=$ internal pressure coefficient.
For no dominant openings $\mathrm{C}_{\text {pi }}$ may be taken as the more onerous of +0.2 and -0.3
Table 2.9
Net pressure coefficient, $c_{\mathrm{pe}, 10}$, for walls of rectangular plan buildings*

h/d	Net pressure coefficient, $\mathrm{c}_{\mathrm{pe}, 10}$
5	1.3
1	1.1
≥ 0.25	0.8
Notes 1^{*} in effect these valu $2 h$ = height of buildin $3 b=$ breadth of build $4 d=$ depth of building 5 Values may be interp 6 Excludes funnelling.	are force coefficients for determining overall loads on buildings. (perpendicular to wind). parallel to wind). ated.

Table 2.10
External pressure coefficient, $c_{\mathrm{pe}, 10}$, for walls of rectangular-plan buildings

Zone	Description	$C_{\text {pe, } 10}$	
		Max.	Min.
Zone A	For walls parallel to the wind direction, areas within $0.2 \mathrm{~min}[b ; 2 h]$ of windward edge		-1.2
Zone B	For walls parallel to the wind direction, areas within $0.2 \min [b ; 2 h]$ of windward edge		-0.8
Zone C	For walls parallel to the wind direction, areas from $0.2 \mathrm{~min}[b ; 2 h]$ to $\min [b ; 2 h]$ of windward edge		-0.5
Zone D	Windward wall	+0.8	
Zone E	Leeward wall		-0.7
Zones D and E	Net	+1.3	
Notes $1 h$ = height of building. $2 b=$ breadth of building (perpendicular to wind).			

Table 2.11
External pressure coefficient, $c_{\text {pe, } 10}$ for flat roofs*

Zone	Description	$C_{\text {pe, } 10}$	
		Sharp edge at eaves	With parapet
Zone F	Within $0.1 \mathrm{~min}[\mathrm{~b} ; 2 \mathrm{~h}]$ of windward edge and within $0.2 \mathrm{~min}[\mathrm{~b} ; 2 \mathrm{~h}]$ of return edge (parallel to wind direction)	-1.8	-1.6
Zone G	Within $0.1 \mathrm{~min}[\mathrm{~b} ; 2 \mathrm{~h}]$ of windward edge and outwith $0.2 \mathrm{~min}[\mathrm{~b} ; 2 \mathrm{~h}]$ of return edge (parallel to wind direction)	-1.2	-1.1
Zone H	Roof between $0.1 \mathrm{~min}[b ; 2 h]$ and $0.5 \mathrm{~min}[b ; 2 h]$ from windward edge	-0.7	-0.7
Zone I	Remainder between $0.5 \mathrm{~min}[\mathrm{~b} ; 2 \mathrm{~h}]$ and leeward edge	± 0.2	± 0.2
Notes 1 * According to NA to BS EN 1991-1-4, this table is not recommended for use in the UK. $2 h$ = height of building. $3 b=$ breadth of building (perpendicular to wind).			

Table 2.12
External pressure coefficient, $c_{\mathbf{p e}^{\prime}}$, for flat roofs

Zone	Description	$C_{\text {pe }}$	
		Sharp edge at eaves	With parapet
Zone A	Within $0.1 \mathrm{~min}[\mathrm{~b} ; 2 \mathrm{~h}]$ of windward edge and within $0.25 \mathrm{~min}[\mathrm{~b} ; 2 \mathrm{~h}]$ of return edge (parallel to wind direction)	-2.0	-1.9
Zone B	Within $0.1 \mathrm{~min}[\mathrm{~b} ; 2 \mathrm{~h}]$ of windward edge and outwith $0.25 \mathrm{~min}[\mathrm{~b} ; \mathrm{2h}]$ of return edge (parallel to wind direction)	-1.4	-1.3
Zone C	Roof between $0.1 \mathrm{~min}[\mathrm{~b} ; 2 \mathrm{~h}]$ and $0.5 \mathrm{~min}[\mathrm{~b} ; 2 \mathrm{~h}]$ from windward edge	-0.7	-0.7
Zone D	Remainder between $0.5 \mathrm{~min}[\mathrm{~b} ; 2 \mathrm{~h}]$ and leeward edge	± 0.2	± 0.2
Notes $1 h$ = height of building. $2 b=$ breadth of building (perpendicular to wind).			

EC1-1-4:
7.2.3, NA. 2.28 \&

NA advisory note.

BS 6399:
Table 8 \& Fig. 18

2.6.5 Calculate the overall wind force, F_{w}

$F_{w}=c_{s} c_{d} \Sigma w_{k} A_{\text {ref }}$
where
$w_{\mathrm{k}}=$ as above
$c_{s} c_{d}=$ structural factor, conservatively
$=1.0$
or may be derived
where
$c_{s}=$ size factor
c_{s} may be derived from Exp. (6.2) or table NA.3. Depending on values of
$(b+h)$ and $\left(z-h_{\text {dis }}\right)$ and dividing into Zone A, B or C, a value of C_{s}
(a factor < 1.00) may be found.
$c_{d}=$ dynamic factor
c_{d} may be derived from Exp. (6.3) or figure NA.9. Depending on values of δ_{s}
(logarithmic decrement of structural damping) and h / b, a value of c_{d} (a factor > 1.00) may be found.
c_{d} may be taken as 1.0 for framed buildings with structural walls and masonry internal walls, and for cladding panels and elements
$A_{\text {ref }}=$ reference area of the structure or structural element

2.7 Variable actions: others

Actions due to construction, traffic, fire, thermal actions, use as silos or from cranes are outside the scope of this publication and reference should be made to specialist literature.

```
EC1-1-4:
5.3.2, Exp. (5.4)
&NA
```

EC1-1-4:
6.2(1) a), 6.2(1) c)
EC1-1-4:
6.2(1) e) \& NA. 2.20
EC1-1-4:
6.3(1), Exp. (6.2) \&
NA.2.20, Table NA3
EC1-1-4:
6.3(1), Exp. (6.3) \&
NA.2.20: Fig. NA9

EC1-1-4:

5.3.2, Exp. (5.4)
\& NA

2.8 Permanent actions

The densities and area loads of commonly used materials, sheet materials and forms of construction are given in Tables 2.13 to 2.15.

Actions arising from settlement, deformation and creep are outside the scope of this document but generally are to be considered as permanent actions. Where critical, refer to specialist literature.

Table 2.13
Bulk densities for soils and materials ${ }^{[11,26]}$

Bulk densities	kN/m ${ }^{3}$	Bulk densities	kN/m ${ }^{3}$
Soils		Materials	
Clay - stiff	19-22	Concrete - reinforced	25.0
Clay - soft	16-19	Concrete - wet reinforced	26.0
Granular - loose	16-18	Class	25.6
Granular - dense	19-21	Granite	27.3
Silty clay, sandy clay	16-20	Hardcore	19.0
Materials		Limestone (Portland stone - med. weight)	22.0
Asphalt	22.5	Limestone (marble - heavyweight)	26.7
Blocks - aerated concrete (min.)	5.0	Macadam paving	21.0
Blocks - aerated concrete (max.)	9.0	MDF	8.0
Blocks - dense aggregate	20.0	Plaster	14.1
Blocks - lightweight	14.0	Plywood	6.3
Books - bulk storage	8-11	Sandstone	23.5
Brickwork - blue	24.0	Screed - sand/cement	22.0
Brickwork - engineering	22.0	Steel/iron	77.0
Brickwork - fletton	18.0	Terracotta	20.7
Brickwork - London stock	19.0	Timber - Douglas fir	5.2
Brickwork - sand lime	21.0	Timber - European beech/oak	7.1
Chipboard	6.9	Timber - Grade C16	3.6
Concrete - aerated	10.0	Timber - Grade C24	4.1
Concrete - lightweight	18.0	Timber - Iroko/teak	6.4
Concrete - plain	24.0		

Table 2.14
Typical area loads for concrete slabs and sheet materials [11, 26]

Typical area loads	kN/m ${ }^{2}$	Typical area loads	kN/m ${ }^{2}$
Concrete slabs		Sheet materials	
Precast concrete solid units (100 mm)	2.50	Plaster skim coat	0.05
Precast concrete hollowcore units ${ }^{\text {a }}$ (150 mm)	2.40	Plasterboard (12.5 mm)	0.09
Precast concrete hollowcore units ${ }^{\text {a }}$ (200 mm)	2.87	Plasterboard (19 mm)	0.15
Precast concrete.hollowcore units ${ }^{\text {a }}$ (300 mm)	4.07	Plywood (12.5 mm)	0.08
Precast concrete hollowcore units ${ }^{\text {a }}$ (400 mm)	4.84	Plywood (19 mm)	0.12
Ribbed slab ${ }^{\mathbf{b}}$ (250 mm)	4.00	Quarry tiles including mortar bedding	0.32
Ribbed slab ${ }^{\text {b }}$ (300 mm)	4.30	Raised floor - heavy duty	0.50
Ribbed slab ${ }^{\mathbf{b}}$ (350 mm)	4.70	Raised floor - medium weight	0.40
Waffle slab ${ }^{\text {- }}$ standard moulds (325 mm)	6.00	Raised floor - lightweight	0.30
Waffle slab ${ }^{\text {- }}$ standard moulds (425 mm)	7.30	Render (13 mm)	0.30
Waffle slab ${ }^{\text {- }}$ standard moulds (525 mm)	8.60	Screed - 50 mm	1.15
Sheet materials		Screed - lightweight (25 mm)	0.45
Asphalt (20 mm)	0.46	Stainless steel roofing (0.4 mm)	0.05
Carpet and underlay	0.05	Suspended ceiling - steel	0.10
Chipboard (18 mm)	0.12	Suspended fibreboard tiles	0.05
Dry lining on stud (20 mm)	0.15	T\&G boards (15.5 mm)	0.09
False ceiling - steel framing	0.10	T\&G boards (22 mm)	0.12
Felt (3 layer) and chippings	0.35	Tiles - ceramic floor on bedding	1.00
Glass - double glazing	0.52	Battens for slating and tiling	0.03
Glass - single glazing	0.30	Tiles - clay roof (max)	0.67
Insulation - glass fibre (150 mm)	0.03	Tiles - natural slate (thick)	0.65
Paving stones (50 mm)	1.20	Tiles - interlocking concrete	0.55
Plaster - two coat gypsum (12 mm)	0.21	Tiles - plain concrete	0.75
Key a Hollowcore figures assume no topping (50 mm structural topping $\equiv 1.25 \mathrm{kN} / \mathrm{m}^{2}$) b Ribbed slabs: 150 web @ 750 centres with 100 mm thick flange/slab. Web slope 1:10 c Waffle slabs: 150 ribs @ 900 centres with 100 mm thick flange/slab. Web slope 1:10			

Table 2.15
Loads for typical forms of construction ${ }^{[26]}$

Cavity wall	($\mathrm{kN} / \mathrm{m}^{2}$)	Residential floor	$\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
Brickwork 102.5 mm	2.40	Carpet	0.05
Insulation 50 mm	0.02	Floating floor	0.15
Blockwork 100 mm	1.40	Self-weight of 250 mm solid slab	6.25
Plaster	0.21	Suspended ceiling	0.20
Total	4.0	Services	0.10
Lightweight cladding	(kN/m²)	Total	6.75
Insulated panel	0.20	School floor	(kN/m²)
Purlins	0.05		
Dry lining on stud	0.15	Carpet/flooring	0.05
Total	0.40	Self-weight of 250 mm solid slab	6.25
Curtain walling	(kN/m²)	Suspended ceiling	0.15
Allow	1.00	Services	0.20
Precast concrete cladding	(kN/m²)	Total	6.60
Facing	1.00	Hospital floor	(kN/m²)
Precast panel (100 mm)	2.40	Flooring	0.05
Insulation	0.05	Self-weight of 250 mm solid slab	6.25
Dry lining on stud	0.15	Screed	2.20
Total	3.60	Suspended ceiling	0.15
Dry lining	(kN/m²)	Services (but can be greater)	0.05
Metal studs	0.05	Total	8.70
Plasterboard and skim $\times 2$	0.40	Flat roof/external terrace	(kN/m²)
Total	0.45	Paving or gravel, allow	2.20
Timber stud wall	(kN/m²)	Waterproofing	0.50
Timber studs	0.10	Waterproofing	
Plasterboard and skim $\times 2$	0.40	佼	
Total	0.50	Self-weight of 250 mm solid slab ceiling	6.25
Office floor	(kN/m²)	Suspended ceiling	0.15
Carpet	0.03	Services	0.30
Raised floor	0.30	Total	9.50
Self-weight of 250 mm solid slab	6.25	Timber pitched roof	(kN/m²)
Suspended ceiling	0.15	Tiles (range 0.50-0.75)	0.75
Services	0.30	Battens	0.05
Total	7.03	Felt	0.05
Office core area	(kN/m²)	Rafters	0.15
Tiles and bedding, allow	1.00	Insulation	0.05
Screed	2.20	Plasterboard \& skim	0.15
Self-weight of 250 mm solid slab	6.25	Services	0.10
Suspended ceiling	0.15	Ceiling joists	0.15
Services	0.30	Total perpendicular to roof	1.45
Total	9.90	Total on plan assuming 30° pitch	1.60
Stairs	(kN/m²)	Motal on plan assuming 30° pitch	(kN/m²)
150 mm waist ($\equiv 175$ @ $25 \mathrm{kN} / \mathrm{m}^{3}$)	4.40	Metal decking roof	(kN/m²)
Treads $0.15 \times 0.25 \times 4 / 2 @ 25 \mathrm{kN} / \mathrm{m}^{3}$	1.88	Insulated panel	0.20
Screed 0.05 @ $22 \mathrm{kN} / \mathrm{m}^{3}$	1.10	Purlins	0.10
Plaster	0.21	Steelwork	0.30
Finish: tiles \& bedding	1.00	Services	0.10
Total	8.60	Total	0.70

2.9 Design values of actions

2.9.1 General case

The design value of an action, F_{d}, that occurs in a load case is
$F_{d}=\gamma_{F} \psi F_{k}$
where
$\gamma_{F}=$ partial factor for the action according to the limit state under consideration. Table 2.16 indicates the partial factors to be used in the UK for the combinations of representative actions in building structures.
ψF_{k} may be considered as the representative action, $F_{\text {repp }}$, appropriate to the limit state being considered
where
$\psi=$ a factor that converts the characteristic value of an action into a representative value. It adjusts the value of the action to account for the nature of the limit state under consideration and the joint probability of the actions occurring simultaneously. It can assume the value of 1.0 for a permanent action or ψ_{0} or ψ_{1} or ψ_{2} for a variable action. Table 2.17 shows how characteristic values of variable actions are converted into representative values. This table is derived from BS EN 1990[10] and its National Annex ${ }^{[10 a]}$]
$F_{k}=$ characteristic value of an action as defined in Sections 2.2 and 2.3.
Table 2.16
Partial factors $\left(\gamma_{\mathrm{F}}\right)$ for use in verification of limit states in persistent and transient design situations

Limit state	Permanent actions $\left(G_{k}\right)$	Leading variable action $\left(Q_{k, 1}\right)$	Accompanying variable actions $\left(Q_{k, i}\right)^{\text {d }}$
a) Equilibrium (EQU)			
	1.10 (0.9) ${ }^{\mathbf{a}}$	1.50 (0.0) ${ }^{\text {a }}$	$\psi_{0, i} 1.50(0.0)^{\text {a }}$
b) Strength at ULS (STR/GEO) not involving geotechnical actions			
Either			
Exp. (6.10)	1.35 (1.0) ${ }^{\text {a }}$	1.5	$\psi_{0} 1.5$
or the worst case of			
Exp. (6.10a)	1.35 (1.0) ${ }^{\text {a }}$	$\psi_{0} 1.5$	$\psi_{0} 1.5$
and			
Exp. (6.10b)	1.25 (1.0) ${ }^{\text {a }}$	1.5	$\psi_{0} 1.5$
c) Strength at ULS (STR/GEO) with geotechnical actions			
Worst case of			
Set B	1.35 (1.0) ${ }^{\mathbf{a}}$	$1.5(0.0)^{\mathbf{a}}$	
and			
Set C	1.0	1.3	
d) Serviceability			
Characteristic	1.00	1.00	$\psi_{0, i} 1.00$
Frequent	1.00	$\psi_{1,1} 1.00$	$\psi_{2,1} 1.00$
Quasi-permanent	1.00	$\psi_{2,1} 1.00$	$\psi_{2, \mathrm{i}} 1.00$
e) Accidental design situations			
Exp. (6.11a)	1.0	$A_{d}{ }^{\text {b }}$	$\psi_{1, \mathrm{i}}$ (main) $\psi_{2, i}$ (others)
f) Seismic			
Exp. (6.12a/b)	1.0	$A_{\text {Ed }}{ }^{\text {c }}$	$\psi_{2, i}$
Key a Value if favourable (shown in brackets) b Leading accidental action, A_{d}, is unfactored c Seismic action, $A_{\text {Ed }}$ d Refer to BS EN 1990: A1.2.2 \& NA		Notes 1 The values of ψ are given in Table 2.17. 2 Geotechnical actions given in the table are based on Design Approach 1 in Clause A1.3.1(5) of BS EN 1990, which is recommended in its National Annex.	

ECO:

TablesA1.2(A), A1.2(B), A1.2(C), A1.4 \& NA

2.9.2 Design values at ULS

ECO: 6.4.3.2(3)

ECO:A1.2.2
\& NA

C1-1-1:3.3.2

For the ULS of strength (STR), the designer may choose between using Expression (6.10) or the worst case of Expression (6.10a) or Expression (6.10b).

Single variable action

At ULS, the design value of actions is
either

$$
\operatorname{Exp.}(6.10) \quad 1.35 G_{k}+1.5 Q_{k, 1}
$$

or the worst case of:

$$
\begin{aligned}
& \text { Exp. (6.10a) } 1.35 G_{k}+\psi_{0,1} 1.5 Q_{k, 1} \\
& \text { and } \\
& \begin{array}{l}
\text { Exp. (6.10b) } 1.25 G_{k}+1.5 Q_{k, 1} \\
\text { where } \\
G_{k}=\text { permanent action } \\
Q_{k, 1} \\
=\text { single variable action } \\
\psi_{0,1}
\end{array}=\text { combination factor for a single variable load (see Table 2.17) }
\end{aligned}
$$

Table 2.17
Values of ψ factors

Action	ψ_{0}	ψ_{1}	ψ_{2}
Imposed loads in buildings			
Category A: domestic, residential areas	0.7	0.5	0.3
Category B: office areas	0.7	0.5	0.3
Category C: congregation areas	0.7	0.7	0.6
Category D: shopping areas	0.7	0.7	0.6
Category E: storage areas	1.0	0.9	0.8
Category F: traffic area (vehicle weight $\leq 30 \mathrm{kN}$)	0.7	0.7	0.6
Category G: traffic area (30 kN < vehicle weight $\leq 160 \mathrm{kN}$)	0.7	0.5	0.3
Category H: roofs ${ }^{\text {a }}$	0.7	0.0	0.0
Snow loads where altitude ≤ 1000 m a.m.s.l. ${ }^{\text {a }}$	0.5	0.2	0.0
Wind loads ${ }^{\text {a }}$	0.5	0.2	0.0
Temperature effects (non-fire) ${ }^{\text {a }}$	0.6	0.5	0.0
Key a On roofs, imposed loads, snow loads and wind loads should not be applied together. Notes 1 The numerical values given above are in accordance with BS EN 1990 and its UK National Annex. 2 Categories K and L are assumed to be as for Category H			

Expression (6.10) leads to the use of $\gamma_{F}=\gamma_{G}=1.35$ for permanent actions and $\gamma_{F}=\gamma_{Q}=1.50$ for variable actions (γ_{G} for permanent actions is intended to be constant across all spans).

Expression (6.10) is always equal to or more conservative than the less favourable of Expressions (6.10a) and (6.10b). Expression (6.10b) will normally apply when the permanent actions are not greater than 4.5 times the variable actions (except for storage loads, category E in Table 2.17, where Expression (6.10a) always applies).

Therefore, except in the case of concrete structures supporting storage loads where $\psi_{0}=1.0$, or for mixed use, Expression (6.10b) will usually apply. Thus, for members supporting vertical actions at ULS, $1.25 G_{k}+1.5 Q_{k}$ will be appropriate for most situations and applicable to most concrete structures (see Figure 2.5).

Compared with the use of Expression (6.10), the use of either Expression (6.10a) or (6.10b) leads to a more consistent reliability index across lightweight and heavyweight materials.

Figure 2.5
When to use Exp. (6.10a) or Exp. (6.10b)

Accompanying variable actions

Again the designer may choose between using Expression (6.10) or the less favourable of Expressions (6.10a) or (6.10b).

Either

Exp. (6.10) 1.35 $G_{k}+1.5 Q_{k, 1}+\Sigma\left(\psi_{0, i} 1.5 Q_{k, i}\right)$
or the worst case of:
Exp. (6.10a) $1.35 G_{k}+\psi_{0,1} 1.5 \mathrm{Q}_{\mathrm{k}, 1}+\Sigma\left(\psi_{0, \mathrm{i}} 1.5 \mathrm{Q}_{\mathrm{k}, \mathrm{i}}\right)$
and
Exp. (6.10b) $1.25 G_{k}+1.5 Q_{k, 1}+\Sigma\left(\psi_{0, i} 1.5 Q_{k, i}\right)$
where
$G_{k}=$ permanent action
$Q_{k, 1}=1$ st variable action
$Q_{k, i}=i^{\text {th }}$ variable action
$\psi_{0,1}=$ characteristic combination factor for 1st variable load (see Table 2.17)
$\psi_{0, i}=$ characteristic combination factor for $i^{\text {th }}$ variable load (see Table 2.17)
In the above, $Q_{k, 1}$ (and $\psi_{0, i}$) refers to the leading variable action and $Q_{k, i}$ (and $\psi_{0, i}$) refers to accompanying independent variable actions. In general, the distinction between the two types of actions will be obvious (see Figure 2.6); where it is not, each load should in turn be treated as the leading action. Also, the numerical values for partial factors given in the UK National Annex ${ }^{[10 a]}$ are used in the equations above. The value of ψ_{0} depends on the use of the building and should be obtained from the UK National Annex for BS EN 1990 (see Table 2.17).

Figure 2.6
Independent variable actions

The expressions take into account the probability of joint occurrence of loads by applying the $\psi_{0, i}$ factor to the accompanying variable action. The probability that these combined actions will be exceeded is deemed to be similar to the probability of a single action being exceeded.

If the two independent variable actions $Q_{k, 1}$ and $Q_{k, 2}$ are associated with different spans and the use of Expression (6.10b) is appropriate, then in one set of analyses apply
$1.25 G_{k}+1.5 Q_{k, 1}$ to the $Q_{k, 1}$ spans
and $1.25 G_{k}+\psi_{0 . i} 1.5 Q_{k, 1}$ to the $Q_{k, 2}$ spans.
In associated analyses apply
$1.25 G_{k}+\psi_{0, i} 1.5 Q_{k, 1}$ to the $Q_{k, 1}$ spans
and $1.25 \mathrm{G}_{\mathrm{k}}+1.25 \mathrm{Q}_{\mathrm{k}, 2}$ to the $\mathrm{Q}_{\mathrm{k}, 2}$ spans.
See Example 2.11.2 (two variable actions).

2.9.3 Design values at SLS

There are three combinations of actions at SLS (or load combination at SLS). These are given in Table 2.18. The combination and value to be used depends on the nature of the limit state being checked. Quasi-permanent combinations are associated with deformation, crack widths and crack control. Frequent combinations may be used to determine whether a section is cracked or not. The numeric values of ψ_{0}, ψ_{1} and ψ_{2} are given in Table 2.17.

Colloquially
ψ_{0} has become known as the 'characteristic' value
ψ_{1} has become known as the 'frequent' value
ψ_{2} has become known as the 'quasi-permanent' value

Table 2.18
Partial factors to be applied in the verification of the SLS

Combination	Permanent actions G_{k}		Variable actions Q_{k}	
	Unfavourable ${ }^{\text {a }}$	Favourable ${ }^{\text {a }}$	Leading ${ }^{\text {b }}$	Others ${ }^{\text {b }}$
Characteristic	$G_{k, \text { sup }}$	$G_{k, \text { inf }}$	$Q_{k, 1}$	$\psi_{0, i} \mathrm{Q}_{\mathrm{k}, \mathrm{i}}$
Frequent	$G_{k, \text { sup }}$	$G_{\text {k,inf }}$	$\psi_{1,1} \mathrm{Q}_{\mathrm{k}, 1}$	$\psi_{2, i} Q_{k, i}$
Quasi-permanent	$G_{k, \text { sup }}$	$\mathrm{C}_{\mathrm{k}, \mathrm{inf}}$	$\psi_{2,1} \mathrm{Q}_{\mathrm{k}, 1}$	$\psi_{2, i} Q_{k, i}$
Key a Generally $G_{k, \text { sup }}$ and $G_{k, \text { inf }}$ may be taken as G_{k}. See Section 2.9.5 b ψ factors are given in Table 2.17				

2.9.4 Design values for other limit states

Load combinations are given in Table 2.16 for
a) Equilibrium (EQU),
b) Strength at ULS not involving geotechnical actions,
c) Strength at ULS with geotechnical actions,
d) Serviceability,
e) Accidental and
f) Seismic design situations

2.9.5 Variations in permanent actions

When the variation of a permanent action is not small then the upper ($G_{\mathrm{k}, \text {,sup }}$) and the lower $\left(G_{\text {kj,inf }}\right)$ characteristic values (the 95% and 5% fractile values respectively) should be established. This procedure is necessary only when the coefficient of variation ($=100 \times$ standard deviation/ mean) is greater than 10. In terms of permanent actions, variations in the self-weight of concrete in concrete frames are considered small.

At ULS where the variation is not small, $\gamma_{G K, \text { sup }}$ should be used with $G_{k j, s u p}$ and $\gamma_{G k, \text { inf }}$ with $G_{\mathrm{k}, \text { jinf. }}$ Similarly, where the variation is not small, at SLS $G_{\mathrm{kj}, \text { sup }}$ should be used where actions are unfavourable and $G_{k j, i n f}$ used where favourable.

Where checks, notably checks on static equilibrium (EQU), are very sensitive to variation of the magnitude of a permanent action from one place to another, the favourable and unfavourable parts of this action should be considered as individual actions. In such 'very sensitive' verifications

ECO: 4.1.2, 4.1.2 (3)

PD 6687 ${ }^{[6]}$: 2.8.4

ECO: 6.4.3 (4) $\gamma_{\mathrm{G}, \text { sup }}$ and $\gamma_{\mathrm{G}, \text { inf }}$ should be used.

2.10 Load arrangements of actions: introduction

The process of designing concrete structures involves identifying relevant design situations and limit states. These include persistent, transient or accidental situations. In each design situation the structure should be verified at the relevant limit states.

In the analysis of the structure at the limit state being considered, the maximum effect of actions should be obtained using a realistic arrangement of loads. Generally variable actions should be arranged to produce the most unfavourable effect, for example to produce maximum overturning moments in spans or maximum bending moments in supports.

For building structures, design concentrates mainly on the ULS, the ultimate limit state of strength (STR), and SLS, the serviceability limit state. However, it is essential that all limit states are considered. The limit states of equilibrium (EQU), strength at ULS with geotechnical actions (STR/GEO) and accidental situations must be taken into account as appropriate.

2.11 Load arrangements according to the UK National Annex to Eurocode

In building structures, any of the following sets of simplified load arrangements may be used at ULS and SLS (See Figure 2.7).
Cl. 5.1.3 \& NA

- The more critical of:
a) alternate spans carrying $\gamma_{G} G_{k}+\gamma_{Q} Q_{k}$ with other spans loaded with $\gamma_{C} G_{k}$; and
b) any two adjacent spans carrying $\gamma_{G} G_{k}+\gamma_{Q} Q_{k}$ with other spans loaded with $\gamma_{G} G_{k}$.
- Or the more critical of:
a) alternate spans carrying $\gamma_{G} G_{k}+\gamma_{Q} Q_{k}$; with other spans loaded with $\gamma_{G} G_{k}$; and
b) all spans carrying $\gamma_{G} G_{k}+\gamma_{Q} Q_{k}$.
- Or, for slabs only, all spans carrying $\gamma_{G} G_{k}+\gamma_{G} G_{k}$, provided the following conditions are met:
- In a one-way spanning slab the area of each bay exceeds $30 \mathrm{~m}^{2}$ (a bay is defined as a strip across the full width of a structure bounded on the other sides by lines of support).
- The ratio of the variable action, Q_{k}, to the permanent action, G_{k}, does not exceed 1.25.
- The magnitude of the variable action excluding partitions does not exceed $5 \mathrm{kN} / \mathrm{m}^{2}$.

Where analysis is carried out for the single load case of all spans loaded, the resulting moments, except those at cantilevers, should be reduced by 20%, with a consequential increase in the span moments.

a) Alternate spans loaded

b) Adjacent spans loaded
c) All spans loaded

Note

Whilst the use of Exp. (6.10) is indicated, these arrangements may equally be used with Exp. (6.10a) or (6.10b).

Figure 2.7
Load arrangements for beams and slabs according to UK NA to Eurocode

2.12 Examples of loading

Con		
2.12.1 Continuous beam in a domestic structure Determine the appropriate load combination and ult for a continuous beam of four 6 m spans in a dome supporting a 175 mm slab at 6 m centres.		

Figure 2.8 Continuous beam in a domestic structure
a) Actions kN / m

Permanent action, g_{k}
Self-weight, 175 mm thick slabs: $0.17 \times 25 \times 6.0=26.3$

Elo self-weight downstand $800 \times 225: 0.80 \times 0.225 \times 25=4.5$
50 mm screed @ $22 \mathrm{kN} / \mathrm{m}^{3}: 0.05 \times 22 \times 6.0=6.6$
Finishes and services: $0.50 \times 6.0=3.0$
Dividing wall $2.40 \times 4.42(200 \mathrm{~mm}$ dense blockwork with $=10.6$ plaster both sides)
Total $\quad g_{k}=51.0$

Variable action, q_{k}
Imposed, dwelling @ $1.5 \mathrm{kN} / \mathrm{m}^{2}: 1.5 \times 6.0=9.0$

Total
$q_{k}=9.0$

Ultimate load, n

Assuming use of Exp. $(6.10), n=1.35 \times 51+1.5 \times 9.0=$	$=82.4$
Assuming use of worst case of Exp. $(6.10 \mathrm{a})$ or Exp. $(6.10 \mathrm{~b})$	
Exp. $(6.10 \mathrm{a}): n=1.35 \times 51+0.7 \times 1.5 \times 9.0=$	$=78.3$
Exp. $(6.10 \mathrm{~b}): n=1.25 \times 51+1.5 \times 9.0=$	$=77.3$
In this case Exp. $(6.10 \mathrm{a})$ would be critical ${ }^{\ddagger}$	\therefore ultimate load $=78.3$

[^0]

Figure 2.9 Continuous beam in mixed-use structure
a) Load combination

Load combination Exp. (6.10a) or Exp. (6.10b) will be used, as either will produce a smaller total load than Exp. (6.10). It is necessary to decide which expression governs.

i) Actions

$$
\begin{gathered}
\mathrm{kN} / \mathrm{m} \\
g_{k}=51.0 \\
\hline \\
q_{k 1}=15.0 \\
\hline q_{k 2}=24.0
\end{gathered}
$$

Permanent action
As before, Example 2.12.1

Variable action

Office @ $2.5 \mathrm{kN} / \mathrm{m}^{2}$
Shopping @ $4.0 \mathrm{kN} / \mathrm{m}^{2}$
Ultimate load, n
For office use:

$$
\begin{array}{ll}
\text { Exp. }(6.10 \mathrm{a}): n=1.35 \times 51+0.7 \times 1.5 \times 15.0 & =84.6 \\
\text { Exp. }(6.10 \mathrm{~b}): n=1.25 \times 51+1.5 \times 15.0 & =86.3 \\
\text { For shopping use: } & \\
\text { Exp. }(6.10 \mathrm{a}): n=1.35 \times 51+1.5 \times 0.7 \times 24.0 & =94.1 \\
\text { Exp. }(6.10 b): n=1.25 \times 51+1.5 \times 24.0 & =99.8
\end{array}
$$

By inspection Exp. (6.10b) governs in both cases ${ }^{\ddagger}$
b) Arrangement of ultimate loads

As the variable actions arise from different sources, one is a leading variable action and the other is an accompanying variable action. The unit loads to be used in the various arrangements are:

[^1]```
i) Actions
 kN/m
Permanent
 1.25\times51.0 =63.8
Variable
Office use
 as leading action, }\mp@subsup{\gamma}{Q}{}\mp@subsup{Q}{k}{}=1.5\times15=22.
 as accompanying action, }\mp@subsup{\psi}{0}{}\mp@subsup{\gamma}{Q}{}\mp@subsup{Q}{k}{}=0.7=15.7
 \times1.5 + 15
Shopping use
as leading action, }\mp@subsup{\gamma}{Q}{}\mp@subsup{Q}{k}{}=1.5\times24=36.
as accompanying action, }\mp@subsup{\psi}{O}{}\mp@subsup{\gamma}{Q}{}\mp@subsup{Q}{k}{}=0.7=25.
\times1.5\times24
```


## ii) For maximum bending moment in span $A B$

The arrangement and magnitude of actions of loads are shown in Figure 2.10. The variable load in span $A B$ assumes the value as leading action and that in span CD takes the value as an accompanying action.


Figure 2.10 For maximum bending moment in span $A B$

## iii) For maximum bending moment in span $C D$

The load arrangement is similar to that in Figure 2.10, but now the variable load in span $A B$ takes its value as an accompanying action
(i.e. $15.75 \mathrm{kN} / \mathrm{m}$ ) and that in span CD assumes the value as leading action ( $36 \mathrm{kN} / \mathrm{m}$ ).


Figure 2.11 For maximum bending moment in span CD

## iv) For maximum bending moment at support $B$

The arrangement of loads is shown in Figure 2.12. As both spans $A B$ and $B C$ receive load from the same source, no reduction is possible (other than that for large area ${ }^{\ddagger}$ ).


Figure 2.12 For maximum bending moment at support $B$

## v) For maximum bending moment at support $D$

The relevant arrangement of loads is shown in Figure 2.13. Comments made in d) also apply here.


Figure 2.13 For maximum bending moment at support D
vi) For critical curtailment and hogging in span $C D$

The relevant arrangement of loads is shown in Figure 2.14.


Figure 2.14 For curtailment and hogging in span CD
Eurocode 2 requires that all spans should be loaded with either $\gamma_{G, \text { sup }}$ or $\gamma_{\mathcal{G}, \text { inf }}$ (as per Table 2.16). As illustrated in Figure 2.14, using $\gamma_{G, i n f}=1.0$ might be critical for curtailment and hogging in spans.

[^2]EC1-1-1:
6.3.1.1 (10)
\& NA
CI. 2.4.3(2)
6.3.1.2 (10)
\& NA

| The Concrete Centre" | Propped cantilever | Calculated by | chg | Job no. CCIP - 041 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Checked by | web | Sheet no. | 1 |
|  |  | Client | TCC | Date | Oct 09 |

### 2.12.3 Propped cantilever

Determine the Equilibrium, ULS and SLS (deformation) load combinations for the propped cantilever shown in Figure 2.15. The action $P$ at the end of the cantilever arises from the permanent action of a wall.


Figure 2.15 Propped cantilever beam and loading
For the purposes of this example, the permanent action $P$ is considered to be from a separate source than the self-weight of the structure so both $\gamma_{G, \text { sup }}$ and $\gamma_{G, \text { inf }}$ need to be considered.
a) Equilibrium limit state (EQU) for maximum uplift at $A$


Figure 2.16 EQU: maximum uplift at $A$
b) Ultimate limit state (ULS)
i) For maximum moment at $B$ and anchorage of top reinforcement $B A$


Figure 2.17 ULS: maximum moment at $B$

[^3]
## ECO:

Table 1.2(B),
Note 3

## ECO:

Table A1.2 (A)
\& NA

## ECO:

6.4.3.1 (4),

Table A1.2 (A)
\& NA

ECO: Tables A1.1,
A1.2 (B) \& NA
ii) For maximum sagging moment $A B$


## Figure 2.18 ULS: maximum span moment $A B$

## Notes

1 Depending on the magnitude of $g_{k}, q_{k}$ length $A B$ and $B C, \gamma_{G k, i n f} g_{k}\left(=1.0 g_{k}\right)$ may be more critical for span moment.
2 The magnitude of the load combination indicated are those for Exp. (6.10) of BS EN 1990. The worst case of Exp. (6.10a) and Exp. (6.10b) may also have been used.

3 Presuming supports $A$ and $B$ were columns then the critical load combination for Column A would be as Figure 2.18. For column B the critical load combination might be either as Figure 2.17 or 2.18 .
c) Serviceability limit state (SLS) of deformation: (quasi-permanent loads)
i) For maximum deformation at $C$

*Assuming office area

Figure 2.19 SLS: maximum deformation at $C$

## ii) For maximum deformation $A B$



* Assuming office area

Figure 2.20 SLS: maximum deformation $A B$

## Notes

Quasi-permanent load combinations may also be used for calculations of crack widths or controlling cracking, i.e. the same load combinations as shown in Figures 2.19 and 2.20 may be used to determine SLS moment to determine stress in reinforcement. The characteristic and/or frequent combinations may be appropriate for other SLS limit states: for example, it is recommended that the frequent combination is used to determine whether a member has cracked or not.

ECO:
Table A1.1,
A1.2 (B) \& NA

## ECO:

Tables A1.1, A1.2.2, A1.4 \&
NA

| The Concrete Centre" PART OF THE MINERAL PRODUCTS ASSOCIATION | Project details <br> Overall stability | Calculated by | chg | Job no. | CIP-041 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Checked by | web | Sheet no. | 1 |
|  |  | Client | TCC | Date | Oct 09 |

### 2.12.4 Overall stability (EQU)

For the frame shown in Figure 2.21, identify the various load arrangements to check overall stability (EQU) against overturning. Assume that the structure is an office block and that the loads $q_{k 2}$ and $q_{k 3}$ may be treated as arising from one source.


Figure 2.21 Frame configuration
a) EQU - Treating the floor imposed load as the leading variable action


Figure 2.22 Frame with floor variable action as leading variable action
Tables 2.16
\& 2.17

See Table 2.17 for values of $\psi_{0}$
b) EQU - Treating the roof imposed load as the leading variable action


Figure 2.23 Frame with roof variable action as leading variable action
c) EQU - Treating wind as the leading variable action


Figure 2.24 Frame with wind as lead variable action

Tables 2.16
\& 2.17

Tables 2.16
\& 2.17

## 3 Slabs

### 3.0 General

The calculations in this section are presented in the following sub-sections:
3.1 A simply supported one-way slab
3.2 A continuous one-way slab
3.3 A continuous ribbed slab
3.4 A bay of a flat slab
3.5 A stair flight.

These calculations are intended to show what might be deemed typical hand calculations. They are illustrative of the Code and are not necessarily best practice. The first three sub-sections include detailing checks e.g. curtailment lengths determined strictly in accordance with the provisions of BS EN 1992-1-1. The flat slab calculation is supplemented by a commentary.

A general method of designing slabs is shown below.

- Determine design life.
- Assess actions on the slab.
- Assess durability requirements and determine concrete strength.
- Check cover requirements for appropriate fire resistance period.
- Calculate minimum cover for durability, fire and bond requirements.
- Determine which combinations of actions apply.
- Determine loading arrangements.
- Analyse structure to obtain critical moments and shear forces.
- Design flexural reinforcement.
- Check deflection.
- Check shear capacity.
- Other design checks:

Check minimum reinforcement Check cracking (size or spacing of bars) Check effects of partial fixity Check secondary reinforcement.

- Check curtailment.
- Check anchorage.
- Check laps.

ECO \& NA Table NA.2. 1
EC1 \& NA
Table 4.1
BS 8500-1: Tables A4 \& A5
EC2-1-2: Tables 5.8,
5.9, 5.10 \& 5.11

## Cl. 4.4.1

ECO \& NA Tables NA.A1.1 \& NA.A1.2 (B)
Cl. 5.1.3(1) \& NA
Cl. 5.4, 5.5, 5.6
Cl. 6.1
Cl. 7.4
Cl. 6.2
Cl. 9.3.1.1(1), 9.2.1.1(1)
Cl. 7.3, Tables 7.2 N \& 7.3 N
Cl. 9.3.1.2(2)
Cl. 9.3.1.1(2), 9.3.1.4(1)
Cl. 9.3.1.1(4), 9.2.1.3, Fig. 9.2
Cl. 9.3.1.2, 8.4.4, 9.3.1.1(4)
Cl. 9.2.1.5(1), 9.2.1.5(2)
Cl. 8.7.3

### 3.1 Simply supported one-way slab

This calculation is intended to show a typical basic hand calculation.


## Fire:

Check adequacy of section for 1 hour fire resistance (i.e. REI 60).
Thickness, $h_{s, \text { min }}=80 \mathrm{~mm}$ cf. 175 mm proposed $\quad \therefore$ OK
Axis distance, $a_{\min }=20 \mathrm{~mm}$ cf. $25+\phi / 2=31$ i.e. not critical $\therefore$ OK
$\therefore$ choose $c_{\text {nom }}=25 \mathrm{~mm}$

### 3.1.3 Load combination (and arrangement)

Ultimate load, n:
By inspection, BS EN 1990 Exp. (6.10b) governs
$\therefore n=1.25 \times 5.9+1.5 \times 3.3=12.3 \mathrm{kN} / \mathrm{m}^{2}$

### 3.1.4 Analysis

Design moment:
$M_{E d}=12.3 \times 4.8^{2} / 8=35.4 \mathrm{kNm}$
Shear force:
$V=12.3 \times 4.8 / 2=29.5 \mathrm{kN} / \mathrm{m}$

### 3.1.5 Flexural design

Effective depth:
$d=175-25-12 / 2=144 \mathrm{~mm}$
Flexure in span:
$K=M_{E d} / b d^{2} f_{c k}=35.4 \times 10^{6} /\left(1000 \times 144^{2} \times 30\right)=0.057$
$z / d=0.95$
$z=0.95 \times 144=137 \mathrm{~mm}$
$A_{s}=M_{E d} / f_{y d} z=35.4 \times 10^{6} /(137 \times 500 / 1.15)=594 \mathrm{~mm}^{2} / \mathrm{m}$

$$
(\rho=0.41 \%)
$$

Try H12@175 B1 (645 $\left.\mathrm{mm}^{2} / \mathrm{m}\right)$

### 3.1.6 Deflection

Check span-to-effective-depth ratio.
Basic span-to-effective-depth ratio for $\rho=0.41 \%=20$
$A_{s, \text { prov }} / A_{5, \text { req }}=645 / 599=1.08$
Max. $\operatorname{span}=20 \times 1.08 \times 144=3110 \mathrm{~mm}$ i.e. $<4800 \mathrm{~mm} \quad \therefore \underline{\text { no good }}$
Consider in more detail:
Allowable $\| d=N \times K \times F 1 \times F 2 \times F 3$
where

$$
\begin{aligned}
N & =25.6\left(\rho=0.41 \%, f_{c k}=30 \mathrm{MPa}\right) \\
K & =1.0(\text { simply supported }) \\
\mathrm{F} 1 & =1.0\left(b_{\text {eff }} / b_{w}=1.0\right) \\
\mathrm{F} 2 & =1.0(5 \mathrm{san}<7.0 \mathrm{~m}) \\
\mathrm{F} 3 & =310 / \sigma_{s} \leq 1.5
\end{aligned}
$$

EC2-1-2:
4.1(1), 5.1(1)
\& Table 5.8

Fig. 2.5
ECO:
Exp. (6.10b)

Fig. 3.5
Appendix A1
Table C5

Appendix B
Table 7.4N \& NA
Exp. (7.17)
Cl. 7.4.2,

Appendix C7,
Tables C1O-C13
where ${ }^{\ddagger}$

$$
\sigma_{s}=\sigma_{\text {su }}\left(A_{s, r e q} / A_{s, p r o v}\right) 1 / \delta
$$

where
$\sigma_{\text {su }} \approx 242 \mathrm{MPa}$ (From Figure C3 and

$$
\left.g_{k} / q_{k}=1.79, \psi_{2}=0.3, \gamma_{G}=1.25\right)
$$

$\delta=$ redistribution ratio $=1.0$
$\therefore \sigma_{5} \approx 242 \times 594 / 645=222$
$\therefore F 3=310 / 222=1.40 \leq 1.5$
$\therefore$ Allowable $/ / d=25.6 \times 1.40=35.8$
Actual $/ / d=4800 / 144=33.3$

$$
\text { UseH12@175B1(645 } \frac{\therefore \text { OK }}{\left.\mathrm{mm}^{2} / \mathrm{m}\right)}
$$

### 3.1.7 Shear

By inspection, OK
However, if considered critical:
$V=29.5 \mathrm{kN} / \mathrm{m}$ as before
$V_{E d}=29.5-0.14 \times 12.3=27.8 \mathrm{kN} / \mathrm{m}$
$v_{E d}=27.8 \times 10^{3} / 144 \times 10^{3}=0.19 \mathrm{MPa}$
$v_{R d, c}=0.53 \mathrm{MPa}$
$\therefore$ No shear reinforcement required

### 3.1.8 Summary of design



Figure 3.2 Simply supported slab: summary

### 3.1.9 Detailing checks

It is presumed that the detailer would take the design summarised above and detail the slab to normal best practice, e.g. to SMDSC[9] or to How to design concrete structures using Eurocode 2, ${ }^{[8]}$ Chapter 10, Detailing. This would usually include dimensioning and detailing curtailment, laps, U-bars and also undertaking the other checks detailed below. See also 3.2.10 detailing checks for a continuous one-way slab.
a) Minimum areas

Minimum area of reinforcement:
$A_{s, \min }=0.26\left(f_{c t m} / f_{y k}\right) b_{t} d \geq 0.0013 b_{t} d$
CI. 9.3.1.1, 9.2.1.1
where

$$
\begin{aligned}
& b_{t}=\text { width of tension zone } \\
& f_{c t m}=0.30 \times f_{c k} 0.666
\end{aligned}
$$

## Table 3.1

[^4]
$$
(\rho=0.15 \%)
$$
$\therefore \mathrm{H} 12$ @ $175 \mathrm{B1}$ OK

Crack control:

OK by inspection.
Maximum spacing of bars:
$<3 \mathrm{~h}<400 \mathrm{~mm}$
Table 7.2N \& NA
Cl. 9.3.1.1.(3)
Cl. 9.3.1.1.(2)
Cl. 9.3.1.2.(2)

SMDSC ${ }^{[9]}$ :
Fig. 6.4;
How to ${ }^{[8]}$ :
Detailing
Cl. 9.3.1.2.(1)

UseH12@350B1T1 U-bars

In accordance with SMDSC[9] detail MS3 lap U-bars 500 mm with main steel, curtail T1 leg of U-bar 0.11 (= say 500 mm ) from face of support.
§ A free unsupported edge is required to use 'longitudinal and transverse
reinforcement' generally using $U$-bars with legs at least 2 h long. For slabs 150 mm deep or greater, SMDSC[9] standard detail recommends $U$-bars lapping 500 mm with bottom steel and extending 0.11 top into span.

### 3.2 Continuous one-way solid slab

This calculation is intended to show in detail the provisions of designing a slab to Eurocode 2 using essentially the same slab as used in Example 3.1.


## Bending moment:

End span

$$
M_{\mathrm{Ed}}=0.086 \times 12.3 \times 5.975^{2}=37.8 \mathrm{kNm} / \mathrm{m}
$$

1st internal support
Internal spans and supports

## Shear:

| End support | $V_{E d}=0.40 \times 12.3 \times 5.975$ | $=29.4 \mathrm{kN} / \mathrm{m}$ |
| :--- | :--- | :--- |
| 1st interior support | $V_{E d}=0.60 \times 12.3 \times 5.975$ | $=44.1 \mathrm{kN} / \mathrm{m}$ |

### 3.2.5 Flexural design: span

a) End span (and 1st internal support)

Effective depth, d:
$d=h-c_{\text {nom }}-\phi / 2$

$$
=175-25-12 / 2=144 \mathrm{~mm}
$$

Relative flexural stress, $K$ :
$K=M_{E d} l b d^{2} f_{c k}=37.8 \times 10^{6} / 1000 \times 144^{2} \times 30=0.061$
$K^{\prime}=0.207$
or restricting $x / d$ to 0.45
$K^{\prime}=0.168$
$\therefore$ by inspection, section is under-reinforced
(i.e. no compression reinforcement required).

Lever arm, z:

$$
\begin{aligned}
z & =(d / 2)\left[1+(1-3.53 K)^{0.5}\right] \leq 0.95 d^{\ddagger} \\
& =(144 / 2)\left[1+(1-3.53 \times 0.061)^{0.5}\right]=0.945 d=136 \mathrm{~mm}
\end{aligned}
$$

Area of steel, $A_{s}$ :
$A_{5}=M_{E d} / f_{y d} z$
$=37.8 \times 10^{6} /(500 / 1.15 \times 136)=639 \mathrm{~mm}^{2} / \mathrm{m}$

$$
(\rho=0.44 \%)
$$

Try H12@175B1(645 $\left.\mathrm{mm}^{2} / \mathrm{m}\right)$
b) Internal spans and supports

Lever arm, z:
By inspection, $z=0.95 d=0.95 \times 144=137 \mathrm{~mm}$
Area of steel, $A_{s}$ :
$A_{s}=M_{E d} / f_{y d} z^{z}$
$=27.7 \times 10^{6} /(500 / 1.15 \times 137)=465 \mathrm{~mm}^{2} / \mathrm{m}$

$$
(\rho=0.32 \%)
$$

Try H12 @ 225 B1 (502 $\mathrm{mm}^{2} / \mathrm{m}$ )

[^5]Cl. 5.1.1(7)

Table C2

Appendix A1

Fig. 3.5
Appendix A1

Fig. 3.5
Appendix A1

### 3.2.6 Deflection: end span

Check end span-to-effective-depth ratio.
Allowable $/ / d=N \times K \times F 1 \times F 2 \times F 3$
where
$N=$ basic effective depth to span ratio:

$$
\rho=0.44 \%
$$

$$
\rho_{O}=f_{c k} 0.5 \times 10^{-3}=0.55 \% \therefore \text { use Exp. (7.16a) }
$$

$$
N=11+1.5 f_{c k} 0.5 \rho_{O} / \rho+3.2 f_{c k} 0.5\left(\rho_{O} / \rho-1\right)^{1.5}
$$

$$
=11+1.5 \times 30^{0.5} \times 0.55 / 0.44+3.2 \times 30^{0.5}(0.55 / 0.44-1)^{1.5}
$$

$$
=11.0+10.3+2.2=23.5
$$

$K=$ structural system factor
$=1.3$ (end span of continuous slab)
F1 = flanged section factor

$$
=1.0\left(b_{e f f} / b_{w}=1.0\right)
$$

F2 = factor for long spans associated with brittle partitions

$$
=1.0(\text { span }<7.0 \mathrm{~m})
$$

F3 $=310 / \sigma_{s} \leq 1.5$
where ${ }^{\ddagger}$

$$
\begin{aligned}
\sigma_{s} & =\left(f_{y k} / \gamma_{S}\right)\left(A_{s, r \text { rel }} / A_{s, \text { prov }}\right)(\text { SLS loads } / \text { ULS loads }(1 / \delta) \\
& =f_{\text {yd }} \times\left(A_{s, \text { rea }} / A_{s, p r o v}\right) \times\left(g_{k}+\psi_{2} q_{k}\right) /\left(\gamma_{G} g_{k}+\gamma_{Q} q_{k}\right)(1 / \delta) \\
& =(500 / 1.15) \times(639 / 645) \times[(5.9+0.3 \times 3.3) / 12.3] \times 1.085 \\
& =434.8 \times 0.99 \times 0.56 \times 1.08=260 \mathrm{MPa}
\end{aligned}
$$

$$
F 3=310 / 260=1.19
$$

$$
\text { Note: } A_{5, p r o v} / A_{\text {s,req }} \leq 1.50
$$

Allowable $I / d=N \times K \times F 1 \times F 2 \times F 3$

$$
=23.5 \times 1.3 \times 1.0 \times 1.19
$$

$$
=36.4
$$

Max. span $=36.4 \times 144=5675 \mathrm{~mm}$, i.e. $<5795 \mathrm{~mm} \quad \therefore$ No good
Try increasing reinforcement to H 12 @ $150 \mathrm{~B} 1\left(754 \mathrm{~mm}^{2} / \mathrm{m}\right)$

$$
\sigma_{5}=434.8 \times 639 / 754 \times 0.56 \times 1.08=223
$$

$$
F 3=310 / 223=1.39
$$

Allowable $/ / d=23.5 \times 1.3 \times 1.0 \times 1.39$

$$
=42.5
$$

[^6]Appendix B
Cl. 7.4.2(2)

Exp. (7.16a)
Cl. 7.4.2
Cl. 7.4.2
Cl. 7.4.2
Cl. 7.4.2, Exp. (7.17)

Table 7.4N \& NA,
Table NA.5:
Note 5
Exp. (7.17)
ECO: A1.2.2
Table C14

Table 7.4N \& NA,
Table NA.5:
Note 5

Max. span $=42.5 \times 144=6120 \mathrm{~mm}$, i.e. $>5795 \mathrm{~mm}$

### 3.2.7 Deflection: internal span

Check internal span-to-effective-depth ratio.
Allowable $\mathrm{I} / \mathrm{d}=\mathrm{N} \times \mathrm{K} \times \mathrm{F} 1 \times \mathrm{F} 2 \times \mathrm{F} 3$
where
$N=$ basic effective depth to span ratio:
$\rho=0.32 \%$
$\rho_{O}=f_{c k}{ }^{0.5} \times 10^{-3}=0.55 \% \therefore$ use Exp. (7.16a)
$N=11+1.5 f_{c k}{ }^{0.5} \rho_{O} / \rho+3.2 f_{c k}{ }^{0.5}\left(\rho_{O} / \rho-1\right)^{1.5}$
$=11+1.5 \times 30^{0.5} \times 0.55 / 0.32+3.2 \times 30^{0.5}(0.55 / 0.32-1)^{1.5}$
$=11.0+14.1+10.7=35.8$
$K=$ structural system factor
$=1.5$ (interior span of continuous slab)
F1 = flanged section factor
$=1.0\left(b_{\text {eff }} / b_{w}=1.0\right)$
F2 = factor for long spans associated with brittle partitions $=1.0$ (span < 7.0 m)
$F 3=310 / \sigma_{5} \leq 1.5$
where
$\sigma_{s}=f_{y d} \times\left(A_{s, r e q} / A_{s, p r o v}\right) \times\left(g_{k}+\psi_{2} q_{k}\right) /\left(\gamma_{G} g_{k}+\gamma_{Q} q_{k}\right)(1 / \delta)$
$=(500 / 1.15) \times(465 / 502) \times[(5.9+0.3 \times 3.3) / 12.3] \times 1.03$ $=434.8 \times 0.93 \times 0.56 \times 1.03=233 \mathrm{MPa}$
F3 $=310 / 233=1.33$
Allowable $/ / d=N \times K \times F 1 \times F 2 \times F 3$
$=35.8 \times 1.5 \times 1.0 \times 1.33$
$=71.4$
Max. span $=71.4 \times 144=10280 \mathrm{~mm}$ i.e. $>5795 \mathrm{~mm}$
Use H12 @ 225 B1 (502 $\mathrm{mm}^{2} / \mathrm{m}$ ) in internal spans

### 3.2.8 Shear

Design shear force, $V_{E d}$ :
At $d$ from face of end support,
$V_{E d}=29.4-(0.144+0.0875) \times 12.3=26.6 \mathrm{kN} / \mathrm{m}$
At d from face of 1 st interior support,
$V_{E d}=44.1-(0.144+0.0875) \times 12.3=41.3 \mathrm{kN} / \mathrm{m}$
Shear resistance, $V_{\text {Rd, } c}$ :
$V_{R d, c}=\left(0.18 / \gamma_{C}\right) k\left(100 \rho_{\mathrm{l}} f_{c k}\right)^{0.333} b_{w} d \geq 0.0035 k^{1.5} f_{c k} 0.5 b_{w} d$
Cl. 6.2.1(8)
Cl. 7.4.2(2)

Exp. (7.16a)
CI. 7.4.2
CI. 7.4.2
Cl. 7.4.2
Cl. 7.4.2, Exp.
(7.17), Table 7.4N
\& NA, Table NA. 5
Note 5.
Exp. (7.17)
ECO: A1.2.2
Table C14
Cl. 6.2.2(1)
where

$$
\begin{aligned}
& k=1+(200 / d)^{0.5} \leq 2.0 \text { as } d<200 \mathrm{~mm} \\
& k=2.0 \\
& \rho_{1}=A_{s l} / b d
\end{aligned}
$$

Assuming 50\% curtailment (at end support)
$=50 \% \times 754 /(144 \times 1000)=0.26 \%$
$V_{R d, c}=(0.18 / 1.5) \times 2.0 \times(100 \times 0.26 / 100 \times 30)^{0.33} \times 1000 \times 144$
$=0.12 \times 2 \times 1.97 \times 1000 \times 144$
$=0.47 \times 1000 \times 144=68.1 \mathrm{kN} / \mathrm{m}$
But $V_{\text {Rd,cmin }}=0.035 \mathrm{k}^{1.5 f_{c k}} 0.5 b_{w} d$
where
$k \quad=1+(200 / d)^{0.5} \leq 2.0$; as before $k=2.0$
$V_{\text {Rd, } \text { cmin }}=0.035 \times 2^{1.5} \times 30^{0.5} \times 1000 \times 144$
$=0.54 \times 1000 \times 144=77.6 \mathrm{kN} / \mathrm{m}$
$\therefore V_{R d, c}=77.6 \mathrm{kN} / \mathrm{m}$
$\therefore$ OK, no shear reinforcement required at end or 1 st internal
supports
$\therefore$ H12@150B1 \& H12@ 175 T1 OK
By inspection, shear at other internal supports OK.

### 3.2.9 Summary of design



Figure 3.4 Continuous solid slab: design summary

## Commentary

It is usually presumed that the detailer would take the design summarised above together with the general arrangement illustrated in Figure 3.3 and detail the slab to normal best practice. The detailer's responsibilities, standards and timescales should be clearly defined but it would be usual for the detailer to draw and schedule not only the designed reinforcement but all the reinforcement required to provide a compliant and buildable solution. The work would usually include checking the following aspects and providing appropriate detailing :

- Minimum areas
- Curtailment lengths
- Anchorages


## 3.2: Continuous one-way solid slab

- Laps
- U-bars
- Rationalisation
- Critical dimensions
- Details and sections

The determination of minimum reinforcement areas, curtailment lengths, anchorages and laps using the principles in Eurocode 2 is shown in detail in the following calculations. In practice these would be determined from published tables of data or by using reference texts ${ }^{[8,9]}$. Nonetheless the designer should check the drawing for design intent and compliance with standards. It is therefore necessary for the designer to understand and agree the principles of the detailing used.

### 3.2.10 Detailing checks

a) Minimum areas

Minimum area of longitudinal tension (flexural) reinforcement
$A_{s, \min }=0.26\left(f_{c t m} / f_{\text {yk }}\right) b_{t} d \geq 0.0013 b_{t} d$
where
$b_{t}=$ width of tension zone
$f_{c t m}=0.30 \times f_{c k}^{0.667}$
$A_{s, \min }=0.26 \times 0.30 \times 30^{0.667} \times 1000 \times 144 / 500=216 \mathrm{~mm}^{2} / \mathrm{m}$ ( $\rho=0.15 \%$ )
$\therefore \mathrm{H} 12 @ 225 \mathrm{B1}$ OK

## Secondary (transverse reinforcement)

Minimum $20 \% A_{\text {s,req }}$
$20 \% A_{5, \text { req }}=0.2 \times 502=100 \mathrm{~mm}^{2} / \mathrm{m}$
Consider $A_{s, \text { min }}$ to apply as before.
$A_{s, \min }=216 \mathrm{~mm}^{2} / \mathrm{m}$
Try H1O@ 350 B2 (224 $\mathrm{mm}^{2} / \mathrm{m}$ )
Check edge.
Assuming partial fixity exists at edges, $25 \%$ of $A_{s}$ is required to extend $0.2 \times$ the length of the adjacent span.
$A_{s, r e q}=25 \% \times 639=160 \mathrm{~mm}^{2} / \mathrm{m}$
$A_{s, \text { min }}$ as before $=216 \mathrm{~mm}^{2} / \mathrm{m}$
$\therefore$ Use H1O@ $350\left(224 \mathrm{~mm}^{2} / \mathrm{m}\right)$ U-bars at edges
Cl. 9.3.1.1, 9.2.1.1

Table 3.1
Cl. 9.3.1.1(2)

SMDSC ${ }^{[9]}$
Cl. 9.3.1.2(2)
CI. 9.3.1.1, 9.2.1.1

Curtail $0.2 \times 5975=1195 \mathrm{~mm}$, say 1200 mm measured from face of support ${ }^{\ddagger}$.

## Maximum spacing of bars

Maximum spacing of bars $<3 \mathrm{~h}<400 \mathrm{~mm}$

## Crack control

As slab < 200 mm , measures to control cracking are unnecessary.
However, as a check on end span:
Loading is the main cause of cracking,
$\therefore$ use Table 7.2 N or Table 7.3 N for $w_{\max }=0.4 \mathrm{~mm}$ and $\sigma_{s}=241 \mathrm{MPa}$ (see deflection check).
Max. bar size $=20 \mathrm{~mm}$
or max. spacing $=250 \mathrm{~mm}$

$$
\therefore \text { H12 @ } 150 \text { B1 OK. }
$$

## End supports: effects of partial fixity

Assuming partial fixity exists at end supports, $15 \%$ of $A_{5}$ is required to extend $0.2 \times$ the length of the adjacent span.

$$
\begin{aligned}
& A_{s, \text { req }}=15 \% \times 639=96 \mathrm{~mm}^{2} / \mathrm{m} \\
& \text { But, } A_{s, \text { min }} \text { as before }=216 \mathrm{~mm}^{2} / \mathrm{m}
\end{aligned}
$$

$$
(\rho=0.15 \%)
$$

One option would be to use bob bars, but choose to use U-bars Try H12 @ 450 ( $251 \mathrm{~mm}^{2} / \mathrm{m}$ ) U-bars at supports

Curtail $0.2 \times 5975=$ say, 1200 mm measured from face of support. ${ }^{\ddagger}$
b) Curtailment

## i) End span, bottom reinforcement

Assuming end support to be simply supported, $50 \%$ of $A_{5}$ should extend into the support.
$50 \% \times 639=320 \mathrm{~mm}^{2} / \mathrm{m}$

$$
\text { Try H12@ } 300\left(376 \mathrm{~mm}^{2} / \mathrm{m}\right) \text { at supports }
$$

In theory, $50 \%$ curtailment of reinforcement may take place $a_{1}$ from where the moment of resistance of the section with the remaining
Cl. 9.3.1.2(1)

Note, 9.2.1.3 (2) $50 \%$ would be adequate to resist the applied bending moment. In practice, it is usual to determine the curtailment distance as being $a_{1}$ from where $M_{E d}=M_{E d, \text { max }} / 2$.

[^7]
b) Bending moment $M_{E d x}$

c) Tensile force in bottom reinforcement

d) Curtailment of bottom reinforcement

Figure 3.5 Curtailment of bottom reinforcement: actions, bending moments, forces in reinforcement and curtailment

Thus, for a single simply supported span supporting a UDL of $n$, $M_{E d, \max }=0.086 \mathrm{nl}^{2} ; R_{A}=0.4 \mathrm{nl}$
At distance, $X$, from end support, moment,
$M_{E d} @ X=R_{A} X-n X^{2} / 2$
$\therefore$ when $M @ X=M_{E d, \max } / 2$ :
$0.086 n I^{2} / 2=0.4 n \mid X-n X^{2} / 2$

Assuming $X=x 1$
$\left.0.043 n\right|^{2}=0.4 n|x|-\left.n x^{2}\right|^{2} / 2$
$0.043=0.4 x-x^{2} / 2$
$0=0.043-0.4 x+x^{2} / 2$
$x \quad=0.128$ or 0.672 , say 0.13 and 0.66
$\therefore$ at end support $50 \%$ moment occurs at $0.13 \times$ span
$0.13 \times 5975=777 \mathrm{~mm}$
Shift rule: for slabs, a, may be taken as $d$ ( $=144 \mathrm{~mm}$ ),
$\therefore$ curtail to $50 \%$ of required reinforcement at $777-144$
$=633 \mathrm{~mm}$ from centreline of support.
Say 500 mm from face of support $A$
$\therefore$ in end span at 1st internal support $50 \%$ moment occurs at 0.66 $\times$ span
$0.66 \times 5975=3944 \mathrm{~mm}$

Shift rule: for slabs a may be taken as $d$ (= 144 mm ),
$\therefore$ curtail to $50 \%$ of required reinforcement at $3944+144$
$=4088 \mathrm{~mm}$ from support A
or $5975-4088=987 \mathrm{~mm}$ from centreline of support $B$.
Say 850 mm from face of support $B$

## ii) 1 st interior support, top reinforcement

Presuming 50\% curtailment of reinforcement is required this may take place $a_{1}$ from where the moment of resistance of the section with the remaining $50 \%$ would be adequate. However, it is usual to determine the curtailment distance as being $a_{1}$ from where $M_{E d}=$ $M_{E d, \max } / 2$.

Thus, for the 1 st interior support supporting a UDL of $n$,
$M_{E d, \text { maxT }}=0.086 \mathrm{nl}^{2} ; R_{B}=0.6 \mathrm{nl}$
At distance $Y$ from end support, moment,
$M_{E d} @ Y=M_{E d, \max T}-R_{A} Y+n Y^{2} / 2$
$\therefore$ when $M @ Y=M_{E d, \operatorname{maxT} T} / 2$
$0.086 n l^{2} / 2=0.086 n l^{2}-0.6 n I Y+n Y^{2} / 2$
Assuming $Y=y l$
$0.043 n l^{2}=0.086 n l^{2}-0.6 n l y l+n y^{2} l^{2} / 2$
$0=0.043-0.6 y+y^{2} / 2$
$y=0.077$ (or 1.122 ), say 0.08
$\therefore$ at end support $50 \%$ moment occurs at $0.08 \times$ span
$0.08 \times 5975=478 \mathrm{~mm}$
Shift rule: for slabs, a, may be taken as d 144 mm
$\therefore$ curtail to $50 \%$ of required reinforcement at $478+144$
$=622 \mathrm{~mm}$ from centreline of support.
$50 \%$ of reinforcement may be curtailed at, say,
600 mm from either face of support $B$
$100 \%$ curtailment may take place $a_{1}$ from where there is no hogging moment. Thus,
when M@Y = $M_{\text {Ed,maxT }} / 2$
$0=0.086 n I^{2}-0.6 n I Y+n Y^{2} / 2$
Assuming $Y=y l$
$0=0.086-0.6 y+y^{2} / 2$
$y=0.166$ (or 1.034 ), say 0.17
$\therefore$ at end support $50 \%$ moment occurs at $0.17 \times$ span
$0.17 \times 5975=1016 \mathrm{~mm}$
Shift rule: for slabs, $a_{1}$ may be taken as $d$
$\therefore$ curtail to $100 \%$ of required reinforcement at $1016+144$
$=1160 \mathrm{~mm}$ from centreline of support.
$100 \%$ of reinforcement may be curtailed at, say,
1100 mm from either face of support $B$.

## iii) Support B bottom steel at support

At the support $25 \%$ of span steel required
$0.25 \times 639=160 \mathrm{~mm}^{2}$
$A_{s, \text { min }}$ as before $=216 \mathrm{~mm}^{2} / \mathrm{m}$
For convenience use H12 @ $300 \mathrm{~B} 1\left(376 \mathrm{~mm}^{2} / \mathrm{m}\right)$
c) Anchorage at end support

As simply supported, $50 \%$ of $A_{s}$ should extend into the support.
This 50\% of $A_{s}$ should be anchored to resist a force of
$F_{E}=V_{E d} \times a_{1} / z$
where
$V_{E d}=$ the absolute value of the shear force
$a_{1}=d$, where the slab is not reinforced for shear
$z=$ lever arm of internal forces
$F_{E}=29.4 \times d / 0.95^{\ddagger} \quad d=30.9 \mathrm{kN} / \mathrm{m}$
Anchorage length, $I_{b d}$ :
$I_{b d}=\alpha I_{b, r q d} \geq I_{b, \min }$
where
$\alpha=$ conservatively 1.0
$I_{b, \text { rqd }}=$ basic anchorage length required
$=(\phi / 4)\left(\sigma_{s d} / f_{b d}\right)$
where

$$
\begin{aligned}
\phi & =\text { diameter of the bar }=12 \mathrm{~mm} \\
\sigma_{\text {sd }} & =\text { design stress in the bar at the ultimate limit state } \\
& =F_{E} / A_{s, p r o v} \\
& =30.9 \times 1000 / 376=81.5 \mathrm{MPa}
\end{aligned}
$$

[^8]
\[

$$
\begin{gathered}
\text { where } \\
\qquad \begin{array}{c}
\eta_{1}=1.0 \text { for 'good' conditions } \\
\eta_{2}=1.0 \text { for } \phi<32 \mathrm{~mm} \\
f_{c t, d}=\alpha_{c t} f_{c t, k} / \gamma_{C} \\
\text { where } \\
\alpha_{c t}=1.0 \\
f_{c t, k}=2.0 \\
\gamma_{C}=1.5
\end{array} \\
\therefore f_{b d}=2.25 \times 2.0 / 1.5=3.0 \mathrm{MPa} \\
=(\phi / 4) \sigma_{s d} / f_{b d} \\
\\
I_{b, r q d} \\
=(12 / 4) \times(267 / 3)=267 \mathrm{~mm} \\
I_{\text {Omin }} b= \\
=\max \left[0.3 \alpha \alpha_{6} I_{b, r q d} ; 15 \phi / 200 \mathrm{~mm}\right] \\
= \\
= \\
\max [0.3 \times 1.5 \times 229 ; 15 \times 12 ; 200]
\end{gathered}
$$
\]

$\therefore I_{O}=\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{5} \alpha_{6} I_{\text {b,rqd }} \geq I_{\text {Omin }}$

$$
=1.0 \times 0.84 \times 1.0 \times 1.0 \times 1.5 \times 329 \geq 200=414 \mathrm{~mm}
$$

But good practice suggests minimum lap of max[tension lap; 500]
$\therefore$ lap with bottom reinforcement $=500 \mathrm{~mm}$ starting 500 from face of support.

### 3.2.11 Summary of reinforcement details



Figure 3.6 Continuous solid slab: reinforcement details


Figure 3.7 Section A-A showing reinforcement details at edge

### 3.3 Continuous ribbed slab

| The Concrete Centre"' |  | Continuous ribbed slab | Calculate |  | Job no. CCIP - 041 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Checked |  | Sheet no. |  |
|  |  | Client |  | Date | Oct 09 |
| This continuous 300 mm deep ribbed slab has spans of 7.5 m , 9.0 m and 7.5 m and is required for an office to support a variable action of $5 \mathrm{kN} / \mathrm{m}^{2}$. It is supported on wide beams that are the same depth as the slab designed in Section 4.3. One hour fire resistance is required: internal environment. The ribs are 150 mm wide @ 900 mm centres. Links are required in span to facilitate prefabrication of reinforcement. Assume that partitions are liable to be damaged by excessive deflections. In order to reduce deformations yet maintain a shallow profile use $f_{c k}=35 \mathrm{MPa}$ and $f_{y k}=500 \mathrm{MPa}$. <br> Figure 3.8 Continuous ribbed slab example <br> Notes on ribbed slab design <br> There are various established methods for analysing ribbed slabs and dealing with the solid areas: <br> - Using UDLs simplifies the analysis and remains popular. One method is to ignore the weight of the solid part of the slab in the analysis of the ribbed slab. (The weight of the solid area is then added to the loads on the supporting beam). This ignores the minor effect the solid areas have on bending in the ribbed slab. <br> - Alternatively the weight of the solid part of the slab is spread as a UDL over the whole span. This is conservative both in terms of moment and shears at solid/shear interfaces but underestimates hogging in internal spans. <br> - The advent of computer analysis has made analysis using patch loads more viable and the resulting analysis more accurate. <br> - The ribbed part of the slab may be designed to span between solid areas. (The ribs span d/2 into the solid areas, which are assumed to act as beams in the orthogonal direction.) However, having to accommodate torsions induced in supporting beams and columns usually makes it simpler to design from centreline of support to centreline of support. <br> - Analysis programs can cope with the change of section and therefore change of stiffness along the length of the slab. Moments would be attracted to the stiffer, solid parts at supports. However, the difference in stiffness between the ribbed and the solid parts is generally ignored. |  |  |  |  |  |  |

In line with good practice analysis, this example is carried out using centreline of support to centreline of support and patch loads ${ }^{\ddagger}$. Constant stiffness along the length of the slab has been assumed.


Figure 3.9 Long section through slab

$r^{150}+\quad 750 \quad \gamma^{150} \psi$
Figure 3.10 Section A-A: section through ribbed slab

### 3.3.1 Actions

Permanent: UDL $\mathrm{kN} / \mathrm{m}^{2}$

| Self-weight: | $\begin{array}{l}\mathrm{kN} / \mathrm{m}^{2} \\ \text { Rib } 0.15 \times 0.2 \times 25 / 0.9\end{array}$ |  | $=0.833$ |
| :--- | :--- | :---: | :---: |$]$

[^9]
## Permanent: patch load

Extra over solid in beam area as patch load

$$
(0.2 \times 25-0.833)=4.167
$$

## Variable

Imposed $=4.00^{*}$
Allowance for partitions
Total variable action

### 3.3.2 Cover

Nominal cover, $c_{\text {nom }}$ :
$c_{\text {nom }}=c_{\text {min }}+\Delta c_{\text {dev }}$
where
$c_{\text {min }}=\max \left(c_{\text {min }, b} ; c_{\text {min }, \text { dur }}\right)$
where
$c_{\text {min }, b}=$ minimum cover due to bond
= diameter of bar.
Assume 20 mm main bars and 8 mm links
$c_{\text {min }, \text { dur }}=$ minimum cover due to environmental conditions. Assuming XC1 and C30/37 concrete, $c_{\text {min,dur }}=15 \mathrm{~mm}$

$$
\begin{aligned}
\Delta c_{\text {dev }}= & \text { allowance in design for deviation. Assuming no } \\
& \text { measurement of cover } \Delta c_{\text {dev }}=10 \mathrm{~mm}
\end{aligned}
$$

$\therefore c_{\text {nom }}=20+10$ to main bars or
$=15+10$ to links $\therefore$ critical

## Fire:

Check adequacy of section for REI 60.
Minimum slab thickness, $h_{s}=80 \mathrm{~mm}$ OK
Axis distance required
Minimum rib width $\quad b_{\text {min }}=120 \mathrm{~mm}$ with $a=25 \mathrm{~mm}$
or $\quad b_{\min }=200 \mathrm{~mm}$ with $a=12 \mathrm{~mm}$
$\therefore$ at 150 mm wide (min.) $a=20 \mathrm{~mm}$
By inspection, not critical.
Use 25 mm nominal cover to links

### 3.3.3 Load combination and arrangement

Ultimate load, n:
By inspection, Exp. (6.10b) is critical
$n_{\text {slab }}=1.25 \times 4.30+1.5 \times 5.0=13.38 \mathrm{kN} / \mathrm{m}^{2}$
$n_{\text {solid areas }}=1.25 \times(4.30+4.17)+1.5 \times 5.0=18.59 \mathrm{kN} / \mathrm{m}^{2}$

Exp. (4.1)
Cl. 4.4.1.2(3)

Table 4.1.
BS 8500-1:
Table A4
Cl. 4.4.1.2(3)

EC2-1-2: 5.7.5(1)

EC2-1-2: Table 5.8

EC2-1-2: Table 5.6

Fig. 2.5
ECO: Exp. (6.10b)
*Client requirements. See also BS EN 1991-1-1, Tables 6.1, 6.2, Cl. 6.3.2.1(8) \& NA.

## Arrangement:

Choose to use all-and-alternate-spans-loaded.

### 3.3.4 Analysis

Analysis by computer, includes $15 \%$ redistribution at support and none in the span. ${ }^{s}$

a) Elastic moments

b) Redistributed envelope

Figure 3.11 Bending moment diagrams

[^10]Cl. 5.1.3(1) \& NA option b

ECO: A1.2.2
\& NA, 5.3.1 (6)


Figure 3.12 Redistributed shears, kN/m

At solid/rib interface:
$A B @ 550 \mathrm{~mm}$ from $A$

$$
\begin{array}{ll}
M_{E d} \text { (sagging) } & =20.4 \mathrm{kNm} / \mathrm{m} \equiv 18.3 \mathrm{kNm} / \mathrm{rib} \\
V_{E d} & =32.5 \mathrm{kN} / \mathrm{m} \equiv 29.3 \mathrm{kN} / \mathrm{rib}
\end{array}
$$

BA @1000 mm from B

$$
\begin{array}{ll}
M_{\text {Ed }} \text { (hogging) } & =47.1 \mathrm{kNm} / \mathrm{m} \equiv 42.4 \mathrm{kNm} / \mathrm{rib} \\
V_{\text {Ed }} & =45.4 \mathrm{kN} / \mathrm{m} \equiv 40.9 \mathrm{kN} / \mathrm{rib}
\end{array}
$$

BC @ 1000 mm from $B$

$$
M_{\mathrm{Ed}} \text { (hogging) } \quad=43.0 \mathrm{kNm} / \mathrm{m} \equiv 38.7 \mathrm{kNm} / \mathrm{rib}
$$

$$
V_{\mathrm{Ed}} \quad=45.1 \mathrm{kN} / \mathrm{m} \quad \equiv 40.6 \mathrm{kN} / \mathrm{rib}
$$

Symmetrical about centreline of $B C$.

### 3.3.5 Flexural design, span $A-B$

a) Span A-B: Flexure
$M_{E d}=61.7 \mathrm{kNm} / \mathrm{m}$
$=55.5 \mathrm{kNm} / \mathrm{rib}$
$K=M_{E d} / b d^{2} f_{c k}$
where
$b=900 \mathrm{~mm}$
$d=300-25-8-20 / 2=257$ assuming 8 mm link at H 2 O in span
$f_{c k}=35 \mathrm{MPa}$
$\therefore K=55.5 \times 10^{6} /\left(900 \times 257^{2} \times 35\right)=0.027$
$K^{\prime}=0.207$
or restricting $x / d$ to 0.45
$K^{\prime}=0.168$
$K \leq K^{\prime} \therefore$ section under-reinforced and no compression reinforcement required.

$$
\begin{aligned}
z & =(d / 2)\left[1+(1-3.53 K)^{0.5}\right] \leq 0.95 d \\
& =(257 / 2)(1+0.951) \leq 0.95 \times 257 \\
& =251 \leq 244 \therefore z=244 \mathrm{~mm}
\end{aligned}
$$

But $z=d-0.4 x$
$\therefore x=2.5(d-z)=2.5(257-244)=33 \mathrm{~mm}$
$\therefore$ By inspection, neutral axis is in flange
$A_{s}=M_{E d} / f_{y d} z$
where

$$
\begin{aligned}
f_{y d} & =500 / 1.15=434.8 \mathrm{MPa} \\
& =55.5 \times 10^{6} /(434.8 \times 244)=523 \mathrm{~mm}^{2} / \mathrm{rib}
\end{aligned}
$$

Try 2 no. H2O/rib (628 $\mathrm{mm}^{2} /$ rib)

## b) Span A-B: Deflection

Allowable $\| d=N \times K \times F 1 \times F 2 \times F 3$
where

$$
\begin{aligned}
N= & \text { Basic } / / d \text { : check whether } \rho>\rho_{O} \text { and whether to use } \\
& \text { Exp. }(7.16 a) \text { or Exp. }(7.16 b) \\
& \rho_{O}=f_{c k} 0.5 / 1000=350.5 / 1000=0.59 \% \\
& \rho=A_{s} / A_{c}^{\ddagger}=A_{s, r e q} /\left[b_{w} d+\left(b_{\text {eff }}-b_{w}\right) h_{f}\right]
\end{aligned}
$$

where

$$
b_{w}=\text { min. width between tension and compression }
$$ chords. At bottom assuming 1/10 slope to rib:

$=150+2 \times(25+8+20 / 2) / 10$ $=159 \mathrm{~mm}$

$$
\rho=523 /(159(257+(900-159) \times 100)
$$

$$
=523 / 114963
$$

$$
=0.45 \%
$$

$\rho<\rho_{O} \therefore$ use Exp. (7.16a)

$$
\left.N=11+1.5 f_{c k}^{0.5} \rho / \rho_{O}+3.2 f_{c k}^{0.5}\left(\rho / \rho_{O}-1\right)^{1.5}\right]
$$

$$
=11+1.5 \times 350.5 \times 0.055 / 0.045+3.2 \times 350.5
$$

$$
(0.055 / 0.045-1)^{1.5}
$$

$$
=[11+10.8+2.0]=22.8
$$

$$
K=(\text { end span }) 1.3
$$

$$
\begin{aligned}
& \mathrm{F} 1=\left(b_{\text {eff }} / b_{w}=5.66\right) 0.8 \\
& \mathrm{~F} 2=7.0 / /_{\text {eff }}=7.0 / 7.5=(\text { span }>7.0 \mathrm{~m}) 0.93 \\
& \mathrm{~F} 3=310 / \sigma_{5} \leq 1.5
\end{aligned}
$$

Appendix A1

Appendix A1

Appendix C7
CI. 7.4.2(2)

PD 6687 ${ }^{[6]}$

Exp. (7.16a)

Table 7.4N \& NA, Table NA.5: Note 5
Cl. 7.4.2(2)
Cl. 7.4.2, Exp. (7.17)
\& NA; Table NA. 5

[^11]where ${ }^{\ddagger}$
\[

$$
\begin{aligned}
\sigma_{s}= & \left(f_{\mathrm{yk}} / \gamma_{S}\right)\left(A_{\text {s,req }} / A_{\text {s,prov }}\right)(\text { SLS loads } / \text { ULS loads })(1 / \delta) \\
= & 434.8(523 / 628)[(4.30+0.3 \times 5.0) / 13.38] \\
& (65.3 / 61.75) \\
= & 434.8 \times 0.83 \times 0.43 \times 1.06 \\
= & 164 \mathrm{MPa} \\
\mathrm{FB}= & 310 / \sigma_{5} \\
= & 310 / 164=1.89^{\#} \text { but } \leq 1.5, \text { therefore say } 1.50
\end{aligned}
$$
\]

$\therefore$ Permissible $/ / d=22.8 \times 1.3 \times 0.8 \times 0.93 \times 1.50=33.0$
Actual $/ / d=7500 / 257=29.2 \quad \therefore$ OK
Use 2 no. H2O/rib ( $628 \mathrm{~mm}^{2} / \mathrm{rib}$ )
c) Support A (and D): flexure (sagging) at solid/rib interface

Reinforcement at solid/rib interface needs to be designed for both moment and for additional tensile force due to shear (shift rule)
$M_{E d, \max }=18.3 \mathrm{kNm} / \mathrm{rib}$
$V_{E d, \text { max }}=29.3 \mathrm{kNm} / \mathrm{rib}$
At solid/rib interface
$A_{s}=M_{E d} / f_{y d} z+\Delta F_{t d} / f_{y d}$
where

$$
z=(d / 2)\left[1+(1-3.53 K)^{0.5}\right] \leq 0.95 d
$$

where
$K=M_{E d} / b d^{2} f_{c k}$
where
$b=900 \mathrm{~mm}$
$d=300-25-8-25-20 / 2=232$
assuming 8 mm links and H 25 B in edge beam

$$
\begin{aligned}
f_{c k} & =30 \\
& =18.3 \times 10^{6} /\left(900 \times 232^{2} \times 35\right)=0.011
\end{aligned}
$$

[^12]CI. 9.2.1.3.(2)
Cl. 9.2.1.3.(2),

Fig. 9.2


Figure 3.13 Section at solid/rib intersection

$$
\begin{aligned}
\therefore z & =(232 / 2)(1+0.980) \leq 0.95 \times 232 \\
& =230 \leq 220 \therefore z=220 \mathrm{~mm} \\
f_{y d} & =434.8 \mathrm{MPa} \\
\Delta F_{t d} & =0.5 V_{E d}(\cot \theta-\cot \alpha)
\end{aligned}
$$

where
$\theta=$ angle between the concrete compression strut and the beam axis. Assume $\cot \theta=2.5$ (as a maximum)
$\alpha=$ angle between shear reinforcement and the beam axis.
For vertical links, $\cot \alpha=0$
$\Delta F_{t d}=1.25 V_{E d}=1.25 \times 29.3=36.6 \mathrm{kN}$
$A_{5}=18.3 \times 10^{6} /(434.8 \times 220)+36.6 \times 10^{3} / 434.8$
$=191+84 \mathrm{~mm}^{2}=275 \mathrm{~mm}^{2}$

$$
\therefore \text { Try } 1 \text { no. H2O B in end supports* }
$$

d) Support $B$ (and $C$ ) (at centreline of support)
$M_{\mathrm{Ed}}=77.1 \mathrm{kNm} / \mathrm{m}$
$=69.4 \mathrm{kNm} / \mathrm{rib}$
$K=M_{E d} / b d^{2} f_{c k}$
where

$$
\begin{aligned}
d & =300-25 \text { cover }-12 \text { fabric }-8 \text { link }-20 / 2 \\
& =245
\end{aligned}
$$

$K=69.4 \times 10^{6} /\left(900 \times 245^{2} \times 35\right)=0.037$
By inspection, $K \leq K^{\prime}$

$$
\begin{aligned}
z & =(245 / 2)\left[1+(1-3.53 \mathrm{~K})^{0.5}\right] \leq 0.95 d \\
& =(245 / 2)(1+0.932)<0.95 d \\
& =237 \mathrm{~mm} \\
A_{5} & =M_{E d} / f_{y d} z \\
& =69.4 \times 10^{6} / 434.8 \times 237=673 \mathrm{~mm}^{2} / \mathrm{rib}
\end{aligned}
$$

[^13]e) Support $B$ (and $C$ ): flexure (hogging) at solid/rib interface

Reinforcement at solid/rib interface needs to be designed for both
CI. 9.2.1.3.(2)
moment and for additional tensile force due to shear (shift rule).
$M_{\text {Ed,max }}=42.4 \mathrm{kNm} / \mathrm{rib}$ max.
$V_{E d, \text { max }}=40.9 \mathrm{kNm} / \mathrm{rib}$ max.
$A_{s}=M_{E d} / f_{y d} z+\Delta F_{\text {td }} / f_{y d}$
where
$z=(245 / 2)\left[1+(1-3.53 K)^{0.5}\right] \leq 0.95 d$
where

$$
\begin{aligned}
K & =M_{E d} / b d^{2} f_{c k} \\
& =42.4 \times 106 /\left(150 \times 245^{2} \times 35\right) \\
& =0.135
\end{aligned}
$$

Check $K \leq K^{\prime}$
$K^{\prime}=0.168$ for $\delta=0.85$ (i.e. $15 \%$ redistribution)
$\therefore$ Section under-reinforced: no compression reinforcement required
$\therefore z=(245 / 2)(1+0.723) \leq 232=211 \mathrm{~mm}$
$f_{y d}=434.8 \mathrm{MPa}$
$\Delta F_{t d}=0.5 V_{E d}(\cot \theta-\cot \alpha)$
where
$\theta=$ angle between the concrete compression strut and the beam axis. Assume $\cot \theta=2.5$ (as a maximum)
$\alpha=$ angle between shear reinforcement and the beam axis. For vertical links, $\cot \alpha=0$
$\Delta F_{t d}=1.25 V_{E d}=1.25 \times 40.9=51.1 \mathrm{kN}$
$A_{s}=42.4 \times 10^{6} /(434.8 \times 211)+51.1 \times 10^{3} / 434.8$
$=462+117 \mathrm{~mm}^{2}=579 \mathrm{~mm}^{2} / \mathrm{rib}$
To be spread over $b_{\text {eff }}$ where by inspection, $b_{\text {eff }}=900$.
$\therefore$ Centre of support more critical ( $679 \mathrm{~mm}^{2} /$ rib required).
Top steel may be spread across $b_{\text {eff }}$ where

$$
\begin{aligned}
b_{\text {eff }} & =b_{w}+b_{\text {eff1 }}+b_{\text {eff2 } 2} \leq b \\
& =b_{w}+2 \times 0.1 \times 0.15 \times\left(1_{1}+l_{2}\right) \\
& =150+0.03 \times(7500+9000) \leq 900 \\
& =645 \mathrm{~mm}
\end{aligned}
$$

$$
\therefore \text { Use } 2 \text { no. H16 above rib and } 3 \text { no. H12 between ( } 741 \mathrm{~mm}^{2} / \text { rib) }
$$

$$
\text { where } 2 \text { no. } \mathrm{H} 16 \text { and } 2 \text { no. } \mathrm{H} 12 \text { are within } b_{\text {eff }}
$$

### 3.3.6 Flexural design, span $B C$

## a) Span B-C: Flexure

$M_{\mathrm{Ed}}=55.9 \mathrm{kNm} / \mathrm{m}$
$=50.3 \mathrm{kNm} / \mathrm{rib}$

$$
\begin{aligned}
K & =M_{E d} / b d^{2} f_{c k} \\
& =50.3 \times 10^{6} / 900 \times 257^{2} \times 35 \\
& =0.02 \text { i.e. } \leq K^{\prime}\left(\text { as before } K^{\prime}=0.168\right)
\end{aligned}
$$

By inspection,
$z \quad=0.95 d=0.95 \times 257=244 \mathrm{~mm}$
By inspection, neutral axis is in flange.

$$
\begin{aligned}
A_{s} & =M_{\mathrm{Ed}} / f_{\mathrm{yd}} z \\
& =50.3 \times 10^{6} / 434.8 \times 244=474 \mathrm{~mm}^{2}
\end{aligned}
$$

b) Span B-C: Deflection

Allowable $\| d=N \times K \times F 1 \times F 2 \times F 3$
where

$$
\begin{aligned}
N & =\text { Basic } / / d \\
\rho & =474 /(159(\times 257+(900-159) \times 100) \\
& =474 / 114963 \\
& =0.41 \% \\
\rho_{O} & =0.59 \%\left(\text { for } f_{c k}=30\right)
\end{aligned}
$$

$$
\therefore \rho<\rho_{0} \text { use Exp. (7.16a) }
$$

$$
N=11+1.5 f_{c k}^{0.5} \rho_{0} / \rho+3.2 f_{c k}^{0.5}\left(\rho_{O} / \rho-1\right)^{1.5}
$$

$$
=11+1.5 \times 35^{0.5} \times 0.055 / 0.041+3.2 \times 35^{0.5}(0.055 / 0.041-1)^{1.5}
$$

$$
=11+11.9+3.8=26.7
$$

$$
K=(\text { internal span } 1.5
$$

$$
F 1=\left(b_{\text {eff }} / b_{w}=6.0\right) 0.8
$$

$$
\mathrm{F} 2=7.0 / 1_{\text {eff }}=7.0 / 9.0=(\text { span }>7.0 \mathrm{~m}) 0.77
$$

$$
\mathrm{F} 3=310 / \sigma_{S} \leq 1.5
$$

where

$$
\begin{aligned}
\sigma_{S} & =\left(f_{\text {yk }} / \gamma_{S}\right)\left(A_{\text {s,req }} / A_{\text {s.prov }}\right)(\text { SLS loads/ULS loads })(1 / \delta) \\
& =434.8 \times(474 / 628)[(4.30+0.3 \times 5.0) / 13.38](61.1 / 55.9) \\
& =434.8 \times 0.75 \times 0.43 \times 1.09 \\
& =153 \mathrm{MPa}
\end{aligned}
$$

F3 $=310 / \sigma_{5}$
$=310 / 153=2.03$ therefore, say $=1.50^{\ddagger}$
$\therefore$ Permissible $\| d=26.8 \times 1.5 \times 0.8 \times 0.77 \times 1.50=37.1$
Actual $/ / d=9000 / 257=35$

$$
\therefore O K
$$

$\therefore$ Use $2 \mathrm{H} 2 \mathrm{O} / \mathrm{rib}\left(628 \mathrm{~mm}^{2} / \mathrm{rib}\right)$

[^14]Section C7
Cl. 7.4.2(2)

Exp. (7.16a)

Table 7.4N, \&
NA, Table NA.5:
Note 5
Cl. 7.4.2(2)
Cl. 7.4.2,

Exp. (7.17)
\& NA: Table NA. 5

NA, Table NA.5:
Note 5

### 3.3.7 Design for shear



Figure 3.14 Section through rib
a) Support A (and D) at solid/rib interface

Shear at solid/rib interface $=29.3 \mathrm{kN} / \mathrm{rib}$

Taking solid area as the support, at $d$ from face of support
$V_{E d}=29.3-0.232 \times 0.90 \times 13.38=26.5 \mathrm{kN} / \mathrm{rib}$
CI. 6.2.1(8)
Cl. 6.2.2(1) \& NA

Resistance
$V_{R d, c}=\left(0.18 / \gamma_{C}\right) k\left(100 \rho_{I} f_{c k}\right)^{0.333} b_{w} d$
where
$\gamma_{C}=1.5$
$k=1+(200 / d)^{0.5} \leq 2$
$=1+(200 / 257)^{0.5}$
$=1.88$
$\rho_{1}=A_{s \mid} / b_{w} d$
where
$A_{s l}=$ assume only 1 H 20 anchored $=314 \mathrm{~mm}^{2}$
$b_{w}=$ min. width between tension and compression chords.
At bottom assuming $1 / 10$ slope to rib:
$=150+2 \times(25+8+20 / 2) / 10$
$=159 \mathrm{~mm}$
$d=257 \mathrm{~mm}$ as before
$\rho_{l}=314 /(159 \times 257)=0.0077$
$f_{c k}=35$
$\therefore V_{\text {Rd, }, ~}=(0.18 / 1.5) 1.88(100 \times 0.0077 \times 35)^{0.333} \times 159 \times 257$
$=0.68 \times 159 \times 257=27.8 \mathrm{kN} / \mathrm{rib}$
$\therefore$ No shear links required.
But use nominal links to allow prefabrication.
b) Support $B$ (and $C$ ) at solid/rib interface

Shear at solid/rib interface $=40.9 \mathrm{kN} / \mathrm{rib}\left[\max \left(B_{A} ; B_{C}\right)\right]$
At $d$ from face of support
Cl. 6.2.1(8)
$V_{E d}=40.9-0.245 \times 13.38 \times 0.9=37.9 \mathrm{kN} / \mathrm{rib}$

Resistance:
$V_{R d, c}=\left(0.18 / \gamma_{C}\right) k\left(100 \rho_{l} f_{c k}\right)^{0.333} b_{w} d$
Cl. 6.2.2(1) \& NA
where

$$
\begin{aligned}
\gamma_{C} & =1.5 \\
k & =1+(200 / d)^{0.5} \leq 2 \\
& =1+(200 / 245) 0.5 \\
& =1.90 \\
\rho_{1} & =A_{s l} / b_{w} d
\end{aligned}
$$

where
$A_{s l}=2 \mathrm{H} 16=402 \mathrm{~mm}^{2}$
$b_{w}=159 \mathrm{~mm}$ as before
$d=245 \mathrm{~mm}$ as before
$\rho_{1}=0.0103$
$f_{c k}=35 \mathrm{MPa}$
$\therefore V_{R d, c}=(0.18 / 1.5) 1.9(100 \times 0.0103 \times 35)^{0.333} \times 159 \times 245$
$=0.75 \times 159 \times 245=29.2 \mathrm{kN} / \mathrm{rib}$
$\therefore$ Shear links required.
Shear links required for a distance:
$(37.9-29.2) /(13.38 \times 0.9)+245=722+245=967 \mathrm{~mm}$ from interface.
Check shear capacity:
$V_{\text {Rd,max }}=\alpha_{c w} b_{w} z v f_{c d} /(\cot \theta+\tan \theta)$
where

$$
\alpha_{c w}=1.0
$$

$b_{w}=159 \mathrm{~mm}$ as before
$z=0.9 d$
$v=0.6\left(1-f_{c k} / 250\right)=0.528$
$f_{c d}=35 / 1.5=23.3 \mathrm{MPa}$
$\theta=$ angle of inclination of strut.
Rearranging formula above:

$$
\begin{aligned}
& (\cot \theta+\tan \theta)=\alpha_{c w} b_{w} z v f_{c d} / V_{E d} \\
& \quad=\frac{(1.0 \times 159 \times 0.9 \times 245 \times 0.528 \times 23.3)}{41.6 \times 103} \\
& \quad=10.4
\end{aligned}
$$

By inspection, $\cot ^{-1} \theta \ll 21.8$. But $\cot \theta$ restricted to 2.5 and
$\therefore \tan \theta=0.4$.
$V_{\text {Rd,max }}=1.0 \times 159 \times 0.9 \times 245 \times 0.528 \times 20 /(2.5+0.4)=127.6 \mathrm{kN}$

Shear links: shear resistance with links
$V_{R d, s}=\left(A_{s W} / s\right) z f_{y w d} \cot \theta \leq V_{\text {Rd,max }}$
where

$$
A_{s w} / s=\text { area of legs of links/link spacing }
$$

$z \quad=0.9 d$ as before
$f_{y w d}=500 / 1.15=434.8$
$\cot \theta=2.5$ as before
$\therefore$ for $V_{E d} \leq V_{R d, s}$
$\mathrm{A}_{\text {sw }} / \mathrm{s} \geq V_{E d} / z f_{\text {ywd }} \cot \theta$
$\geq 37.9 \times 10^{3} /(0.9 \times 245 \times 434.8 \times 2.5) \geq 0.158$
Maximum spacing of links $=0.75 \mathrm{~d}=183 \mathrm{~mm}$
$\therefore$ Use H8 @ $175 c c$ in 2 legs $\left(A_{5 w} / s=0.57\right)$ for min. 967 mm into rib

### 3.3.8 Indirect supports

As the ribs of the slab are not supported at the top of the supporting beam sections ( $A, B, C, D$ ), additional vertical reinforcement should be provided in these supporting beams and designed to resist the reactions. This additional reinforcement should consist of links within the supporting beams (see Beams design, Section 4.3.9).

Support A (and D) at solid/rib interface:
$V_{E d}=26.5 \mathrm{kN} / \mathrm{rib}$
$A_{s, r e q}=26.3 \times 1000 /(500 / 1.15)=60 \mathrm{~mm}^{2}$
This area is required in links within h/6=300/6=50 mm of the ribbed $/$ solid interface and within $h / 2=300 / 2=150 \mathrm{~mm}$ of the centreline of the rib.

Support B (and C) at solid/rib interface:
$V_{E d}=37.9 \mathrm{kN} / \mathrm{rib}$
$A_{s, \text { req }}=37.9 \times 1000 /(500 / 1.15)=87 \mathrm{~mm}^{2}$ placed similarly

### 3.3.9 Other checks

Check shear between web and flange
By inspection, $V_{E d} \leq 0.4 f_{c t, d} \therefore O K$

### 3.3.10 Summary of design


$f_{c k}=35 \mathrm{MPa}$
$c_{\text {nom }}=25 \mathrm{~mm}$

## Figure 3.15 Summary of design

## Commentary

It is usually presumed that the detailer would take the above design and detail the slab to normal best practice. As stated in Section 3.2.9, the detailer's responsibilities, standards and timescales should be clearly defined but it would be usual for the detailer to draw and schedule not only the designed reinforcement but all the reinforcement required to provide a buildable solution.

The work would usually include checking the following aspects and providing appropriate detailing:

- Minimum areas
- Curtailment lengths
- Anchorages
- Laps
- U-bars
- Rationalisation
- Details and sections

The determination of minimum reinforcement areas, curtailment lengths and laps using the principles in Eurocode 2 is shown in detail in the following calculations. In practice these would be determined from published tables of data or by using reference texts ${ }^{[12,21]}$. Nonetheless the designer should check the drawing for design intent and compliance with standards. It is therefore necessary for the designer to understand and agree the principles of the details used.

### 3.3.11 Detailing checks

a) Minimum areas
i) Minimum area of reinforcement in flange
$A_{s, \min }=0.26\left(f_{c t m} / f_{y k}\right) b_{t} d \geq 0.0013 b_{t} d$
Cl. 9.3.1.1


```
where
 \(M_{E d}=18.3 \mathrm{kNm} / \mathrm{rib}\)
 \(z=220\) as before
 \(F_{E}=V_{E d} \times a_{1} / z\)
 where
 \(V_{E d}=29.3 \mathrm{kN} /\) rib
 \(a_{1}=z \cot \theta / 2\)
 \(\therefore F_{E}=V_{E d} \cot \theta / 2\)
 \(=29.3 \times 1.25=36.6 \mathrm{kN} / \mathrm{rib}\)
\(F_{5}=18.6 \times 10^{6} /\left(220 \times 10^{3}\right)+36.6=121.1 \mathrm{kN}\)
```

iv) Anchorage length:
$I_{b d}=\alpha l_{b, r q d} \geq l_{b, \min }$
where
$\alpha=$ conservatively 1.0
$I_{b, r q d}=(\phi / 4)\left(\sigma_{s d} / f_{b d}\right)$
where

$$
\phi=20
$$

$\sigma_{s d}=$ design stress in the bar at the ULS
$=121.1 \times 1000 / 314=385 \mathrm{MPa}$
$f_{b d}=$ ultimate bond stress
$=2.25 \eta_{1} \eta_{1} f_{c t, d}$
where
$\eta_{1}=1.0$ for good bond conditions
$\eta_{2}=1.0$ for bar diameter $\leq 32 \mathrm{~mm}$
$f_{c t, d}=\alpha_{c t} f_{c t, k} / \gamma_{c}$
$=1.0 \times 2.2 / 1.5$
$=1.47 \mathrm{MPa}$ $f_{b d}=2.25 \times 1.47=3.31 \mathrm{MPa}$
$\therefore I_{b, \text { rqd }}=(20 / 4)(385 / 3.31)=581 \mathrm{~mm}$
$I_{b, \min }=\max [10 \phi ; 100 \mathrm{~mm}]=200 \mathrm{~mm}$
$\therefore I_{b d}=581 \mathrm{~mm}$ measured from solid/rib intersection. i.e. 31 mm beyond centreline of support ${ }^{\ddagger}$.

## v) End support A: top steel

Assuming partial fixity exists at end supports, $15 \%$ of $A_{s}$ is required
to extend at least $0.2 \times$ the length of the adjacent span ${ }^{5}$.
$A_{\text {s, req }}=15 \% \times 525=79 \mathrm{~mm}^{2} /$ rib
$A_{s, \text { min }}=0.26 \times 0.30 \times 35^{0.666} \times 159 \times 257 / 500=68 \mathrm{~mm}^{2} / \mathrm{rib}$
Use 2 no. H12 T1/rib in rib and 2 no. H1O T1/rib between ribs
(383 $\mathrm{mm}^{2} / \mathrm{rib}$ )

[^15]Cl. 9.3.1.2(2)

Exp. (9.3)
Cl. 9.2.1.3,

Exp. (9.2)
Cl. 8.4.4,

Exp. (8.4)
Exp. (8.3)
Cl. 8.4.2(2)
Cl. 3.1.6(2),

Tables 3.1,
2.1 \& NA

Fig. 9.3
Cl. 9.3.1.1
Cl. 9.2.1.1(1),

Exp. (9.1N)

## vi) Support $B$ (and $C$ ): top steel

At the centreline of support ( 2 no . H16 T + 3 no. H12 T)/rib are required. The intention is to curtail in two stages, firstly to 2 no. H16 T/rib then to 2 no. H12 T/rib.

Curtailment of 2 no. H16 T/rib at support
(capacity of 2 no. H12 T/rib + shift rule):
Assume use of 2 no. H12 T throughout in midspan:
Assuming $z=211 \mathrm{~mm}$ as before,
$M_{\text {R2H12T }}=2 \times 113 \times 434.8 \times 211$
$=20.7 \mathrm{kNm} / \mathrm{rib}(23.0 \mathrm{kNm} / \mathrm{m})$
(Note: section remains under-reinforced)
From analysis $M_{\text {Ed }}=23.0 \mathrm{kNm} / \mathrm{m}$ occurs at 2250 mm (towards A ) and 2575 mm (towards B).
Shift rule: $\alpha_{1}=z \cot \theta / 2$
Assuming $z=211 \mathrm{~mm}$ as before
$\alpha_{1}=1.25 \times 211=264 \mathrm{~mm}$
$\therefore 2$ no. H12 T are adequate from $2250+264=2513 \mathrm{~mm}$ from $B$ towards $A$ and $2575+263=2838 \mathrm{~mm}$ from $B$ towards $C$.

$$
\therefore \text { Curtail } 2 \text { no. H16 T@ say } 2600 \text { from } B_{A} \text { and } 2850 \text { from } B_{C}
$$

Curtailment of 3 no. H12 T/rib at support (capacity of 2 no. H16
T/rib + shift rule):
$M_{\text {R2H1GT }}=2 \times 201 \times 434.8 \times 211$
$=36.9 \mathrm{kNm} / \mathrm{rib}(41.0 \mathrm{kNm} / \mathrm{m})$
(Note: section remains under-reinforced)
From analysis $M_{E d}=41.0 \mathrm{kNm} / \mathrm{m}$ occurs at 1310 mm (towards A ) and 1180 mm
(towards C).
Shift rule: $\alpha_{1}=263 \mathrm{~mm}$ as before
$\therefore 2$ no. H16 T are adequate from $1310+263=1573 \mathrm{~mm}$ from $B$ towards $A$ and $1180+263=1443 \mathrm{~mm}$ from $B$ towards $C$.

$$
\frac{\therefore \text { Curtail } 3 \text { no. H12 at say } 1600 \text { from B (or C). }}{\underline{\text { (See Figure } 3.16)}}
$$

vii) Support $B$ (and $C$ ): bottom steel at support

At the support $25 \%$ of span steel required
$0.25 \times 628=157 \mathrm{~mm}^{2}$
Try 1 no. H16 B/rib (201)
This reinforcement may be anchored into indirect support or carried
Cl. 9.3.1.1(4), 9.2.1.5(1), 9.2.1.4(1)

Fig. 9.4 through.

b) Curtailment of reinforcement

Figure 3.16 Curtailment of top reinforcement at B per rib
viii) Support $B$ (and $C$ ): bottom steel curtailment $B A$ and $B C$

To suit prefabrication 2 no. $\mathrm{H} 2 \mathrm{O} /$ rib will be curtailed at solid/rib interface, 1000 mm from $B_{A}(B$ towards $A)$ and $B_{C}$.
From analysis, at solid/rib interface sagging moment $=0$.
From analysis, at a, from solid/rib interface, i.e. at $1000+1.25 \times 244$
$=1303 \mathrm{~mm}$
at 1305 mm from $B_{A}$ sagging moment $=$ say $5 \mathrm{kNm} / \mathrm{rib}$
at 1305 mm from $B_{C}$ sagging moment $=0$
Use 1 no. H16 B/rib (201)
c) Laps

At $A_{B}$, check lap 1 no. H 2 O B to 2 no. H 2 O B in rib full tension lap:
$I_{O}=\alpha_{1} \alpha_{6} I_{\text {b, rad }}>I_{\text {O,min }}$
Exp. (8.10)
where

$$
\begin{aligned}
& \alpha_{1}=1.0\left(c_{d}=45 \mathrm{~mm} \text {, i.e. }<3 \phi\right) \\
& \alpha_{6}=1.5 \text { (as >50\% being lapped) } \\
& I_{b, \text { rad }}=(\phi / 4)\left(\sigma_{5 d} / f_{b d}\right) \\
& \text { where } \\
& \phi=20 \\
& \sigma_{\text {sd }}=434.8 \\
& f_{b d}=3.0 \mathrm{MPa} \text { as before }
\end{aligned}
$$

$$
\begin{aligned}
& I_{0, \text { min }}=\max .10 \phi \text { or } 100=200 \\
& I_{O}=1.0 \times 1.5 \times(20 / 4) \times 434.8 / 3.0 \\
& =1087 \mathrm{~mm} \text {, say }=1200 \mathrm{~mm} \\
& A t B_{A} \text { and } B_{C} \text {, check lap } 2 \text { no. H12 T to } 2 \text { no. H16 } T \text { in rib - full tension lap: } \\
& I_{O}=\alpha_{1} \alpha_{6} I_{b, \text { rqd }}>I_{0, \min } \\
& \text { where }
\end{aligned}
$$

But to aid prefabrication take to solid/rib intersection 1000 mm from centre of support.
$A t B_{A}$ and $B_{C}$, check lap 1 no. H16 B to 2 no. H 2 O B in rib:
By inspection, nominal say, 500 mm
d) RC detail of ribbed slab

Links not shown for clarity. Cover 25 mm to links.


Figure 3.17 Curtailment of flexural reinforcement in ribbed slab

## 3.3: Continuous ribbed slab

### 3.4 Flat slab

This example is for the design of a reinforced concrete flat slab without column heads. The slab is part of a larger floor plate and is taken from Guide to the design and construction of reinforced concrete flat slabs ${ }^{[27]}$, where finite element analysis and design to Eurocode 2 is illustrated. As with the Guide, grid line C will be designed but, for the sake of illustration, coefficients will be used to establish design moments and shears in this critical area of the slab.


### 3.4.2 Cover

$c_{\text {nom }}$ :
$c_{\text {nom }}=c_{\text {min }}+\Delta c_{\text {dev }}$
where
$c_{\text {min }}=\max \left[c_{\text {min }, b} ; c_{\text {min }, \text { dur }} ; 10 \mathrm{~mm}\right]$
where

$$
\begin{aligned}
c_{\text {min }, b} & =20 \mathrm{~mm}, \text { assuming } 20 \mathrm{~mm} \text { diameter reinforcement } \\
c_{\text {min, dur }} & =15 \mathrm{~mm} \text { for } \mathrm{XC1} \text { and using C30/37 } \\
\Delta c_{\text {dev }} & =10 \mathrm{~mm}
\end{aligned}
$$

Fire:
For 2 hours resistance, $a_{\min }=35 \mathrm{~mm} \therefore$ not critical
$\therefore c_{\text {nom }}=20+10=30 \mathrm{~mm}$

### 3.4.3 Load combination and arrangement



Figure 3.19 Panel centred on grid C
Ultimate load, n:
By inspection, Exp. (6.10b) is critical.
$n=1.25 \times 8.50+1.5 \times 4.0=16.6 \mathrm{kN} / \mathrm{m}^{2}$
Arrangement:
Choose to use all-and-alternate-spans-loaded load cases and coefficients ${ }^{\ddagger}$.

### 3.4.4 Analysis grid line C

Consider grid line $C$ as a bay 6.0 m wide. (This may be conservative for grid line C but is correct for grid line D etc.)
$M_{E d}$
Effective spans:
$9600-2 \times 400 / 2+2 \times 300 / 2=9500 \mathrm{~mm}$
$8600-2 \times 400 / 2+2 \times 300 / 2=8500 \mathrm{~mm}$
Check applicability of moment coefficients:
$8500 / 9500=0.89 \therefore$ as spans differ by less than $15 \%$ of larger span, coefficients are applicable.

[^16]Exp. (4.1)
Cl. 4.4.1.2(3)

Table 4.1.
BS 8500-1:
Table A4.

EC2-1-2:
Table 5.9

Fig. 2.5
ECO: Exp. (6.10b)
Cl. 5.1.3(1) \& NA:

Table NA. 1
(option b)
Cl. 5.3.2.2(1)

Tables C2 \& C3
CI. 5.3.1 \& NA

Table C3

As two span, use table applicable to beams and slabs noting increased coefficients for central support moment and shear.

Design moments in bay.
Spans:
$M_{E d}=(1.25 \times 8.5 \times 0.090+1.5 \times 4.0 \times 0.100) \times 6.0 \times 9.5^{2}=842.7 \mathrm{kNm}$ Support:
$M_{E d}=16.6 \times 0.106 \times 6.0 \times 9.5^{2}=952.8 \mathrm{kNm}$


Figure 3.20 Column and middle strips
Apportionment of moments between column strips and middle strips:

|  | Apportionment (as \%) |  |
| :--- | :--- | :--- |
|  | Column strip | Middle strip |
| -ve (hogging) | Long span $=70 \%$ s <br> Short span $=75 \%$ | Long span $=30 \%$ <br> Short span $=25 \%$ |
| +ve (sagging) | $50 \%$ | $50 \%$ |

Parallel to grid C, column strip is $l_{\mathrm{y}} / 2=3 \mathrm{~m}$ wide. The middle strip is also 3 m wide.

Long span moments:

|  | $M_{\text {Ed }}$ |  |  |
| :--- | :--- | :--- | :---: |
|  | Column strip, 3 m wide | Middle strip, 3 m wide |  |
| -ve (hogging) | $0.70 \times 952.8 / 3.0=222.3 \mathrm{kNm} / \mathrm{m}$ | $0.30 \times 952.8 / 3.0=95.3 \mathrm{kNm} / \mathrm{m}$ |  |
| +ve (sagging) | $0.50 \times 842.7 / 3.0=140.5 \mathrm{kNm} / \mathrm{m}$ | $0.50 \times 842.7 / 3.0=140.5 \mathrm{kNm} / \mathrm{m}$ |  |

[^17]Punching shear force, $V_{E d}$ :
At C2,
$V_{E d}=16.6 \times 6.0 \times 9.6^{\ddagger} \times 0.63 \times 2=1204.8 \mathrm{kN}$
At C1 (and C3)
$V_{E d}=16.6 \times 6.0 \times 9.6 \times 0.45+(10+0.2 \times 0.3 \times 25)^{5} \times 1.25 \times 6.0$ $=516.5 \mathrm{kN}$

### 3.4.5 Design grid line C

Effective depth, $d$ :
$d=300-30-20 / 2=260 \mathrm{~mm}$
a) Flexure: column strip and middle strip, sagging

$$
\begin{aligned}
& M_{E d}=140.5 \mathrm{kNm} / \mathrm{m} \\
& K=M_{E d} / b d^{2} f_{c k}=140.5 \times 10^{6} /\left(1000 \times 260^{2} \times 30\right)=0.069 \\
& z / d=0.94 \\
& z=0.94 \times 260=244 \mathrm{~mm} \\
& A_{s}=M_{E d} / f_{y d} z=140.5 \times 10^{6} /(244 \times 500 / 1.15)=\frac{1324 \mathrm{~mm}^{2} / \mathrm{m}}{(\rho=0.51 \%)}
\end{aligned}
$$

Try H2O @ 2OOB1 (1570 $\left.\mathrm{mm}^{2} / \mathrm{m}\right)$
b) Deflection: column strip and middle strip

Check span-to-effective-depth ratio.
Allowable $/ / d=N \times K \times F 1 \times F 2 \times F 3$
where
$N=20.3\left(\rho=0.51 \%, f_{c k}=30\right)$
$K=1.2$ (flat slab)
$F 1=1.0\left(b_{\text {eff }} / b_{w}=1.0\right)$
F2 $=1.0$ (no brittle partitions) ${ }^{\#}$
F3 $=310 / \sigma_{5} \leq 1.5$
where*

$$
\sigma_{s}=\sigma_{s u}\left(A_{s, \text { req }} / A_{s, \text { prov }}\right) 1 / \delta
$$

where

$$
\sigma_{\text {su }}=(500 / 1.15) \times(8.5+0.3 \times 4.0) / 16.6=254 \mathrm{MPa}
$$

(or $\approx 253 \mathrm{MPa}$; from Figure C 3

$$
\left.G_{k} / Q_{k}=2.1, \psi_{2}=0.3 \text { and } \gamma_{G}=1.25\right)
$$

$\delta=$ redistribution ratio $=1.03$
$\therefore \sigma_{5} \approx 253 \times(1324 / 1570) / 1.03=207$
$\therefore F 3=310 / 207=1.50^{\dagger}$
$\therefore$ Allowable $/ / d=20.3 \times 1.2 \times 1.50=36.5$

[^18]Cl. 7.4.2(2)

Table C3

Table C3

Table C5

Appendix B
Cl. 7.4.2(2)

Appendix C
Tables C1O-C13
Cl. 7.4.2, Exp. (7.17)

Table 7.4N, \&
NA, Table NA. 5
Note 5

Fig. C3

Fig. C14

Actual $/ / d=9500 / 260=36.5$
$\therefore O^{\ddagger}$
Use H2O @ 200 B1 $(1570)^{5}$
c) Flexure: column strip, hogging
$M_{E d}=222.3 \mathrm{kNm} / \mathrm{m}$
$K=M_{E d} / b d^{2} f_{c k}=222.3 \times 10^{6} /\left(1000 \times 260^{2} \times 30\right)=0.109$
$z / d=0.89$
$z=0.89 \times 260=231 \mathrm{~mm}$
$A_{5}=M_{E d} / f_{y d} z=222.3 \times 10^{6} /(231 \times 500 / 1.15)=\frac{2213 \mathrm{~mm}^{2} / \mathrm{m}}{(\rho=0.85 \%)}$

$$
\text { TryH2O@125T1(2512 } \left.\mathrm{mm}^{2} / \mathrm{m}\right)^{\#}
$$

d) Flexure: middle strip, hogging
$M_{E d}=95.3 \mathrm{kNm} / \mathrm{m}$
$K=M_{E d} l b d^{2} f_{c k}=95.3 \times 10^{6} /\left(1000 \times 260^{2} \times 30\right)=0.069$
$z / d=0.95$
$z=0.95 \times 260=247 \mathrm{~mm}$
$A_{s}=M_{E d} / f_{y d} z=95.3 \times 10^{6} /(247 \times 500 / 1.15)=\frac{887 \mathrm{~mm}^{2} / \mathrm{m}}{(\rho=0.34 \%)}$
Try H16@200 T1 (1005 $\left.\mathrm{mm}^{2} / \mathrm{m}\right)$
e) Requirements
i) In column strip, inside middle 1500 mm

There is a requirement to place $50 \%$ of $A_{t}$ within a width equal to 0.125 of the panel width on either side of the column.

Area required $=(3 \times 2213+3 \times 887) / 2 \mathrm{~mm}^{2}$

$$
=4650 \mathrm{~mm}^{2}
$$

Over width $=2 \times 0.125 \times 6.0 \mathrm{~m}=1500 \mathrm{~mm}$ i.e. require $4650 / 1.5=3100 \mathrm{~mm}^{2} / \mathrm{m}$ for 750 mm either side of the column centreline.

Use H2O @ 100 T1 (3140 $\left.\mathrm{mm}^{2} / \mathrm{m}\right)$
750 mm either side of centre of support ( 16 no . bars)
( $\rho=0.60 \%$ )

## ii) In column strip, outside middle 1500 mm

$$
\begin{aligned}
\text { Area required }= & 3.0 \times 2213-16 \times 314 \mathrm{~mm}^{2} \\
= & 1615 \mathrm{~mm}^{2} \\
\text { Over width }= & 3000-2 \times 750 \mathrm{~mm}=1500 \mathrm{~mm} \\
& \text { i.e. } 1077 \mathrm{~mm}^{2} / \mathrm{m} \\
& \frac{\text { Use H2O @ } 250 \mathrm{T1}\left(1256 \mathrm{~mm}^{2} / \mathrm{m}\right)}{\underline{\text { in remainder of column strip }}}
\end{aligned}
$$

[^19]iii) In middle strip

## iv) Perpendicular to edge of slab at edge column

Design transfer moment to column $M_{t}=0.17 b_{e} d^{2} f_{c k}$ where

$$
b_{e}=c_{z}+y=400+400=800 \mathrm{~mm}
$$

$M_{t}=0.17 \times 800 \times 260^{2} \times 30 \times 10^{-6}=275.8 \mathrm{kNm}$
$K=M_{E d} l b d^{2} f_{c k}=275.8 \times 10^{6} /\left(800 \times 260^{2} \times 30\right)=0.170$
$z / d=0.82$
$z=0.82 \times 260=213 \mathrm{~mm}$
$A_{s}=M_{E d} / f_{y d} z=275.8 \times 10^{6} /(213 \times 500 / 1.15)=2978 \mathrm{~mm}^{2} / \mathrm{m}$
This reinforcement to be placed within $c_{x}+2 c_{y}=1100 \mathrm{~mm}$
Try 10 no. H2O T1 U-bars in pairs @ $200\left(3140 \mathrm{~mm}^{2}\right)$ local to column (max. 200 mm from column)
Note:
Where a $200 \times 200$ hole occurs on face of column, $b_{e}$ becomes 600 mm and pro rata, $A_{s, \text { req }}$ becomes $2233 \mathrm{~mm}^{2}$ i.e. use 4 no. H 2 O each side of hole (2512 $\mathrm{mm}^{2}$ ).

## v) Perpendicular to edge of slab generally

Assuming that there is partial fixity along the edge of the slab, top reinforcement capable of resisting $25 \%$ of the moment in the adjacent span should be provided
$0.25 \times 2213=553 \mathrm{~mm}^{2} / \mathrm{m}$
vi) Check minimum area of reinforcement
$A_{s, \text { min }}=0.26\left(f_{c t m} / f_{y k}\right) b_{t} d \geq 0.0013 b_{t} d$
where
$b_{t}=$ width of tension zone
$f_{c t m}=0.30 \times f_{c k} 0.666$
$A_{s, \min }=0.26 \times 0.30 \times 30^{0.666} \times 1000 \times 260 / 500=390 \mathrm{~mm}^{2} / \mathrm{m}$

$$
(\rho=0.15 \%)
$$

Use H12 @ 200 (565 mm²/m)
The reinforcement should extend 0.2 h from edge $=600 \mathrm{~mm}$

### 3.4.6 Analysis grid line 1 (grid 3 similar)

Consider grid line 1 as being $9.6 / 2+0.4 / 2=5.0 \mathrm{~m}$ wide with continuous spans of 6.0 m . Column strip is $6.0 / 4+0.4 / 2=1.7 \mathrm{~m}$ wide. Consider perimeter load is carried by column strip only.
Cl. 9.4.2(1),
I.1.2(5)

Fig. 9.9
Cl. 9.3.1.2(2),
9.2.1.4(1) \& NA
Cl. 9.3.1.1, 9.2.1.1

Table 3.1
Cl. 9.3.1.4(2)
Cl. 5.1.1(4)


Figure 3.21 Edge panel on grid 1 (grid 3 similar)

## Actions:

Permanent from slab

$$
\begin{aligned}
& g_{\mathrm{k}}=5 \times 8.5 \mathrm{kN} / \mathrm{m}^{2}=42.5 \mathrm{kN} / \mathrm{m} \\
& q_{\mathrm{k}}=5 \times 4.0 \mathrm{kN} / \mathrm{m}^{2}=20.0 \mathrm{kN} / \mathrm{m} \\
& g_{\mathrm{k}}=10.0 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

## Load combination and arrangement:

As before, choose to use all-spans-loaded case and coefficients

## Ultimate load, n:

By inspection, Exp. (6.10b) is critical.
$n=1.25 \times(42.5+10)+1.5 \times 20=95.6 \mathrm{kN} / \mathrm{m}$
Perimeter load, $10 \times 1.25=12.5 \mathrm{kN} / \mathrm{m}$
Effective span, $l_{\text {eff }}$
Effective span $=6000-2 \times 400 / 2+2 \times 300 / 2=5900$

## Design moments in bay, $M_{E d}$ :

In spans (worst case, end span assuming pinned support)

$$
M_{E d}=0.086 \times 83.0 \times 5.9^{2}=248.5 \mathrm{kNm}
$$

At supports (worst case 1st support)

$$
M_{E d}=0.086 \times 83.0 \times 5.9^{2}=248.5 \mathrm{kNm}
$$

Additional moment in column strip only due to perimeter load, spans (and supports, worst case)

$$
M_{E d}=0.086 \times 12.5 \times 5.9^{2}=37.4 \mathrm{kNm}
$$

Apportionment to column strips and middle strips:

|  | Apportionment (as \%) |  |
| :--- | :--- | :--- |
|  | Column strip, 1.7 m wide | Middle strip |
| -ve (hogging) | Short span $=75 \%$ | Short span $=25 \%$ |
| +ve (sagging) | $50 \%$ | $50 \%$ |

Short span moments:

|  | $M_{\text {Ed }}$ |  |
| :---: | :---: | :---: |
|  | Column strip, 1.7 m wide | Middle strip, 3.3 m wide |
| -ve (hogging) | $\begin{gathered} (0.75 \times 248.5+37.4) / 1.70 \\ =131.6 \mathrm{kNm} / \mathrm{m} \end{gathered}$ | $\begin{aligned} & 0.25 \times 248.5 / 3.3 \\ &=18.8 \mathrm{kNm} / \mathrm{m} \end{aligned}$ |
| +ve (sagging) | $\begin{gathered} (0.50 \times 248.5+37.4) / 1.70 \\ =95.1 \mathrm{kNm} / \mathrm{m} \end{gathered}$ | $\begin{array}{r} 0.50 \times 248.5 / 3.3 \\ =37.6 \mathrm{kNm} / \mathrm{m} \end{array}$ |

Cl. 5.1.3(1) \&

NA: Table NA. 1 (option c)

Fig. 2.5
ECO: Exp. (6.10b)
Cl. 5.3.2.2(1)

Table C2

Table C2

NA. $3^{[1 a]}$ : Fig. 1.1

Table 1.1
CS Flat slab guide ${ }^{[27]}$

Punching shear force, $V_{E d}$
For internal supports, as before $=516.5 \mathrm{kN}$
For penultimate support, $516.5 \times 1.18=609.5 \mathrm{kN}$

### 3.4.7 Design grid line 1 (grid 3 similar)

Cover:
$c_{\text {nom }}=30 \mathrm{~mm}$ as before
$d=300-30-20-20 / 2=240 \mathrm{~mm}$
a) Flexure: column strip, sagging
$M_{E d}=95.1 \mathrm{kNm} / \mathrm{m}$
$K=M_{E d} / b d^{2} f_{c k}=95.1 \times 10^{6} /\left(1000 \times 240^{2} \times 30\right)=0.055$
$z / d=0.95$
$z=0.95 \times 240=228 \mathrm{~mm}$
$A_{s}=M_{E d} / f_{y d} z=95.1 \times 10^{6} /(228 \times 500 / 1.15)=\frac{959 \mathrm{~mm}^{2} / \mathrm{m}}{(\rho=0.40 \%)}$
Try H16@200 B2 (1005 mm²/m)
b) Deflection: column strip

Check span-to-effective-depth ratio.
Allowable $/ / d=N \times K \times F 1 \times F 2 \times F 3$
where
$N=26.2 \quad\left(\rho=0.40 \%, f_{c k}=30\right)$
$K=1.2 \quad$ (flat slab)
$F 1=1.0 \quad\left(b_{\text {eff }} / b_{w}=1.0\right)$
F2 $=1.0 \quad$ (no brittle partitions)
$F 3=310 / \sigma_{5} \leq 1.5$
where

$$
\sigma_{s}=\sigma_{s u}\left(A_{s, \text { req }} / A_{s, p r o v}\right) 1 / \delta
$$

where

$$
\sigma_{5 u} \approx 283 \mathrm{MPa} \text { (from Figure } C 3 \text { and } G_{k} / Q_{k}
$$

$$
\left.=3.6, \psi_{2}=0.3, \gamma_{G}=1.25\right)
$$

$\delta=$ redistribution ratio $=1.08$
$\therefore \sigma_{5} \approx 283 \times(959 / 1005) / 1.08=250$
$\therefore F 3=310 / 250=1.24$
$\therefore$ Allowable $\| / d=26.2 \times 1.2 \times 1.24=39.0$
Actual $/ / d=5900 / 240=24.5 \therefore$ OK
UseH16@200 B2 (1005 mm²/m)
c) Flexure: middle strip, sagging
$M_{E d}=37.6 \mathrm{kNm} / \mathrm{m}$
By inspection, $z=228 \mathrm{~mm}$
$A_{s}=M_{E d} / f_{y d} z=37.6 \times 10^{6} /(228 \times 500 / 1.15)=\frac{379 \mathrm{~mm}^{2} / \mathrm{m}}{(\rho=0.56 \%)}$

Table C3

Table C5

Appendix B
Appendix C7
Tables C1O-C13
Cl. 7.4.2, Exp.
(7.17), Table 7.4N
\& NA,
Table NA.5:
Note 5

Fig. C3

Table C14
Fig. C3

By inspection, deflection OK.
Check minimum area of reinforcement.
$A_{s, \min }=0.26\left(f_{c t m} / f_{y k}\right) b_{t} d \geq 0.0013 b_{t} d$
where

$$
\begin{aligned}
& b_{t}=\text { width of tension zone } \\
& f_{c t m}=0.30 \times f_{c k} 0.666 \\
& A_{s, \text { min }}=0.26 \times 0.30 \times 30^{0.666} \times 1000 \times 240 / 500=361 \mathrm{~mm}^{2} / \mathrm{m} \\
& (\rho=0.15 \%) \\
& \\
& \underline{\text { Use H12 @ } 300 \mathrm{~T} 2\left(376 \mathrm{~mm}^{2} / \mathrm{m}\right)}
\end{aligned}
$$

d) Flexure: column strip, hogging
$M_{E d}=131.6 \mathrm{kNm} / \mathrm{m}$
$K=M_{E d} / b d^{2} f_{c k}=131.6 \times 10^{6} /\left(1000 \times 240^{2} \times 30\right)=0.076$
$z / d=0.928$
$z=0.928 \times 240=223 \mathrm{~mm}$
$A_{5}=M_{E d} / f_{y d} z=131.6 \times 10^{6} /(223 \times 500 / 1.15)=1357 \mathrm{~mm}^{2} / \mathrm{m}$

$$
(\rho=0.56 \%)
$$

Try H2O@ 200 T2 (1570 $\left.\mathrm{mm}^{2} / \mathrm{m}\right)^{\ddagger}$
e) Flexure: middle strip, hogging
$M_{E d}=18.8 \mathrm{kNm} / \mathrm{m}$
By inspection, $z=228 \mathrm{~mm}$

$$
\begin{aligned}
A_{s}=M_{E d} / f_{y d} z=18.8 \times 10^{6} /(228 \times 500 / 1.15)= & \frac{190 \mathrm{~mm}^{2} / \mathrm{m}}{(\rho=0.08 \%)} \\
& =361 \mathrm{~mm}^{2} / \mathrm{m} \\
A_{s, \min } \text { as before } & (\rho=0.15 \%)
\end{aligned}
$$

Try H12@300 T2 (376 mm²/m)

## f) Requirements

There is a requirement to place $50 \%$ of $A_{t}$ within a width equal to 0.125
CI. 9.4.1(2) of the panel width on either side of the column. As this column strip is adjacent to the edge of the slab, consider one side only:
Area required $=(1.5 \times 1357+3.3 \times 190) / 2 \mathrm{~mm}^{2}$

$$
=1334 \mathrm{~mm}^{2}
$$

Within $\quad=0.125 \times 6.0 \mathrm{~m}=750 \mathrm{~mm}$ of the column centreline, i.e. require $1334 / 0.75=1779 \mathrm{~mm}^{2} / \mathrm{m}$ for 750 mm from the column centreline.

[^20]Allowing for similar from centreline of column to edge of slab: $\frac{\text { Use } 6 \mathrm{no} . \mathrm{H} 2 \mathrm{O} @ 175 \mathrm{~T} 2\left(1794 \mathrm{~mm}^{2} / \mathrm{m}\right)}{(\rho=0.68 \%)}$ between edge and to 750 mm from centre of support

In column strip, outside middle 1500 mm , requirement is for $1.7 \times 1357-6 \times 314=422 \mathrm{~mm}^{2}$ in 750 mm , i.e. $563 \mathrm{~mm}^{2} / \mathrm{m}$

$$
\text { Use H12@ } 175 \text { T2 (646 mm²/m) in remainder of column strip }
$$

In middle strip
Use H12 @ 300 T2 (376 mm²/m)

### 3.4.8 Analysis grid line 2

Consider panel on grid line 2 as being $9.6 / 2+8.6 / 2=9.1 \mathrm{~m}$ wide and continuous spans of 6.0 m . Column strip is $6.0 / 2=3.0 \mathrm{~m}$ wide. (See Figure 3.20).


## Figure 3.22 Internal panel on grid 2

Slab $g_{k}=9.1 \times 8.5 \mathrm{kN} / \mathrm{m}^{2}=77.4 \mathrm{kN} / \mathrm{m}$
Slab $q_{k}=9.1 \times 4.0 \mathrm{kN} / \mathrm{m}^{2}=36.4 \mathrm{kN} / \mathrm{m}$
Actions, load combination and arrangement:
Choose to use all-spans-loaded case.
Ultimate load, n:
By inspection, Exp. (6.10b) is critical.
$n=1.25 \times 77.4+1.5 \times 36.4=151.4 \mathrm{kN} / \mathrm{m}$
Effective span, $l_{\text {eff: }}$
Effective span $=5900 \mathrm{~mm}$ as before.
Design moments in bay, $M_{E d}$ :
Spans (worst case, end span assuming pinned support)
$M_{E d}=0.086 \times 151.4 \times 5.9^{2}=453.2 \mathrm{kNm}$
Support (worst case 1 st support)
$M_{E d}=0.086 \times 151.4 \times 5.9^{2}=453.2 \mathrm{kNm}$
Additional moment in column strip only due to perimeter load.
Cl. 5.1.3(1) \&

NA: Table NA. 1 (option c)

Fig. 2.5
ECO: Exp. (6.10b)
Cl. 5.3.2.2(1)

Table C2

Table C2

Apportionment to column strips and middle strips:

|  | $M_{\text {Ed }}$ |  |
| :---: | :---: | :---: |
|  | Column strip, 3.0 m wide | Middle strip, 6.1 m wide |
| -ve (hogging) | $\begin{aligned} & 0.75 \times 453.2 / 3.0 \\ & 113.3 \mathrm{kNm} / \mathrm{m} \end{aligned}$ | $\begin{aligned} & 0.25 \times 453.2 / 6.1 \\ &=18.5 \mathrm{kNm} / \mathrm{m} \end{aligned}$ |
| +ve (sagging) | $\begin{aligned} & 0.50 \times 453.2 / 3.0 \\ &= 75.5 \mathrm{kNm} / \mathrm{m} \end{aligned}$ | $\begin{aligned} & 0.50 \times 453.2 / 6.1 \\ &=37.1 \mathrm{kNm} / \mathrm{m} \end{aligned}$ |

Punching shear force, $V_{E d}$, as before.

### 3.4.9 Design grid line 2

Effective depth, $d$
$d=300-30-20-20 / 2=240 \mathrm{~mm}$
a) Flexure: column strip, sagging
$M_{E d}=75.5 \mathrm{kNm} / \mathrm{m}$
By inspection, $z=228 \mathrm{~mm}$
$A_{5}=M_{E d} / f_{y d} z=75.5 \times 10^{6} /(228 \times 500 / 1.15)=761 \mathrm{~mm}^{2} / \mathrm{m}$

$$
(\rho=0.32 \%)
$$

Try H16@250 B2 (804 $\left.\mathrm{mm}^{2} / \mathrm{m}\right)$
Deflection: column strip
By inspection, OK.
b) Flexure: column strip, sagging
$M_{E d}=37.1 \mathrm{kNm} / \mathrm{m}$
By inspection, $z=228 \mathrm{~mm}$
$\begin{aligned} A_{s}=M_{E d} / f_{y d} z=37.1 \times 10^{6} /(228 \times 500 / 1.15)= & 374 \mathrm{~mm}^{2} / \mathrm{m} \\ & (\rho=0.55 \%)\end{aligned}$
By inspection, deflection OK. Try H10 @ 200 B2 ( $393 \mathrm{~mm}^{2} / \mathrm{m}$ )
c) Flexure: column strip, hogging
$M_{E d}=113.3 \mathrm{kNm} / \mathrm{m}$
$K=M_{E d} l b d^{2} f_{c k}=113.3 \times 10^{6} /\left(1000 \times 240^{2} \times 30\right)=0.065$
$z / d=0.94$
$z=0.928 \times 240=225 \mathrm{~mm}$
$A_{s}=M_{E d} / f_{y d} z=113.3 \times 10^{6} /(225 \times 500 / 1.15)=1158 \mathrm{~mm}^{2} / \mathrm{m}$

$$
(\rho=0.48 \%)
$$

Try H2O@ 250 T2 $\left(1256 \mathrm{~mm}^{2} / \mathrm{m}\right)^{\ddagger}$
d) Flexure: middle strip, hogging
$M_{E d}=18.5 \mathrm{kNm} / \mathrm{m}$
By inspection, $z=228 \mathrm{~mm}$

[^21]\[

$$
\begin{aligned}
A_{5}=M_{\mathrm{Ed}} / f_{y d} z=18.5 \times 10^{6} /(228 \times 500 / 1.15)= & 187 \mathrm{~mm}^{2} / \mathrm{m} \\
& (\rho=0.08 \%)
\end{aligned}
$$
\]

As before minimum area of reinforcement governs

$$
\begin{array}{r}
A_{5, \text { min }}=0.26 \times 0.30 \times 30^{0.666} \times 1000 \times 240 / 500=361 \mathrm{~mm}^{2} / \mathrm{m} \\
(\rho=0.15 \%) \\
\text { Try H12 @ } 300 \mathrm{~B} 2\left(376 \mathrm{~mm}^{2} / \mathrm{m}\right) \\
\hline
\end{array}
$$

## e) Requirements

Regarding the requirement to place $50 \%$ of $A_{t}$ within a width equal to 0.125 of the panel width on either side of the column:
Area required $=(3.0 \times 1158+6.1 \times 187) / 2 \mathrm{~mm}^{2}$

$$
=2307 \mathrm{~mm}^{2}
$$

Within $=2 \times 0.125 \times 6.0 \mathrm{~m}=1500 \mathrm{~mm}$ centred on the column centreline,
i.e. require $2307 / 1.5=1538 \mathrm{~mm}^{2} / \mathrm{m}$ for 750 mm either side of the column centreline.

Use H2O @ 200T2 ( $1570 \mathrm{~mm}^{2} / \mathrm{m}$ ) 750 mm either side of centre of support

$$
(\rho=0.60 \%)
$$

In column strip, outside middle 1500 mm , requirement is for $3.0 \times 1158-1.5 \times 1570=1119 \mathrm{~mm}^{2}$ in 1500 mm , i.e. $764 \mathrm{~mm}^{2} / \mathrm{m}$ Use H16 @ 250 T2 ( $804 \mathrm{~mm}^{2} / \mathrm{m}$ ) in remainder of column strip

In middle strip:

$$
\text { Use H12 @ } 300 \text { T2 ( } 376 \mathrm{~mm}^{2} / \mathrm{m} \text { ) }
$$

### 3.4.10 Punching shear, central column, C2

At C2, applied shear force, $V_{E d}=1204.8 \mathrm{kN}^{\ddagger}$
a) Check at perimeter of column

$$
\begin{aligned}
& V_{E d}= \beta V_{\text {Ed }} / u_{i} d<V_{\text {Rd,max }} \\
& \text { where } \\
& \beta= \text { factor dealing with eccentricity; recommended value } 1.15 \\
& V_{E d}= \text { applied shear force } \\
& u_{\mathrm{i}}= \text { control perimeter under consideration. } \\
& \text { For punching shear adjacent to interior columns } \\
& u_{0}=2\left(c_{x}+c_{y}\right)=1600 \mathrm{~mm} \\
& d= \text { eean effective depth }=(260+240) / 2=250 \mathrm{~mm} \\
& V_{\text {Ed }}= 1.15 \times 1204.8 \times 10^{3} / 1600 \times 250=3.46 \mathrm{MPa} \\
& V_{R d, m a x}= 0.5 v f_{c d}
\end{aligned}
$$

Table C5
CI. 9.3.1.1, 9.2.1.1
Cl. 6.4.3(2), 6.4.5(3)

Fig. 6.21N \& NA
Cl. 6.4.5(3)

Exp. (6.32)
Cl. 6.4.5(3) Note

[^22]where
$$
v=0.6\left(1-f_{c k} / 250\right)=0.528
$$
$$
f_{c d}=\alpha_{c c} \lambda f_{c k} / \gamma_{C}=1.0 \times 1.0 \times 30 / 1.5=20
$$
$$
=0.5 \times 0.528 \times 20=5.28 \mathrm{MPa} \quad \therefore 0 \mathrm{~K}
$$
b) Check shear stress at control perimeter $u_{1}$ (2d from face of column)
$v_{E d}=\beta V_{E d} / u_{1} d<V_{R d, c}$
where
$\beta, V_{E d}$ and $d$ as before
$u_{1}=$ control perimeter under consideration.
For punching shear at $2 d$ from interior columns
$u_{1}=2\left(c_{x}+c_{y}\right)+2 \pi \times 2 d=4741 \mathrm{~mm}$
$v_{E d}=1.15 \times 1204.8 \times 10^{3} / 4741 \times 250=1.17 \mathrm{MPa}$
$v_{R d, c}=0.18 / \gamma_{C} k\left(100 \rho_{l} f_{c k}\right)^{0.333}$
where
$\gamma_{C}=1.5$
$k=1+(200 / d)^{0.5} \leq 2 k=1+(200 / 250)^{0.5}=1.89$
$\rho_{\mathrm{l}}=\left(\rho_{\mathrm{ly}} \rho_{\mathrm{lz}}\right) 0.5=(0.0085 \times 0.0048)^{0.5}=0.0064$
where
$\rho_{\mathrm{ly}}, \rho_{\mathrm{lz}}=$ Reinforcement ratio of bonded steel in the y and $z$ direction in a width of the column plus $3 d$ each side of column\#
$f_{c k}=30$
$v_{R d, c}=0.18 / 1.5 \times 1.89 \times(100 \times 0.0064 \times 30)^{0.333}=0.61 \mathrm{MPa}$
$\therefore$ Punching shear reinforcement required
c) Perimeter at which punching shear links are no longer required
$u_{\text {out }}=V_{E d} \times \beta /\left(d v_{\text {Rd }, c}\right)$
$u_{\text {out }}=1204.8 \times 1.15 \times 10^{3} /(250 \times 0.61)=9085 \mathrm{~mm}$
Length of column faces $=4 \times 400=1600 \mathrm{~mm}$
Radius to $u_{\text {out }}=(9085-1600) / 2 \pi=1191 \mathrm{~mm}$ from face of column
Perimeters of shear reinforcement may stop $1191-1.5 \times 250=816 \mathrm{~m}$ from face of column

Shear reinforcement (assuming rectangular arrangement of links):
$s_{r, \text { max }}=250 \times 0.75=187$, say $=175 \mathrm{~mm}$

Table C75
Cl. 6.4.2

Fig. 6.13

Exp. (6.47) \& NA
Cl. 6.4.4.1(1)

Table C5*
Exp. (6.54)
Cl. 6.4.5(4) \& NA
Cl. 9.4.3(1)

[^23]Inside $2 d$ control perimeter, $s_{t, \text { max }}=250 \times 1.5=375$, say 350 mm
CI. 9.4.3(2)

Outside control perimeter $s_{t, \text { max }}=250 \times 2.0=500 \mathrm{~mm}$ Assuming vertical reinforcement:
At the basic control perimeter, $u_{1}, 2 d$ from the column ${ }^{\ddagger}$ :
$\left.A_{S W} \geq\left(v_{E d}-0.75 v_{R d, C}\right) s_{r} u_{1} / 1.5 f_{\text {ywd,ef }}\right)$
where
$f_{\text {ywd,ef }}=$ effective design strength of reinforcement

$$
=(250+0.25 d)<f_{y d}=312 \mathrm{MPa}
$$

For perimeter $u_{1}$
$A_{S W}=(1.17-0.75 \times 0.61) \times 175 \times 4741 /(1.5 \times 312)$
$=1263 \mathrm{~mm}^{2}$ per perimeter
$A_{s w, \min } \geq 0.08 f_{c k}^{0.5}\left(s_{r} s_{t}\right) /\left(1.5 f_{y k} \sin \alpha+\cos \alpha\right)$
where
$A_{\text {sw,min }}=$ minimum area of a single leg of link
$\alpha \quad=$ angle between main reinforcement and shear reinforcement; for vertical reinforcement $\sin \alpha=1.0$
$A_{s w, \text { min }} \geq 0.08 \times 30^{0.5}(175 \times 350) /(1.5 \times 500)=36 \mathrm{~mm}^{2}$ $\therefore$ Try H8 legs of links $\left(50 \mathrm{~mm}^{2}\right)$
$A_{5 W} / u_{1} \geq 1263 / 4741=0.266 \mathrm{~mm}^{2} / \mathrm{mm}$
Using H8 max. spacing $=\min [50 / 0.266 ; 1.5 d]$

$$
=\min [188 ; 375]=188 \mathrm{~mm} \mathrm{cc}
$$

$\therefore$ Use min. H8 legs of links at 175 mm cc around perimeter $u_{1}$
Perimeters at $0.75 d=0.75 \times 250=187.5 \mathrm{~mm}$

$$
\text { say }=175 \mathrm{~mm} \text { centres }
$$

d) Check area of reinforcement $>1263 \mathrm{~mm}^{2}$ in perimeters inside $u_{1}^{\S}$

1 st perimeter to be $>0.3 \mathrm{~d}$ but $<0.5 \mathrm{~d}$ from face of column. Say $0.4 \mathrm{~d}=100 \mathrm{~mm}$ from face of column.

By inspection of Figure 3.23 the equivalent of 10 locations are available at $0.4 d$ from column therefore try $2 \times 10$ no. $\mathrm{H} 10=1570 \mathrm{~mm}^{2}$.
By inspection of Figure 3.23 the equivalent of 18 locations are available at 1.15 d from column therefore try 18 no . $\mathrm{H} 1 \mathrm{O}=1413 \mathrm{~mm}^{2}$.

By inspection of Figure 3.23 the equivalent of 20 locations are available at 1.90 d from column therefore try $20 \mathrm{no} . \mathrm{H} 10=1570 \mathrm{~mm}^{2}$.

By inspection of Figure 3.23 beyond $u_{1}$ to $u_{\text {out }}$ grid of $\mathrm{H1O}$ at $175 \times 175$ OK.

[^24]CI. 6.4.5

Exp. 6.5.2
Cl. 9.4.3
e) Summary of punching shear refreshment required at column C2


Figure 3.23 Punching shear links at column C2 (112 no. links) (column D2 similar)

### 3.4.11 Punching shear, edge column

Assuming penultimate support,
$V_{E d}=1.18 \times 516.5=609.5 \mathrm{kN}$
a) Check at perimeter of column
$v_{E d}=\beta V_{E d} / u_{i} d<V_{R d, \max }$
where
$\beta=$ factor dealing with eccentricity; recommended value 1.4
$V_{E d}=$ applied shear force
$u_{i}=$ control perimeter under consideration.
For punching shear adjacent to edge columns
$u_{0}=c_{2}+3 d<c_{2}+2 c_{1}$
$=400+750<3 \times 400 \mathrm{~mm}$
$=1150 \mathrm{~mm}$
$d=$ as before 250 mm
$v_{E_{d}}=1.4 \times 609.5 \times 10^{3} / 1150 \times 250=2.97 \mathrm{MPa}$
$v_{\text {Rd,max }}$, as before $=5.28 \mathrm{MPa}$
$\therefore O K$

Table C3
Cl. 6.4.3(2),
6.4.5(3)

Fig. 6.21 N \& NA
Cl. 6.4.5(3)

Exp. (6.32)
Cl. 6.4.5(3) Note
b) Check shear stress at basic perimeter $u_{1}$ ( 2.0 d from face of column)
CI. 6.4.2
$v_{E d}=\beta V_{E d} / u_{1} d<V_{R d, c}$
where

$$
\beta, V_{E d} \text { and } d \text { as before }
$$

$u_{1}=$ control perimeter under consideration.
For punching shear at $2 d$ from edge column columns
$u_{1}=c_{2}+2 c_{1}+\pi \times 2 d=2771 \mathrm{~mm}$
$v_{E d}=1.4 \times 609.5 \times 10^{3} / 2771 \times 250=1.23 \mathrm{MPa}$
$v_{R d, C}=0.18 / \gamma_{C} \times k \times\left(100 \rho_{1} f_{C k}\right)^{0.333}$
where
$\gamma_{C}=1.5$
$k=$ as before $=1+(200 / 250)^{0.5}=1.89$
$\rho_{\mathrm{l}}=\left(\rho_{\mathrm{ly}} \rho_{\mathrm{lz}}\right)^{0.5}$
where
$\rho_{\mathrm{ly}}, \rho_{\mathrm{lz}}=$ Reinforcement ratio of bonded steel in the $y$ and $z$ direction in a width of the column plus 3 d each side of column.
$\rho_{\text {ly }}$ : (perpendicular to edge) 10 no. H2O T2 + 6 no. H12 T2 in $2 \times 750+400$, i.e. $3818 \mathrm{~mm}^{2}$ in 1900 mm
$\therefore \rho_{\text {ly }}=3818 /(250 \times 1900)=0.0080$
$\rho_{\text {Iz: }}$ : (parallel to edge) 6 no. H2O T1 + 1 no. T12 T1 in $400+$ 750 i.e. $1997 \mathrm{~mm}^{2}$ in 1150 mm .
$\therefore \rho_{l z}=1997 /(250 \times 1150)=0.0069$
$\rho_{\text {l }}=(0.0080 \times 0.0069)^{0.5}=0.0074$
$f_{c k}=30$
$v_{R d, c}=0.18 / 1.5 \times 1.89 \times(100 \times 0.0074 \times 30)^{0.333}=0.64 \mathrm{MPa}$
$\therefore$ Punching shear reinforcement required
(C)


Figure 3.24 Flexural tensile reinforcement adjacent to columns C1 (and C3)

[^25]c) Perimeter at which punching shear links no longer required
$u_{\text {out }}=609.5 \times 1.4 \times 10^{3} /(250 \times 0.64)=5333 \mathrm{~mm}$
Length attributable to column faces $=3 \times 400=1200 \mathrm{~mm}$
$\therefore$ radius to $u_{\text {out }}$ from face of column
= say (5333-1200)/ $\pi=1315 \mathrm{~mm}$ from face of column
Perimeters of shear reinforcement may stop $1370-1.5 \times 250$
$$
=940 \mathrm{~mm} \text { from face of column. }
$$
d) Shear reinforcement

As before, $s_{r, \text { max }}=175 \mathrm{~mm} ; s_{t, \text { max }}=350 \mathrm{~mm}$ and
$f_{\text {ywd,ef }}=312 \mathrm{MPa}$
For perimeter $u_{1}$
$A_{s w} \geq\left(v_{E d}-0.75 v_{R d, c}\right) s_{r} u_{1} / 1.5 f_{\text {ywd }, e f}$

$$
=(1.23-0.75 \times 0.64) \times 175 \times 2771 /(1.5 \times 312)
$$

$$
=777 \mathrm{~mm}^{2} \text { per perimeter }
$$

$A_{s w, \min } \geq 0.08 \times 30^{0.5}(175 \times 350) /(1.5 \times 500)=36 \mathrm{~mm}^{2}$
$A_{S W} / u_{1} \geq 777 / 2771=0.28 \mathrm{~mm}^{2} / \mathrm{mm}$
Using H8 max. spacing $=50 / 0.28=178 \mathrm{~mm} \mathrm{cc}$
$\therefore$ Use min. H8 (50 mm²) legs of links at 175 mm cc around perimeters: perimeters at 175 mm centres
e) Check area of reinforcement $>777 \mathrm{~mm}^{2}$ in perimeters inside $u_{1}^{\S}$

1 st perimeter to be $>0.3 \mathrm{~d}$ but $<0.5 \mathrm{~d}$ from face of column. Say $0.4 d=100 \mathrm{~mm}$ from face of column
By inspection of Figure 3.27 the equivalent of 6 locations are available at 0.4 d from column therefore try $2 \times 6 \mathrm{no} . \mathrm{H} 1 \mathrm{O}=942 \mathrm{~mm}^{2}$

By inspection of Figure 3.27 the equivalent of 12 locations are available at 1.15 d from column therefore try $12 \mathrm{no} . \mathrm{H} 1 \mathrm{O}=942 \mathrm{~mm}^{2}$

By inspection of Figure 3.27 the equivalent of 14 locations are available at 1.90 d from column therefore try $14 \mathrm{no} . \mathrm{H} 1 \mathrm{O}=1099 \mathrm{~mm}^{2}$

By inspection of Figure 3.27 beyond $u_{1}$ to $u_{\text {out }}$ grid of

$$
\mathrm{H} 10 \text { at } 175 \times 175 \text { OK. }
$$

### 3.4.12 Punching shear, edge column with hole

Check columns D1 and D3 for $200 \times 200 \mathrm{~mm}$ hole adjacent to column. As previously described use 4 no. H2O U-bars each side of column for transfer moment.
Assuming internal support, $V_{E d}=516.5 \mathrm{kN}$

[^26]Exp. (6.54)
Cl. 6.4.5(4)
\& NA
Cl. 9.4.3(1),
9.4.3(2)

Exp. (6.52)

Exp. (9.11)

Fig. 9.10, CI. 9.4.3(4)
CI. 9.4.3
a) Check at perimeter of column

$$
v_{E d}=\beta V_{E d} / u_{i} d<v_{R d, \max }
$$

where

$$
\beta=\text { factor dealing with eccentricity; recommended value } 1.4
$$

$V_{E_{d}}=$ applied shear force
$u_{\mathrm{i}}=$ control perimeter under consideration. For punching shear adjacent to edge columns $u_{0}=c_{2}+3 d<c_{2}+2 c_{1}$

$$
=400+750<3 \times 400 \mathrm{~mm}
$$

$$
=1150 \mathrm{~mm}
$$

Allowing for hole, $u_{0}=1150-200=950 \mathrm{~mm}$
d $=250 \mathrm{~mm}$ as before
$v_{\text {Ed }}=1.4 \times 516.5 \times 10^{3} / 950 \times 250=3.06 \mathrm{MPa}$
$v_{\text {Rd,max }}$ as before $=5.28 \mathrm{MPa}$
b) Check shear stress at basic perimeter $u_{1}$ (2.Od from face of column)
$v_{E d}=\beta V_{E d} / u_{1} d<V_{R d, c}$
where

$$
\beta, V_{E d} \text { and } d \text { as before }
$$

$u_{1}=$ control perimeter under consideration. For punching shear at $2 d$ from edge column columns

$$
u_{1}=c_{2}+2 c_{1}+\pi \times 2 d=2771 \mathrm{~mm}
$$

Allowing for hole

$$
200 /\left(c_{1} / 2\right): x /\left(c_{1} / 2+2 d\right)
$$

$$
200 / 200: x /(200+500)
$$

$$
\therefore x=700 \mathrm{~mm}
$$

$u_{1}=2771-700=2071 \mathrm{~mm}$
$v_{E d}=1.4 \times 516.5 \times 10^{3} / 2071 \times 250=1.40 \mathrm{MPa}$
$v_{R d, c}=0.18 / \gamma_{C} \times k \times\left(100 \rho_{l} f_{c k}\right)^{0.333}$
where

$$
\begin{aligned}
& \gamma_{C}=1.5 \\
& k=\text { as before }=1+(200 / 250)^{0.5}=1.89 \\
& \rho_{1}=\left(\rho_{\text {Iy }} \rho_{\mid z}\right)^{0.5}
\end{aligned}
$$

where

$$
\begin{aligned}
\rho_{\mathrm{ly}}, \rho_{\mathrm{lz}}= & \text { Reinforcement ratio of bonded steel in the y and } \\
& z \text { direction in a width of the column plus } 3 \text { d each } \\
& \text { side of column } \\
& \rho_{\mathrm{ly}} \text { : (perpendicular to edge) } 8 \text { no. } \mathrm{H} 20 \mathrm{~T} 2+6 \mathrm{no.} \mathrm{H} 12 \\
& T 2 \text { in } 2 \times 720+400-200, \text { i.e. } 3190 \mathrm{~mm}^{2} \text { in } 1640 \mathrm{~mm} . \\
\therefore \rho_{\mathrm{ly}}= & 3190 /(240 \times 1640)=0.0081 \\
& \rho_{\mathrm{lz}}:(\text { parallel to edge }) 6 \text { no. } \mathrm{H} 20 \mathrm{~T} 1(5 \mathrm{no} . \text { are } \\
& \text { effective })+1 \mathrm{no} . \mathrm{T} 12 \mathrm{~T} \text { in } 400+750-200, \text { i.e. } \\
& 1683 \mathrm{~mm}^{2} \text { in } 950 \mathrm{~mm} . \\
\therefore \rho_{\mathrm{lz}}= & 1683 /(260 \times 950)=0.0068
\end{aligned}
$$

Cl. 6.4.3(2),
6.4.5(3)

Fig. 6.21N \& NA
Cl. 6.4.5(3)

Exp. (6.32)
Cl. 6.4.5(3) Note
Cl. 6.4.2

Fig. 6.15

Fig. 6.14

Exp. (6.47) \& NA
CI. 6.4.4.1(1)

$$
\begin{aligned}
\rho_{I} & =(0.0081 \times 0.0068)^{0.5}=0.0074 \\
f_{c k} & =30 \\
v_{R d, c}=0.18 / 1.5 & \times 1.89 \times(100 \times 0.0074 \times 30)^{0.33}=0.64 \mathrm{MPa}
\end{aligned}
$$

$\therefore$ punching shear reinforcement required


$$
\nVdash 3 d=750 \times \frac{400}{1} \times 3 d=750
$$

Figure 3.25 Flexural tensile reinforcement adjacent to columns D1 and D3
c) Perimeter at which punching shear links no longer required
$u_{\text {out }}=516.5 \times 1.4 \times 10^{3} /(250 \times 0.64)=4519 \mathrm{~mm}$
Length attributable to column faces $=3 \times 400=1200 \mathrm{~mm}$
Angle subtended by hole from centre of column D1 (See Figures 3.25
\& 3.27) $=2$
$\tan ^{-1}(100 / 200)=2 \times 26.5^{\circ}=0.927$ rads.
$\therefore$ radius to $u_{\text {out }}$ from face of column
$=\operatorname{say}(4519-1200) /(\pi-0.927)=1498 \mathrm{~mm}$ from face of column
Perimeters of shear reinforcement may stop $1498-1.5 \times 250$
$=1123 \mathrm{~mm}$ from face of column
d) Shear reinforcement

As before, $s_{r, \text { max }}=175 \mathrm{~mm} ; s_{t, \text { max }}=350 \mathrm{~mm}$ and $f_{y w d, e f}=312 \mathrm{MPa}$

For perimeter $u_{1}$
$\left.A_{s w} \geq\left(v_{E d}-0.75 v_{R d, c}\right) s_{r} u_{1} / 1.5 f_{\text {ywd,ef }}\right)$ per perimeter $=(1.40-0.75 \times 0.64) \times 175 \times 2071 /(1.5 \times 312)$ $=712 \mathrm{~mm}^{2}$ per perimeter
$A_{S W, \text { min }} \geq 0.08 \times 30^{0.5}(175 \times 350) /(1.5 \times 500)=36 \mathrm{~mm}^{2}$
$A_{5 W} / u_{1} \geq 712 / 2071=0.34 \mathrm{~mm}^{2} / \mathrm{mm}$

[^27]Table C6 ${ }^{\ddagger}$

Exp. (6.54)
Cl. 6.4.5(4)
\& NA
Cl. 9.4.3(1)
9.4.3(2)

Exp. (6.52)

Using H8 (50 mm²) max. spacing $=\min [50 / 0.3 ; 1.5 d]$

$$
=\min [147 ; 375]=147 \mathrm{~mm} \mathrm{cc} \text { No good }
$$

Try using H1O, max. spacing $=78.5 / 0.34=231 \mathrm{~mm} \mathrm{cc}$, say 175 cc $\therefore$ Use min. $\mathrm{H} 1 \mathrm{O}\left(78.5 \mathrm{~mm}^{2}\right)$ legs of links at 175 mm cc around perimeters:
perimeters at 175 mm centres
Check min. 9 no. H 10 legs of links $\left(712 \mathrm{~mm}^{2}\right)$ in perimeter $u_{1}, 2_{d}$ from column face.
e) Check area of reinforcement $>712 \mathrm{~mm}^{2}$ in perimeters inside $u_{1}^{\ddagger}$

1st perimeter to be 100 mm from face of column as before.
By inspection of Figure 3.27 the equivalent of 6 locations are available

Fig. 9.10, CI. 9.4.3(4)

### 3.4.13 Summary of design

## Grid C flexure

End supports:
Column strip: (max. 200 mm from column) 10 no. H 2 O U-bars in pairs
(where $200 \times 200$ hole use 8 no. H 20
T1 in U-bars in pairs)
Middle strip:
H12@200 T1

Spans 1-2 and 2-3:
Column strip and middle strip:
H2O@200B
Central support:
Column strip centre: for 750 mm
either side of support:
H2O@100 T1
Column strip outer:
H20@250T1
Middle strip:
H16@200 T1
Grid 1 (and 3) flexure
Spans:
Column strip: H16 @ 200 B2
Middle strip:
H12@300 B2

[^28]Interior support:

Column strip centre:
Column strip outer:
Middle strip:

## Grid 2 flexure

Spans:
Column strip:
Middle strip:
Interior support:
Column strip centre:
Column strip outer:
Middle strip:

6 no. H2O @ 175 T2
H12 @ 175 T2
H12@300 T2

H16@250B2
H1O@200B2

H2O @ 200 T2
H16@250T2
H12@300T2
See Figure 3.26

## Punching shear

Internal (e.g. at C2):
Generally, use H1O legs of links in perimeters at max. 175 mm centres, but double up on 1st perimeter Max. tangential spacing of legs of links, $s_{t, \max }=270 \mathrm{~mm}$ Last perimeter, from column face, min. 767 mm See Figure 3.26

Edge (e.g. at C1, C3 assuming no holes):
Generally, use H1O legs of links in perimeters at max. 175 mm centres but double up on 1st perimeter Max. tangential spacing of legs of links, $s_{t, \max }=175 \mathrm{~mm}$ Last perimeter, from column face, min. 940 mm

Edge (e.g. at D1, D3 assuming $200 \times 200$ hole on face of column): Generally, use H1O legs of links in perimeters at max. 175 mm centres but double up on 1st perimeter Max. tangential spacing of legs of links, $s_{t, \max }=175 \mathrm{~mm}$ Last perimeter, from column face, min. 1123 mm See Figure 3.27


Note:* Spacing rationalised to suit punching shear links
Figure 3.26 Reinforcement details bay C-D, 1-2

### 3.4.14 Commentary on design

a) Method of analysis

The use of coefficients in the analysis would not usually be advocated in the design of such a slab. Nonetheless, coefficients may be used and, unsurprisingly, their use leads to higher design moments and shears, as shown below.

| Method | Moment in <br> 9.6 m span per <br> 6 m bay $(\mathrm{kNm})$ | Centre support <br> moment per <br> 6 m bay (kNm) | Centre support <br> reaction V Vd |
| :--- | :--- | :--- | :--- |
| Coefficients | 842.7 | 952.8 | 1205 |
| Continuous beam | 747.0 | 885.6 | 1103 |
| Plane frame columns <br> below | 664.8 | 834.0 | 1060 |
| Plane frame columns <br> above and below | 616.8 | 798.0 | 1031 |



Note: For internal column see Figure 3.23
Figure 3.27 Punching shear links at column D1 (and D3) (penultimate support without hole similar)

These higher moments and shears result in rather more reinforcement than when using other more refined methods. For instance, the finite element analysis used in Guide to the design and construction of reinforced concrete flat slabs ${ }^{[27]}$ for this bay, leads to:
-H16 @ 200 B1 in spans 1-2 (cf. H2O @ 200 B1 using coefficients)

- H2O @ 125 T1 at support 2 (cf. H2O @ 100 T1 using coefficients)
- 3 perimeters of shear links at C2 for $V_{E d}=1065 \mathrm{kN}$ (cf. 5 perimeters using coefficients)
- 2 perimeters of shear links at C3 (cf. 7 perimeters using coefficients)
b) Effective spans and face of support

In the analysis using coefficients, advantage was taken of using effective spans to calculate design moments. This had the effect of reducing span moments.

At supports, one may base the design on the moment at the face of
Cl. 5.3.2.2(1) support. This is borne out by Guide to the design and construction of reinforced concrete flat slabs ${ }^{[27]}$ that states that hogging moments greater than those at a distance $h_{c} / 3$ may be ignored (where $h_{c}$ is the effective diameter of a column or column head). This is in line with BS $8110^{[7]}$ and could have been used to reduce support moments.

## c) Punching shear reinforcement

## Arrangement of punching shear links

According to the literal definition of $A_{\text {sw }}$ in Exp. (6.52), the same area of shear reinforcement is required for all perimeters inside or outside perimeter $u_{1}$ (rather than $\left(A_{s w} / u_{1}\right) / s_{r}$ being considered as the required density of shear reinforcement on and within perimeter $u_{1}$ ). For perimeters inside $u_{1}$, it might be argued that Exp. (6.50) (enhancement close to supports) should apply. However, at the time of writing, this expression is deemed applicable only to foundation bases. Therefore, large concentrations of shear reinforcement are required close to the columns - in this example, this included doubling up shear links at the 1st perimeter.

Similar to BS 8110 [7] figure 3.17, it is apparent that the requirement for punching shear reinforcement is for a punching shear zone 1.5 d wide. However, in Eurocode 2, the requirement has been 'simplified' in Exp. (6.52) to make the requirement for a perimeter (up to 0.75 d wide). It might appear reasonable to apply the same $40 \%: 60 \%$ rule (BS 8110 Cl 3.7.7.6) to the first two perimeters to make doubling of punching shear reinforcement at the first perimeter unnecessary: in terms of Eurocode 2 this would mean $80 \% \mathrm{~A}_{\text {sw }}$ on the first perimeter and $120 \% A_{s w}$ on the second. Using this arrangement it would be possible to replace the designed H 1 O links in the first two perimeters with single H12 links.

Outside $u_{1}$, the numbers of links could have been reduced to maintain provision of the designed amount of reinforcement $A_{5 w}$. A rectangular arrangement of H 12 links would have been possible (within perimeter $u_{1}, 350 \times 175$; outside $u_{1}, 500 \times 175$ ). However, as the grid would need to change orientation around each column (to maintain the 0.75 d radial spacing) and as the reinforcement in B2 and $T 2$ is essentially at 175 centres, it is considered better to leave the arrangement as a regular square grid.

Use of shear reinforcement in a radial arrangement, e.g. using stud rails, would have simplified the shear reinforcement requirements.

## $V_{E d} I V_{R d, c}$

In late 2008, a proposal was made for the UK National Annex to include a limit of 2.0 or 2.5 on $V_{E d} / V_{R d, c}\left(\right.$ or $\left.V_{E d} / V_{R d, c}\right)$ within punching shear requirements. It is apparent that this limitation could have major effects on flat slabs supported on relatively small columns. For instance in Section 3.4.12, edge column with hole, $V_{E d} / V_{R d, c}=2.18$.

## Curtailment of reinforcement

In this design, the reinforcement would be curtailed and this would be done either in line with previous examples or, more practically, in line with other guidance $e^{[20,21]}$.

## 3.5: Stair flight

### 3.5 Stair flight

This example is for a typical stair flight.

| The Concrete Centre" |  | Stair flight |  |  | lated by chg ${ }^{\text {Job no. CCIP - } 041}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Checked by |  | Sheet no. |  |
|  |  |  | Client | CC | Date | Oct 09 |
| Figure 3.28 Stair flight <br> 3.5.1 Loads <br> Permanent (worse case flight) <br> Assume 160 waist <br> Treads <br> 50 mm screed <br> Finishing $\begin{array}{lrl} 0.160 \times 305 / 250 \times 25 & & =4.88 \\ 4 \times 0.25 \times 0.175 / 2 \times 25 & & =2.19 \\ 0.5 \times 22 & & =1.10 \\ & =0.03 \\ & g_{k} & =8.20 \end{array}$ <br> Variable action: crowd loading $q_{k}=4.00$ <br> 3.5.2 Moment $\begin{aligned} M_{E d} & =(8.20 \times 1.25+4.00 \times 1.5) \times 3.45^{2} / 8 \\ & =24.2 \mathrm{kNm} / \mathrm{m} \end{aligned}$ <br> 3.5.3 Design $\begin{aligned} & d=160-c_{\text {nom }}-\phi / 2 \\ & \text { where } \\ & \quad c_{\text {nom }}=25 \mathrm{~mm} \text { (for XC1) } \\ & \quad \phi=12 \mathrm{~mm} \text { (assumed) } \\ & \therefore d=129 \mathrm{~mm} \end{aligned}$ |  |  |  |  |  |  | EC1-1-1: <br>  <br> Concise BS 850 | ble 6.1, 3 <br> able 4.2 |

$$
\begin{aligned}
K & =M_{\mathrm{Ed}} / b d^{2} f_{c \mathrm{ck}}=24.2 \times 10^{6} /\left(1000 \times 129^{2} \times 30\right) \\
& =0.048 \\
z / d & =0.95 \\
z & =0.95 \times 129 \\
& =122 \mathrm{~mm} \\
A_{s} & =M_{\mathrm{Ed}} / \mathrm{f}_{\mathrm{yd}} z \\
& =24.2 \times 10^{6} /[(500 / 1.15) \times 122] \\
& =456 \mathrm{~mm}^{2} / \mathrm{m}(\rho=0.35 \%)
\end{aligned}
$$

$$
\text { Try H12@ } 250\left(452 \mathrm{~mm}^{2} / \mathrm{m}\right) \therefore \text { OK) }
$$

### 3.5.4 Check deflection

Allowable $/ / d=N \times K \times F 1 \times F 2 \times F 3$
where
$N=32.7$
$K=1.0$
$\mathrm{F} 1=1.0$
$F 2=1.0$
F3 $=1.0$ (5ay)
$\therefore$ Allowable $1 / d=32.7$
Actual I/d $=3450 / 129$

$$
=26.7 \therefore \text { OK }
$$

Appendix C7,
Table C1O

Table C11
$\therefore$ Provide H12 @ 250B.

## 4 Beams

### 4.0 General

The calculations in this Section are presented in the following parts:
4.1 Continuous beam on pin supports - a simply supported continuous beam showing what might be deemed typical hand calculations.
4.2 A heavily loaded L-beam.
4.3 A continuous wide T-beam. This example is analysed and designed strictly in accordance with the provisions of Eurocode 2.

They are intended to be illustrative of the Code and not necessarily best practice.
A general method of designing beams is shown below. In practice, several of these steps may be combined.

- Determine design life

Assess actions on the beam.
Assess durability requirements and determine concrete strength.

- Check cover requirements for appropriate fire resistance period.
- Calculate minimum cover for durability, fire and bond requirements.
- Determine which combinations of actions apply.
- Determine loading arrangements.
- Analyse structure to obtain critical moments and shear forces.
- Design flexural reinforcement.
- Check deflection.
- Check shear capacity.
- Other design checks:

Check minimum reinforcement. Check cracking (size or spacing of bars).
Check effects of partial fixity. Check secondary reinforcement.

- Check curtailment.
- Check anchorage.
- Check laps.

ECO \& NA
Table NA.2.1
EC1 \& NAs
Table 4.1
BS 8500-1:
Tables A4, A5

## EC2-1-2:

Tables 5.8, 5.9, 5.10, 5.11

## Cl. 4.4.1

ECO \& NA Tables NA.A1.1, NA.A1.2 (B)
Cl. $5 \cdot 1 \cdot 3(1) \& N A$
Cl. 5.4, 5.5, 5.6
Cl. 6.1
CI. 7.4
Cl. 6.2
Cl. 9.3.1.1(1), 9.2.1.1(1)
Cl. 7.3, Tables $7.2 \mathrm{~N}, 7.3 \mathrm{~N}$
Cl. 9.3.1.2(2)
Cl. 9.3.1.1(2), 9.3.1.4(1)
Cl. 9.3.1.1(4), 9.2.1.3,

Fig. 9.2
Cl. 9.3.1.2, 8.4.4, 9.3.1.1(4),
9.2.1.5(1), 9.2.1.5(2)
Cl. 8.7.3

### 4.1 Continuous beam on pin supports

This calculation is intended to show a typical hand calculation for a continuous simply supported beam using coefficients to determine moments and shears.

## Continuous beam on pin supports

| Calculated by | chg | Job no. | CCIP - O41 |
| :--- | :--- | :--- | ---: |
| Checked by | web | Sheet no. | 1 |
| Client | TCC | Date | Oct O9 |

A 450 mm deep $\times 300 \mathrm{~mm}$ wide rectangular beam is required to support office loads of $g_{k}=30.2 \mathrm{kN} / \mathrm{m}$ and $q_{k}=11.5 \mathrm{kN} / \mathrm{m}$ over 2 no. 6 m spans. $f_{c k}=30 \mathrm{MPa}, f_{\mathrm{yk}}=500 \mathrm{MPa}$. Assume 300 mm wide supports, a 50-year design life and a requirement for a 2-hour resistance to fire in an external but sheltered environment.


Figure 4.1 Continuous rectangular beam


Figure 4.2 Section through beam

### 4.1.1 Actions

Permanent $g_{k}=30.2 \mathrm{kN} / \mathrm{m}$ and variable $q_{\mathrm{k}}=11.5 \mathrm{kN} / \mathrm{m}$

### 4.1.2 Cover

Nominal cover, $c_{\text {nom }}$ :
$c_{\text {nom }}=c_{\text {min }}+\Delta c_{\text {dev }}$
Exp. (4.1)
where

$$
\begin{aligned}
& c_{\min }=\max \left[c_{\text {min }, b} ; c_{\text {min }, \text { dur }}\right] \\
& \text { where } \\
& \qquad \begin{aligned}
c_{\text {min }, b}= & \text { minimum cover due to bond } \\
= & \text { diameter of bar. Assume } 25 \text { mm main bars } \\
= & \text { minimum cover due to environmental conditions. } \\
& \text { Assuming XC3 (moderate humidity or cyclic wet } \\
& \text { and dry) and secondarily XF1 (moderate water }
\end{aligned}
\end{aligned}
$$



## Flexure in span:

$K=M_{E d} / b d^{2} f_{c k}=184.4 \times 10^{6} /\left(300 \times 392^{2} \times 30\right)=0.133$
$z / d=0.864$
$z=0.864 \times 392=338 \mathrm{~mm}$
$A_{5}=M_{E d} / f_{y d} z=184.4 \times 10^{6} /(434.8 \times 338)=1255 \mathrm{~mm}^{2}$

$$
\frac{\text { Try } 3 \text { no. } \mathrm{H} 25 \mathrm{~B}\left(1473 \mathrm{~mm}^{2}\right)}{(\rho=1.25 \%)}
$$

## Check spacing:

Spacing of outer bars $=300-2 \times 35-2 \times 10-25=185 \mathrm{~mm}$
Assuming 10 mm diameter link,
$\therefore$ spacing $=98 \mathrm{~mm}$
Steel stress under quasi-permanent loading:
$\sigma_{s}=\left(f_{y k} / \gamma_{S}\right)\left(A_{s, \text { req }} / A_{s, \text { prov }}\right)(S L S$ loads/ULS loads) $(1 / \delta)$
$=f_{\text {yd }} \times\left(A_{s, \text { req }} / A_{s, \text { prov }}\right) \times\left(g_{k}+\psi_{2} q_{k}\right) /\left(\gamma_{G} g_{k}+\gamma_{Q} q_{k}\right)(1 / \delta)$
$=(500 / 1.15) \times(1255 / 1473) \times[(30.2+0.3 \times 11.5) / 50.8](1 / 1.03)$

$$
=434.8 \times 0.91 \times 0.66 \times 0.97=237 \mathrm{MPa}
$$

As exposure is XC3, max. crack width $w_{\max }=0.3 \mathrm{~mm}$
$\therefore$ Maximum bar size $=16 \mathrm{~mm}$ or max. spacing $=200 \mathrm{~mm} \therefore$ OK

$$
\therefore \text { Use } 3 \text { H25 B }\left(1473 \mathrm{~mm}^{2}\right)
$$

## Deflection:

Check span-to-effective-depth ratio.
Basic span: effective depth ratio for $\rho=1.25 \%$ :
$/ / d=18+[(1.25-0.5) /(1.5 / 0.5)] \times(26-18)=24.0$
Max. span $=24.0 \times 392=9408 \mathrm{~mm}$
Flexure, support:
$M_{E d}=193.8 \mathrm{kNm}$
$K=M_{E d} l b d^{2} f_{c k}$
where

$$
d=450-35-10-25 / 2=392 \mathrm{~mm}
$$

$K=193.8 \times 10^{6} /\left(300 \times 392^{2} \times 30\right)=0.142$
By inspection, $K \leq K^{\prime}\left(0.142 \times 0.168^{\ddagger}\right)$
$\therefore$ no compression reinforcement required.
$z=0.85 d$
$=0.85 \times 392=333 \mathrm{~mm}$
$A_{s}=M_{E d} / f_{y d} z$
$=193.8 \times 10^{6} / 434.8 \times 333=1338 \mathrm{~mm}^{2}$

$$
\frac{\text { Try } 3 \text { no. H25 T }\left(1473 \mathrm{~mm}^{2}\right)}{(\rho=1.13 \%)}
$$

[^29]Fig. 3.5
Appendix A1
Table C5
Cl. 7.3.3(2)
Cl. 7.3.1(5) \& NA

Table 7.2N \& NA

Appendix B
Table 7.4N \& NA

Appendix A1
Table C5

### 4.1.6 Shear

a) Support B (critical)

Shear at central support $=192.0 \mathrm{kN}$
At d from face of support ${ }^{\xi}$
$V_{E d}=192.0-(0.300 / 2+0.392) \times 50.8=164.50 \mathrm{kN}$
$V_{E d}=V_{E d} / b d$
$=164.5 \times 10^{3} /(392 \times 300)=1.40 \mathrm{MPa}$
Maximum shear capacity:
Assuming $f_{c k}=30 \mathrm{MPa}$ and $\cot \theta=2.5^{\#}$
$v_{\text {Rd,max }}{ }^{*}=3.64 \mathrm{MPa}$
$v_{\text {Rd,max }}>v_{E d} \therefore$ OK
Shear reinforcement:
Assuming $z=0.9 \mathrm{~d}$
$A_{\text {Sw }} / s \geq V_{\text {Ed }} /\left(0.9 d \times f_{\text {ywd }} \times \cot \theta\right)$

$$
\geq 164.5 \times 10^{3} /(0.9 \times 392 \times(500 / 1.15) \times 2.5)=0.429
$$

More accurately,

$$
\begin{aligned}
A_{s W} / s & \geq V_{E d} /\left(z \times f_{y w d} \times \cot \theta\right) \\
& \geq 164.5 \times 10^{3} /(333 \times 1087)=0.454
\end{aligned}
$$

Minimum shear links,
$A_{s w, \text { min }} / s=0.08 b_{w c k} f_{c k}^{0.5} / f_{y k}$

$$
=0.08 \times 300 \times 30^{0.5} / 500=0.263 \text {. Not critical }
$$

Max. spacing $=0.75 \mathrm{~d}=0.75 \times 392=294 \mathrm{~mm}$

$$
\text { Use H8 @ } 200\left(\mathrm{~A}_{5 w} /{ }^{5}=0.50\right)
$$

b) Support A (and C)

Shear at end support $=137.2 \mathrm{kN}$
At face of support,
$V_{E d}=137.2-(0.150+0.392) \times 50.8=109.7 \mathrm{kN}$
By inspection, shear reinforcement required and $\cot \theta=2.5$
$A_{\text {sw }} / s \geq V_{E d} /\left(z \times f_{\text {ywd }} \times \cot \theta\right)$
$\geq 109.7 \times 10^{3} /[353 \times(500 / 1.15) \times 2.5]=0.285$
Use H8 @ $200\left(\mathrm{~A}_{5 \mathrm{~L}} /{ }_{5}=0.50\right)$ throughout ${ }^{\ddagger}$

[^30]
### 4.1.7 Summary of design



Figure 4.3 Continuous rectangular beam: Summary of design

## Commentary

It is usually presumed that the detailer would take the design summarised above and detail the beam to normal best practice ${ }^{[8,9]}$. The design would go no further where standard detailing is all that is required. Where the element is non-standard (e.g. where there are point loads), it should be incumbent on the designer to give the detailer specific information about curtailment, laps, etc. as illustrated below. The detailer's responsibilities, standards and timescales should be clearly defined but it would be usual for the detailer to draw and schedule not only the designed reinforcement but all the reinforcement required to provide a compliant and buildable solution. The work would usually include the checking the following aspects and providing appropriate detailing:

- Minimum areas
- Curtailment lengths
- Anchorages
- Laps
- U-bars
- Rationalisation
- Critical dimensions
- Details and sections

The determination of minimum reinforcement areas and curtailment lengths, using the principles in Eurocode 2 is shown below. In practice these would be determined from published tables of data or by using reference texts ${ }^{[8,9]}$. Nonetheless, the designer should check the drawing for design intent and compliance with the standards. It is therefore necessary for the designer to understand and agree the principles of the detailing used.

### 4.1.8 Detailing checks

a) Minimum areas
$A_{s, \text { min }}=0.26\left(f_{c t m} / f_{y k}\right) b_{t} d \geq 0.0013 b_{t} d$

$$
\begin{aligned}
& b_{t}=\text { width of tension zone } \\
& f_{c t m}=0.30 \times f_{c k} 0.666 \\
& A_{s, \min }=0.26 \times 0.30 \times 30^{0.666} \times 300 \times 392 / 500=177 \mathrm{~mm}^{2}
\end{aligned}
$$

b) Curtailment of main bars

Bottom: curtail
$75 \%$ main bars 0.081 from end support $=480 \mathrm{~mm}$ say 450 mm from $A$
$70 \%$ main bars $0.301-a_{1}=0.3 \times 6000-1.125 \times d$
$=1800-1.125 \times 392$
$=1359 \mathrm{~mm}$ say 1350 from $A$
Top: curtail
$40 \%$ main bars $0.151+a_{1}=900+441$
$=1341 \mathrm{~mm}$ say 1350 from $B$
$65 \%$ main bars $0.301+a_{1}=1800+441$
$=2241 \mathrm{~mm}$ say 2250 from $B$
At supports:
$25 \%$ of $A_{5}$ to be anchored at supports
$25 \%$ of $1225 \mathrm{~mm}^{2}=314 \mathrm{~mm}^{2}$
Use min. 2 no. H16 (402 $\mathrm{mm}^{2}$ ) at supports A, B and C
In accordance with SMDSC[9] detail MB1 lap U-bars tension lap with main steel
$=780 \mathrm{~mm}$ (in C3O/37 concrete, H12, 'poor' bond condition)
= say 800 mm
c) Summary of reinforcement details

Table 3.1

How to: Detailing
Cl. 9.2.1.2.(1),
9.2.1.4(1) \& NA
Cl. 9.2.1.5(1)

How to: Detailing


Links omitted for clarity
Figure 4.4 Continuous rectangular beam: reinforcement details

Note Subsequent detailing checks may find issues with spacing rules especially if the 'cage and splice bar' method of detailing were to be used. 2 H 32 s T\&B would be a suitable alternative to 3 H 25 s T\&B.

### 4.2 Heavily loaded L-beam



Figure 4.5 Heavily loaded L-beam

This edge beam supports heavy loads from storage loads. The variable point load is independent of the variable uniformly distributed load. The beam is supported on 350 mm square columns 4000 mm long. $f_{c k}=30 \mathrm{MPa} ; f_{\mathrm{yk}}=500 \mathrm{MPa}$. The underside surface is subject to an external environment and a 2-hour fire resistance requirement. The top surface is internal and subject to a 2-hour fire resistance requirement. Assume that any partitions are liable to be damaged by excessive deflections.


Figure 4.6 Section through L-beam

### 4.2.1 Actions

Permanent:
UDL from slab and cladding $g_{k}=46.0 \mathrm{kN} / \mathrm{m}$
Point load from storage area above $=88.7 \mathrm{kN}$
Variable:
From slab $q_{k}=63.3 \mathrm{kN} / \mathrm{m}$
Point load from storage area above $=138.7 \mathrm{kN}$

### 4.2.2 Cover

a) Nominal cover, $c_{\text {nom }}$, underside and side of beam

$$
\begin{aligned}
& c_{\text {nom }}=c_{\text {min }}+\Delta c_{\text {dev }} \\
& \text { where } \\
& \quad c_{\text {min }}=\max \left[c_{\text {min }, b} ; c_{\text {min }, \text { dur }}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
c_{\text {min }, b}= & \text { minimum cover due to bond } \\
= & \text { diameter of bar. Assume } 32 \mathrm{~mm} \text { main bars and } \\
& 10 \mathrm{~mm} \text { links }
\end{aligned}
$$

$c_{\text {min,dur }}=$ minimum cover due to environmental conditions. Assuming primarily XC3/XC4 exposure (moderate humidity or cyclic wet and dry); secondarily XF1 exposure (moderate water saturation without de-icing salt, vertical surfaces exposed to rain and freezing) and C30/37 concrete,

$$
c_{\text {min }, \text { dur }}=25 \mathrm{~mm}
$$

$\Delta c_{\text {dev }}=$ allowance in design for deviation. Assuming no measurement of cover $\Delta c_{\text {dev }}=10 \mathrm{~mm}$
$\therefore c_{\text {nom }}=32+10=42 \mathrm{~mm}$ to main bars
or $=25+10=35 \mathrm{~mm}$ to links

$$
\text { Use } c_{\text {nom }}=35 \mathrm{~mm} \text { to links (giving } c_{\text {nom }}=45 \mathrm{~mm} \text { to main bars) }
$$

b) Fire

Check adequacy of section for 2 hours fire resistance REI 120. By inspection, web thickness OK.

Axis distance, a, required $=35 \mathrm{~mm}$ OK by inspection.
$\therefore$ Try 35 mm nominal cover bottom and sides to 10 mm link.
Nominal cover, $c_{\text {nom }}$, top:
By inspection,
$c_{\text {nom }}=c_{\text {min }}+\Delta c_{\text {dev }}$
where

$$
\begin{aligned}
& c_{\min }=\max \left[c_{\text {min }, b} ; c_{\text {min }, \text { dur }}\right] \\
& \text { where } \\
& c_{\text {min }, b}=\text { minimum cover due to bond } \\
& \text { = diameter of bar. Assume } 32 \mathrm{~mm} \text { main bars and } \\
& 10 \mathrm{~mm} \text { links } \\
& c_{\text {min,dur }}=\text { minimum cover due to environmental conditions. } \\
& \text { Assuming primarily XC1 and C30/37 concrete, } \\
& c_{\text {min,dur }}=15 \mathrm{~mm}
\end{aligned}
$$

Exp. (4.1)
Cl. 4.4.1.2(3)

Table 4.1
BS 8500-1:
Table A4
Cl. 4.4.1.2(3)

EC2-1-2: 5.6.3
EC2-1-2:
Table 5.6
EC2-1-2:
Table 5.6

Exp. (4.1)
Cl. 4.4.1.2(3)

Table 4.1
BS 8500-1:
Table A4

$$
\begin{aligned}
& \Delta c_{\text {dev }}=\text { allowance in design for deviation. Assuming no } \\
& \text { measurement of cover } \Delta c_{\text {dev }}=10 \mathrm{~mm} \\
& \therefore c_{\text {nom }}=32+10=42 \mathrm{~mm} \text { to main bars } \\
& \text { or }=15+10=25 \mathrm{~mm} \text { to links } \\
& \text { Use } c_{\text {nom }}=35 \mathrm{~mm} \text { to links (giving } c_{\text {nom }}=45 \mathrm{~mm} \text { to main bars) }
\end{aligned}
$$

### 4.2.3 Idealisation, load combination and arrangement

Load combination:
As loads are from storage, Exp. (6.10a) is critical.
Idealisation:
This element is treated as a continuous beam framing into columns $350 \times 350^{\ddagger} \times 4000 \mathrm{~mm}$ long columns below.
Arrangement:
Choose to use all-and-alternate-spans-loaded.

### 4.2.4 Analysis

Analysis by computer (spreadsheet TCC 41 Continuous Beam (A+D).x1s in RC spreadsheets V. $3^{[28]}$ assuming frame action with 350 mm square columns 4 m long fixed at base. Beam inertia based on $T$-section, $b_{\text {eff }}$ wide) with $15 \%$ redistribution at central support, limited redistribution of span moment and consistent redistribution of shear.
Table 4.2 Elastic and redistributed moments, kNm

| Span number | 1 | 2 |
| :--- | :--- | :--- |
| Elastic M | 1168 | 745 |
| Redistributed M | 1148 | 684 |
| $\delta$ | 0.98 | 0.92 |



Figure 4.7 Redistributed envelope, kNm

[^31]Cl. 4.4.1.2(3)

Table 2.5;
ECO: A1.2.2, NA
\& Exp. (6.10a)
Cl. 5.3.1(3)
Cl. 5.1.3(1) \&

NA: Table NA. 1 (option b)

ECO:
A1.2.2 \& NA;
Cl. 5.3.1 (6)

EC2-1-2:
Table 5.2a


Figure 4.8 Redistributed shears, kN

### 4.2.5 Flexural design, support A

$$
\begin{aligned}
M_{E d} & =195 \mathrm{kNm} \text { in hogging } \\
M_{\mathrm{Ed}, \text { min }} & =1148 \times 0.25 \text { in hogging and in sagging } \\
& =287 \mathrm{kNm} \\
K & =M_{\mathrm{Ed}} / b d^{2} \mathrm{f}_{c k}
\end{aligned}
$$

where
$b=b_{\text {eff }}=b_{\text {eff1 }}+b_{w}+b_{\text {eff2 }}$
where

$$
b_{\text {eff1 }}=\left(0.2 b_{1}+0.1 I_{0}\right) \leq 0.2 I_{0} \leq b_{1}
$$

where
$b_{1}=$ distance between webs/2
$I_{O}=$ nominal: assume $O^{S}$

$$
\therefore b_{\text {eff1 }}=0 \mathrm{~mm}=b_{\text {eff } 2}
$$

$\therefore b=b_{w}=350 \mathrm{~mm}$
$d=750-35-10-32 / 2=689 \mathrm{~mm}$ assuming 10 mm link and H 32 in support.
$f_{c k}=30 \mathrm{MPa}$
$K=287 \times 10^{6} /\left(350 \times 689^{2} \times 30\right)$
$=0.058$
Restricting x/d to 0.45
$K^{\prime}=0.168$
$K \leq K^{\prime} \therefore$ section under-reinforced and no compression reinforcement required.
$z=(d / 2)\left[1+(1-3.53 K)^{0.5}\right] \leq 0.95 d$
$=(689 / 2)(1+0.89) \leq 0.95 \times 689$
$=652 \leq 654 \therefore z=652 \mathrm{~mm}$
$A_{s}=M_{E d} / f_{y d} z$

[^32]CI. 9.2.1.2(1),
9.2.1.4(1) \& NA
Cl. 5.3.2.1,

Fig. 5.3

Fig. 5.2

Appendix A1

Appendix A1
Cl. 5.3.2.1(2)

Fig. 5.2
Fig. 4.11

## where

$$
\begin{aligned}
f_{\text {yd }} & =500 / 1.15=434.8 \mathrm{MPa} \\
= & 287 \times 10^{6} /(434.8 \times 652)=1012 \mathrm{~mm}^{2} \\
& \underline{\text { Try } 2 \text { no. H32 U-bars }\left(1608 \mathrm{~mm}^{2}\right)}
\end{aligned}
$$

Check anchorage of H32 U-bars.

Bars need to be anchored distance ' $A$ ' into column
SMDSC: 6.4.2
$I_{b, r q d}=(\phi / 4)\left(\sigma_{s d} / f_{b d}\right)$
where
$\phi=32$
$\sigma_{\text {sd }}=$ design stress in the bar at the ULS
$=434.8 \times 1012 / 1608=274 \mathrm{MPa}$
$f_{\text {bd }}=$ ultimate bond stress
$=2.25 \eta_{1} \eta_{2} f_{c t, d}$

SMDSC ${ }^{[9]}$, BS 8666 ${ }^{[19]}$ :
Table 2
Cl. 8.4.4, Exp. (8.4)

Exp. (8.3)
Cl. 8.4.2 (2)

$$
\begin{aligned}
& \text { where } \\
& \eta_{1}=1.0 \text { for good bond conditions } \\
& \eta_{2}=1.0 \text { for bar diameter } \leq 32 \mathrm{~mm} \\
& f_{c t, d}=\alpha_{c t} f_{c t k} / \gamma_{C} \\
&=1.0 \times 2.0 / 1.5 \\
&=1.33 \mathrm{MPa} \\
& f_{b d}=2.25 \times 1.33=3.0 \mathrm{MPa} \\
& I_{\text {b,rqd }}=(32 / 4)(274 / 3.0)=731 \mathrm{~mm}^{\ddagger} \\
& I_{b, \text { min }}=\max [10 \phi ; 100 \mathrm{~mm}]=250 \mathrm{~mm} \\
& \therefore I_{b d}=731 \mathrm{~mm} \mathrm{i.e.}<1006 \mathrm{~mm} \quad
\end{aligned}
$$

### 4.2.6 Flexural design, span $A B$

a) Span $A B$ - Flexure
$M_{E d}=1148 \mathrm{kNm}$
$K=M_{E d} / b d^{2} f_{c k}$
where
$b=b_{\text {eff }}=b_{\text {eff1 }}+b_{w}+b_{\text {eff2 }}$
where
$b_{\text {eff }}=\left(0.2 b_{1}+0.11_{0}\right) \leq 0.2 I_{0} \leq b_{1}$
where
$b_{1}=$ distance between webs/2
Assuming beams at 7000 mm cc
$=(7000-350) / 2=3325 \mathrm{~mm}$
$I_{0}=0.85 \times I_{1}=0.85 \times 9000=7650 \mathrm{~mm}^{5}$


Figure 4.10 Effective flange width $b_{\text {eff }}$

[^33]Cl. 3.1.6 (2),

Tables 3.1 \& 2.1,
\& NA
Cl. 5.3.2.1,

Fig. 5.3

Fig. 5.2

Fig. 5.3

How to:
Detailing ${ }^{[8]}$
CI. 5.3.2.1(2)

Figure 5.2


Figure 4.11 Elevation showing definition of $I_{O}$ for calculation of
flange width

Fig. 5.2
$b_{\text {eff1 }}=0.2 \times 3325+0.1 \times 7650 \leq 0.2 \times 7650 \leq 3325$
$=1430 \leq 1530 \leq 3325$
$=1430 \mathrm{~mm}$
$b_{w}=350 \mathrm{~mm}$
$b_{e f f 2}=\left(0.2 b_{2}+0.1 I_{0}\right) \leq 0.2 I_{0} \leq b_{2}$
where
$b_{2}=0 \mathrm{~mm}$
$b_{\text {eff2 }}=0 \mathrm{~mm}$
$b=1430+350+0=1780 \mathrm{~mm}$
d $=$ effective depth
$=750-35-10-32 / 2=689 \mathrm{~mm}$
assuming 10 mm link and H32 in span
$f_{c k}=30 \mathrm{MPa}$
$K=1148 \times 10^{6} /\left(1780 \times 689^{2} \times 30\right)$
$=0.045$
Restricting $x / d$ to 0.45 ,
$K^{\prime}=0.168$
$K \leq K^{\prime} \therefore$ section under-reinforced and no compression
reinforcement required.

$$
\begin{aligned}
z & =\text { lever arm } \\
& =(d / 2)\left[1+(1-3.53 \mathrm{~K})^{0.5}\right] \leq 0.95 d \\
& =(689 / 2)(1+0.917) \leq 0.95 \times 689 \\
& =661 \leq 654 \therefore z=654 \mathrm{~mm}
\end{aligned}
$$

But $z=d-0.4 x$
$\therefore$ by inspection, neutral axis is in flange and as $x<1.25 h_{f}$, design as rectangular section.

$$
\begin{aligned}
& A_{s}=M_{E d} / f_{y d} z \\
& \text { where } \\
& \qquad \begin{aligned}
f_{y d} & =500 / 1.15=434.8 \mathrm{MPa} \\
& =1148 \times 10^{6} /(434.8 \times 654)=4037 \mathrm{~mm}^{2}
\end{aligned}
\end{aligned}
$$

$$
\text { Try } 5 \text { no. H32 B (4020 mm²) (say OK) }
$$

Check spacing of bars.
Spacing of bars $=[350-2 \times(35+10)-32] /(5-1)$

$$
\begin{aligned}
& =57 \\
\text { Clear spacing } & =57-32 \mathrm{~mm}=25 \mathrm{~mm} \text { between bars }
\end{aligned}
$$

Appendix A1

Appendix A1

Appendix A1

Minimum clear distance between bars

$$
\begin{aligned}
& =\max [\text { bar diameter; aggregate size }+5 \mathrm{~mm}] \\
& =\max [32 ; 20+5] \\
& =32 \mathrm{~mm} \text { i.e. }>25 \mathrm{~mm}
\end{aligned}
$$

$\therefore 5$ no. H32 B no good
For 4 bars in one layer, distance between bars $=44 \mathrm{~mm} \mathrm{so}$

$$
\text { Try } 4 \text { no. H32 B1 + } 2 \text { no. H32 B3 }
$$



Figure 4.12 Span $A B$ bottom reinforcement
$d=750-35-10-32 / 2-0.333 \times 2 \times 32=668 \mathrm{~mm}$
$K=1148 \times 10^{6} /\left(1780 \times 668^{2} \times 30\right)=0.048$
$K \leq K^{\prime} \therefore$ section under-reinforced and no compression reinforcement required.

$$
\begin{aligned}
z & =(d / 2)\left[1+(1-3.53 K)^{0.5}\right] \leq 0.95 d \\
& =(668 / 2)(1+0.911) \leq 0.95 \times 668 \\
& =639 \leq 635 \therefore z=635 \mathrm{~mm}
\end{aligned}
$$

$\therefore$ by inspection, neutral axis in flange so design as rectangular section.
$A_{5}=M_{E d} / f_{y d} z$
$=1148 \times 10^{6} /(434.8 \times 635)=4158 \mathrm{~mm}^{2}$

$$
\therefore 4 \text { no. H32 B1 + } 2 \text { no. H32 B3 }\left(4824 \mathrm{~mm}^{2}\right) \text { OK }
$$

b) Span $A B$ - Deflection

Check end span-to-effective-depth ratio.
Allowable $\| d=N \times K \times F 1 \times F 2 \times F 3$
where

$$
\begin{aligned}
N= & \text { Basic } / / d: \text { check whether } \rho>\rho_{O} \text { and whether to use Exp. } \\
& (7.16 \mathrm{a}) \text { or }(7.16 \mathrm{~b})
\end{aligned}
$$

Cl. 8.2(2) \& NA

Appendix A1
Appendix A1

Appendix A1

Appendix B
Appendix C7
Cl. 7.4.2(2), Exp. (7.16a), Exp. (7.16b)

$$
\begin{aligned}
& \rho=A_{s} / A_{c}^{\ddagger}=A_{s, r e q} /\left[b_{w} d+\left(b_{\text {eff }}-b_{w}\right) h_{f}\right] \\
& =4158 /[350 \times 668+(1780-350) \times 300] \\
& \text { = 4158/662800 } \\
& \text { = } 0.63 \% \\
& \rho_{O}=f_{c k}^{0.5} / 1000=30^{0.5} / 1000=0.55 \% \\
& \rho>\rho_{O} \therefore \text { use Exp. (7.16b) } \\
& N=11+1.5 f_{c k}^{0.5} \rho_{O} /\left(\rho-\rho^{\prime}\right)+f_{c k}^{0.5}\left(\rho^{\prime} / \rho_{0}\right)^{0.5} / 12 \\
& =11+1.5\left(30^{0.5} \times 0.055 /(0.063-0)+30^{0.5}(0 / 0.55)^{1.5}\right. \\
& =11+7.2+0=18.2 \\
& K=(\text { end span })=1.3 \\
& F 1=\left(b_{\text {eff }} / b_{w}=1780 / 350=5.1\right)=0.80 \\
& F 2=7.0 / l_{\text {eff }}(\text { span }>7.0 \mathrm{~m}) \\
& \text { where } \\
& l_{\text {eff }}=9000 \mathrm{~mm} \\
& \text { F2 }=7.0 / 9.0=0.77 \\
& F 3=310 / \sigma_{5} \leq 1.5
\end{aligned}
$$

where
$\sigma_{s}$ in simple situations $=\left(f_{y k} / \gamma_{S}\right)\left(A_{s, \text { req }} / A_{\text {s,prov }}\right)$ (SLS loads/
ULS loads) $(1 / \delta)$. However in this case separate analysis
at SLS would be required to determine $\sigma_{s}$. Therefore as a
simplification use the conservative assumption:

$$
\begin{aligned}
310 / \sigma_{s} & =\left(500 / f_{y k}\right)\left(A_{s, \text { req }} / A_{s, \text { prov }}\right) \\
& =(500 / 500) \times(4824 / 4158)=1.16
\end{aligned}
$$

$\therefore$ Permissible $/ / d=18.2 \times 1.3 \times 0.80 \times 0.77 \times 1.16=16.9$
Actual $/ / d=9000 / 668=13.5$
Permissible more than actual
$\therefore$ OK
$\therefore 4$ no. H32 B1 + 2 no. H32 B3 (4824 mm ${ }^{2}$ ) OK

### 4.2.7 Flexural design, support $B$

At centreline of support $B$,
$M=1394$ kNm
From analysis, at face of support
Cl. 5.3.2.2(3)

PD 6687[6]

Exp. (7.16b)

Table 7.4N \& NA
Cl. 7.4.2(2),

Appendix C7
Cl. 7.4.2(2)
Cl. 5.3.2.2(1)
Cl. 7.4.2, Exp.
(7.17), Table 7.4 N
\& NA, Table NA. 5
Note 5

Appendix B

Exp. (7.17)
-
$M_{E d B A}=1209 \mathrm{kNm}$
$M_{E d B C}=1315 \mathrm{kNm}$
$K=M_{E d} l b_{w} d^{2} f_{c k}$

[^34]where
\[

$$
\begin{aligned}
& b_{w}=350 \mathrm{~mm} \\
& d=750-35-12-32 / 2=687 \mathrm{~mm}
\end{aligned}
$$
\]

$$
\text { assuming } 10 \mathrm{~mm} \text { link and H32 in support but allowing for }
$$

H12 T in slab

$$
f_{c k}=30 \mathrm{MPa}
$$

$\therefore K=1315 \times 10^{6} /\left(350 \times 687^{2} \times 30\right)=0.265$
for $\delta=0.85, K^{\prime}=0.168$ : to restrict $\times / d$ to $0.45, K^{\prime}=0.167$
$\therefore$ Compression steel required

$$
\begin{aligned}
z & =(d / 2)\left[1+\left(1-3.53 K^{\prime}\right)^{0.5}\right] \\
& =(687 / 2)\left[1+(1-3.53 \times 0.167)^{0.5}\right] \\
& =(687 / 2)(1+0.64)<0.95 d \\
& =563 \mathrm{~mm}
\end{aligned}
$$

$$
A_{s 2}=\left(K-K^{\prime}\right) f_{c k} b d^{2} / f_{s c}\left(d-d_{2}\right)
$$

where
$d_{2}=35+10+32 / 2=61 \mathrm{~mm}$
$f_{s c}=700\left(x-d_{2}\right) / x<f_{y d}$
where
$x=2.5(d-z)=2.5(687-563)=310 \mathrm{~mm}$
$f_{\text {sc }}=700 \times(310-61) / 310<500 / 1.15$
$=562 \mathrm{MPa}$ but limited to $\leq 434.8 \mathrm{MPa}$
$\therefore A_{52}=(0.265-0.167) \times 30 \times 350 \times 687^{2} /[434.8(687-61)]=1784 \mathrm{~mm}^{2}$ Try 4 no. H25 B (1964 mm $\left.{ }^{2}\right)$

$$
\begin{aligned}
A_{s}= & M^{\prime} / f_{y d} z+A_{s 2} f_{s c} / f_{y d} \\
= & K^{\prime} f_{c k} b d^{2} /\left(f_{y d} z\right)+A_{s 2} f_{s c} / f_{y d} \\
= & 0.167 \times 30 \times 350 \times 687^{2} /(434.8 \times 563)+1570 \times \\
& 434.8 / 434.8 \\
= & 3380+1784=5164 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
\text { Try } 4 \text { no. H32 T + } 4 \text { no. H25 T ( } 5180 \mathrm{~mm}^{2} \text { ) }
$$

This reinforcement should be spread over $b_{\text {eff }}$
$b_{\text {eff }}=b_{\text {eff1 }}+b_{w}+b_{\text {eff2 }}$
where

$$
b_{\text {eff }}=\left(0.2 b_{1}+0.11_{0}\right) \leq 0.2 I_{0} \leq b_{1}
$$

where

$$
\begin{aligned}
b_{1}= & \text { distance between webs } / 2 . \\
& \text { Assuming beams at } 7000 \mathrm{~mm} \mathrm{cc} \\
= & (7000-350) / 2=3325 \mathrm{~mm} \\
I_{0}= & 0.15 \times\left(I_{1}+I_{2}\right) \\
= & 0.15 \times(9000+8000)=2550 \mathrm{~mm}
\end{aligned}
$$

Appendix A1
Table C4

Fig. 3.5,
Appendix A1,
How to: Beams

Appendix A1
Cl. 9.2.1.2(2),

Fig. 9.1
Cl. 5.3.2.1,

Fig. 5.3

Fig. 5.2

$$
\begin{aligned}
& \therefore b_{\text {effl }}=0.2 \times 3325+0.1 \times 2550 \leq 0.2 \times 2550 \leq 3325 \\
&=920 \leq 510 \leq 3325 \\
&=510 \mathrm{~mm} \\
& b_{w}=350 \mathrm{~mm} \\
& b_{\text {eff2 }}=\left(0.2 b_{2}+0.11_{0}\right) \leq 0.21_{0} \leq b_{2} \\
& \text { where } \\
& b_{2}=0 \mathrm{~mm} \\
& b_{\text {eff2 } 2}=0 \mathrm{~mm} \\
& \therefore b_{\text {eff }}=510+350+0=860 \mathrm{~mm}
\end{aligned}
$$

Use 4 no. H32 T + 4 no. H25 T ( $5180 \mathrm{~mm}^{2}$ ) @ approx 100 mm cc

$b_{w}=350 \mathrm{~mm} \mid$
Figure 4.13 Support $B$ reinforcement

### 4.2.8 Flexural design, span $B C$

a) Span BC - Flexure
$M_{\text {Ed }}=684 \mathrm{kNm}$
$K=M_{E d} d b d^{2} f_{c k}$
where

$$
\begin{aligned}
& b=b_{\text {eff }}=b_{\text {eff1 }}+b_{w}+b_{\text {eff2 }} \\
& \text { where } \\
& b_{\text {eff }}=\left(0.2 b_{1}+0.1 I_{0}\right) \leq 0.2 I_{0} \leq b_{1} \\
& \text { where } \\
& b_{1}=\text { distance between webs/2. } \\
& \text { Assuming beams at } 7000 \mathrm{~mm} \mathrm{cc} \\
& =(7000-350) / 2=3325 \mathrm{~mm} \\
& 1_{0}=0.85 \times 1_{1}=0.85 \times 8000=6800 \mathrm{~mm} \\
& b_{\text {eff }}=0.2 \times 3325+0.1 \times 6800 \leq 0.2 \times 6800 \leq 3325 \\
& =1345 \leq 1360 \leq 3325 \\
& =1360 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{gathered}
b_{w}=350 \mathrm{~mm} \\
b_{\text {eff2 } 2}=\left(0.2 b_{2}+0.11_{0}\right) \leq 0.2 I_{0} \leq b_{2} \\
\text { where } \\
b_{2}=0 \mathrm{~mm} \\
b_{\text {eff2 } 2}=0 \mathrm{~mm} \\
\therefore b=1360+350+0=1710 \mathrm{~mm} \\
d=750-35-10-32 / 2=689 \mathrm{~mm} \\
\\
\text { assuming } 10 \mathrm{~mm} \text { link and H32 in span. } \\
f_{c k}=30 \mathrm{MPa} \\
\therefore K= \\
=684 \times 10^{6} /\left(1710 \times 689^{2} \times 30\right) \\
=
\end{gathered} 0.028
$$

By inspection, $K \leq K^{\prime} \therefore$ section under-reinforced and no compression reinforcement required.

$$
\begin{aligned}
z & =(d / 2)\left[1+(1-3.53 k)^{0.5}\right] \leq 0.95 d \\
& =(689 / 2)(1+0.95) \leq 0.95 \times 689 \\
& =672>655 \therefore z=655 \mathrm{~mm}
\end{aligned}
$$

By inspection, $x<1.25 h_{f}$; design as rectangular section

$$
\begin{aligned}
A_{5} & =M_{E d} / f_{y d} z^{z} \\
= & 684 \times 10^{6} /(434.8 \times 655)=2402 \mathrm{~mm}^{2} \\
& \quad \text { Try } 2 \text { no. H32 B }+2 \text { no. H25 B }\left(2590 \mathrm{~mm}^{2}\right)
\end{aligned}
$$

b) Span BC-Deflection

By inspection, compared with span $A B$

### 4.2.9 Flexural design, support $C$

By inspection, use 2 no. H25 U-bars as support A.
Use 2 no. H25 U-bars

### 4.2.10 Design for beam shear, support A

At d from face of support
$V_{E d}=646-(350 / 2+0.689) \times(1.35 \times 46.0+1.5 \times 63.3)$

$$
=646-0.864 \times 157.1=510.3 \mathrm{kN}
$$

Check maximum shear resistance.
$V_{\text {Rd, } \max }=\alpha_{c w} b_{w} z v f_{c d} /(\cot \theta+\tan \theta)$
where
$\alpha_{c w}=1.0$
$b_{w}=350 \mathrm{~mm}$ as before
$z=0.9 d$

Appendix A1

Appendix A1

Appendix A1
Cl. 6.2.1(8)

ECO: A1.2.2, NA
\& Exp. (6.10a)

Exp. (6.9) \& NA
Cl. 6.2.3 \& NA
Cl. 6.2.3(1)

$$
v=0.6\left(1-f_{c k} / 250\right)=0.6(1-30 / 250)=0.528
$$

$f_{c d}=30 / 1.5=20.0 \mathrm{MPa}$
$\theta=$ angle of inclination of strut.

$$
=0.5 \sin ^{-1}\left\{v_{E d, z} /\left[0.20 f_{c k}\left(1-f_{c k} / 250\right)\right]\right\} \geq \cot ^{-1} 2.5
$$

where
$V_{E d, z}=V_{E d} / b_{z}=V_{E d} /(b \times 0.9 d)$
$=510.3 \times 10^{3} /(350 \times 0.9 \times 689)=2.35 \mathrm{MPa}$
$\theta=0.5 \sin ^{-1}\{2.35 /[0.20 \times 30(1-30 / 250)]\} \geq \cot ^{-1} 2.5$
$=0.5 \sin ^{-1}(0.445) \geq \cot ^{-1} 2.5$
$=0.5 \times 26.4^{\circ} \geq 21.8^{\circ}$
$=21.8^{\circ}$
$\therefore V_{R d, \text { max }}=1.0 \times 350 \times 0.90 \times 689 \times 0.528 \times 20.0 /(2.5+0.4)=790 \mathrm{kN}$
Shear reinforcement:
Shear links: shear resistance with links
$V_{R d, s}=\left(A_{s w} / s\right) z f_{y w d} \cot \theta$
$\therefore A_{S w} / s \geq V_{E d} / z f_{y w d} \cot \theta$
where

$$
\begin{aligned}
& \begin{aligned}
& A_{s w} / s=\text { area of legs of links/link spacing } \\
& z=0.9 d \text { as before } \\
& f_{y w d}=500 / 1.15=434.8 \\
& \cot \theta=2.5 \text { as before } \\
& A_{s w} / s \geq 510.3 \times 10^{3} /(0.9 \times 689 \times 434.8 \times 2.5)=0.76 \\
& \text { Minimum } A_{s w} / s=\rho_{w, \min } b_{w} \sin \alpha
\end{aligned}
\end{aligned}
$$

where

$$
\begin{aligned}
\rho_{w, \min }= & 0.08 \times f_{c k}^{0.5} / f_{y k}=0.08 \times 300.5 / 500 \\
= & 0.00088 \\
b_{w}= & 350 \mathrm{~mm} \text { as before } \\
\alpha= & \text { angle between shear reinforcement and the longitudinal } \\
& \text { axis. For vertical reinforcement } \sin \alpha=1.0
\end{aligned}
$$

$\therefore$ Minimum $A_{s W} / s=0.00088 \times 350 \times 1=0.03$
But,
maximum spacing of links longitudinally $=0.75 d=516 \mathrm{~mm}$

$$
\therefore \text { Try H1O@ } 200 c c \text { in } 2 \operatorname{leg} s\left(A_{5 w} / s=0.78\right)
$$

### 4.2.11 Design for high beam shear, support $B$

As uniformly distributed load predominates consider at $d$ from face of support.
Cl. 6.2.3(3)

Note 1, Exp.
(6.6N) \& NA
Cl. 2.4.2.4(1) \& NA

Exp. (6.9),
Appendix A2

Exp. (6.8)
Cl. 2.4.2.4(1)
\& NA
Cl. 9.2.2(5),

Exp. (9.4)

Exp. (9.5N) \& NA
Cl. 9.2.2(6)
Cl. 6.2.1(8)
$V_{E d}=1098-(350 / 2+0.689) \times(1.35 \times 46.0+1.5 \times 63.3)$
$=1098-0.864 \times 157.1=962.3 \mathrm{kN}$
By inspection, shear reinforcement required and $\cot \theta<2.5$.
Check $V_{\text {Rd, max }}$ (to determine $\theta$ )
Check maximum shear resistance.
As before,
$V_{R d, \max }=\alpha_{\mathrm{cw}} b_{\mathrm{w}} z \boldsymbol{v} \boldsymbol{f}_{c d} /(\cot \theta+\tan \theta)$.
where
$\alpha_{c w} b_{w}, z, v$ and $f_{c d}$ as before
$\theta=0.5 \sin ^{-1}\left\{v_{E d, z} /\left[0.20 f_{c k}\left(1-f_{c k} / 250\right)\right]\right\} \geq \cot ^{-1} 2.5$
where

$$
v_{E d, z}=V_{E d} / b z=V_{E d} /(b 0.9 d)
$$

$$
=962.3 \times 10^{3} /(350 \times 0.9 \times 687)=4.45 \mathrm{MPa}
$$

$\theta=0.5 \sin ^{-1}\{4.45 /[0.20 \times 30(1-30 / 250)]\} \geq \cot ^{-1} 2.5$
$=0.5 \sin ^{-1}(0.843) \geq \cot ^{-1} 2.5$
$=0.5 \times 57.5^{\circ} \geq 21.8^{\circ}$
$=28.7^{\circ}$
$\cot \theta=1.824$ i.e. $>1.0 \therefore$ OK
$\tan \theta=0.548$
$\therefore V_{\text {Rd,max }}=1.0 \times 350 \times 0.90 \times 687 \times 0.528 \times 20.0 /(1.824+0.548)$
$=963.4 \mathrm{kN}$

$$
\text { (i.e. } V_{R d, \text { max }} \approx \frac{O K}{V_{E d}}
$$

Shear reinforcement:
Shear links: shear resistance with links
$V_{R d, s}=\left(A_{s w} / s\right) z f_{y w d} \cot \theta$
$\therefore A_{\text {sw }} / s \geq V_{E d} / z f_{\text {ywd }} \cot \theta$
$A_{s w} / s \geq 962.3 \times 10^{3} /(0.9 \times 687 \times 434.8 \times 1.824)=1.96$
$\therefore$ Use H1O @ 150 cc in 4 legs $\left(A_{\text {sw }} / 5=2.09\right)$

### 4.2.12 Design for beam shear (using design chart), support $B_{C}$

At d from face of support,
$V_{\text {Ed }}=794-0.864 \times 157.1=658.3 \mathrm{kN}$
$V_{E d, z}=V_{E d} / b z=V_{E d} /(b 0.9 d)$

$$
=658.3 \times 10^{3} /(350 \times 0.9 \times 687)=3.04 \mathrm{MPa}
$$

From chart $A_{\text {sw }} / \mathrm{s}_{\text {reqd }} / \mathrm{m}$ width $=2.75$

$$
A_{\text {sw }} / s_{\text {reqd }}=2.75 \times 0.35=0.96
$$

$\therefore$ Use H1O in 2 legs @ $150 \mathrm{~mm} \mathrm{cc}\left(A_{\text {sw }} / \mathrm{s}=1.05\right)$

### 4.2.13 Check shear capacity for general case

In mid span use H1O in 2 legs @ $300 \mathrm{~mm} c c\left(A_{\text {sw }} / \mathrm{s}=0.52\right)$
$\equiv A_{\text {sw }} / s_{\text {reqd }} / \mathrm{m}$ width $=1.48$ and an allowable $v_{E d, z}=1.60 \mathrm{MPa}$
Fig. C1b)
$\equiv 1.60 \times 350 \times 0.90 \times 687=V_{E d}=346 \mathrm{kN}$
From analysis, $V_{E d}=346.2 \mathrm{kN}$ occurs at:

| $(646-346) / 157.1$ | $=1900 \mathrm{~mm}$ from $A$, |
| :--- | :--- |
| $(1098-346-1.25 \times 88.7-1.5 \times 138.7) / 157.1=2755 \mathrm{~mm}$ from $B_{A}$, |  |
| $(794-346) / 157.1$ | $=2850 \mathrm{~mm}$ from $B_{C}$ |
| $\left.\begin{array}{ll}\text { and } & \\ (499-346) / 157.1 & \end{array}\right) 970 \mathrm{~mm}$ from $C$ |  |

### 4.2.14 Summary of design



Figure 4.14 Summary of L-beam design


Figure 4.15 L-beam section 1-1

### 4.3 Continuous wide T-beam



### 4.3.2 Cover

Nominal cover, $c_{\text {nom }}$ :
$c_{\text {nom }}=c_{\text {min }}+\Delta c_{\text {dev }}$
where
$c_{\text {min }}=\max \left[c_{\text {min }, b} ; c_{\text {min,dur }}\right]$
where
$c_{\text {min, } b}=$ minimum cover due to bond
= diameter of bar. Assume 25 mm main bars and 8 mm links
$c_{\text {min,dur }}=$ minimum cover due to environmental conditions. Assuming $X C 1$ and $C 30 / 37$ concrete, $c_{\text {min,dur }}=15 \mathrm{~mm}$
$\Delta c_{\text {dev }}=$ allowance in design for deviation. Assuming no measurement of cover $\Delta c_{\mathrm{dev}}=10 \mathrm{~mm}$
$\therefore c_{\text {nom }}=15+10=25 \mathrm{~mm}$ to links
or $=25+10=35 \mathrm{~mm}$ to main bars
Use 10 mm diameter links to give $c_{\text {nom }}=35 \mathrm{~mm}$ to main bars and 25 mm to links (as per ribbed slab design).

## Fire:

Check adequacy of section for REI 60.
Axis distance required:
Minimum width $b_{\text {min }}=120 \mathrm{~mm}$ with $a=25 \mathrm{~mm}$
or $\quad b_{\text {min }}=200 \mathrm{~mm}$ with $a=12 \mathrm{~mm}$
$\therefore$ at 2000 mm wide (min.) a $<12 \mathrm{~mm}$
By inspection, not critical.
Use 25 mm nominal cover to links

### 4.3.3 Idealisation, load combination and arrangement

Load combination:
By inspection, Exp. (6.10b) is critical.
$47.8 \times 1.25+45.8 \times 1.5=128.5 \mathrm{kN} / \mathrm{m}^{\ddagger}$
Idealisation:
This element is treated as a beam on pinned supports.
The beam will be provided with links to carry shear and to
accommodate the requirements of CI. 9.2.5 - indirect support of the ribbed slab described in Section 3.3.8.

Arrangement:
Choose to use all-and-alternate-spans-loaded.

[^35]
### 4.3.4 Analysis

Analysis by computer, assuming simple supports and including $15 \%$ redistribution at supports (with in this instance consequent redistribution in span moments).

Table 4.3 Elastic and redistributed moments, kNm

| Span number | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- |
| Elastic M | 641.7 | 433.0 | 433.0 | 641.7 |
| Redistributed M | 606.4 | 393.2 | 393.2 | 606.4 |
| $\delta$ | 0.945 | 0.908 | 0.908 | 0.945 |



Figure 4.18 Redistributed envelope, kNm


Figure 4.19 Redistributed shears, kN

### 4.3.5 Flexural design, span $A B$

a) Span $A B$ (and $D E$ ) - Flexure
$M_{E d}=606.4 \mathrm{kNm}$
$K=M_{E d} l b d^{2} f_{c k}$
where
Cl. 5.3.2.1,

Fig. 5.3

Fig. 5.2
$b_{\text {eff }}=0.2 \times 2975+0.1 \times 6375 \leq 0.2 \times 6375 \leq 2975$
$=1232 \leq 1275 \leq 2975$
$=1232 \mathrm{~mm}$
$b_{w}=2000 \mathrm{~mm}$
$b_{\text {eff2 }}=\left(0.2 b_{2}+0.1 I_{0}\right) \leq 0.2 I_{0} \leq b_{2}$
where
$b_{2}=$ distance between webs/2.
Referring to Figures 3.8 and 3.9
$=(9000-1000-550) / 2=3725 \mathrm{~mm}$
$I_{0}=6375 \mathrm{~mm}$ as before
$b_{\text {eff } 2}=0.2 \times 3725+0.1 \times 6375 \leq 0.2 \times 6375 \leq 3725$
$=1382 \leq 1275 \leq 3725$
$=1275 \mathrm{~mm}$

$$
b=1232+2000+1275=4507 \mathrm{~mm}
$$

$d=300-25-10-25 / 2=252 \mathrm{~mm}$
assuming 10 mm link and H 25 in span.

```
 fck
K=606.4 \106/(4507\times2522 }\times35
 = 0.061
K'=0.207
or restricting x/d to 0.45
\(K^{\prime}=0.168\)
\(K \leq K^{\prime} \therefore\) section under-reinforced and no compression reinforcement required.
\[
\begin{aligned}
z & =(d / 2)\left[1+(1-3.53 K)^{0.5}\right] \leq 0.95 d \\
& =(252 / 2)(1+0.886) \leq 0.95 \times 252 \\
& =238 \leq 239 \therefore z=238 \mathrm{~mm}
\end{aligned}
\]
```

But $z=d-0.4 x$
$\therefore x=2.5(d-z)=2.5(252-236)=32 \mathrm{~mm}$
$\therefore$ neutral axis in flange.
$A_{s} x<1.25 h_{f}$ design as rectangular section.
$A_{s}=M_{E d} / f_{y d} z$
where

$$
\begin{aligned}
f_{y d} & =500 / 1.15=434.8 \mathrm{MPa} \\
& =606.4 \times 10^{6} /(434.8 \times 239)=5835 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
\text { Try } \left.12 \text { no. H25 B (5892 } \mathrm{mm}^{2}\right)
$$

b) Span $A B$ - Deflection

Check span-to-effective-depth ratio.
Allowable $\| d=N \times K \times F 1 \times F 2 \times F 3$
where
$N=$ Basic I/d: check whether $\rho>\rho_{O}$ and whether to use Exp. (7.16a) or (7.16b)

$$
\begin{aligned}
\rho & =A_{s} / A_{c}^{\ddagger}=A_{s, \text { req }} /\left[b_{w} d+\left(b_{\text {eff }}-b_{w}\right) h_{f}\right] \\
& =5835 /[2000 \times 252+(4507-2000) \times 100] \\
& =5835 / 754700 \\
& =0.77 \% \\
\rho_{O} & =f_{c k} 0.5 / 1000=300.5 / 1000=0.59 \% \\
& \underline{\rho>\rho_{0} \therefore \text { use Exp. }} \mathbf{( 7 . 1 6 b )}
\end{aligned}
$$

$$
N=11+1.5 f_{c k}^{0.5} \rho_{O} /\left(\rho-\rho^{\prime}\right)+f_{c k}^{0.5}\left(\rho^{\prime} / \rho_{O}\right)^{0.5} / 12
$$

$$
=11+1.5\left(35{ }^{0.5} \times 0.059 /(0.077-0)+35^{0.5}(0 / 0.59)^{1.5}\right.
$$

$$
=11+6.8+0=17.8
$$

$K=($ end span $)=1.3$
$F 1=\left(b_{\text {eff }} / b_{w}=4057 / 2000=2.03\right)=0.90$
F2 $=7.0 / I_{\text {eff }}($ span $>7.0 \mathrm{~m})$
where


F2 $=7.0 / 7.4=0.95$
$F 3=310 / \sigma_{5} \leq 1.5$

$$
\begin{aligned}
& \text { where }^{\text {Wh }_{S}=} \\
& \qquad \begin{aligned}
&\left.\sigma_{\text {yk }} / \gamma_{S}\right)\left(A_{s, \text { req }} / A_{s, p r o v}\right)(\text { SLS loads } / \text { ULS loads })(1 / \delta) \\
&= 434.8 \times(5835 / 5892)[(47.8+0.3 \times 45.8) /(1.25 \times \\
&47.8+1.5 \times 45.8)] \times(1 / 0.945) \\
&= 434.8 \times 0.99 \times 0.48 \times 1.06 \\
&= 219 \mathrm{MPa}
\end{aligned}
\end{aligned}
$$

[^36]Appendix A1

Appendix B
Appendix C7
Cl. 7.4.2(2),

Exp. (7.16a),
Exp. (7.16b)
PD 6687[6]

Exp. (7.16b)

Table 7.4N \& NA
Cl. 7.4.2(2),

Appendix C7
Cl. 7.4.2(2),
5.3.2.2(1)
Cl. 7.4.2, Exp.
(7.17), Table 7.4N \& NA, Table NA. 5 Note 5

$$
\begin{aligned}
\mathrm{F3} & =310 / \sigma_{5} \\
& =310 / 219=1.41
\end{aligned}
$$

$\therefore$ Permissible $/ / d=17.8 \times 1.3 \times 0.90 \times 0.95 \times 1.41=27.9$
Actual $\| / d=7500 / 252=29.8$
Try 13 no. H25B $\frac{\therefore \text { no good }}{\left(6383 \mathrm{~mm}^{2}\right)}$

$$
\begin{aligned}
\mathrm{F} 3 & =310 / \sigma_{5} \\
& =310 / 219 \times 13 / 12=1.53^{\ddagger}=\text { say } 1.50
\end{aligned}
$$

$\therefore$ Permissible $\| d=17.8 \times 1.3 \times 0.90 \times 0.95 \times 1.50=29.7$
Actual $I_{\text {eff }} / d=7400 / 252=29.4$


### 4.3.6 Flexural design, support $B$ (and $D$ )

At centreline of support:
$\mathrm{M}=657.4 \mathrm{kNm}$
At face of support:
Cl. 5.3.2.2(3)
$M_{E d}=657.4-0.2 \times 517.9+0.202 \times 128.5 / 2$
$=657.4-101.0$
$=556.4 \mathrm{kNm}$
$K=M_{E d} d b_{w} d^{2} f_{c k}$
where
$b_{w}=2000 \mathrm{~mm}$
d = 300-25 cover - 12 fabric - 8 link - 16 bar - 25/2 bar
$=226 \mathrm{~mm}$


Figure 4.20 Section at rib-beam interface
$K=556.4 \times 10^{6} /\left(2000 \times 226^{2} \times 35\right)=0.156$
By inspection, $K<K^{\prime}$
$K^{\prime}=0.167$ maximum (or for $\delta=0.85, K^{\prime}=0.168$ )
$\therefore$ No compression steel required.

[^37]Appendix A1
Table C. 4

NA, Table NA. 5

$$
\begin{aligned}
z & =(226 / 2)\left[1+\left(1-3.53 K^{\prime}\right)^{0.5}\right] \\
& =(226 / 2)\left[1+(1-3.53 \times 0.156)^{0.5}\right] \\
& =(226 / 2)(1+0.67)<0.95 d \\
& =189 \mathrm{~mm}
\end{aligned}
$$

$$
A_{s}=M_{E d} / f_{y d} z
$$

$$
=556.4 \times 10^{6} /(434.8 \times 189)=6770 \mathrm{~mm}^{2}
$$

$$
\text { Try } 14 \text { no. H25 T (6874 } \mathrm{mm}^{2} \text { ) }
$$

To be spread over $b_{\text {eff }}$
$b_{\text {eff }}=b_{\text {eff1 }}+b_{w}+b_{\text {eff2 }}$
where

$$
b_{\text {eff1 }}=\left(0.2 b_{1}+0.11_{0}\right) \leq 0.2 I_{0} \leq b_{1}
$$

where
$b_{1}$ referring to Figure 3.9

$$
=(7500-1000-550) / 2=2975 \mathrm{~mm}
$$

$$
I_{0}=0.15 \times\left(I_{1}+I_{2}\right)=0.15 \times(7500+7500)=2250 \mathrm{~mm}
$$

$$
b_{e f f 1}=0.2 \times 2975+0.1 \times 2250 \leq 0.2 \times 2250 \leq 2975
$$

$$
=820 \leq 450 \leq 2975
$$

$$
=450 \mathrm{~mm}
$$

$$
b_{w}=2000 \mathrm{~mm}
$$

$$
b_{\text {eff2 }}=450 \mathrm{~mm} \text { as before }
$$

$\therefore b_{\text {eff }}=450+2000+450=2900 \mathrm{~mm}$
Check cracking:
Spacing $=2900-2 \times(25-10-25 / 2) /(14-1)=216 \mathrm{~mm}$
$\sigma_{s}=\left(f_{\text {yk }} / \gamma_{S}\right)\left(A_{s, \text { req }} / A_{\text {s,prov }}\right)(S L S$ loads/ULS loads) $(1 / \delta)$
$=434.8 \times(6770 / 6874)[(47.8+0.3 \times 45.8) /$
$(1.25 \times 47.8+1.5 \times 45.8) \times(1 / 0.85)$
$=434.8 \times 0.98 \times 0.48 \times 1.18=241 \mathrm{MPa}$
As loading is the cause of cracking satisfy either Table 7.2 N or Table 7.3 N

For $w_{k}=0.4$ and $\sigma_{5}=240 \mathrm{MPa}$ max. spacing $=250 \mathrm{~mm} \quad \therefore$ OK

### 4.3.7 Flexural design, span $B C$ (and $C D$ similar)

a) Flexure
$M_{E d}=393.2 \mathrm{kNm}$
$K=M_{E d} / b d^{2} f_{c k}$
where

$$
b=b_{\text {eff }}=b_{\text {eff1 }}+b_{w}+b_{\text {eff2 }}
$$

where

$$
b_{e f f 1}=\left(0.2 b_{1}+0.11_{0}\right) \leq 0.21_{0} \leq b_{1}
$$

Cl. 9.2.1.2(2),

Fig. 9.1
Cl. 5.3.2.1,

Fig. 5.3

Fig. 5.2
CI. 7.3.3
Cl. 7.3.3(2) \&

Note
Table 7.3N
Cl. 5.3.2.1,

Fig. 5.3

## where

$$
\begin{aligned}
& b_{1} \text { referring to Figure } 3.9 \\
& \\
& \quad=(7500-1000-550) / 2=2975 \mathrm{~mm} \\
& \\
& \begin{aligned}
I_{0} & =0.70 \times I_{2}=0.7 \times 7500=5250 \mathrm{~mm} \\
b_{\text {eff1 }} & =0.2 \times 2975+0.1 \times 5250 \leq 0.2 \times 5250 \leq 2975
\end{aligned}
\end{aligned}
$$

$$
=1120 \leq 1050 \leq 2975
$$

$$
=1050 \mathrm{~mm}
$$

$$
b_{w}=2000 \mathrm{~mm}
$$

$$
b_{e f f 2}=\left(0.2 b_{2}+0.11_{0}\right) \leq 0.21_{0} \leq b_{2}
$$

where

$$
b_{2}=\text { distance between webs/2 }
$$

$$
\text { Referring to Figures } 3.8 \text { and } 3.9
$$

$$
=(9000-1000-550) / 2=3725 \mathrm{~mm}
$$

$$
I_{0}=5250 \mathrm{~mm} \text { as before }
$$

$$
b_{e f f 2}=0.2 \times 3725+0.1 \times 5250 \leq 0.2 \times 5250 \leq 3725
$$

$$
=1270 \leq 1050 \leq 3725
$$

$$
=1270 \mathrm{~mm}
$$

$$
\begin{aligned}
b= & 1050+2000+1270=4320 \mathrm{~mm} \\
d= & 252 \mathrm{~mm} \text { as before } \\
& \text { assuming } 10 \mathrm{~mm} \text { link and } \mathrm{H} 25 \text { in span } \\
f_{c k}= & 30 \\
K= & 393.2 \times 10^{6} /\left(4320 \times 252^{2} \times 35\right) \\
= & 0.041
\end{aligned}
$$

By inspection, $K \leq K^{\prime} \therefore$ section under-reinforced and no compression reinforcement required.

$$
\begin{aligned}
z & =(d / 2)[1+(1-3.53 K) 0.5] \leq 0.95 d \\
& =(252 / 2)(1+0.924) \leq 0.95 \times 252 \\
& =242>239 \therefore z=239 \mathrm{~mm}
\end{aligned}
$$

By inspection, $x<1.25 h_{f} \therefore$ design as rectangular section

$$
\begin{aligned}
A_{s} & =M_{E d} / f_{y d} z^{2} \\
& =393.2 \times 10^{6} /(434.8 \times 239)=3783 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
\text { Try } \left.8 \text { no. H25 B (3928 } \mathrm{mm}^{2}\right)
$$

## b) Deflection

By inspection, compared to span $A B$
But for the purposes of illustration:
Check span-to-effective-depth ratio.
Allowable $/ / d=N \times K \times F 1 \times F 2 \times F 3$
where

$$
N=\text { Basic //d: check whether to use Exp. (7.16a) or (7.16b) }
$$

Fig. 5.2

Appendix A1

Appendix A1

Appendix A1

Appendix B
Appendix C7
Cl. 7.4.2(2)

$$
\begin{aligned}
& \rho_{O}=0.59 \%\left(\text { for } f_{c k}=35\right) \\
& \rho=A_{s} / A_{c}^{\ddagger}=A_{s, r e q} /\left[b_{w} d+\left(b_{\text {eff }}-b_{w}\right) h_{f}\right] \\
& \quad \begin{aligned}
\text { where }
\end{aligned} \\
\quad b_{w}= & 2000 \mathrm{~mm} \\
& \rho=3783 /(2000 \times 252+(4320-2000) \times 100) \\
& =3783 / 736000 \\
& =0.51 \% \\
N= & 11+1.5 f_{c k} 0.5 \rho_{O} / \rho+3.2 f_{c k}{ }^{0.5}\left(\rho_{0} / \rho-1\right) 1.5 \\
= & 11+1.5 \times 350.5 \times 0.059 / 0.051+3.2 \times 35^{0.5}(0.059 / 0.051-1)^{1.5} \\
= & 11+10.2+23.5=17.8 \\
= & 44.7 \\
K= & (\text { internal span })=1.5 \\
\text { F1 }= & \left(b_{\text {eff }} / b_{w}=4320 / 2000=2.16\right)=0.88 \\
\text { F2 }= & 7.0 / I_{\text {eff }}=7.0 / 7.4=(\text { span }>7.0 \mathrm{~m})=0.95 \\
\text { F3 }= & 310 / \sigma_{s} \leq 1.5
\end{aligned}
$$

$$
\begin{aligned}
& \text { where }{ }^{5} \\
& \sigma_{s}=\left(f_{\text {yk }} / \gamma_{S}\right)\left(A_{s, \text { rea }} / A_{s, p r o v}\right)(S L S ~ l o a d s / U L S \text { loads })(1 / \delta) \\
& =434.8 \times(3783 / 3828)[(47.8+0.3 \times 45.8) /(1.25 \times \\
& 47.8+1.5 \times 45.8)] \times(1 / 0.908) \\
& =434.8 \times 0.99 \times 0.48 \times 1.10 \\
& =227 \mathrm{MPa} \\
& \mathrm{~F} 3=310 / \sigma_{5} \\
& =310 / 227=1.37
\end{aligned}
$$

$\therefore$ Permissible $/ / d=44.7 \times 1.37 \times 0.88 \times 0.95 \times 1.37=70.1$
Actual $/ / d=7500 / 252=29.8$

$$
\text { Use } 8 \text { no. H25 B }\left(3928 \frac{\therefore O K}{\left.\mathrm{~mm}^{2}\right)^{\#}}\right.
$$

c) Hogging

Assuming curtailment of top reinforcement at $0.301+a_{1}$,
From analysis $M_{E d}$
at 0.31 from $B C(\& D C)=216.9 \mathrm{kNm}$
at 0.31 from $C B(\& C D)=185.6 \mathrm{kNm}$
$K=216.9 \times 10^{6} /\left(2000 \times 226^{2} \times 35\right)=0.061$
By inspection, $K<K^{\prime}$

[^38]Exp. (7.16a)

Table 7.4N \& NA
Cl. 7.4.2(2),

Appendix C7
Cl. 7.4.2(2)
Cl. 7.4.2,

Exp. (7.17)
Table 7.4N, \&
NA, Table NA. 5
Note 5

How to: Detailing

$$
\begin{aligned}
& z=(226 / 2)\left[1+(1-3.53 \mathrm{~K})^{0.5}\right] \\
&=(226 / 2)\left[1+(1-3.53 \times 0.061)^{0.5}\right] \\
&=(226 / 2)(1+0.89)<0.95 d \\
&=214 \mathrm{~mm}<215 \mathrm{~mm} \\
& A_{5}=M_{E d} / \mathrm{f}_{\mathrm{yd}} z \\
&=216.9 \times 10^{6} /(434.8 \times 214)=2948 \mathrm{~mm}^{2} \\
& \underline{\text { Use } 12 \text { no. H2O T }\left(3748 \mathrm{~mm}^{2}\right)} \\
&(\text { to suit links and bottom steel })
\end{aligned}
$$

Top steel at supports may be curtailed down to 12 no. H2O T at
Cl. 9.2.1.3(2)
Cl. 5.3.2.2(3)

At face of support,

$$
\begin{aligned}
M_{E d} & =516.0-0.2 \times 462.6+0.20^{2} \times 128.5 / 2 \\
& =516.0-90.0 \\
& =426.0 \mathrm{kNm} \\
K & =M_{E d} / b_{w} d^{2} f_{c k}
\end{aligned}
$$

where
$b_{w}=2000 \mathrm{~mm}$
d $=226 \mathrm{~mm}$ as before
$K=426.0 \times 10^{6} /\left(2000 \times 226^{2} \times 35\right)=0.119$
By inspection, $K<K^{\prime}$

$$
\begin{aligned}
z & =(226 / 2)\left[1+(1-3.53 K)^{0.5}\right] \\
& =(226 / 2)\left[1+(1-3.53 \times 0.119)^{0.5}\right] \\
& =(226 / 2)(1+0.76)<0.95 d \\
& =199 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
A_{s} & =M_{E d} / f_{y d} z \\
& =426.0 \times 10^{6} /(434.8 \times 199)=4923 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
\text { Try } 10 \text { no. H25 T }\left(4910 \mathrm{~mm}^{2}\right)^{\ddagger}
$$

### 4.3.9 Design for beam shear

a) Support A (and E)

At $d$ from face of support,
$V_{E d}=394.6-(0.400 / 2+0.252) \times 128.5=336.5 \mathrm{kN}$
Maximum shear resistance:
By inspection, $V_{\text {Rd, max }}$ OK and $\cot \theta=2.5$

[^39]However, for the purpose of illustration: check shear capacity,
$V_{R d, \text { max }}=\alpha_{c w} b_{w} z \boldsymbol{v} f_{c d}(\cot \theta+\tan \theta)$
where
$\alpha_{c w}=1.0$
$b_{w}=2000 \mathrm{~mm}$ as before
$z=0.9 d$
$v=0.6\left[1-f_{c k} / 250\right]=0.516$
$f_{c d}=35 / 1.5=23.3 \mathrm{MPa}$
$\theta=$ angle of inclination of strut.
By inspection, $\cot ^{-1} \theta \ll 21.8$. But $\cot \theta$ restricted to 2.5 and $\therefore \tan \theta=0.4$.
$V_{R d, \text { max }}=1.0 \times 2000 \times 0.90 \times 252 \times 0.516 \times 23.3 /(2.5+0.4)$
$=2089.5 \mathrm{kN}$

Shear links: shear resistance with links
$V_{R d, 5}=\left(A_{s W} / s\right) z f_{\text {ywd }} \cot \theta \geq V_{E d}$
$\therefore$ for $V_{E d} \leq V_{R d, s}$
$A_{S W} / s \geq V_{E d} / z f_{y w d} \cot \theta$
where
$A_{s w} / s=$ area of legs of links/link spacing
$z=0.9 \mathrm{~d}$ as before
$f_{y w d}=500 / 1.15=434.8$
$\cot \theta=2.5$ as before
$A_{s w} / s \geq 336.5 \times 10^{3} /(0.9 \times 252 \times 434.8 \times 2.5)=1.36$
Minimum $A_{s w} / s=\rho_{w, \min } b_{w} \sin \alpha$
where
$\rho_{w, \text { min }}=0.08 \times f_{c k}^{0.5 / f_{y k}}=0.08 \times 35^{0.5} / 500=0.00095$
$b_{w}=2000 \mathrm{~mm}$ as before
$\alpha \quad=$ angle between shear reinforcement and the longitudinal axis. For vertical reinforcement $\sin \alpha=1.0$
Minimum $A_{5 w} / s=0.00095 \times 2000 \times 1=1.90$
But,
maximum spacing of links longitudinally $=0.75 \mathrm{~d}=183 \mathrm{~mm}$
Maximum spacing of links laterally $=0.75 \mathrm{~d} \leq 600 \mathrm{~mm}=183 \mathrm{~mm}$
H1Os required to maintain 35 mm cover to H 25 i.e. $\mathrm{H} 10 \mathrm{in} 12^{5}$ legs @ $175 \mathrm{~mm} \mathrm{cc}\left(A_{\text {sw }} / \mathrm{s}=5.38\right)$

[^40]
## b) Support $B$ (and $C$ and $D$ )

By inspection, the requirement for minimum reinforcement and, in this instance, for H 10 legs of links will outweigh design requirements. Nonetheless check capacity of $A_{s w} / s=5.38$
$V_{R d, 5}=\left(A_{s w} / s\right) z f_{y w d} \cot \theta$

$$
=5.38 \times 0.9 \times 252 \times 434.8 \times 2.5=1326.3 \mathrm{kN}
$$

Maximum shear at support $=517.9 \mathrm{kN}$
i.e. capacity of minimum links not exceeded.

By inspection, the requirement for indirect support of the ribs of the slab using $87 \mathrm{~mm}^{2} /$ rib within 150 mm of centreline of ribs (at 900 mm centres) and within 50 mm of rib/solid interface is adequately catered for and will not unduly effect the shear capacity of the beam.
Use 150 mm centres to tie in with 900 mm centres of ribs
$\therefore$ Use H1O in 12 legs @ $150 \mathrm{~mm} \mathrm{cc}\left(A_{\text {sw }} / 5=6.28\right)$ throughout beam

### 4.3.10 Check for punching shear, column $B$

As the beam is wide and shallow it should be checked for punching shear. At $B$, applied shear force, $V_{E d}=569.1+517.9=1087.0 \mathrm{kN}$.
Check at perimeter of $400 \times 400 \mathrm{~mm}$ column:
$V_{E d}=\beta V_{E d} / u_{i} d<V_{\text {Rd,max }}$
where
$\beta=$ factor dealing with eccentricity; recommended value 1.15
$V_{E d}=$ applied shear force
$u_{\mathrm{i}}=$ control perimeter under consideration. For punching shear adjacent to interior columns $u_{0}=2\left(c_{x}+c_{y}\right)=1600 \mathrm{~mm}$
$d=$ mean $d=(245+226) / 2=235 \mathrm{~mm}$
$v_{\text {Ed }}=1.15 \times 1087.0 \times 10^{3} / 1600 \times 235=3.32 \mathrm{MPa}$
$v_{\text {Rd,max }}=0.5 \nu f_{c d}$
where

$$
\begin{aligned}
v & =0.6\left(1-f_{c k} / 250\right)=0.516 \\
f_{c d} & =\alpha_{c c} \lambda f_{c k} / \gamma_{C}=1.0 \times 1.0 \times 35 / 1.5=23.3
\end{aligned}
$$

$$
v_{\text {Rd,max }}=0.5 \times 0.516 \times 23.3=6.02 \mathrm{MPa} \quad \therefore 0 \mathrm{~K}
$$

Check shear stress at basic perimeter $u_{1}$ (2.0d from face of column): $v_{E d}=\beta V_{E d} / u_{1} d<v_{\text {Rd, } C}$
where

$$
\beta, V_{E d} \text { and } d \text { as before }
$$

Exp. (6.8)
Cl. 9.2.5,

Section 3.4.8
Cl. 6.4.3(2),
6.4.5(3)

Fig. 6.21N \& NA
Cl. 6.4.5(3)

Exp. (6.32)
Cl. 6.4.5(3) Note

Exp. (6.6) \& NA

Table $\mathrm{C7}^{\ddagger}$
Cl. 6.4.2

Fig. 6.13

[^41]```
        u
        at 2d from interior columns
        = 2(cx}+\mp@subsup{c}{y}{})+2\pi\times2
    = 1600 + 2\pi 人2 + 235=4553 mm
v vd
v Rd,c}=0.18/\mp@subsup{\gamma}{C}{}\timesk\times(100 \mp@subsup{\rho}{|}{\prime}\mp@subsup{f}{ck}{}\mp@subsup{)}{}{0.333
where
    \mp@subsup{\gamma}{C}{}}=1.
    k}=1+(200/d) 0.5 \leq2
        =1+(200/235)}0.5=1.9
        \rho
    where
        \rholy,},\mp@subsup{\rho}{lz}{}=\mathrm{ Reinforcement ratio of bonded steel in the y and
                z direction in a width of the column plus 3d each
                side of column.
            = 6874/(2000 * 226)=0.0152
            \rho}\mp@subsup{|}{lz}{}=741/(900\times245)=0.003
    \rho
    fck
v}\mp@subsup{v}{Rd,c}{}=0.18/1.5\times1.92\times(100\times0.0074\times35\mp@subsup{)}{}{0.333}=0.68 MPas
    \therefore punching shear reinforcement required
Shear reinforcement (assuming rectangular arrangement of links):
At the basic control perimeter, }\mp@subsup{u}{1}{},2d\mathrm{ from the column:
A AS
where
\[
\begin{aligned}
s_{r} & =175 \mathrm{~mm} \\
f_{\text {ywd,ef }} & =\text { effective design strength of reinforcement } \\
& =(250+0.25 d)<f_{y d}=309 \mathrm{MPa}
\end{aligned}
\]
For perimeter \(u_{1}\)
\(A_{\text {Sw }}=(1.17-0.75 \times 0.68) \times 175 \times 4553 /(1.5 \times 309)=1135 \mathrm{~mm}^{2}\) per perimeter
Try \(15 \mathrm{no} . \mathrm{H} 1 \mathrm{O}\left(1177 \mathrm{~mm}^{2}\right)\)
```

[^42]
Check availability of reinforcement ${ }^{\ddagger}$:

1 st perimeter to be $>0.3 \mathrm{~d}$ but $<0.5 \mathrm{~d}$, i.e between 70 mm and 117 mm from face of column. Say $0.4 \mathrm{~d}=100 \mathrm{~mm}$ from face of column.

By inspection of Figure 4.21. the equivalent of 14 locations are available between 70 mm and 117 mm from face of column therefore say OK.

Figure 4.21 Shear links and punching shear perimeter u_{1}
Perimeter at which no punching shear links are required:
$u_{\text {out }}=V_{E d} \times \beta /\left(d \times v_{\text {Rd, }, ~}\right)$
$u_{\text {out }}=1087 \times 1.15 \times 10^{3} /(235 \times 0.68)=7826 \mathrm{~mm}$
Length of column faces $=4 \times 400=1600 \mathrm{~mm}$
Radius to $u_{\text {out }}=(7823-1600) / 2 \pi=990 \mathrm{~mm}$
from face of column i.e. in ribs, therefore beam shear governs

[^43]
4.3.11 Summary of design

Figure 4.22 Summary of design

Figure 4.23 Section $X-X$

5 Columns

5.0 General

The calculations in this section illustrate:
5.1 Design of a non-slender edge column using hand calculation.
5.2 Design of a perimeter column using iteration of equations to determine reinforcement requirements.
5.3 Design of an internal column with high axial load.
5.4 Design of a slender column requiring a two-hour fire resistance.

In general, axial loads and first order moments are assumed to be available. The designs consider slenderness in order to determine design moments, $M_{E d}$. The columns are designed and checked for biaxial bending. The effects of allowing for imperfections are illustrated.

A general method of designing columns is as follows. In practice, several of these steps may be combined.

- Determine design life.
- Assess actions on the column.
- Determine which combinations of actions apply.
- Assess durability requirements and determine concrete strength.
- Check cover requirements for appropriate fire resistance period.
- Determine cover for fire, durability and bond.
- Analyse structure for critical combination moments and axial forces.
- Check slenderness and determine design moments.
- Determine area of reinforcement required.
- Check spacing of bars and links.

ECO \& NA Table NA 2.1
EC1 (10 parts) \& UK NAs
EC0 \& NA Tables NA A1.1 \& NA A1.2(B)

BS 8500-1

Approved Document B, EC2-1-2

Cl. 4.4.1

Section 5

Section 5.8

Section 6.1
Sections 8 \& 9

5.1 Edge column

The intention of this calculation is to show a typical hand calculation that makes reference to design charts.

where

$$
\begin{aligned}
i & =\text { radius of gyration } \\
& =h / 12^{0.5} \text { for rectangular sections } \\
\lambda & =3187 \times 3.46 / 300
\end{aligned}
$$

5.1.2 Limiting slenderness, $\lambda_{\text {lim }}$
$\lambda_{\lim }=20 \mathrm{ABC/} / \mathrm{n}^{0.5}$
Exp. (5.13N)
Cl. 5.8.3.1(1)
$A=0.7$ (default)
$B=1.1$ (default)

$$
C=1.7-r_{m}=1.7-M_{01} / M_{02}
$$

$$
=1.7-38.5 /(-38.5)=2.7
$$

$$
n=N_{E d} / A_{c} f_{c d}=1620 \times 10^{3} /\left(300^{2} \times 0.85 \times 30 / 1.5\right)
$$

$$
=1.06
$$

$\lambda_{\lim }=20 \mathrm{ABC/n} \mathrm{n}^{0.5}$
$=20 \times 0.7 \times 1.1 \times 2.7 / 1.06^{0.5}$
In this example $\lambda_{\lim }=40.4$ i.e. >36.8
\therefore Column not slender

5.1.3 Design moments

$M_{E d}=\max \left[M_{O 2} ; M_{O E d}+M_{2} ; M_{O 1}+0.5 M_{2}\right]$
where

$$
\begin{aligned}
& M_{O 2}=M+e_{\mathrm{i}} N_{E d} \geq e_{O} N_{E d} \\
& \text { where } \\
& M=38.5 \mathrm{kNm} \\
& e_{\mathrm{i}}=I_{O} / 400 \\
& e_{O}=\max [h / 30 ; 20]=\max [300 / 30 ; 20]=20 \mathrm{~mm} \\
& M_{O 2}=38.5+1620 \times 3.187 / 400 \geq 0.02 \times 1620 \\
&=38.5+12.9 \geq 32.4 \mathrm{kNm} \\
&=51.4 \mathrm{kNm} \\
& M_{O E d}=0.6 M_{O 2}+0.4 M_{O 1} \geq 0.4 M_{O 2} \\
&=0.6 \times 51.4+0.4 \times(-38.5+12.9) \geq 0.4 \times 51.4 \\
&=20.6 \geq 20.6 \\
&=20.6 \\
&=0(\text { column is not slender }) \\
& M_{2} \\
& M_{O 1}=M_{O 2} \\
& \therefore \max \left[M_{O 2} ;\right.\left.M_{O E d}+M_{2} ; M_{O 1}+0.5 M_{2}\right]=51.4 \mathrm{kNm} \quad \therefore M_{E d}=51.4 \mathrm{kNm}
\end{aligned}
$$

5.1.4 Design using charts (see Appendix C)

$d_{2}=c_{\text {nom }}+$ link $+\phi / 2=25+8+16=49$
$d_{2} / h=49 / 300=0.163$
\therefore interpolating between $d_{2} / h=0.15$ and 0.20
Figs. (5c), (5d)
for
$N_{E d} / b h f_{c k}=1620 \times 10^{3} /\left(300^{2} \times 30\right)=0.60$
$M_{E d} / b h^{2} f_{c k}=51.4 \times 10^{6} /\left(300^{3} \times 30\right)=0.063$
$A_{s} f_{y k} / b h f_{c k}=0.24$
$A_{5}=0.24 \times 300^{2} \times 30 / 500=1296 \mathrm{~mm}^{2}$
Try 4 no. H25 (1964 mm²)

5.1.5 Check for biaxial bending

$\lambda_{y} / \lambda_{z} \approx 1.0$
i.e. $\lambda_{\mathrm{y}} / \lambda_{\mathrm{z}} \leq 2.0 \therefore$ OK but check Exp. (5.38b)

As a worst case $M_{\text {Edy }}$ may coexist with $e_{O} N_{E d}$ about the orthogonal axis:
$\frac{e_{y} / h_{e q}}{e_{z} / b_{e q}}=\frac{\left(M_{\text {Edz }} / N_{E d}\right) / h}{\left(M_{E d y} / N_{E d}\right) / b}=\frac{M_{E d z}}{M_{\text {Edy }}}$
Imperfections need to be taken into account in one direction only.
\therefore As a worst case for biaxial bending
$M_{E d z}=M+O=38.5 \mathrm{kNm}$
$M_{E d y}=e_{0} N_{E d}=32.4 \mathrm{kNm}$
$\frac{M_{\text {Edz }}}{M_{\text {Edy }}}=\frac{38.5}{32.4}=1.19$ i.e. >0.2 and <5.0
\therefore Biaxial check required
Check whether
$\left(M_{\text {Edz }} / M_{\text {Rdz }}\right)^{a}+\left(M_{\text {Edy }} / M_{\text {Rdy }}\right)^{2} \leq 1.0$
where

$$
\begin{aligned}
& M_{\text {Edz }}=38.5 \mathrm{kNm} \\
& M_{\text {Edy }}=32.4 \mathrm{kNm} \\
& M_{\text {Rdz }}=M_{\text {Rdy }}
\end{aligned}
$$

To determine $M_{\text {Rdz }}$, find $M_{E d} / b h^{2} f_{c k}$ (and therefore moment capacity) by interpolating between $d_{2} / h=0.15$ (Figure C 5 c) and 0.20 (Figure C 5 d) for the proposed arrangement and co-existent axial load.

Assuming 4 no. H 25 ,
$A_{s} f_{y k} / b h f_{c k}=1964 \times 500 /\left(300^{2} \times 30\right)=0.36$
Interpolating for $N_{E d} / b h f_{c k}=0.6$, $M_{E d} / b h^{2} f_{c k}=0.094$ $\therefore M_{\text {Rdz }}=M_{\text {Rdy }}=0.094 \times 300^{3} \times 30=76.1 \mathrm{kNm}$
a is dependent on $N_{E d} / N_{R d}$
where

$$
N_{E d}=1620 \mathrm{kN} \text { as before }
$$

Cl. 5.8.9

Exp. (5.38a)
Cl. 6.1(4)

Exp. (5.38b)
Cl. 5.8.9(2)

Exp. (5.38b)
Cl. 5.8.9(4)

Exp. (5.39)

Figs. C5c), C5d)
Cl. 5.8.9(4),
Notes to Exp.
(5.39)

$$
\begin{aligned}
N_{R d} & =A_{c} f_{c d}+A_{s} f_{y d} \\
& =300^{2} \times 0.85 \times 30 / 1.5+1964 \times 500 / 1.15 \\
& =1530.0+853.9 \\
& =2383.9 \mathrm{kN} \\
N_{E d} / N_{R d} & =1620 / 2383.9=0.68
\end{aligned}
$$

$\therefore a=1.48$ by interpolating between values given for $N_{E d} / N_{R d}=$ 0.1, (1.0) and $N_{E d} / N_{R d}=0.7$, (1.5)
$\left(M_{E d z} / M_{R d z}\right)^{a}+\left(M_{E d y} / M_{\text {Rdy }}\right)^{a}=(38.5 / 76.1)^{1.48}+(32.4 / 76.1)^{1.48}$
$=0.36+0.28$
$=0.64 \therefore$ OK.

5.1.6 Links

Diameter min. $\phi / 4=25 / 4=8 \mathrm{~mm}$
Max. spacing $=0.6 \times 300=180 \mathrm{~mm}$
Cl. 9.5.3 \& NA
Cl. 9.5.3(3),
Cl. 9.5.3(4)

5.1.7 Design summary

4 H 25

H8 links @ 175 cc
25 mm cover
$f_{c k}=30 \mathrm{MPa}$

Figure 5.2 Design summary: edge column

5.2 Perimeter column (internal environment)

This example is intended to show a hand calculation for a non-slender perimeter column using iteration (of x) to determine the reinforcement required.

5.2.2 Fire resistance

Check validity of using Method A and Table 5.2a of BS EN 1992-1-2:
$I_{O, \mathrm{f}} \approx 0.7 \times 3.325$ i.e. $<3.0 \mathrm{~m} \therefore$ OK.
$e=M_{\text {O2yy }} / N_{\mathrm{Ed}}=89.6 \times 10^{6} / 1129.6 \times 10^{3}=79 \mathrm{~mm}$
$e_{\max }=0.15 \mathrm{~h}=0.15 \times 300=45 \mathrm{~mm} \therefore$ no good .
Check validity of using Method B and Table 5.2b:
$e_{\max }=0.25 b=75 \mathrm{~mm} \therefore$ no good.
Use BS EN 1992-1-2 Annex C Tables C1-C9.
Assume min. 4 no. $\mathrm{H} 25=1964 \mathrm{~mm}^{2}(\equiv 2.2 \%)^{\ddagger}$
EC2-1-2: 5.3.2, Table 5.2a
EC2-1-2:
5.3.3(3)

EC2-1-2:
5.3.2 \& NA

EC2-1-2:
5.3.3

EC2-1-2:
Annex C
EC2-1-2: 5.3.3(2)

EC2-1-2:
5.3.3(2),
5.3.3(3)
where
$I=$ inertia $=b h^{3} / 12$
$A=$ area $=b h$
$h=$ height of section
$b=$ breadth of section

$$
=300 / 12^{0.5}=87 \mathrm{~mm}
$$

$\lambda=2327 / 87=276$
$n=N_{\text {OEd,fi }} I O .7\left(A_{c} f_{c d}+A_{s} f_{y d}\right)$
$=0.7 \times 1129.6 / 0.7\left(300^{2} \times 0.85 \times 30 / 1.5+1964 \times 500 / 1.15\right)$
$=1129.6 / 2383.9$
$=0.47$
\therefore interpolate for $\lambda=30$ and $n=0.47$ between
from Table C. 5 of BS EN 1992-1-2 ($\omega=0.5, e=0.25 b$):
minimum dimension, $b_{\min }=235$, and axis distance, $a=35 \mathrm{~mm}$ and
from Table C. 8 of BS EN 1992-1-2 ($\omega=1.0, e=0.25 b$):
$b_{\text {min }}=185$, and
$a=30 \mathrm{~mm}$
\therefore for $\omega=0.56$,
$b_{\text {min }}=228$, and
$a=35 \mathrm{~mm}$

5.2.3 Structural design: check slenderness
 Effective length, I_{0} :

$I_{0}=0.51\left[1+k_{1} /\left(0.45+k_{1}\right)\right]^{0.5}\left[1+k_{2} /\left(0.45+k_{2}\right)\right]^{0.5}$
where
$k_{1}, k_{2}=$ relative stiffnesses top and bottom
But conservatively, choose to use tabular method ${ }^{5}$. For critical direction, the column is in condition 2 at top and condition 3 at bottom (pinned support).
$I_{0}=0.95 \times 3325=3158 \mathrm{~mm}$
Slenderness ratio, λ :
$\lambda=10 / i$
where
$i=$ radius of gyration $=(I / A)^{0.5}=h / 12^{0.5}$
$\lambda=3158 \times 12^{0.5} / 300=36.5$
$\lambda=36.5$
Limiting slenderness ratio, $\lambda_{\text {lim }}$
$\lambda_{\lim }=20 \mathrm{ABC} / \mathrm{n}^{0.5}$
where
$A=1 /\left(1+0.2 \phi_{e f}\right)$. Assume 0.7
$B=\left(1+2 A_{s} f_{y d} / A_{c} f_{c d}\right)^{0.5}$
$=(1+2 \omega)^{0.5}$
Assuming min. 4 no. H25 (for fire)
$\omega=0.56$ as before
$B=(1+2 \times 0.56)^{0.5}=1.46$
$C=1.7-r_{m}$

Exp. (5.15)

Table C16
CI. 5.8.3.2(1)
CI. 5.8.3.1(1)
\& NA
Cl. 5.8.4
Cl. 5.8.3.1(1)
Cl. 5.8.3.1(1)
where

$$
r_{m}=M_{01} / M_{2}
$$

Assuming conservatively that $M_{O 1}=0$
$r_{m}=0$
$C=1.7$
$n=N_{E d} / A_{c} f_{c d}$
$=1129.6 \times 10^{3} /\left(300^{2} \times 0.85 \times 30 / 1.5\right)$
$=0.74$

S See footnote to Section 5.1.1.
$\lambda_{\lim }=20 \times 0.7 \times 1.46 \times 1.710 .74^{0.5}$

$$
=40.4 \quad \underline{\lambda_{\lim }=40.4}
$$

\therefore as $\lambda<\lambda_{\text {lim }}$ column is not slender and 2 nd order moments are not required.

> Column is not slender

5.2.4 Design moments, $M_{E d}$

$M_{E d}=M_{O E d}+M_{2} \geq e_{O} N_{E d}$
Cl. 5.8.8.2(1),
5.8.8.2(3)
Cl. 6.1.4
$M_{E d}=M_{\text {Oed }}=M+e_{i} N_{E d} \geq e_{O} N_{E d}$
where
$M=$ moment from 1st order analysis
$e_{i} N_{E d}=$ effect of imperfections ${ }^{\ddagger}$
where
$e_{\mathrm{i}}=1 / 1400$

$$
e_{0}=h / 30>20 \mathrm{~mm}
$$

Load case 1:
$M_{E d y}=89.6+(3158 / 400) \times 1129.6 \times 10^{-3}>0.02 \times 1129.6$
$=89.6+8.9>22.6=98.5 \mathrm{kNm}$
Load case 2:
$M_{E d y}=68.7 \mathrm{kNm}$
$M_{E d z}=6.0+\left(I_{O} / 400\right) \times 1072.1 \times 10^{-3}>0.02 \times 1072.1$
where

$$
\begin{aligned}
I_{0} & =0.9 \times 3000 \\
& =13.2>21.4=21.4 \mathrm{kNm}
\end{aligned}
$$

5.2.5 Design using iteration of x

For axial load:

$$
A_{s N} / 2=\left(N_{E d}-\alpha_{c c} \eta f_{c k} b d_{c} / \gamma_{C}\right) /\left(\sigma_{s c}-\sigma_{s t}\right)
$$

For moment:
$A_{\text {sM }} / 2=\frac{\left[M_{E d}-\alpha_{c c} \eta f_{c k} b d_{c}\left(h / 2-d_{c} / 2\right) / \gamma_{c}\right]}{\left(h / 2-d_{2}\right)\left(\sigma_{\text {sc }}-\sigma_{\text {st }}\right)}$
where

$$
\begin{aligned}
& M_{E d}=98.5 \times 10^{6} \\
& N_{E d}=1129.6 \times 10^{3} \\
& \alpha_{c c}=0.85 \\
& \eta=1.0 \text { for } f_{c k} \leq 50 \mathrm{MPa}
\end{aligned}
$$

末The effects of imperfections need only be taken into account in the most
unfavourable direction.

Figure 5.4 Section in axial compression and bending
Try $\mathrm{x}=200 \mathrm{~mm}$
$\varepsilon_{\text {cu }}=\varepsilon_{\text {cu2 }}=0.0035$
$\varepsilon_{5 c}=\frac{0.0035 \times\left(x-d_{2}\right)}{x}=\frac{0.0035 \times(200-55)}{200}$
$=0.0025$
$\sigma_{5 c}=0.0025 \times 200000 \leq f_{\mathrm{yk}} / \gamma_{\mathrm{S}}$
$=500 \leq 500 / 1.15$
$=434.8 \mathrm{MPa}$
$\varepsilon_{\text {st }}=0.0035\left(h-x-d_{2}\right) / x=0.0035(300-200-55) / 200$
$=0.0008$
$\sigma_{\text {st }}=0.0008 \times 200000 \leq 500 / 1.15$
$=160 \mathrm{MPa}$
$A_{\text {SN }} / 2=\frac{1129.6 \times 10^{3}-0.85 \times 1.0 \times 30 \times 300 \times 200 \times 0.8 /\left(1.5 \times 10^{3}\right)}{434.8-160}$
$=\frac{(1129.6-816.0) \times 10^{3}}{274.8}=1141 \mathrm{~mm}^{2}$

Table 2.1N

Fig. 6.1

$$
A_{s M} / 2=\frac{98.5 \times 10^{6}-0.85 \times 1.0 \times 30 \times 300 \times 200 \times 0.8(300 / 2-200 \times 0.8 / 2) /\left(1.5 \times 10^{3}\right)}{(300 / 2-55)(434.8+160)}
$$

$$
=\frac{(98.5-57.1) \times 10^{6}}{95 \times 594.8}=733 \mathrm{~mm}^{2}
$$

Similarly for $x=210 \mathrm{~mm}$
$\varepsilon_{\text {cu }}=0.0035$
$\varepsilon_{5 c} \quad=0.0026 \quad \therefore \sigma_{\text {Sc }}=434.8$
$\varepsilon_{\text {st }}=0.0006 \quad \therefore \sigma_{\text {st }}=120 \mathrm{MPa}$
$A_{s N} / 2=\frac{(1129.6-856.8) \times 10^{3}}{434.8-120}=866 \mathrm{~mm}^{2}$
$A_{S M} / 2=\frac{(98.5-56.5) \times 10^{6}}{95 \times 554.8}=796 \mathrm{~mm}^{2}$
Similarly for $x=212 \mathrm{~mm}$
$\sigma_{5 c}=434.8$
$\varepsilon_{\text {st }}=0.00054 \therefore \varepsilon_{\text {st }}=109 \mathrm{MPa}$
$A_{5 N} / 2=\frac{(1129.6-865.0) \times 10^{3}}{434.8-109}=812 \mathrm{~mm}^{2}$
$A_{\text {SM }} / 2=\frac{(98.5-56.3) \times 10^{6}}{95 \times 543.8}=816 \mathrm{~mm}^{2}$
\therefore as $A_{\text {SN }} / 2 \approx A_{S M} / 2, x=212 \mathrm{~mm}$ is approximately correct and
$A_{S N} \approx A_{S M}, \approx 1628 \mathrm{~mm}^{2}$

$$
\therefore \text { Try } 4 \text { no. H25 (1964 mm²) }
$$

5.2.6 Check for biaxial bending

> By inspection, not critical.
Cl. 5.8.9(3)

[Proof:

Section is symmetrical and $M_{\text {Rdz }}>98.5 \mathrm{kNm}$.
Assuming $e_{\mathrm{y}} / e_{\mathrm{z}}>0.2$ and biaxial bending is critical, and assuming exponent a $=1$ as a worst case for load case 2:
$\left(M_{\text {Edz }} / M_{\text {Rdz }}\right)^{a}+\left(M_{\text {Edy }} / M_{\text {Rdy }}\right)^{a}=(21.4 / 98.5)^{1}+(68.7 / 98.5)^{1}$
$=0.91$ i.e. <1.0

5.2.7 Links

Minimum size links $=25 / 4=6.25$, say 8 mm
Spacing: minimum of
a) $0.6 \times 20 \times 25=300 \mathrm{~mm}$,
b) $0.6 \times 300=180 \mathrm{~mm}$ or
c) $0.6 \times 400=240 \mathrm{~mm}$

Use H8 @ 175 mm cc

5.2.8 Design summary

4 H 25

H8 links @ 175 cc
$c_{\text {nom }}=35 \mathrm{~mm}$ to links

Figure 5.5 Design summary: perimeter column

5.3 Internal column

The flat slab shown in Example 3.4 (reproduced as Figure 5.6) is part of an 8 -storey structure above ground with a basement below ground. The problem is to design column C2 between ground floor and 1st floor.

	rs: $8.5, q_{k}=4.0$ eeping with Section 3.4 use coefficients -down. sider spans adjacent to column C2: g grid C, consider spans to be 9.6 m and internal of 2-span element. efore elastic reaction factor $=0.63+0$ g grid 2 consider spans to be 6.0 m and tiple span. tic reaction factor $=0.5+0.5=1.00$ take-down for column C2.	5 to det d 8.6 m $.63=1$. d 6.2 m	mine loads C2 to be internal of		Section 3.4 Section 3.4 Table C3
Item	Calculation	G_{k}		Q_{k}	
		From item	Cumulative total	From item	Cumulative total
Roof	$\begin{aligned} = & {\left[\operatorname{erf} f_{y} \times\left(I_{z 1}+I_{z 2}\right) / 2\right] \times\left[e r f_{z} \times\left(I_{y 1}+I_{y 2}\right) / 2\right] \times } \\ & \left(g_{k}+q_{k}\right) \\ = & {[1.0 \times(6.0+6.2) / 2] \times[1.26 \times(9.6} \\ & +8.6) / 2] \times(8.5+0.6) \\ = & 69.9 \times(8.5+0.6) \end{aligned}$	594.5		42.0	
Col 8 -R	$=\pi(0.465 / 2)^{2} \times(4.5-0.3) \times 25=$	17.9	612.4		42.0
8th	$\begin{aligned} & =1.0 \times(6.0+6.2) / 2 \times 1.26 \times(9.6+ \\ & 8.6) / 2 \times(8.5+4.0) \end{aligned}$	594.5		279.7	
Col 7-8	as before	17.9	1224.8		321.7
7th	a.b.	594.5		279.7	
Col 6-7	a.b.	17.9	1837.2		601.4
6th	a.b.	594.5		279.7	
Col 5-6	a.b.	17.9	2449.6		881.1
5th	a.b.	594.5		279.7	
Col 4-5	$=0.5 \times 0.5 \times(4.5-0.3) \times 25=$	26.3	3070.4		1160.8
4th	as before	594.5		279.7	
Col 3-4	a.b.	26.3	3691.2		1440.5
3rd	a.b.	594.5		279.7	
Col 2-3	a.b.	26.3	4312.0		1720.2
2nd	a.b.	594.5		279.7	
Col 1-2	a.b.	26.3	4932.8		1999.7
1st	a.b.	594.5		279.8	
Col G-1	a.b.	26.3	5553.6		2279.5
At above ground floor		-	5553.6	-	2279.5

5.3.3 Design axial load, ground-1st floor, $N_{E d}$

a) Axial load to Exp. (6.10)
$N_{E d}=\gamma_{G} G_{k}+\gamma_{Q} Q_{k 1}+\psi_{O} \gamma_{Q} Q_{k i}$
where

$$
\begin{aligned}
& \gamma_{G}=1.35 \\
& \gamma_{Q}=1.50 \\
& \psi_{O, 1}=0.7 \text { (offices) } \\
& Q_{K 1}=\text { leading variable action (subject to reduction factor } \alpha_{A} \text { or } \alpha_{n} \text {) } \\
& Q_{k i}=\text { accompanying action (subject to } \alpha_{A} \text { or } \alpha_{n} \text {) }
\end{aligned}
$$

where

$$
\begin{aligned}
\alpha_{A} & =1-A / 1000 \geq 0.75 \\
& =1-9 \times 69.9 / 1000=0.37 \geq 0.75 \\
& =0.75 \\
\alpha_{n} & =1.1-n / 10 \text { for } 1 \leq n \leq 5 \\
& =0.6 \text { for } 5 \leq n \leq 10 \text { and } \\
& =0.5 \text { for } n>10
\end{aligned}
$$

where

$$
n=\text { number of storeys supported }
$$

$\alpha_{n}=0.6$ for 8^{\ddagger} storeys supported
\therefore as $\alpha_{n}<\alpha_{A}$, use $\alpha_{n}=0.6$
Assuming the variable action of the roof is an independent variable action:

$$
\begin{aligned}
N_{E d} & =1.35 \times 5553.6+1.5 \times(2279.5-42.0) \times 0.6+0.7 \times 1.5 \times 42.0 \\
& =1.35 \times 5553.6+1.5 \times 2237.5+0.7 \times 1.5 \times 42.0 \\
& =7497.4+2013.8+44.1 \\
& =9555.3 \mathrm{kN}
\end{aligned}
$$

$$
\text { To Exp. (6.10), } N_{E d}=9555.3 \mathrm{kN}
$$

b) Axial load to Exp. (6.10a)

$$
\begin{aligned}
N_{E d} & =\gamma_{G} G_{\mathrm{k}}+\psi_{O, 1} \gamma_{Q} Q_{\mathrm{k} 1}+\psi_{O, 1} \gamma_{Q} Q_{\mathrm{ki}} \\
& =1.35 \times 5553.6+0.7 \times 1.5 \times 0.6(279.8+1999.7) \\
& =7497.4+1436.1 \\
& =8933.4 \mathrm{kN}
\end{aligned}
$$

To Exp. (6.10a), $N_{E d}=8933.4 \mathrm{kN}$
c) Axial load to Exp. (6.10b)
$N_{E d}=\xi \gamma_{G} G_{k}+\gamma_{Q} Q_{\mathrm{k} 1}+\psi_{O, 1} \gamma_{Q} Q_{\mathrm{ki}}$

[^44]ECO:
Exp. (6.10) \& NA
ECO:
A1.2.2 \& NA

EC1-1-1:
6.3.1.2 (10),
6.3.1.2 (11), \& NA

ECO:
Exp. (6.10a)
\& NA

ECO:
Exp. (6.10)
\& NA
assuming the variable action of the roof is an independent variable action:

$$
\begin{aligned}
& =0.925 \times 1.35 \times 5553.6+1.5 \times(2279.5-42.0) \times 0.6+0.7 \times 1.5 \times 42.0 \\
& =1.25 \times 5553.6+1.5 \times 2237.5 \times 0.6+0.7 \times 1.5 \times 42.0 \\
& =6942.1+2013.8+44.1 \\
& =9000.0 \mathrm{kN}
\end{aligned}
$$

$$
\text { To Exp. (6.10b), } N_{E d}=9000.0 \mathrm{kN}
$$

5.3.4 First order design moments, M

a) Grid C

Consider grid C to determine $M_{y y}$ in column (about grid 2)

Figure 5.7 Subframe on column C2 along grid C

Actions:
$g_{k}=(6.0+6.2) / 2 \times 8.5=51.9 \mathrm{kN} / \mathrm{m}$
$q_{k}=(6.0+6.2) / 2 \times 4.0=24.4 \mathrm{kN} / \mathrm{m}$
Relative stiffness of lower column:
Assuming remote ends of slabs are pinned, relative stiffness

$$
=\frac{b_{1 c} d_{1}{ }^{3} / L_{1 c}}{b_{1 c} d_{1 c}^{3} / L_{1 c}+b_{u c} d_{u c}^{3} / L_{u c}+0.75 b_{23} d_{23}^{3} / L_{23}+0.75 b_{21} d_{21}^{3} / L_{21}}
$$

where

$$
b=\text { breadth }
$$

$$
d=\text { depth }
$$

$$
L=\text { length }
$$

${ }_{1 c}$ = lower column, ${ }_{u c}=$ upper column
$23=$ beam 23, similarly $21=$ beam 21

$$
\begin{aligned}
& =\frac{0.5^{4} / 4.5}{2 \times 0.5^{4} / 4.5+0.75 \times 6.1 \times 0.3^{3} / 8.6+0.75 \times 6.1 \times 0.3^{3} / 9.6} \\
& =0.0139 /(0.0278+0.0144+0.0129)=0.252
\end{aligned}
$$

1st order moment using Exp. (6.10)
FEM $23^{\ddagger}=1.35 \times 51.9 \times 8.6^{2} / 12=431.8 \mathrm{kNm}$
FEM $21=(1.35 \times 51.9+1.5 \times 24.4) \times 9.6^{2} / 12$

$$
=106.7 \times 9.6^{2} / 12=819.5 \mathrm{kNm}
$$

$M_{\text {lower,yy }}=0.252 \times[819.5-431.8]=97.7 \mathrm{kNm}$
1st order moment using Exp. (6.10a)
FEM $23=1.25 \times 51.9 \times 8.6^{2} / 12=399.8 \mathrm{kNm}$
FEM $21=(1.25 \times 51.9+1.5 \times 24.4) \times 9.6^{2} / 12$

$$
=101.5 \times 9.6^{2} / 12=779.5 \mathrm{kNm}
$$

$M_{\text {lower,yy }}=0.252 \times(779.5-399.8)=95.7 \mathrm{kNm}$
1st order moment using Exp. (6.10b)
FEM $23=1.35 \times 51.9 \times 8.6^{2} / 12=431.8 \mathrm{kNm}$
FEM $21=(1.35 \times 51.9+0.7 \times 1.5 \times 24.4) \times 9.6^{2} / 12$

$$
=95.7 \times 9.6^{2} / 12=735.0 \mathrm{kNm}
$$

$M_{\text {lower,yy }}=0.252 \times(735.0-431.8)=76.4 \mathrm{kNm}$
\therefore Exp. (6.10a) critical
b) Grid 2

Consider grid 2 to determine $M_{z z}$ in column (about grid C)

Figure 5.8 Subframe on column C2 along grid 2
Actions:
$g_{k}=0.63 \times(8.6+9.6) \times 8.5$
$=11.47 \times 8.5=97.5 \mathrm{kN} / \mathrm{m}$
$q_{k}=11.47 \times 4.0=45.9 \mathrm{kN} / \mathrm{m}$
Relative stiffness of lower column:
Assuming remote ends of slabs are fixed, relative stiffness
Cl. 5.8.3.2(4)

PD 6687

[^45]\[

$$
\begin{aligned}
& =\frac{0.5^{4} / 4.5}{2 \times 0.5^{4} / 4.5+11.47 \times 0.3^{3} / 6.2+11.47 \times 0.3^{3} / 6.0} \\
& =0.0139 /(0.0278+0.0500+0.0516)=0.107
\end{aligned}
$$
\]

1st order moment using Exp. (6.10)
FEM CB $=(1.35 \times 97.5+1.5 \times 45.9) \times 6.2^{2} / 12$

$$
=200.5 \times 6.2^{2} / 12=642.3 \mathrm{kNm}
$$

FEM CD $=1.35 \times 97.5 \times 6.0^{2} / 12=394.9 \mathrm{kNm}$
$M_{\text {lower,zz }}=0.107 \times(642.3-394.9)=26.5 \mathrm{kNm}$
1st order moment using Exp. (6.10a)
FEM CB $=1.25 \times 97.5 \times 6.0^{2} / 12=365.6 \mathrm{kNm}$
FEM CD $=(1.25 \times 97.5+1.5 \times 45.9) \times 6.22 / 12$

$$
=190.7 \times 6.22 / 12=611.0 \mathrm{kNm}
$$

$M_{\text {lower,zz }}=0.107 \times(611.0-365.6)=26.3 \mathrm{kNm}$
1st order moment using Exp. (6.10b)
FEM CB $=(1.35 \times 97.5+0.7 \times 1.5 \times 45.9) \times 6.2^{2} / 12$

$$
=190.7 \times 6.2^{2} / 12=576.0 \mathrm{kNm}
$$

FEM CD $=1.35 \times 97.5 \times 6.0^{2} / 12=394.9 \mathrm{kNm}$
$M_{\text {lower,zz }}=0.107 \times(576.0-394.9)=19.4 \mathrm{kNm}$
\therefore Exp. (6.10a) critical again

5.3.5 Summary of design forces in column C2 ground-1st

Design forces

Method	$N_{\text {Ed }}$	$M_{y y}$ about grid 2	$M_{z z}$ about grid C
Using Exp. (6.10)	9555.3 kN	97.7 kNm	26.5 kNm
Using Exp. (6.10a)	8933.4 kN	95.7 kNm	26.3 kNm
Using Exp. (6.10b)	9000.0 kN	76.4 kNm	19.4 kNm

Notes:

1) To determine maximum 1 st order moments in the column, maximum out-ofbalance moments have been determined using variable actions to one side of the column only. The effect on axial load has, conservatively, been ignored.
2) It may be argued that using coefficients for the design of the slab and reactions to the columns does not warrant the sophistication of using Exps (6.10a) and (6.10b). Nevertheless, there would appear to be some economy in designing the column to Exp. (6.10a) or Exp. (6.1Ob) rather than Exp. (6.10). The use of Exp. (6.10a) or Exp. (6.10b) is perfectly valid and will be followed here.

To avoid duplicate designs for both Exps (6.10a) and (6.10b), a worse case of their design forces will be used, thus:

$$
N_{\mathrm{Ed}}=9000 \mathrm{kN}, M_{\mathrm{yy}}=95.7 \mathrm{kNm}, M_{\mathrm{zz}}=26.3 \mathrm{kNm}
$$

5.3.6 Design: cover

```
\(c_{\text {nom }}=c_{\text {min }}+\Delta c_{\text {dev }}\)
where
    \(c_{\min }=\max \left[c_{\text {min }, b} ; c_{\text {min }, \text { dur }}\right]\)
    where
        \(c_{\text {min }, b}=\) diameter of bar. Assume 32 mm bars and 8 mm links.
            \(=32-8=24 \mathrm{~mm}\) to link
        \(c_{\text {min,dur }}=\) minimum cover due to environmental conditions.
                        Assume XC1.
        \(c_{\text {min,dur }}=15 \mathrm{~mm}\)
    \(c_{\min }=24 \mathrm{~mm}\), say 25 mm to link
    \(\Delta c_{\text {dev }}=10 \mathrm{~mm}\)
\(\therefore c_{\text {nom }}=25+10 \quad=35 \mathrm{~mm}\)
```


5.3.7 Design: fire resistance

Check validity of using Method A and Table 5.2a
a) Check $I_{O, f i} \leq 3.0 \mathrm{~m}$
where

$$
\begin{aligned}
I_{O} & =\text { effective length of column in fire } \\
& =0.5 \times \text { clear height } \\
& =0.5 \times(4500-300) \\
& =2100 \mathrm{~mm}
\end{aligned}
$$

b) Check $e \leq e_{\max }=0.15 \mathrm{~h}=0.15 \times 500=75 \mathrm{~mm}$

$$
\begin{aligned}
e & =M_{O E d, f i} / N_{O E d, f i} \\
& =M_{O} / N_{E d} \\
& =99.5 \times 10^{6} / 8933 \times 10^{3}=11 \mathrm{~mm}
\end{aligned}
$$

c) Check amount of reinforcement $\leq 4 \%$

Assuming $\mu_{\mathrm{fi}}=0.7$
$b_{\text {min }}=350$ with
$a_{\text {min }}=40 \mathrm{~mm}$
For fire using Method A and Table 5.2 a is valid

5.3.8 Structural design: check slenderness

Effective length, I_{0} :
$I_{0}=0.5 I\left[1+k_{1} /\left(0.45+k_{1}\right)\right]^{0.5}\left[1+k_{2} /\left(0.45+k_{2}\right)\right]^{0.5}$
where
k_{1} and k_{2} are relative flexibilities at top and bottom of the column.

$$
k_{\mathrm{i}}=\left(E I_{\text {col }} / I_{\text {col }}\right) / \Sigma\left(2 E I_{\text {beam }} / I_{\text {beam }}\right) \geq 0.1
$$

[^46]Exp. (4.1)
Cl. 4.4.1.2(3)

BS 8500-1:
Table A4
Cl. 4.4.1.3 \& NA

EC2-1-2:
5.3.2, Table 5.2a

EC2-1-2: 5.3.2(2)

EC2-1-2:
Table 5.2a

Exp. (5.15)

PD 6687[6] ${ }^{\ddagger}$

Critical direction is where k_{1} and k_{2} are greatest i.e. where slab spans are greater

$$
\begin{aligned}
k_{1} & =k_{2}=\frac{b_{1 c} d_{1 c}^{3} / L_{l c}}{2 b_{23} d_{23}{ }^{3} / L_{23}+2 b_{21} d_{21}^{3} / L_{21}} \\
& =\left(0.5^{4} / 4.5\right) /\left(2 \times 6.1 \times 0.3^{3} / 8.6+2 \times 6.1 \times 0.3^{3} / 9.6\right) \\
& =(0.0625) /(0.0383+0.0343) \\
& =0.86 \\
I_{0}= & 0.5(4500-300)[1+0.86 /(0.45+0.86)]^{0.5}[1+0.86 /(0.45 \\
& +0.86)] 0.5 \\
I_{0}= & 0.5 \times 4200 \times 1.66 \\
= & 0.828 \times 4200=3478 \mathrm{~mm}
\end{aligned}
$$

Slenderness ratio, λ :
$\lambda=10 / i$
where
$i=$ radius of gyration $=(/ / A)^{0.5}=h / 12^{0.5}$
$\therefore \lambda=3478 \times 12^{0.5} / 500=24.1$
Limiting slenderness ratio, $\lambda_{\text {lim }}$:
$\lambda_{\lim }=20 \mathrm{ABC} / \mathrm{n}^{0.5}$
where

$$
\begin{aligned}
& A=1 /\left(1+0.2 \phi_{e f}\right) \text {. Assume } 0.7 \text { as per default } \\
& B=(1+200)^{0.5} . \text { Assume } 1.1 \text { as per default } \\
& C=1.7-r_{\mathrm{m}} \\
& \text { where } \\
& r_{\mathrm{m}}=M_{01} / M_{2}=-84.9 / 109.3=-0.78 \\
& C=1.7+0.78=2.48 \\
& n=N_{\text {Ed }} / A_{c} f_{c d} \\
&=8933 \times 10^{3} /\left(500^{2} \times 0.85 \times 50 / 1.5\right) \\
&=1.26 \\
& \therefore \lambda_{\text {lim }}=20 \times 0.7 \times 1.1 \times 2.48 / 1.260 .5=34.0
\end{aligned}
$$

\therefore as $\lambda<\lambda_{\text {lim }}$ column is not slender and 2 nd order moments are not required

5.3.9 Design moments, $M_{E d}$

$M_{E d}=M+e_{i} N_{E d} \geq e_{O} N_{E d}$
where

$$
\begin{aligned}
& M=\text { moment from 1st order analysis } \\
& e_{\mathrm{i}} N_{E d}=\text { effect of imperfections }
\end{aligned}
$$

How to ${ }^{[8]}$:
Columns
Cl. 5.8.3.2(1)
Cl. 5.8.3.1(1) \& NA

Exp. (5.13N)
Cl. 5.8.8.2(1),
6.1(4)
Cl. 5.8.8.2(1)
where

$$
\begin{aligned}
& e_{\mathrm{i}} \quad=I_{0} / 400 \\
& e_{O} N_{E d}=\text { minimum eccentricity } \\
& \text { where } \\
& \quad e_{0}=h / 30 \geq 20 \mathrm{~mm} \\
& M_{\text {Edyy }}= 95.7+(3570 / 400) \times 8933 \times 10^{-3} \geq 0.02 \times 8933 \\
&= 95.7+79.7 \geq 178.7 \\
&= 175.4<178.7 \mathrm{kNm} \\
& M_{\text {Edzz }}= 18.8+79.7 \geq 178.7 \\
&= 178.7 \mathrm{kNm} \quad \therefore \text { Both critical. }
\end{aligned}
$$

However, imperfections need only be taken in one direction - where they have the most unfavourable effect

$$
\therefore \text { Use } M_{\text {Edzz }}=178.7 \text { with } M_{E d y y}=95.7 \mathrm{kNm}
$$

5.3.10 Design using charts

$M_{\text {Edyy }} / b h^{2} f_{c k}=178.9 \times 10^{6} /\left(500^{3} \times 50\right)=0.03$
$N_{E d} / b h f_{c k}=9000 \times 10^{3} /\left(500^{2} \times 50\right)=0.72$
Choice of chart based on d_{2} / h
where

$$
\begin{aligned}
d_{2}= & \text { depth to centroid of reinforcement in half section assuming } \\
& 12 \text { bar arrangement with H32s } \\
d_{2}= & 35+8+(32 / 2)+(2 / 6)[500+2 \times(35+8+32 / 2) / 3] \\
= & 59+(1 / 3) \times 127 \\
= & 101
\end{aligned}
$$

$\therefore d_{2} / h=101 / 500=0.2$

Figure 5.9 Depth, d_{2}, to centroid of reinforcement in half section

$$
\begin{aligned}
& \text { From Figure } C 5 \mathrm{~d} \text {) } \\
& \begin{aligned}
\mathrm{A}_{s} f_{y k} / b h f_{c k} & =0.30 \\
A_{s} & =0.29 \times 500 \times 500 \times 50 / 500 \\
& =7500 \mathrm{~mm}^{2}
\end{aligned}
\end{aligned}
$$

Fig. C5d)

Try 12 no. H32 $\left(9648 \mathrm{~mm}^{2}\right)^{\ddagger}$

[^47]
5.3.11 Check biaxial bending

Cl. 5.8.9

Slenderness: $\lambda_{y} \approx \lambda_{z} \therefore$ OK.
Eccentricities: as $h=b$ check e_{y} / e_{z}
$M_{\text {Edz }}$ critical. (Imperfections act in z direction.)
$e_{y} / e_{z}=\frac{95.7 \times 10^{6} / 9000 \times 10^{3}}{178.7 \times 10^{6} / 9000 \times 10^{3}}$

$$
=0.54 \text { i.e. }>0.2 \text { and }<5
$$

\therefore Design for biaxial bending.

Figure 5.10 Eccentricities

5.3.12 Design for biaxial bending

Check $\left(M_{\text {Edz }} / M_{\text {Rdz }}\right)^{a}+\left(M_{\text {Edy }} / M_{\text {Rdy }}\right)^{a} \leq 1.0$
For load case 2
where

$$
\begin{aligned}
M_{E d z}= & 178.7 \mathrm{kNm} \\
M_{E d y}= & 95.7 \mathrm{kNm} \\
M_{\text {Rdz }}= & M_{\text {Rdy }}=\text { moment resistance. Using charts: } \\
& \left.F_{\text {rom Figure }} C 4 d\right), \text { for } d_{2} / \mathrm{h}=0.20 \text { and } \\
& A_{s} f_{y k} / b h f_{c k}= \\
= & 9648 \times 500 / 500 \times 500 \times 50 \\
& =0.39 \\
N_{E d} / b h f_{c k}= & 9000 \times 10^{3} /\left(500^{2} \times 50\right) \\
= & 0.72 \\
M_{R d} / b h^{2} f_{c k}= & 0.057
\end{aligned}
$$

$\therefore M_{R d} \approx 0.057 \times 500^{3} \times 50$

$$
=356.3 \mathrm{kNm}
$$

$a=$ exponent dependent upon $N_{E d} / N_{R d}$
where

$$
\begin{aligned}
N_{R d}= & A_{c} f_{c d}+A_{s} f_{y d} \\
= & 500 \times 500 \times 0.85 \times 50 / 1.5+9648 \times 500 / 1.15 \\
= & 7083+3216 \\
= & 10299 \mathrm{kN} \\
N_{E d} / N_{R d}= & 9000 / 10299=0.87 . \\
& \text { Interpolating between values given for } N_{E d} / N_{R d}=0.7 \\
& (1.5) \text { and for } N_{E d} / N_{R d}=1.0(2.0)
\end{aligned}
$$

$$
\therefore a=1.67
$$

Check $\left(M_{\text {Edz }} / M_{\text {Rdz }}\right)^{a}+\left(M_{\text {Edy }} / M_{\text {Rdy }}\right)^{a} \leq 1.0$
$(178.7 / 356.3)^{1.67}+(95.7 / 356.3)^{1.67}=0.32+0.11$

$$
\begin{aligned}
&=0.43 \text { i.e. }<1.0 \quad \therefore \text { OK } \\
& \text { Use } 12 \text { no. } \mathrm{H} 32
\end{aligned}
$$

5.3.13 Links

Minimum diameter of links: $=\phi / 4=32 / 4$

$$
=8 \mathrm{~mm}
$$

Spacing, either:
a) $0.6 \times 20 \times \phi=12 \times 32=384 \mathrm{~mm}$,
b) $0.6 \times \mathrm{h}$
$=0.6 \times 500=300 \mathrm{~mm}$ or
c) 0.6×400
$=240 \mathrm{~mm}$.
\therefore Use H8 links at 225 mm cc
Number of legs:
Bars at 127 mm cc i.e. $<150 \mathrm{~mm} \therefore$ no need to restrain bars in face
Cl. 9.5.3(6)

SMDSC: 6.4.2

5.3.14 Design summary

12 H32
H8 links @ 225 cc
35 mm to link
500 mm sq
$f_{c k}=50 \mathrm{MPa}$

Figure 5.11 Design summary: internal column

5.4 Small perimeter column subject to two-hour fire resistance

This calculation is intended to show a small slender column subject to a requirement for 2-hour fire resistance. It is based on the example shown in Section 4.2.

$$
\begin{aligned}
& \text { where } \\
& c_{\text {min,b }}= \text { diameter of bar. Assume } 32 \mathrm{~mm} \text { main bars and } \\
& 10 \text { mm links } \\
& c_{\text {min,dur }}= \text { minimum cover due to environmental conditions. } \\
& \text { Assuming primarily XC3/XC4, secondarily XF1, } \\
& c_{\text {min,dur }}=25 \mathrm{~mm} \\
& \Delta c_{\text {dev }}= \text { allowance in design for deviation } \\
&= 10 \mathrm{~mm}
\end{aligned}
$$

\therefore Try $c_{\text {nom }}=32+10=42 \mathrm{~mm}$ to main bars
or $\quad=25+10=35 \mathrm{~mm}$ to 8 mm links

$$
\text { Try } c_{\text {nom }}=35 \mathrm{~mm} \text { to } 8 \mathrm{~mm} \text { links. }
$$

5.4.2 Fire resistance

a) Check adequacy of section for R12O to Method A

Axis distance available $=43 \mathrm{~mm}+\phi / 2$
Required axis distance to main bars, a for 350 mm square column
For $\mu_{\mathrm{f}}=0.5, a=45 \mathrm{~mm}$; and
for $\mu_{\mathrm{fi}}=0.7, a=57 \mathrm{~mm}$, providing:

- 8 bars used - OK but check later
- $I_{0, \mathrm{fi}} \leq 3 \mathrm{~m}$ - OK but check
$\cdot e \leq e_{\max }=0.15 \mathrm{~h}=0.15 \times 350=52 \mathrm{~mm}$
but $e=M_{\text {OEd,fi }} / N_{\text {OEd, fi }}$
$=0.7 \times 146.1 \times 10^{6} / 0.7 \times 1824.1 \times 10^{3}$
$=80 \mathrm{~mm} \therefore$ no good
Try Method B
b) Check adequacy of section for R12O to Method B

Determine parameters n, ω, and e, and check λ_{f}.
Assume 4 no. $\mathrm{H} 32+4$ no. $\mathrm{H} 25=\left(5180 \mathrm{~mm}^{2}: 4.2 \%\right)$
(say 4.2\% OK - integrity OK)
$n=N_{O E d, f i} I O .7\left(A_{c} f_{c d}+A_{s} f_{y d}\right)$
$=0.7 \times 1824.1 \times 10^{3} / 0.7\left(350 \times 350 \times \alpha_{c c} \times f_{c k} / \gamma_{C}+5180 \times 500 / \gamma_{S}\right)$
$=1276.9 \times 10^{3} / 0.7(350 \times 350 \times 0.85 \times 30 / 1.5+5180 \times 500 / 1.15)$
$=1276.9 \times 10^{3} / 0.7(2082.5+2252.0)$
$=0.42$
$\omega=$ mechanical ratio
$=A_{s} f_{y d} / A_{c} f_{c d} \leq 1.0$
$=2252 / 2082$
$=1.08 \geq 1$
But say within acceptable engineering tolerance \therefore use $\omega=1.0 \quad$ OK
$e=$ first order eccentricity
$=M_{\text {OEd,fi }} / N_{\text {OEd, } \mathrm{fi}}$

EC2-1-2: Exp. (5.8b)

$$
=0.7 \times 146.1 \times 10^{6} / 0.7 \times 1824.1 \times 10^{3}
$$

$=80 \mathrm{~mm}$ as before $\equiv 0.23 \mathrm{~h}$.
$\lambda_{\mathrm{fi}}=$ slenderness in fire

$$
=I_{0, f} / i
$$

where
$I_{0, \mathrm{f}}=$ effective length of column in fire
$=0.71=0.7 \times 4000=2800 \mathrm{~mm}$
$i=$ radius of gyration
= h/3.46 for a rectangular section
$\therefore \lambda_{\mathrm{fi}}=2800 /(350 / 3.46)$
$=27.7<30$
$\therefore \mathrm{OK}$
Table $5.2 b$ valid for use in this case.
Interpolating from BS EN 1992-1-2 Table $5.2 b$ for $n=0.42$ and $\omega=1.0$, column width $=350 \mathrm{~mm}$ and axis distance $=$ say, 48 mm

$$
\therefore \text { Axis distance }=43 \mathrm{~mm}+\phi / 2 \text { is } 0 \mathrm{~K}
$$

c) As additional check, check adequacy of section to Annex B3 and Annex C
Using BS EN 1992-1-2 Table C. 8
For $\omega=1.0, e=0.25 b$, R120, $\lambda=30$
and interpolating between $n=0.3$ and $n=0.5$,
$b_{\min }=350 \mathrm{~mm}, a_{\text {min }}=48 \mathrm{~mm}$.

$$
\therefore \text { Axis distance }=43 \mathrm{~mm}+\phi / 2 \text { is OK }
$$

$\therefore 4$ no. H32 + 4 no. H25 with 35 mm cover to 8 mm links

$$
(a=55 \mathrm{~mm} \text { min. }) \mathrm{OK}
$$

5.4.3 Structural design: check slenderness about z axis

Effective length, I_{0}, about z axis:
$I_{O z}=0.51\left[1+k_{1} /\left(0.45+k_{1}\right)\right]^{0.5}\left[1+k_{2} /\left(0.45+k_{2}\right)\right]^{0.5}$
where
1 = clear height between restraints
$=4000-300 / 2=3850 \mathrm{~mm}$
$k_{1}, k_{2}=$ relative flexibilities of rotational restraints at ends 1 and 2 respectively
$k_{1}=\left[E I_{\text {col }} / I_{\text {col }}\right] /\left[2 E I_{\text {beam1 }} / I_{\text {beam1 }}+2 E I_{\text {beam2 }} / I_{\text {beam2 }}\right] \geq 0.1$
where
Treating beams as rectangular and cancelling E throughout:

$$
\begin{aligned}
I_{\text {col }} / I_{\text {col }} & =3504 /(12 \times 3850)=3.25 \times 10^{5} \\
I_{\text {beam1 }} / I_{\text {beam1 }} & =8500 \times 300^{3} / 12 \times 6000 \\
& =31.8 \times 10^{5} \\
I_{\text {beam2 }} / I_{\text {beam2 }} & =0 \\
k_{1}= & 3.25 /(2 \times 31.8)=0.051 \geq 0.1 \\
k_{1}= & 0.1 \\
k_{2}= & \text { by inspection (pinned end assumed) })=\infty
\end{aligned}
$$

EC2-1-2: 2.4.2(3)

EC2-1-2: 5.3.2(2)
Note 2

EC2-1-2:
5.3.3(1), Annex C
\& NA
EC2-1-2:
Annex C(2)

Exp. (5.15)
PD 6687: 2.10
Cl. 5.8.3.2(3)

PD 6687

$$
\begin{aligned}
\therefore I_{O z} & =0.5 \times 3850 \times[1+0.1 /(0.45+0.1)]^{0.5}[1+\infty /(0.45+\infty)]^{0.5} \\
& =0.5 \times 3850 \times 1.087 \times 1.41 \\
& =0.77 \times 3850=2965 \mathrm{~mm}
\end{aligned}
$$

Slenderness ratio, λ_{z} :
Cl. 5.8.3.2(1)
$\lambda_{z}=I_{O z} / i$
where
$i=$ radius of gyration $=h / 3.46$
$\lambda_{z}=3.46 I_{O z} / h=3.46 \times 2965 / 350$
Limiting slenderness ratio, $\lambda_{\text {lim }}$:
$\lambda_{\lim , \mathrm{z}}=20 \mathrm{ABC} / \mathrm{n}^{0.5}$
where

$$
A=0.7
$$

$B=1.1^{\ddagger}$
$C=1.7-r_{m}$
where

$$
r_{m}=M_{O 1} / M_{02}
$$

$$
\text { say } M_{01}=O(\text { pinned end }) \therefore r_{m}=0
$$

$C=1.7-O=1.7$
$n=$ relative normal force $=N_{E d} / A_{c} f_{c d}$
$=1824.1 \times 10^{3} /\left(350^{2} \times 0.85 \times 30 / 1.5\right)$

$$
=0.88
$$

$\therefore \lambda_{\lim , \mathrm{z}}=20 \times 0.7 \times 1.1 \times 1.710 .88^{0.5}$
\therefore As $\lambda_{z}>\lambda_{\text {lim }, z}$ column is slender about z axis.

5.4.4 Check slenderness on y axis

Effective length, I_{0}, about z axis:
$I_{O y}=0.5 I_{y}\left[1+k_{1} /\left(0.45+k_{1}\right)\right]^{0.5}\left[1+k_{2} /\left(0.45+k_{2}\right)\right]^{0.5}$
where
$I_{y}=$ clear height between restraints

$$
=4000+300 / 2-750=3400 \mathrm{~mm}
$$

$k_{1}=$ relative column flexibility at end 1

$$
=\left(I_{\text {col }} / I_{\text {col }}\right) /\left[\Sigma 2\left(I_{\text {beam }} / I_{\text {beam }}\right)\right]
$$

where

$$
I_{\text {col }} / I_{c o l}=350^{4} / 12 \times 3400=3.68 \times 10^{5}
$$

[^48]Cl. 5.8.3.1(1),
\& NA,
EC2-1-2: 5.3.3(2)

PD 6687*

$$
\begin{aligned}
& \text { Treating beams as rectangular } \\
& I_{\text {beamAB }} / l_{\text {beamAB }}=350 \times 750^{3} /[12 \times(9000-350)] \\
&=14.2 \times 10^{5} \\
& I_{\text {beamBC }} / l_{\text {beamBC }}
\end{aligned}=350 \times 750^{3} /[12 \times(8000-350)] \quad \begin{aligned}
& =16.1 \times 10^{5} \\
k_{1}= & 3.68 /(2 \times(16.1+14.2)=0.060 \geq 0.1 \\
k_{1}= & 0.1 \\
k_{2}= & \infty(\text { pinned end assumed }) \\
\therefore I_{\text {Oy }}= & 0.5 \times 3400[1+0.1 /(0.45+0.1)]^{0.5}[1+\infty /(0.45+\infty)]^{0.5} \\
= & 0.5 \times 3400 \times 1.087 \times 1.41 \\
= & 0.77 \times 3400=2620 \mathrm{~mm}
\end{aligned}
$$

Slenderness ratio, λ_{y} :
$\lambda_{y}=3.461_{0 y} / h=3.46 \times 2620 / 350=25.9$
Limiting slenderness ratio, $\lambda_{\text {lim }}$:
$\lambda_{\text {lim,y }}=\lambda_{\text {lim,z }} \quad=27.9$
As $\lambda_{\mathrm{y}}<\lambda_{\text {lim, } \mathrm{y}^{\mathrm{p}}}$ column not slender in y axis.

5.4.5 Design moments: $M_{E d z}$ about z axis

$M_{E d z}=\max \left[M_{O 2} ; M_{O E d}+M_{2} ; M_{O 1}+0.5 M_{2}\right]$
where
$M_{O 2}=M_{z}+e_{i} N_{E d} \geq e_{0} N_{E d}$
where
$M_{z}=146.1 \mathrm{kNm}$ from analysis
$e_{\mathrm{i}} \mathrm{N}_{\mathrm{Ed}}=$ effect of imperfections
where
$e_{\mathrm{i}}=1 / 1 / 400$
$e_{0}=20 \mathrm{~mm}$
$\therefore M_{\text {O2 }}=146.1+(2965 / 400) \times 1824.1 \geq 0.02 \times 1824.1$
$=146.1+13.4>36.5$
$=159.5 \mathrm{kNm}$
$M_{\text {OEd }}=$ equivalent 1st order moment at about z axis at about mid-height may be taken as $\mathrm{M}_{\text {Oez }}$ where
$M_{\text {Oez }}=\left(0.6 \mathrm{M}_{02}+0.4 \mathrm{M}_{01}\right) \geq 0.4 \mathrm{M}_{02}$ $=0.6 \times 159.5+0.4 \times 0 \geq 0.4 \times 159.5=95.7 \mathrm{kNm}$
$M_{2}=$ nominal 2nd order moment $=N_{E d} e_{2}$ where

$$
e_{2}=(1 / r) I_{0}^{2 / 10}
$$

where
$1 / r=$ curvature $=K_{v} K_{\varphi}\left[f_{y d} /\left(E_{s} \times 0.45 d\right)\right]$
where

$$
\begin{aligned}
K_{v} & =\text { a correction factor for axial load } \\
& =\left(n_{u}-n\right) /\left(n_{u}-n_{\text {bal }}\right)
\end{aligned}
$$

Cl. 5.8.8.2
Cl. 5.8.8.2(1),
6.1.4
Cl. 5.2.7
Cl. 5.8.8.2(2)
Cl. 5.8.8.2(3)
Cl. 5.8.8. 3

Exp. (5.34)

$$
\begin{aligned}
& =68.7 \mathrm{kNm} \\
M_{2} & =O(\text { as column is not slender not slender about y axis }) . \\
& \therefore M_{\text {Edy }}=127.9 \mathrm{kNm}
\end{aligned}
$$

5.4.7 Design in each direction using charts

$$
\text { In z direction: } \begin{aligned}
N_{E d} / b h f_{c k} & =1824.1 \times 10^{3} /\left(350^{2} \times 30\right) \\
& =0.50 \\
M_{E d} / b h^{2} f_{c k} & =159.5 \times 10^{6} /\left(350^{3} \times 30\right) \\
& =0.124
\end{aligned}
$$

Assuming 8 bar arrangement, centroid of bars in half section:
$d_{2} \geq 35+8+16+(350 / 2-35-8-16) \times 1 / 4$
$\geq 59+29=88 \mathrm{~mm}$
$d_{2} / h=0.25$
From Figure $\mathrm{C} 4 e$)
$A_{s} f_{y k} / b h f_{c k}=0.50$
$A_{s} \quad=0.50 \times 350^{2} \times 30 / 500=3675 \mathrm{~mm}^{2}$ $\therefore 4$ no. H32 + 4 no. T25 (5180 mm mm^{2}) OK.

In y direction: $M_{E d} / b h^{2} f_{c k}=127.9 \times 10^{6} /\left(350^{3} \times 30\right)$

$$
=0.10
$$

$$
N_{E d} / b h f_{c k}=0.50
$$

From Figure $\mathrm{C} 4 e$)

$$
\begin{aligned}
A_{s} f_{y k} / b h f_{c k} & =0.34 \\
A_{s} & =0.34 \times 3502 \times 30 / 500=2499 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
\therefore 4 \text { no. H32 + } 4 \text { no. T25 (5180 mm²) OK. }
$$

5.4.8 Check biaxial bending

$\lambda_{\mathrm{y}} \approx \lambda_{\mathrm{z}} \therefore$ OK.
$e_{z}=M_{E d y} / N_{E d}$
$e_{y}=M_{E d z} / N_{E d}$
$\frac{e_{\mathrm{y}} / h_{e q}}{e_{\mathrm{z}} / b_{e q}}=\frac{M_{E d z}}{M_{E d y}}=\frac{159.5}{127.9}=1.25$
\therefore need to check biaxial bending

$$
\left(M_{E d z} / M_{R d z}\right)^{a}+\left(M_{E d y} / M_{R d y}\right)^{a} \leq 1.0
$$

where

$$
\begin{aligned}
M_{R d z}= & M_{\text {Rdy }}=\text { moment resistance }: \\
& \text { Using Figure } C 4 e) \\
& A_{s} f_{y k} / b h f_{c k}= \\
& =0.780 \times 500 /\left(350^{2} \times 30\right) \\
& \text { for } N_{E d} / b h f_{c k}= \\
& M_{E d} / b h^{2} f_{c k}=0.50 \\
\therefore M_{R d}= & 0.160 \times 350^{3} \times 30
\end{aligned}
$$

Fig. C4e)

Fig. C4e)

Exp. (5.38a)

Exp. (5.38b)
Exp. (5.39)

Fig. C4e)

6 Walls

6.0 General

Walls are defined as being vertical elements whose lengths are four times greater than their thicknesses. Their design does not differ significantly from the design of columns in that axial loads and moments about each axis are assessed and designed for.

The calculations in this section illustrate the design of a single shear wall.
Generally, the method of designing walls is as follows. In practice, several of these steps may be combined.

- Determine design life.
- Assess actions on the wall.
- Determine which combinations of actions apply.

■ Assess durability requirements and determine concrete strength.

- Check cover requirements for appropriate fire resistance period.
- Determine cover for fire, durability and bond.
- Analyse structure for critical combination moments and axial forces.

■ Check slenderness and determine design moments.

- Determine area of reinforcement required.
- Check spacing of bars.

ECO \& NA Table NA 2.1
EC1 (10 parts) \& UK NAs
ECO \& NA: Tables NA A1. 1 \& NA: A1.2(B)

BS 8500-1

Approved Document B
EC2-1-2
Cl. 4.4.1

Section 5

Section 5.8
Section 6.1
Sections $8 \& 9$

6.1 Shear wall

Example 6.1 shows the design of a simple linear shear wall as typically used in mediumrise buildings. Similar principles may be applied to walls that are shaped as C, L, T, Z and rectangles in-plan, but issues of limiting flange dimensions and shear at corners need to be addressed. The example shows only ULS design as, apart from minimum areas of steel to control cracking, SLS issues are generally non-critical in medium-rise structures. For shear walls in high-rise structures, reference should be made to specialist literature ${ }^{[29]}$.

The example is intended to show how a shear wall providing part of the lateral stability in one direction in a medium rise structure might be designed by hand.

Axial loads and first order moments are determined. The design considers slenderness in order to determine design moments, $M_{\text {Ed }}$, in the plane perpendicular to the wall. The effects of allowing for imperfections are also illustrated.

6.1.1 Actions				
		Permanent actions	Variable actions	
		$\mathrm{kN} / \mathrm{m}^{2}$		Section 2.8
Roof	Paving 40 mm	1.00		
	Waterproofing	0.50		
	Insulation	0.10		
	Suspended ceiling	0.15		
	Services	0.30		
	Self-weight 200 mm slab	5.00		Section 2.4.2
	Imposed load		0.60	
Floor slabs	Carpet	0.03		Section 2.8
	Raised floor	0.30		
	Suspended ceiling	0.15		
	Services	0.30		
	Self-weight 200 mm slab	5.00		
		5.78		
	Imposed load		2.50	Section 2.4.2
Ground floor slab (ground bearing)	Carpet	0.03		
	Raised floor	0.30		
	Services	0.15		
	Self-weight 200 mm slab	5.00		
		5.48		
	Imposed load		3.00	Section 2.4.2
Stairs	150 waist @ 30	4.40		Section 2.8
	Treads $0.15 \times 0.25 \times 25 \times 4 / 2=$	1.88		
	Screed $0.05 \times 22=$	1.10		
	Plaster	0.21		
	Tiles and bedding	1.00		
		8.59		
	Imposed load		2.50	Section 2.4.2
Cavity wall	102 mm brickwork	2.37		Section 2.8
	50 mm insulation	0.02		
	100 mm blockwork	1.40		
	Plaster	0.21		
		4.00		
RC wall	200 mm wall Plaster both sides	5.00		Section 28
		0.42		Section 2.8
		5.42		
Wind	$w_{k}=$		1.10	EC1-1-4 \& NA

6.1.2 Load take-down

Consider whole wall.

Item Calculation

$$
G_{\mathrm{k}}
$$

From item Cum. total

Q_{k} From item Cum. total

Roof $\quad(6.0 / 2+2.5 / 2) \times(4.4+1.5 / 2) \times(7.05$
$+0.6)=\quad 154.3$
13.1

Roof $(6.0 / 2) \times(1.3 / 2) \times(7.05+0.6)=13.7 \quad 1.2$
Wall $\quad 3.3 \times 4.4 \times 5.42=$
$\begin{array}{r}78.7 \\ \hline 246.7\end{array}$
$\overline{14.3}$
At above 3rd floor 246.7
14.3

3rd floor $(6.0 / 2) \times(1.3 / 2+4.4+1.5 / 2) \times$
$(5.78+2.5)=100.6$
43.5

Landing $(2.5 / 2 \times 1.5 / 2) \times(5.78+2.5)$ 11.6
5.0

Wall
a.b.
78.7

Stair say $1.1 \times 4.4(8.59+2.5)$

At above 2nd floor	479.2			74.9
2nd floor, landing, wall and stair a. b.	232.5		60.6	
At above 1st floor		711.7		135.5
1st floor, landing, wall and stair a. b.	232.5		60.6	
At above ground floor		944.2		196.1

Ground floor assume 1 m all round $=$

$$
2 \times(1.3 / 2+4.40+1.5 / 2) \times(5.48+3.0)=63.6
$$

250 mm wall to foundation $4.4 \times 0.2 \times 0.6 \times 25=\frac{13.2}{76.8}$

At above foundation	1021.0	230.9

6.1.3 Design actions due to vertical load at ground-1st

$G_{k}=944.2$
$G_{k} / \mathrm{m}=944.2 / 4.4=214.6 \mathrm{kN} / \mathrm{m}$
$Q_{k}=\alpha_{\mathrm{n}} \times 196.1$
where
$\alpha_{n}=1.1-n / 10$
where
$n=$ no. of storeys qualifying for reduction ${ }^{\ddagger}$
EC1-1-1:
$=3$

$$
=1.1-3 / 10=0.8
$$

$\therefore Q_{k}=0.8 \times 196.1=156.9 \mathrm{kN} \quad Q_{\mathrm{k}} / m=156.9 / 4.4=35.7 \mathrm{kN} / \mathrm{m}$

[^49]
6.1.4 Vertical loads from wind action: moments in plane

Consider wind loads, N-S

Figure 6.3 Lateral stability against wind loads N-S
Check relative stiffness of lift shaft and wall A to determine share of load on wall A.
Lift shaft: $I_{\text {LS }}=2.4^{4} / 12-2.0^{4} / 12-0.2 \times 1.6^{3} / 12$

$$
=1.36 \mathrm{~m}^{4}
$$

Wall A: $\quad I_{\text {WallA }}=0.2 \times 4.4^{3} / 12$

$$
=1.41 \mathrm{~m}^{4}
$$

where $I=$ inertia
\therefore Wall A takes 1.41/(1.41+1.36) $=51 \%$ of wind load.
Check shear centre to resolve the effects of torsion.
Determine centre of gravity, CoG_{L} of the lift shaft.

	Area, A	Lever arm, x	Ax
$2.4 \times 2.4=$	5.76	1.2	6.912
$-2.0 \times 2.0=$	-4.00	1.2	-4.800
$-1.6 \times 0.2=$	-0.32	2.3	-0.732
	1.44		1.38

Figure 6.4 Lift shaft

$$
\bar{x}=A x / A=1.38 / 1.44=0.956 \mathrm{~m}
$$

i.e. from face of lift shaft to CoG of shaft

$$
=2.40-0.956=1.444 \mathrm{~m}
$$

Shear centre, C_{w} of walls, from centreline of wall A

$$
\begin{aligned}
& =\frac{I_{\mathrm{LS}} \times\left(1.44+24.00+0.05^{\ddagger}\right)}{I_{\mathrm{LS}}+I_{\text {WallA }}}=\frac{1.36 \times 25.49}{1.36+1.41}=12.56 \mathrm{~m} \text { from wall A } \\
\text { or } & =12.56+2.80-0.05=15.31 \text { from east end of building. }
\end{aligned}
$$

Figure 6.5 Shear centre, C_{w} and centre of action, W_{k}

Centre of action ($30.7 / 2=15.35 \mathrm{~m}$ from end of building) and shear centre (almost) coincide. \therefore there is no torsion to resolve in the stability system for wind in a N-S direction.\#

Figure 6.6 Wall A - wind loads N-S
\therefore Wall A takes 51% of wind load, so characteristic wind load on wall A, $w_{\mathrm{k}, \text { wall } \mathrm{A}}=51 \% \times w_{\mathrm{k}} \times L_{\mathrm{x}}=51 \% \times 1.1 \times 30.7=17.2 \mathrm{kN} / \mathrm{m}$

[^50]\therefore at just above ground floor, characteristic in-plane moment in wall A, M_{k}, due in this case to wind $=17.2 \times 14.1^{2} / 2=1709.8 \mathrm{kNm}$
Resolving into couple using 1 m either end of wall ${ }^{\ddagger}$, characteristic wind load in each end, W_{k}
$=1709.8 / 3.4$

6.1.5 Effects of global imperfections in plane of wall A

Figure 6.7 Global imperfections
Global imperfections can be represented by forces H_{i} at floor level where

$$
H_{\mathrm{i}}=\theta_{\mathrm{i}}\left(N_{b}-N_{a}\right)
$$

where

$$
\begin{aligned}
& \theta_{i}=(1 / 200) \alpha_{h} \alpha_{m} \\
& \begin{aligned}
\text { where }
\end{aligned} \\
& \qquad \begin{aligned}
\alpha_{h} & =0.67 \leq 2 / 0.5 \leq 1.0 \\
& =0.67 \leq 2 / 14.70 .5 \leq 1.0 \\
& =0.67 \leq 0.52 \leq 1.0 \\
& =0.67 \\
\alpha_{m} & =[0.5(1+1 / \mathrm{m})] 0.5
\end{aligned} \\
& \text { where }
\end{aligned}
$$

$m=n o$. of members contributing to the total effect
$=25$ vertical elements on 4 floors
$=100$

[^51]Cl. 5.2(1), 5.2(5), $5.2(8) \& N A$

Vol. 2

$$
\begin{aligned}
& \therefore \alpha_{m}=0.71 \\
& \therefore \theta_{i}=0.67 \times 0.71 / 200 \\
& \quad=0.0024 \\
& N_{b}, N_{a} \quad=\text { axial forces in members below and above } \\
& \left(N_{b}-N_{a}\right)=\text { axial load from each level }
\end{aligned}
$$

At roof level

Area $=30.4 \times 14.5-1.3 \times 2.5-3.6 \times 4.8=420.3 \mathrm{~m}^{3}$
Perimeter $=2 \times(30.4+14.5) \quad=89.8 \mathrm{~m}$
$\left(N_{a}-N_{b}\right)=$ axial load from roof level

$$
=420.3 \times(7.05+0.6)+89.8 \times 0.9 \times 4.0=3286.4+252.2 \mathrm{kN}
$$

At 3rd floor

$\left(N_{a}-N_{b}\right)=420.3 \times(5.78+2.5)+89.8 \times 3.3 \times 4.0=3615.7+1050.8 \mathrm{kN}$

At 2nd floor

$\left(N_{a}-N_{b}\right)=3615.7+1050.8 \mathrm{kN}$

At 1st floor

$\left(N_{a}-N_{b}\right)=3615.7+1050.8 \mathrm{kN}$
$H_{\mathrm{iR}}=0.0024 \times(3286.4+252.2)=7.9+0.6=8.5 \mathrm{kN}$
$H_{i 3}=H_{i 2}=H_{i 1}=0.0024 \times(3615.7+1050.8)=8.7+2.5=11.2 \mathrm{kN}$
Characteristic design moment at ground floor,

$$
\begin{aligned}
M_{\mathrm{k}} & =8.5 \times 13.2+11.2 \times(9.90+6.60+3.30) \\
& =112.2+221.8=334.0 \mathrm{kNm}
\end{aligned}
$$

As before, wall A resists 51% of this moment. Resolving into couple using 1 m either end of wall,
$\therefore G_{k H}{ }^{5}=0.51 \times 334.0 / 3.4= \pm 50.1 \mathrm{kN}$

$$
\text { i.e. } G_{\mathrm{kH}}= \pm 50.1 \mathrm{kN} / \mathrm{m}
$$

6.1.6 Check for global second order effects

To check whether the building might act as a sway frame check

$$
F_{V, E d} \leq k_{1} \frac{n_{s}}{n_{s}+1.6}=\frac{\sum E_{c d} I_{c}}{L^{2}}
$$

where
$F_{V, E d}=$ Total vertical load (on braced and bracing members) where

$$
\begin{aligned}
\text { Floor area }= & (30.7-2 \times 0.15) \times 14.4-(2 \times 0.15)-3.6 \\
& \times 4.8-1.3 \times 2.5 \\
= & 428.6-20.5=408.1
\end{aligned}
$$

[^52]

6.1.7 Design moments - perpendicular to plane of wall

Figure 6.8 Plan of wall A and location of sections $A-A$ and $B-B$

Figure 6.9 Section A-A

Section A-A @ 1st floor

The slab frames into the wall. For the purposes of assessing fixed end moments, the width of slab contributing to the moments in the wall is assumed to be the length of the wall plus distances half way to adjacent supports either end. Therefore, consider the fixed end moment for $1.50 / 2+4.40+1.30 / 2=5.8 \mathrm{~m}$ width of adjoining slab framing into the 4.4 m long shear wall (see Figure 6.8).

Figure 6.10 Subframe section A-A @ 1st floor
FEM ${ }^{\ddagger}$: assuming imposed load is a leading variable action:

$$
\begin{aligned}
& =n l^{2} / 8 \\
& =5.8(1.35 \times 5.78+1.5 \times 2.5) \times 6.0^{2} / 8 \\
& =5.8 \times 11.6 \times 6^{2} / 8=302.8 \mathrm{kNm}
\end{aligned}
$$

ECO: Exp. (6.10)
\& NA

[^53]\[

$$
\begin{aligned}
k_{w}=E I / I & =E \times 4400 \times 200^{3} /(12 \times 3300) \\
& =E \times 8.88 \times 10^{5} \\
k_{s} & =E I / 2 I=E \times 5800 \times 200^{3} /(2 \times 12 \times 6000) \\
& =E \times 3.22 \times 10^{5} \\
M & =302.8 \times 8.88 /(2 \times 8.8+3.22) \\
& =302.8 \times 0.42=121.2 \mathrm{kNm} \quad \\
& \text { i.e. } 121.2 / 4.40 \quad=27.5 \mathrm{kNm} / \mathrm{m} @ \text { ULS }
\end{aligned}
$$
\]

Similarly, assuming imposed load is an accompanying action:
FEM $=5.8(1.35 \times 5.78+0.7 \times 1.5 \times 2.5) \times 6^{2} / 8$
$=5.8 \times 10.4 \times 6^{2} / 8=271.4 \mathrm{kNm}$
$\therefore M=271.4 \times 0.42 / 4.40 \quad=25.9 \mathrm{kNm} / \mathrm{m} @$ ULS

Section A-A @ ground floor

By inspection not critical - nominal moment.

Section B-B @ 1st

Consider the landing influences half of wall (2.2 m long) and that this section of wall is subject to supporting half the slab considered before at 1st floor level at Section A-A.

Figure 6.11 Section $B-B$

$$
\begin{aligned}
& \text { FEM }=302.8 / 2=151.4 \mathrm{kNm} \\
& k_{w}=I / I \\
&=2200 \times 200^{3} /(12 \times 1650)=8.88 \times 10^{5} \\
& k_{s}=3.22 \times 10^{5} / 2=1.61 \times 10^{5} \\
& M=151.4 \times 8.88 /(2 \times 8.88+1.61) \\
&=151.4 \times 0.46 \\
&=69.6 \mathrm{kNm} \\
& \text { i.e. } 63.8 / 2.2 \quad \\
&
\end{aligned}
$$

Similarly, assuming imposed load is an accompanying action:

$$
\begin{aligned}
\text { FEM } & =5.8(1.35 \times 5.78+0.7 \times 1.5 \times 2.5) \times 6^{2} / 8 \\
& =5.8 \times 10.4 \times 6^{2} / 8=271.4 \mathrm{kNm} \\
\therefore M & =271.4 \times 0.46 /(2 \times 2.2) \quad=28.4 \mathrm{kNm} / \mathrm{m} @ \text { ULS }
\end{aligned}
$$

Section $B-B$ @ landing level and ground floor

By inspection not critical

6.1.8 Consider slenderness of wall at ground floor

To derive maximum slenderness (at south end of wall), ignore effect of landing.
Effective length, $I_{O}=0.75 \times(3300-200)=2325$
$\lambda=3.46 \times I_{0} / h=3.46 \times 2325 / 200=40.2$
Limiting slenderness, $\lambda_{\text {lim }}=20 \mathrm{ABC} / \mathrm{n}^{0.5}$
where
$A=0.7$
$B=1.1$
$C=1.7-r_{m}$
where
$r_{m}=M_{01} / M_{02}$
$=$ say $=-0.25$
$C=1.95$
$n=N_{E d} / A_{c} f_{d}$
where

$$
\begin{aligned}
& N_{E d}= 214.6 \times 1.25+31.2 \times 1.5 \times 0.7+502.9 \times 1.5+ \\
& 98.2 \times 1.5 \times 0.7^{\ddagger} \\
&= 268.3+32.8+754.4+103.1 \\
&= 1158.6 \mathrm{kN} \\
& A_{c} f_{d}=200 \times 1000 \times 0.85 \times 30 / 1.5=3400 \mathrm{kN} \\
& \therefore n=0.34
\end{aligned}
$$

$\therefore \lambda_{\lim }=20 \times 0.7 \times 1.1 \times 1.95 / 0.34^{0.5}=51.5$
\therefore As $\lambda<\lambda_{\text {lim }}$ wall is not slender and \therefore no secondary moments

6.1.9 Summary: design forces on wall, ground-1st floor

At ground to 1st consider maxima.
Vertical loads

$$
\frac{G_{\mathrm{k}}=214.6 \mathrm{kN} / \mathrm{m}}{Q_{\mathrm{k}}=35.7 \mathrm{kN} / \mathrm{m}}
$$

Vertical load due to in-plane bending and wind

$$
W_{k}= \pm 502.9 \mathrm{kN} / \mathrm{m}
$$

Vertical load due to in-plane bending and imperfections

$$
\underline{G}_{\mathrm{kH}}= \pm 50.1 \mathrm{kN} / \mathrm{m}
$$

Maximum moment out of plane, floor imposed load as leading action $M=31.6 \mathrm{kN} / \mathrm{m} @$ ULS

Maximum moment out of plane, floor imposed load as accompanying action $M=28.4 \mathrm{kN} / \mathrm{m} @ \mathrm{ULS}$

[^54]
6.1.10 Combinations of actions at ground-1st floor

a) At ULS, for maximum axial load, W_{k} is leading variable action
$N_{E d}=1.35 G_{k}+1.5 Q_{k 1}+1.5 \psi_{O} Q_{k i}$
$=1.35(214.6+50.1)+1.5 \times 502.9+1.5 \times 0.7 \times 35.7$
$=357.3+754.4+37.5$
$=1149.2 \mathrm{kN} / \mathrm{m}$
$M_{E d}=M+e_{i} N_{E d} \geq e_{O} N_{E d}$
where

$$
\begin{aligned}
M & =\text { moment from 1st order analysis } \\
& =28.4 \mathrm{kNm} / \mathrm{m} \\
e_{\mathrm{i}} & =1 / 400=2325 / 400=5.8 \mathrm{~mm} \\
e_{O} & =h / 30 \geq 20 \mathrm{~mm}=20 \mathrm{~mm} \\
M_{\mathrm{Ed}} & =28.4+0.0058 \times 1149.2 .1 \geq 0.020 \times 1149.2 \\
& =28.4+6.7 \geq 23.0=35.1 \mathrm{kNm} / \mathrm{m}
\end{aligned}
$$

b) At ULS, for minimum axial load, W_{k} is leading variable action

$$
\begin{aligned}
N_{E d} & =1.0 \times 214.6-1.35 \times 50.1-1.5 \times 502.9+0 \times 35.7 \\
& =-607.4 \mathrm{kN} / \mathrm{m}(\text { tension }) \\
M_{E d} & =28.4^{\ddagger}+0.0058 \times 607.4 \geq 0.020 \times 602.4 \\
& =28.4+3.5 \geq 23.0 \\
& =31.9 \mathrm{kNm} / \mathrm{m}
\end{aligned}
$$

c) At ULS, for maximum out of plane bending assuming Q_{k} is leading variable action
$N_{E d}=1.35(214.6+50.1)+1.5 \times 35.7+1.5 \times 0.5 \times 502.9$
$=357.3+53.6+377.2$
$=788.1 \mathrm{kN} / \mathrm{m}$
$M_{E d}=31.6+0.0058 \times 788.1 \geq 0.020 \times 788.1$
$=31.6+4.6 \geq 15.8$
$=36.2 \mathrm{kNm} / \mathrm{m}$
or
$N_{E d}=1.0 \times 214.6-1.35 \times 50.1-0 \times 31.2-1.5 \times 0.5 \times 502.9$
$=214.6-67.6-0-377.2$
$=-230.2 \mathrm{kN} / \mathrm{m}$ (tension)
$M_{E d}=31.6+0.0058 \times 230.2$
$=33.0 \mathrm{kNm} / \mathrm{m}$
d) Design load cases

Consolidate c) into a) and b) to consider two load cases:
and

[^55]
6.1.11 Design: cover above ground

```
\(c_{\text {nom }}=c_{\text {min }}+\Delta c_{\text {dev }}\)
where
    \(c_{\text {min }}=\max \left[c_{\text {min }, b} ; c_{\text {min,dur }}\right]\)
    where
        \(c_{\text {min,b }}=\) diameter of bar \(=20 \mathrm{~mm}\) vertical or 10 mm lacers
        \(c_{\text {min,dur }}=\) for \(X C 1=15 \mathrm{~mm}\)
    \(\Delta c_{\text {dev }}=10 \mathrm{~mm}\)
\(\therefore c_{\text {nom }}=15+10=\quad 25 \mathrm{~mm}\) to lacers
(35 mm to vertical bars)
```


6.1.12 Fire resistance

Assuming 1-hour fire resistance required for, as a worst case, $\mu_{\mathrm{f}}=0.7$ and fire on both sides.
Min. thickness $=140 \mathrm{~mm}$, min. axis distance $=10 \mathrm{~mm}$ i.e. not critical

6.1.13 Design using charts

For compressive load:
$d_{2} / h=(25+10+16 / 2) / 200=0.215$
\therefore interpolate between charts $(5 d)$ and $(5 e)$ for
$N_{\text {Ed }} / b{ }^{\text {hf }}$ ck $=1149.4 \times 10^{3} /(200 \times 1000 \times 30)=0.192$
$M_{E d} d b h^{2} f_{c k}=36.2 \times 10^{6} /\left(200^{2} \times 1000 \times 30\right)=0.030$
Gives:
$A_{s} f_{\text {yk }} / b h f_{c k}=0 \therefore$ minimum area of reinforcement required
$=0.002 \mathrm{~A}_{\mathrm{c}}$
$=0.002 \times 200 \times 1000$
$=400 \mathrm{~mm}^{2} / \mathrm{m}$
$=200 \mathrm{~mm}^{2} / \mathrm{m}$ each face
max. 400 mm cc, min. 12 mm diameter
Try T12 @ 400

Figure 6.12 Stresses and strains in wall subject to tension and out of plane moment

Exp. (4.1)

EC2-1-2: Table 5.4

Figs (5d), C 5 e)
Cl. 9.6.2 \& NA
CI. 9.6.2(3);

SMDSC

For tensile load and moment:

Working from first principles, referring to Figure 6.12 and ignoring contribution from concrete in tension,

$$
\begin{array}{ll}
& N_{E d} \\
\text { and } \quad & =\left(\sigma_{s t 1}+\sigma_{s t 2}\right) \times A_{s} / 2 \\
\text { so } & =\left(\sigma_{s t 1}-\sigma_{s t 2}\right) \times A_{s} / 2 \times\left(d-d_{2}\right) \\
\text { and } \quad \sigma_{s t 1}+\sigma_{s t 2} & =2 N_{E d} / A_{s} \\
\sigma_{s t 1}-\sigma_{s t 2} & =2 M_{E d} /\left[\left(d-d_{2}\right) A_{s}\right] \\
\therefore \quad 2 \sigma_{s t 1} & =2 N_{E d} / A_{s}+2 M_{E d} /\left[\left(d-d_{2}\right) A_{s}\right] \\
\therefore \quad A_{s} & =\left(N_{E d} / \sigma_{s t 1}\right)+M_{E d} /\left(d-d_{2}\right) \sigma_{s t 1} \\
& =f_{\mathrm{yk}} / \gamma_{s}=500 / 1.15=434.8 \\
\therefore \quad A_{s t 1} & =607.4 \times 10^{3} / 434.8+36.2 \times 10^{6} /[(157-43) \times 434.8] \\
& =1397+730 \\
& =2127 \mathrm{~mm}^{2} \\
& =2 N_{E d} / A_{s}-\sigma_{s t 1}=571.7-434.8=136 \mathrm{MPa}
\end{array}
$$

By inspection all concrete is in tension zone and may be ignored.

$$
\frac{\text { Use } 6 \text { no. H16 @ } 200 \text { cc both sides for at least }}{1 \mathrm{~m} \text { each end of wall }\left(2412 \mathrm{~mm}^{2}\right)}
$$

6.1.14 Horizontal reinforcement

$A_{s, \text { hmin }}=0.001 A_{5}$ or $25 \% A_{s \text { vert }}$
$=200 \mathrm{~mm}^{2}$ or $0.25 \times 2036=509 \mathrm{~mm}^{2} / \mathrm{m}$ \therefore requires $254 \mathrm{~mm}^{2} / \mathrm{m}$ each side
Spacing $\leq 400 \mathrm{~mm}$
Links not required.
Use H1O@300 (262 $\left.\mathrm{mm}^{2} / \mathrm{m}\right)$ both sides.

6.1.15 Check for tension at top of foundation

Permanent and variable:
$G_{k}=1021.0 / 4.4=232.0 \mathrm{kN} / \mathrm{m}$
$Q_{k} \quad=230.9 / 4.4=52.5 \mathrm{kN} / \mathrm{m}$
Wind:
$M_{k}=17.2 \times 14.1 \times[14.1 / 2+0.6]=1855.3 \mathrm{kN} / \mathrm{m}$
Resolved into couple 1 m either end of wall
$W_{\mathrm{kw}}=1855.3 / 3.4= \pm 545.7 \mathrm{kN} / \mathrm{m}$
Global imperfections:
Cl. 9.6.3(1) \& NA
Cl. 9.6.3(2)
Cl. 9.6.4(1)

Section 6.1.2

Section 6.1.4
$M_{k}=8.5 \times 13.8+11.2 \times(10.5+7.2+3.9+0.6)$
$=365.9 \mathrm{kNm}$
$G_{\mathrm{kH}}=365.9 \times 0.51 / 3.4=54.9 \mathrm{kN} / \mathrm{m}$

At ULS for maximum axial tension W_{k} is lead imposed load:
$N_{E d}=1.0 \times 232.0-1.35 \times 54.9-1.5 \times 545.7+O \times 52.5$
$=-660.7 \mathrm{kN} / \mathrm{m}$
$M_{E d}=$ nominal $=e 2 N_{E d}=0.02 \times 660.7$
$=13.2 \mathrm{kNm} / \mathrm{m}$
As before

$$
\begin{aligned}
A_{s} & =\frac{N_{E d}}{f_{y k} / \gamma_{M}}+\frac{M_{E d}}{\left(d-d_{2}\right) f_{y k} / \gamma_{M}} \\
& =660.7 \times 10^{3} / 434.8+13.2 \times 10^{6} /[(157-43) \times 434.8] \\
& =1520+266 \\
& =1786 \mathrm{~mm}^{2} \text { i.e. not critical }
\end{aligned}
$$

\therefore Use 6 no. H16@ 200 cc b.s. for at least 1 m either end of wall

$$
\left(2412 \mathrm{~mm}^{2}\right) .
$$

6.1.16 Check for axial compression at top of foundation

At ULS for maximum axial compression W_{k} is lead imposed load:
$N_{E d}=1.35 \times 232.0+1.35 \times 54.9+1.5 \times 545.7+0.7 \times 1.5 \times 52.5$

$$
=1261.0 \mathrm{kN} / \mathrm{m}
$$

$M_{E d}=$ nominal $=e 2 N_{E d}=0.02 \times 1261.0$

$$
=25.2 \mathrm{kNm} / \mathrm{m}
$$

By inspection not critical (minimum reinforcement required).
\therefore tension critical as above.

6.1.17 Design: cover below ground

$c_{\text {nom }}=c_{\min }+\Delta c_{\text {dev }}$
where

$$
c_{\min }=\max \left[c_{\min , b} ; c_{\min , \mathrm{dur}}\right]
$$

where

$$
\begin{aligned}
c_{\text {min }, b}= & \text { diameter of bar }=16 \mathrm{~mm} \text { vertical or } 10 \mathrm{~mm} \text { lacers } \\
c_{\text {min,dur }}= & \text { for assumed Aggressive Chemical Environment for } \\
& \text { Concrete (ACEC) class AC1 ground conditions } \\
= & 25 \mathrm{~mm}
\end{aligned}
$$

$$
\Delta c_{\mathrm{dev}}=10 \mathrm{~mm}
$$

$$
c_{\text {nom }}=25+10=\quad 35 \mathrm{~mm} \text { to lacers }
$$ (45 mm to vertical bars) In order to align vertical bars from foundation into Gnd-1st floor lift as starter bars, locally increase thickness of wall to say

$$
250 \mathrm{~mm} \text { thick with } c_{\text {nom }}=50 \mathrm{~mm}
$$

Cl. 6.1.4

Section 6.1.13

Exp. (4.1)

BS 8500-1
Annex $A^{[14]}$,
How to: Building structures ${ }^{[8]}$

6.1.18 Check stability

Assume base extends 0.3 m beyond either end of wall A, i.e. is 5.0 m long and is 1.2 m wide by 0.9 m deep.

Overturning moments

Wind (see Figure 6.6)
$M_{\mathrm{k}}=17.2 \times 14.1 \times[14.1 / 2+1.5]$

$$
=2073.5 \mathrm{kNm}
$$

Global imperfections (see Section 6.1.5)
$M_{k}=0.51 \times[8.5 \times 14.7+11.2 \times(11.4+8.1+4.8+1.5)]$
$=0.51 \times[125.0+11.2 \times 25.8]$
$=0.51 \times 414.0$
$=211 \mathrm{kNm}$

Restoring moment

$M_{k}=(1021.0+5.0 \times 1.2 \times 0.9 \times 25+0 \times 230.9) \times(0.3+2.2)$
$=2890 \mathrm{kNm}$
At ULS of EQU,
Overturning moment

$$
\begin{aligned}
& =f n\left(\gamma_{Q, 1} Q_{k 1}+\gamma_{G, \text { sup }} G_{k}\right) \\
& =1.5 \times 2073.5+1.1 \times 211.0=3342.4 \mathrm{kNm}
\end{aligned}
$$

Restoring moment
$=\operatorname{fn}\left(\gamma_{G, \mathrm{inf}} G_{\mathrm{k}}\right)$
$=0.9 \times 2890=2601 \mathrm{kNm}$ i.e. $>1818.4 \mathrm{kNm}$

Try 1.05 m outstand

Restoring moment
$M_{k}=2890(1.05+2.2) /(0.3+2.2)$
$=3757.0 \mathrm{kNm}$
At ULS, restoring moment $=0.9 \times 357.0$

$$
=3381.3 \mathrm{kNm}
$$

\therefore OK. Use 1.05 m outstand to wall.

6.1.19 Design summary

Figure 6.13 Wall design summary

7 References and further reading

References

1 BRITISH STANDARDS INSTITUTION. BS EN 1992-1-1, Eurocode 2 - Part 1-1: Design of concrete structures - General rules and rules for buildings. BSI, 2004. 1a National Annex to Eurocode 2 - Part 1-1. BSI, 2005.

2 BRITISH STANDARDS INSTITUTION. BS EN 1992-1-2, Eurocode 2 - Part 1-2: Design of concrete structures - General rules - Structural fire design. BSI, 2004. 2a National Annex to Eurocode 2 - Part 1-2. BSI, 2005.

3 BRITISH STANDARDS INSTITUTION. BS EN 1992-2, Eurocode 2 - Part 2: Design of concrete structures - Bridges. BSI, 2005.
3a National Annex to Eurocode 2 - Part 2. BSI, 2007.
4 BRITISH STANDARDS INSTITUTION. BS EN 1992-3, Eurocode 2 - Part 3: Design of concrete structures - Liquid-retaining and containment structures. BSI, 2006. 4a National Annex to Eurocode 2 - Part 3. BSI, 2007.

5 R S NARAYANAN \& C H GOODCHILD. The Concrete Centre. Concise Eurocode 2. CCIP-005. TCC, 2006.

6 BRITISH STANDARDS INSTITUTION. PD 6687 Background paper to the UK National Annexes BS EN 1992-1. BSI, 2006.

7 BRITISH STANDARDS INSTITUTION. BS 8110 Structural use of concrete - Part 1: Code of practice for design and construction. BSI,1997.

8 BROOKER, O et al. How to design concrete structures using Eurocode 2. CCIP-006. The Concrete Centre, 2006. Updated for download only 2009.
9 THE INSTITUTION OF STRUCTURAL ENGINEERS/THE CONCRETE SOCIETY/DTI. Standard method of detailing structural concrete, Third Edition. IStructE, 2006.

10 BRITISH STANDARDS INSTITUTION. BS EN 1990, Eurocode: Basis of structural design. BSI, 2002.
10a National Annex to Eurocode. BSI, 2004.
11 BRITISH STANDARDS INSTITUTION. BS EN 1991, Eurocode 1: Actions on structures (10 parts). BSI, 2002-2006.
11a National Annexes to Eurocode 1. BSI, 2005-2008 and in preparation.
12 BRITISH STANDARDS INSTITUTION. BS EN 1997-1, Eurocode 7. Geotechnical design. General rules. BSI, 2004.
12a National Annex to Eurocode 7 BS EN 1997-1. BSI, 2007.
13 BRITISH STANDARDS INSTITUTION. BS EN 1998-1, Eurocode 8. Design of structures for earthquake resistance. General rules. Seismic actions for buildings. BSI, 2004.
13a National Annex to Eurocode 8 BS EN 1998-1. BSI, 2008.
14 BRITISH STANDARDS INSTITUTION. BS 8500-1: Concrete - Complementary British Standard to BS EN 206-1: Method of specifying and guidance to the specifier. BSI, 2002.

15 BRITISH STANDARDS INSTITUTION. BS 4449: Steel for the reinforcement of concreteWeldable reinforcing steel - Bar, coil and decoiled product - Specification. BSI, 2005.

16 CONSTRUCT. National structural concrete specification for building construction, Third Edition, CS 152. The Concrete Society on behalf of Construct, 2004.

17 BRITISH STANDARDS INSTITUTION. BS EN 13670: Execution of concrete structures - Part 1: Common. BSI, in preparation, due 2010.

18 CONSTRUCT. National structural concrete specification for building construction, Fourth edition, in preparation.

19 BRITISH STANDARDS INSTITUTION. BS 8666: 2005, Scheduling, dimensioning, bending and cutting of steel for reinforcement: Specification. BSI, 2005.
20 THE QUEEN'S PRINTER OF ACTS OF PARLIAMENT, The Building Regulations 2000. The Stationery Office Limited, 2000.

21 THE STATIONERY OFFICE LIMITED (TSO), Building (Amendment) (No 2) Regulations 2002 and the Building (Approved Inspectors etc.) (Amendment) Regulations 2002. TSO, 2002.

22 BRITISH STANDARDS INSTITUTION. DD ENV 13670-1: 2000: Execution of concrete structures: Common. BSI, 2000.

23 COOK, N. Designers guide to EN 1991-4 Actions on structures. Wind actions. Thomas Telford, London, 2007.

24 DCLG. Guide to the use of EN 1991-1-4 - Wind actions. DCLG Publications, 2006. www.communities.gov.uk/planningandbuilding/planningbuilding/ buildingregulationsresearch/buildingdivisionresearch/
25 BRITISH STANDARDS INSTITUTION. BS EN 1991-1-4: Eurocode 1. Actions on structures. General actions. Wind actions. BSI, 2005.
25a National Annex to Eurocode 1 - Part 1-4. BSI, 2008.
26 BROOKER, O. Concrete buildings scheme design manual, (EC2 edition). CCIP-051. The Concrete Centre, 2009.

27 THE CONCRETE SOCIETY. Technical Report 64, Guide to the design and construction of RC flat slabs, CCIP-022. The Concrete Society, 2007.

28 GOODCHILD, C H \& WEBSTER, R M. RC spreadsheets v3, CCIP-008CD. User guide to RC spreadsheets V3, CCIP-008. The Concrete Centre, 2006.

29 IRWIN, A W. Design of shear wall buildings, Report R102. CIRIA, 1984.
30 THE CONCRETE CENTRE. Worked examples to Eurocode 2, Volume 2. CCIP-042. In preparation.

31 MOSELEY, B, BUNGEY, J \& HULSE, R. Reinforced concrete design to Eurocode 2, Sixth Edition. Palgrave McMillan, 2007.
32 THE CONCRETE SOCIETY. Deflections in concrete slabs and beams. TR 58. The Concrete Society, 2005.

33 BEEBY, A. Modified proposals for controlling deflections by means of ratios of span to effective depth, Technical Report 456, Cement and Concrete Association, Wexham Springs, 1971.

34 ALLEN, A H. Reinforced concrete design to BS 8110 simply explained. Spon, London, 1988.
35 INSTITUTION OF STRUCTURAL ENGINEERS. Manual for the design of concrete building structures to Eurocode 2. IStructE, 2006.

Further reading

- BEEBY A W \& NARAYANAN R S. Designers guide to the Eurocodes - EN 1992-1-1 and EN 1992-1-2 Eurocode 2: Design of concrete structures. General rules and rules for buildings and structural fire design. Thomas Telford, 2005.
- BRITISH STANDARDS INSTITUTION. PP 1990:2007. Structural Eurocodes, Extracts from the structural Eurocodes for students of structural design, second edition. BSI, London, 2007.
- HENDY C R \& SMITH D A., Designers guide to the Eurocodes - EN 1992-2 Eurocode 2: Design of concrete structures. Part 2: Concrete bridges, Thomas Telford, 2007.
- THE CONCRETE SOCIETY. Technical Report 64, Guide to the design and construction of RC flat slabs, CCIP-022. The Concrete Society, 2007.

AppendixA: Derived formulae

A1 Flexure: beams and slabs

A1.1 Singly reinforced sections

The rectangular stress block shown below in Figure A1 may be used.

Figure A1
Strains and forces in a section
For grades of concrete up to C50/60, $\varepsilon_{\mathrm{cu}}=0.0035, \eta=1$ and $\lambda=0.8$
$f_{c d}=\alpha_{c c} f_{c k} / \gamma_{C}=0.85 f_{c k} / 1.5$
$f_{y d}=f_{y k} / \gamma_{S}=f_{y k} / 1.15=0.87 f_{y k}$
For singly reinforced sections, the design equations can be derived as follows:
Lever arm, z

Figure A2
Beam lever arm
$F_{\mathrm{c}}=\left(0.85 f_{c k} / 1.5\right) b(0.8 x)=0.453 f_{c k} b x$
$F_{\text {st }}=0.87 A_{s} f_{y k}$
Consider moment ${ }^{\ddagger}, M$, about the centre of the tension force:
$M=0.453 f_{\text {ck }} b x z$
Now $z=d-0.4 x$

$$
\begin{aligned}
\therefore \quad x & =2.5(d-z) \\
M \quad & =0.453 f_{c k} b 2.5(d-z) z \\
& =1.1333\left(f_{c k} b z d-f_{c k} b z^{2}\right) \\
\text { Let } K & =M / b d^{2} f_{c k} \\
& =1.1333\left(f_{c k} b z d-f_{c k} b z^{2}\right) / b d^{2} f_{c k} \\
& =1.1333\left(z d-z^{2}\right) / d^{2} \\
\therefore 0 & =1.1333\left[(z / d)^{2}-(z / d)\right]+K \\
& =(z / d)^{2}-(z / d)+0.88235 K
\end{aligned}
$$

Solving the quadratic equation:
$z / d=\left[1+(1-3.529 K)^{0.5}\right] / 2$
$z=d\left[1+[1-3.529 K)^{0.5}\right] / 2$
It is considered good practice in the UK to limit z/d to a maximum of 0.95d. (This guards against relying on very thin sections of concrete which at the extreme top of a section may be of questionable strength.) Tables giving values of z / d and x / d for values of K may be used.

Area of reinforcement, $\boldsymbol{A}_{\mathrm{s}}$

Taking moments about the centre of the compression force:

$$
\begin{aligned}
& M=0.87 A_{s} f_{y k} z \\
& A_{s}=M /\left(0.87 f_{y k} z\right)
\end{aligned}
$$

Limiting value of relative flexural compressive stress, K^{\prime}

Assuming no redistribution takes place, a limiting value (on the strength of concrete in compression) for K can be calculated (denoted K^{\prime}) as follows.
$\varepsilon_{\text {cu3 }}=$ concrete strain $=0.0035$
$\varepsilon_{\mathrm{s}}=$ reinforcement strain
$=500 /\left(1.15 \times 200 \times 10^{3}\right)=0.0022$
From strain diagram, Figure A1
$x \quad=0.0035 d /(0.0035+0.0022)$
$=0.6 \mathrm{~d}$
From equations above:
$M=0.453 f_{c k} b x z$
$M^{\prime}=0.453 f_{c k} b 0.6 d(d-0.4 \times 0.6 d)$

$$
=0.207 f_{c k} b d^{2}
$$

$\therefore K^{\prime}=0.207$
It is often considered good practice to limit the depth of the neutral axis to avoid 'overreinforcement' (i.e. to ensure that the reinforcement is yielding at failure, thus avoiding brittle failure of the concrete). Often x / d is limited to 0.45 . This is referred to as the balanced section because at the ultimate limit state the concrete and steel reach their ultimate strains at the same time ${ }^{[31]}$. This is not a Eurocode 2 requirement and is not accepted by all engineers.
Nonetheless for $x=0.45 \mathrm{~d}$
From equations above:

$$
\begin{aligned}
M & =0.453 f_{c k} b x z \\
M^{\prime} & =0.453 f_{c k} b 0.45 d(d-0.4 \times 0.45 d) \\
& =0.167 f_{c k} b d^{2} \\
\therefore K^{\prime} & =0.167
\end{aligned}
$$

x / d is also restricted by the amount of redistribution carried out. For $f_{c k} \leq 50 \mathrm{MPa}$ $\delta \geq 0.4+\left(0.6+0.0014 \varepsilon_{c u}\right) x_{u} / d$
where
d $=$ redistributed moment/elastic bending moment before redistribution
$x_{u}=$ depth of the neutral axis at ULS after redistribution
$\varepsilon_{\mathrm{cu}}=$ compressive strain in the concrete at ULS
This gives the values in Table A1.

Table A1
Limits on K^{\prime} with respect to redistribution ratio, δ

δ	$\mathbf{1}$	$\mathbf{0 . 9 5}$	$\mathbf{0 . 9}$	$\mathbf{0 . 8 5}$	$\mathbf{0 . 8}$	$\mathbf{0 . 7 5}$	$\mathbf{0 . 7}$
\% redistribution	0	5	10	15	20	25	30
\boldsymbol{K}^{\prime}	0.208	0.195	0.182	0.168	0.153	0.137	0.120

If $K>K^{\prime}$ the section should be resized or compression reinforcement is required. In line with consideration of good practice outlined above, this publication adopts a maximum value of $K^{\prime}=0.167$.

A1.2 Compression reinforcement, $A_{\mathrm{s} 2}$

The majority of beams used in practice are singly reinforced, and these beams can be designed using the formula derived above. In some cases, compression reinforcement is added in order to:

■ Increase section strength where section dimensions are restricted, i.e. where $K>K^{\prime}$

- To reduce long term deflection
- To decrease curvature/deformation at ultimate limit state

Figure A3
Beam with compression reinforcement
With reference to Figure A1, there is now an extra force
$F_{\mathrm{sc}}=0.87 \mathrm{~A}_{\mathrm{s} 2} f_{\mathrm{yk}}$
The area of tension reinforcement can now be considered in two parts, the first part to balance the compressive force in the concrete, the second part to balance the force in the compression steel. The area of tension reinforcement required is therefore:
$A_{s}=K^{\prime} f_{c u} b d^{2} /\left(0.87 f_{\mathrm{yk}} z\right)+A_{\mathrm{s} 2}$
where
Z is calculated using K^{\prime} instead of K
$A_{\mathrm{s} 2}$ can be calculated by taking moments about the centre of the tension force:

$$
\begin{aligned}
& M=M^{\prime}+0.87 f_{\mathrm{yk}} A_{\mathrm{s} 2}\left(d-d_{2}\right) \\
& M=K^{\prime} f_{\mathrm{cu}} b d^{2}+0.87 f_{\mathrm{yk}} A_{\mathrm{s} 2}\left(d-d_{2}\right)
\end{aligned}
$$

Rearranging:
$A_{\mathrm{s} 2}=\left(K-K^{\prime}\right) f_{c k} b d^{2} /\left[0.87 f_{\mathrm{yk}}\left(d-d_{2}\right)\right]$

A2 Shear

A2.1 Shear resistance (without shear reinforcement), $V_{R d, c}$

$$
V_{R d, c}=\left[C_{R d, c} k\left(100 \rho 1 f_{c k}\right)^{1 / 3}+k_{1} \sigma_{\mathrm{cp}}\right] b_{\mathrm{w}} d \geq\left(v_{\min }+k_{1} \sigma_{\mathrm{cp}}\right) b_{\mathrm{w}} d
$$

Exp. (6.2)

$$
C_{R d, c}=0.18 / \gamma_{C}=0.18 / 1.5=0.12
$$

$$
k=1+(200 / d)^{0.5} \leq 2.0
$$

$$
\begin{aligned}
\rho_{1} & =A_{\mathrm{s}} /\left(b_{\mathrm{w}} d\right) \leq 0.02 \\
k_{1} & =0.15 \\
\sigma_{\mathrm{cp}} & =0 \text { for non-prestressed concrete } \\
v_{\min } & =0.035 \mathrm{k}^{1.5} f_{\mathrm{ck}}^{0.5} \\
\therefore V_{\mathrm{Rd}, \mathrm{c}} & =0.12 \mathrm{k}\left(100 \rho_{1} f_{\mathrm{ck}}\right)^{1 / 3} b_{\mathrm{w}} d \geq 0.035 k^{1.5} f_{\mathrm{ck}}{ }^{0.5} b_{\mathrm{w}} d
\end{aligned}
$$

A2.2 Shear capacity

The capacity of a concrete section with vertical shear reinforcement to act as a strut, $V_{R d, m a x}$:

Exp. (6.9)
Cl. 6.2.3(3) Note 1, Exp. (6.6N) \& NA
$V_{\text {Rd,max }}=\alpha_{c w} b_{w} Z v_{1} f_{c d} /(\cot \theta+\tan \theta)$
where
$\alpha_{\mathrm{cw}}=1.0$
$v_{1}=v=0.6\left[1-f_{c k} / 250\right]$
$f_{c d}=\alpha_{c c} f_{c k} / \gamma_{\mathrm{C}}=1.00 \times f_{c k} / 1.5$
$\therefore V_{\mathrm{Rd}, \text { max }}=0.40 b_{\mathrm{w}} z f_{\mathrm{ck}}\left[1-f_{\mathrm{ck}} / 250\right] /(\cot \theta+\tan \theta)$
Rearranging this equation gives:
$\theta=0.5 \sin ^{-1}\left[v_{\text {Edz }} /\left(0.20 f_{c k}\left[1-f_{c k} / 250\right]\right)\right] \geq \cot ^{-1} 2.5$
where

$$
v_{\mathrm{Edz}}=V_{\mathrm{Ed}} / b z=V_{\mathrm{Ed}} /(b 0.9 d)
$$

In most cases, where $\cot \theta=2.5, \theta=21.8^{\circ}$
$v_{\text {Rd,max }, \cot \theta=2.5}=0.138 b_{w} Z f_{c k}\left[1-f_{c k} / 250\right]$
or
$v_{\text {Rd,max, } \cot \theta}=2.5=0.138 f_{c k}\left[1-f_{c k} / 250\right]$
where

$$
\begin{aligned}
V_{R d, \max , \cot \theta=2.5} & =V_{R d, \max , \cot \theta=2.5} /(b z) \\
& =V_{R d, \max , \cot \theta=2.5} /(0.9 b d)
\end{aligned}
$$

Where $\cot \theta>2.5$, the angle of the strut and $v_{R d, m a x}$ should be calculated, or $v_{R d, \max }$ may be looked up in tables or charts (e.g. Table C7 or Figure C1).

A2.3 Shear reinforcement

$V_{\mathrm{Rd}, \mathrm{s}}=\left(A_{\mathrm{sw}} / s\right) z f_{\mathrm{ywd}}(\cot \theta+\cot \alpha) \sin \alpha \geq V_{\mathrm{Ed}}$
where
$A_{\text {sw }}=$ cross-sectional area of the shear reinforcement
$s=$ spacing
$z=$ lever arm (approximate value of 0.9 d may normally be used)
$f_{\text {ywd }}=f_{\text {ywk }} / \gamma_{\mathrm{S}}=$ design yield strength of the shear reinforcement
$\alpha=$ angle of the links to the longitudinal axis. For vertical links, $\cot \alpha=0$ and $\sin \alpha=1.0$

Rearranging for vertical links:
$A_{\text {sw }} / s \geq V_{\text {Ed }} / z f_{\text {ywd }} \cot \theta$
or
$A_{\mathrm{sw}} / \mathrm{s} \geq \mathrm{v}_{\mathrm{Ed}, \mathrm{z}} b_{\mathrm{w}} / f_{\mathrm{ywd}} \cot \theta$
Minimum area of shear reinforcement
$A_{\text {sw, min }} /\left(s b_{w} \sin \alpha\right) \geq 0.08 f_{c k} 0.5 / f_{\text {yk }}$
where
$s=$ longitudinal spacing of the shear reinforcement
$b_{w}=$ breadth of the web
$\alpha=$ angle of the shear reinforcement to the longitudinal axis of the member. For vertical links $\sin \alpha=1.0$.

Rearranging for vertical links:

$$
A_{\mathrm{sw}, \min } / s \geq 0.08 b_{\mathrm{w}} \sin \alpha f_{\mathrm{ck}}^{0.5 / f_{\mathrm{yk}}}
$$

A3 Columns

Fig. 6.1

Figure A4

Section in axial
compression and
bending
For axial load
$N_{\text {Ed }}=f_{\mathrm{cd}} b d_{\mathrm{c}}+A_{\mathrm{s} 2} \sigma_{\mathrm{sc}}-A_{\mathrm{s} 1} \sigma_{\mathrm{st}}$
But as $A_{s 2}=A_{s 1}=A_{s N} / 2$
$N_{\text {Ed }}=f_{\text {cd }} b d_{c}+A_{\text {sN }}\left(\sigma_{\mathrm{sc}}-\sigma_{\mathrm{st}}\right) / 2$
$N_{\text {Ed }}-f_{\mathrm{cd}} b d_{\mathrm{c}}=A_{\mathrm{sN}}\left(\sigma_{\mathrm{sc}}-\sigma_{\mathrm{st}}\right) / 2$
$\left(N_{\text {Ed }}-f_{\text {cd }} b d_{\mathrm{c}}\right) /\left(\sigma_{\mathrm{sc}}-\sigma_{\mathrm{st}}\right)=A_{\mathrm{sN}} / 2$
$A_{\mathrm{sN}} / 2=\left(N_{\mathrm{Ed}}-f_{\mathrm{cd}} b d_{\mathrm{c}}\right) /\left(\sigma_{\mathrm{sc}}-\sigma_{\mathrm{st}}\right)$
$\therefore A_{\mathrm{sN}} / 2=\left(N_{\mathrm{Ed}}-\alpha_{\mathrm{cc}} \eta f_{\mathrm{ck}} b d_{\mathrm{c}} / \gamma_{\mathrm{C}}\right) /\left(\sigma_{\mathrm{sc}}-\sigma_{\mathrm{st}}\right)$
For moment about centre of column
$M_{\text {Ed }}=f_{c d} b d_{c}\left(h / 2-d_{c} / 2\right)+A_{s 2} \sigma_{s c}\left(h / 2-d_{2}\right)+A_{s 1} \sigma_{s t}\left(h / 2-d_{2}\right)$
But as $A_{s 2}=A_{s 1}=A_{s M} / 2$
$M_{\mathrm{Ed}}=f_{\mathrm{cd}} b d_{c}\left(h / 2-d_{\mathrm{c}} / 2\right)+A_{\mathrm{sM}}\left(\sigma_{\mathrm{sc}}+\sigma_{\mathrm{st}}\right)\left(h / 2-d_{2}\right) / 2$
$M_{\mathrm{Ed}}-f_{\mathrm{cd}} b d_{c}\left(h / 2-d_{\mathrm{c}} / 2\right)=A_{\mathrm{sM}}\left(\sigma_{\mathrm{sc}}+\sigma_{\mathrm{st}}\right)\left(h / 2-d_{2}\right) / 2$
$\left[M_{\mathrm{Ed}}-f_{\mathrm{cd}} b d_{\mathrm{c}}\left(h / 2-d_{\mathrm{c}} / 2\right)\right] /\left(\sigma_{\mathrm{sc}}+\sigma_{\mathrm{st}}\right)\left(h / 2-d_{2}\right)=A_{\mathrm{sM}} / 2$
$\therefore A_{\mathrm{sM}} / 2=\left[M_{\mathrm{Ed}}-\alpha_{c c} \eta f_{\mathrm{ck}} b d_{\mathrm{c}}\left(h / 2-d_{\mathrm{c}} / 2\right) / \gamma_{\mathrm{C}}\right] /\left[\left(\sigma_{\mathrm{sc}}+\sigma_{\mathrm{st}}\right)\left(h / 2-d_{2}\right)\right]$
Solution
Iterate x such that $A_{s N}=A_{\text {sM }}$

Note

For sections wholly in compression, the strain is limited such that average strain
$\leq \varepsilon_{\text {cS }}=0.00175$ (assuming bilinear stress-strain relationship).

Appendix B: Serviceability limit state

B1 Deflection

In many cases, particularly with slabs, deflection is critical to design.
Eurocode 2, Cl. 7.4 allows for deflection to be controlled by using span:depth ratio (L/d) checks in accordance with Cl .7 .4 .2 or by calculation in accordance with Cl . 7.4.3. It is important to differentiate between the various methods used in checking deformation as they will each give different answers. Three popular methods are discussed below. Only that described in Section B1.1 below is suitable for hand calculation.

B1.1 TCC method ${ }^{[5,19]}$

The in-service stress of reinforcement, σ_{s}, is used to determine a factor, $310 / \sigma_{s}$, which is used to modify the basic span:effective depth ratio as allowed in Cl. 7.4.2(2) of Eurocode $2^{[2]}$ and moderated by the National Annex ${ }^{[2 a]}$. This method, highlighted as factor F3 in Concise Eurocode $2^{[5]}$, is intended to be used in hand calculations to derive (conservative) values of σ_{s} from available ULS moments. In accordance with Note 5 of Table NA. 5 of the UK NA ${ }^{[2 a]}$, the ratio for $A_{\text {s,prov }} / A_{\mathrm{s}, \text { req }}$ is restricted to 1.5 : in effect this limits the factor $310 / \sigma_{\mathrm{s}}$ to 1.5 .
where ${ }^{\ddagger}$
$\sigma_{\mathrm{s}}=\left(f_{\text {yk }} / \gamma_{\mathrm{s}}\right)\left(w_{\text {qp }} / w_{\mathrm{ult}}\right)\left(A_{\mathrm{s}, \text { req }} / A_{\mathrm{s}, \text { prov }}\right) / \delta \leq 310 / 1.5$
where
$f_{\text {yk }}=$ characteristic strength of reinforcement $=500 \mathrm{MPa}$
$\gamma_{S}=$ partial factor for reinforcement $=1.15$
$w_{\text {qp }}=$ quasi-permanent load (UDL assumed)
$w_{\text {perm }}=$ ultimate load (UDL assumed)
$A_{\text {s,req }}=$ area of reinforcement required
$A_{\text {s,prov }}=$ area of reinforcement provided
$\delta \quad=$ redistribution ratio

B1.2 RC Spreadsheets method ${ }^{[28]}$

The RC spreadsheets TCCxx.xls ${ }^{[28]}$ use the span: depth method of checking deformation but use an accurate method for determining σ_{5} (see B3.2 below), which again is used to determine the moderating factor $=310 / \sigma_{\mathrm{s}}$. Again, in accordance with Note 5 of Table NA. 5 of the UK NA ${ }^{[22]}$, the ratio for $A_{\text {s,prov }} / A_{\text {s,req }}$ is restricted to 1.5 : in effect this limits the factor 310/ σ_{s} to 1.5 .
Separate analyses using quasi-permanent loads need to be carried out. For each span, an SLS neutral axis depth is determined, then σ_{c} and σ_{s} are derived for the quasi-permanent load conditions. The factor σ_{s} is used in accordance with Eurocode $2^{[2]}$ and the current National Annex $[2 a]$, to modify the basic span:effective depth ratio.

Whilst this method gives a more accurate and less conservative assessment of σ_{s}, it is only suitable for computer spreadsheet applications. See also Appendix B5.

In the analysis of slabs and beams, supports are usually assumed to be pinned. In reality supports have some continuity, especially at end supports. Usually, nominal top steel is assumed and provided in the top of spans and is used in the determination of section properties.

B1.3 Rigorous analysis

Rigorous analysis, such as that used in the series of RC Spreadsheets TCCxxR.xls may be used to assess deformation in accordance with Eurocode 2, Cl. 7.4.3.

[^56]In the spreadsheets, sections at 1/20th points along the length of a span are checked to determine whether the flexural tensile stress in the section is likely to exceed the tensile strength of the concrete during either construction or service life: separate analyses are undertaken using frequent loads, quasi-permanent and temporary loads. If the flexural tensile strength is exceeded under frequent loads, then the section is assumed to be cracked and remain cracked: cracked section properties are used to determine the radius of curvature for that $1 / 20$ th of span. If flexural tensile strength is not exceeded, un-cracked section properties are used.

Radii of curvature are calculated for each 1/20th span increment of the element using the relevant properties and moments derived from analysis of quasi-permanent actions. Deformation is calculated from the increments' curvatures via numerical integration over the length of each span.

The method is in accordance with The Concrete Society's publication TR58 ${ }^{[32]}$. Again the method is suitable only for computer applications and not for hand calculation.

B1.4 Differing results

During 2008, it became increasingly apparent that there are inconsistencies between the results given by the rigorous calculation method and span:depth methods described in Eurocode 2. Using the rigorous method gives deflections that are greater than would be expected from the assumptions stated for L / d methods i.e. deflection limits of $L / 250$ overall (see Cl. 7.4.1(4)) or $\mathrm{L} / 500$ after construction (see Cl . 7.4.1(5)). It is suspected that this disparity is the same as that experienced between span:depth and calculation methods in BS 8110: a disparity that was recognised as long ago as $1971^{[33]}$. The rigorous method described above relies on many assumptions and is largely uncalibrated against real structures. As noted in TR58, there is an urgent need for data from actual structures so that methods may be calibrated. It should be noted that the rigorous analysis method observations were made using frequent loads where, in accordance with Eurocode 2, quasi-permanent loads are called for.

End spans are usually critical. With respect to the rigorous analysis method, it has been suggested that for end-spans, the TCC and RC-spreadsheet methods result in deflections close to the limits stated in Eurocode 2, provided that a nominal end-support restraining moment is present where none is assumed in analysis. Caution is therefore necessary in true pinned end-support situations but where some continuity exists, this disparity may be addressed by ensuring that appropriate amounts of reinforcement, in accordance with the Code and National Annex, are provided at end supports.

The NDP for Cl. 9.2.1.2(1) in the UK NA ${ }^{[2 a]}$ to BS EN 1992-1-2 stipulates that 25% of end span moment should be used to determine end support reinforcement. This is usually accommodated by providing 25% of end span bottom steel as top steel at end supports. It is on this basis that the calculations in this publication are considered as being further substantiated.

B1.5 Note regarding factor $310 / \sigma_{\mathrm{s}}$ (factor F3)

At the time of publication (December 2009) the authors were aware of a probable change to UK NA ${ }^{[2 a]}$ Table NA. 5 which, in effect, would mean that the factor $310 / \sigma_{5}(F 3)=A_{\text {s,prov }} / A_{5, \text { reg }}$ ≤ 1.5, thus disallowing the accurate method outlined in Sections 3.1, 3.2, 3.3, 3.4, 4.3 and Appendices B1.1, B1.2 and C7.

B2 Neutral axis at SLS

To find x, neutral axis, and services stresses σ_{c} and σ_{S} for a concrete section, at SLS, consider the cracked section in Figure B1

Where $\alpha_{\mathrm{e}}=$ modular ratio $E_{\mathrm{s}} / E_{\mathrm{c}}$

Figure B1
Cracked concrete section at SLS

From first principles, for a fully cracked transformed section,
Total area of section, $A=b x+A_{\mathrm{s}} \alpha_{\mathrm{e}}+A_{\mathrm{s} 2}\left(\alpha_{\mathrm{e}}-1\right)$
1st moment of area, $A_{y}=b x^{2} / 2+A_{s} d \alpha_{e}+A_{s 2} d_{2}\left(\alpha_{e}-1\right)$
For a slab, $b=1000$, therefore
$A=1000 x+A_{\mathrm{s}} \alpha_{\mathrm{e}}+A_{\mathrm{s} 2}\left(\alpha_{\mathrm{e}}-1\right)$
$A_{y}=500 x^{2}+A_{s} d \alpha_{e}+A_{s 2} d_{2}\left(\alpha_{e}-1\right)$
Neutral axis depth, x
$x=A_{y} / A$
$=\left[500 x^{2}+A_{s} d \alpha_{\mathrm{e}}+A_{\mathrm{s} 2} d_{2}\left(\alpha_{\mathrm{e}}-1\right)\right] /\left[1000 x+A_{\mathrm{s}} \alpha_{\mathrm{e}}+A_{\mathrm{s} 2}\left(\alpha_{\mathrm{e}}-1\right)\right]$
Therefore
$x\left[1000 x+A_{\mathrm{s}} \alpha_{\mathrm{e}}+A_{\mathrm{s} 2}\left(\alpha_{\mathrm{e}}-1\right)\right]=\left[500 x^{2}+A_{\mathrm{s}} d \alpha_{\mathrm{e}}+A_{\mathrm{s} 2} d_{2}\left(\alpha_{\mathrm{e}}-1\right)\right]$
0

$$
\begin{aligned}
& =\left[500 x^{2}+A_{s} d \alpha_{e}+A_{s 2} d_{2}\left(\alpha_{e}-1\right)\right]-x\left[1000 x+A_{\mathrm{s}} \alpha_{\mathrm{e}}+A_{\mathrm{s} 2}\left(\alpha_{\mathrm{e}}-1\right)\right] \\
& \left.=500 x^{2}-x[1000 x]+A_{\mathrm{s}} d \alpha_{\mathrm{e}}+A_{\mathrm{s} 2} d_{2}\left(\alpha_{\mathrm{e}}-1\right)\right]-x\left[A_{\mathrm{s}} \alpha_{\mathrm{e}}+A_{\mathrm{s} 2}\left(\alpha_{\mathrm{e}}-1\right)\right] \\
& =-500 x^{2}-x\left[A_{\mathrm{s}} \alpha_{\mathrm{e}}+A_{\mathrm{s} 2}\left(\alpha_{\mathrm{e}}-1\right)\right]+\left[A_{\mathrm{s}} d \alpha_{\mathrm{e}}+A_{\mathrm{s} 2} d_{2}\left(\alpha_{\mathrm{e}}-1\right)\right]
\end{aligned}
$$

Solving the quadratic
$\left.x=-b \pm b^{2}-4 a c\right)^{0.5} / 2 a$
$x=\frac{-\left[A_{\mathrm{s}} \alpha_{\mathrm{e}}+A_{\mathrm{s} 2}\left(\alpha_{\mathrm{e}}-1\right) \pm\left\{\left[A_{\mathrm{s}} \alpha_{\mathrm{e}}+A_{\mathrm{s} 2}\left(\alpha_{\mathrm{e}}-1\right)\right]^{2}+4 \times 500 \times\left[A_{\mathrm{s}} d \alpha_{\mathrm{e}}+A_{\mathrm{s} 2} d_{2}\left(\alpha_{\mathrm{e}}-1\right)\right]\right\}^{0.5}\right]}{(2 \times 500)}$
or transposing,
$x=\frac{\left[-\left(\alpha_{\mathrm{e}}-1\right) A_{\mathrm{s} 2}-\alpha_{\mathrm{e}} A_{\mathrm{s}}+\left\{\left[\left(\alpha_{\mathrm{e}}-1\right) A_{\mathrm{s} 2}+\alpha_{\mathrm{e}} A_{\mathrm{s}}\right]^{2}+2000\left[\left(\alpha_{\mathrm{e}}-1\right) A_{\mathrm{s} 2} d_{2}+\alpha_{\mathrm{e}} A_{\mathrm{s}} d\right]\right\}{ }^{0.5}\right]}{1000}$
or
$x=\frac{\left[-\left(\alpha_{\mathrm{e}}-1\right) A_{\mathrm{s} 2}-\alpha_{\mathrm{e}} A_{\mathrm{s}}+\left\{\left[\left(\alpha_{\mathrm{e}}-1\right) A_{\mathrm{s} 2}+\alpha_{\mathrm{e}} A_{\mathrm{s}}\right]^{2}+2 b\left[\left(\alpha_{\mathrm{e}}-1\right) A_{\mathrm{s} 2} d_{2}+\alpha_{\mathrm{e}} A_{\mathrm{s}} d\right]\right\}{ }^{0.5}\right]}{b}$
This expression is used in the RC spreadsheets ${ }^{[28]}$.

B3 SLS stresses in concrete, $\sigma_{c^{\prime}}$, and reinforcement, σ_{s}

B3.1 Singly reinforced section

Consider the singly reinforced section in Figure B2.

a) Section

b) Dimensions and forces

Figure B2
SLS stresses: singly reinforced section

Consider moments about F_{C} :
$M_{\text {qp }}=F_{s} z=F_{s}(d-x / 3)$
$F_{\mathrm{s}}=M_{\mathrm{qp}} /(d-x / 3)$
$\sigma_{\mathrm{s}}=M_{\mathrm{qp}} /\left[A_{\mathrm{s}}(d-x / 3)\right]$
$\sigma_{\mathrm{s}} A_{\mathrm{s}}=M_{\text {qp }} /(d-x / 3)=x b \sigma_{\mathrm{c}} / 2$
$\sigma_{\mathrm{c}}=2 \sigma_{\mathrm{s}} A_{\mathrm{s}} / \times b$

B3.2 Doubly reinforced section

Consider the singly reinforced section in Figure B3.

Consider moment, $M_{\text {qp }}$, about bottom reinforcement, $A_{s}[34]$.
$M_{\text {qp }}=A_{\mathrm{s} 2}\left(d-d_{2}\right)\left(\alpha_{\mathrm{e}}-1\right)\left\{\left(x-d_{2}\right) / x\right\} \sigma_{\mathrm{c}}+\sigma_{\mathrm{c}} b(x / 2)(d-x / 3)$
Therefore
$\left.\sigma_{\mathrm{c}}=M_{\mathrm{qp}} /\left[A_{\mathrm{s} 2}\left(d-d_{2}\right)\left(\alpha_{\mathrm{e}}-1\right)\right)\left\{\left(x-d_{2}\right) / x\right\}+b(x / 2)(d-x / 3)\right]$
And from stress diagram
$\sigma_{\mathrm{s}}=\sigma_{\mathrm{c}} \alpha_{\mathrm{e}}(d-x) / x$

Appendix C: Design aids

The following tables, text and figures have been derived from Eurocode 2 and are provided as design aids for designers in the UK. These design aids have been referenced in the text and generally have been taken from Section 15 of Concise Eurocode $2{ }^{[5]}$

C1 Design values of actions

For the ULS of strength (STR) where there is a single variable action use either:

```
\(\square 1.35 G_{k}+1.5 Q_{k} \quad\) Exp. (6.10) from BS EN 1990[10]
    or the worse case of
■ \(1.35 \mathrm{G}_{\mathrm{k}}+\psi_{0} 1.5 \mathrm{Q}_{\mathrm{k}} \quad\) Exp. (6.10a)
    and
- \(1.25 G_{k}+1.5 Q_{k} \quad\) Exp. (6.10b)
where \(\psi_{0}=1.0\) for storage, 0.5 for snow but otherwise 0.7 , see Table 2.2.
```

In most cases Exp. (6.10b) will be appropriate, except for storage where the use of Exp. (6.10a) is likely to be more onerous.

For the SLS of deformation, quasi-permanent loads should be applied. These are $1.0 G_{k}+\psi_{2} Q_{k}$ where ψ_{2} is dependent on use, e.g. 0.3 for offices and residential and 0.7 for storage

C2 Values of actions

The values of actions (i.e. loads) are defined in Eurocode 1 ${ }^{[11]}$. The parts of Eurocode 1 are given in Table C1. These values are taken as characteristic values. At the time of publication, the UK National Annexes to these parts are in various states of readiness.

As PD $6687{ }^{[6]}$ makes clear, until the appropriate European standards become available, designers may consider using current practice or current British Standards in conjunction with Eurocode 2, provided they are compatible with Eurocode 2 and that the resulting reliability is acceptable.

BS EN 1991-1-1 states that the density of concrete is $24 \mathrm{kN} / \mathrm{m}^{3}$, reinforced concrete, $25 \mathrm{kN} / \mathrm{m}^{3}$ and wet reinforced concrete, $26 \mathrm{kN} / \mathrm{m}^{3}$.

Table C1
The parts of Eurocode $1{ }^{[11]}$

Reference	Title
BS EN 1991-1-1	Densities, self-weight and imposed loads
BS EN 1991-1-2	Actions on structures exposed to fire
BS EN 1991-1-3	Snow loads
BS EN 1991-1-4	Wind actions
BS EN 1991-1-5	Thermal actions
BS EN 1991-1-6	Actions during execution
BS EN 1991-1-7	Accidental actions due to impact and explosions
BS EN 1991-2	Traffic loads on bridges
BS EN 1991-3	Actions induced by cranes and machinery
BS EN 1991-4	Actions in silos and tanks

C3 Analysis

Analysis is dealt with in Section 5 of Concise Eurocode 2. Where appropriate the coefficients given in Tables C2 and C3 can be used to determine design moments and shear for slabs and beams at ULS.

Table C2
Coefficients for use with one-way spanning slabs to Eurocode 2

Coefficient	Location						
	End support/slab connection				Internal supports and spans		
	Pinned end support		Continuous				
	Outer support	Near middle of end span	Outer support	Near middle of end span	At 1st interior support	At middle of interior spans	At interior supports
Moment	0.0	0.086	-0.04	0.075	-0.086	0.063	-0.063
Shear	0.40	-	0.46	-	0.60:0.60	-	0.50:0.50

Notes
1 Applicable to one-way spanning slabs where the area of each bay exceeds $30 \mathrm{~m}^{2}, Q_{k} \leq 1.25 G_{k}$ and $q_{k} \leq 5$ $\mathrm{kN} / \mathrm{m}^{2}$, substantially uniform loading (at least 3 spans, minimum span ≥ 0.85 maximum (design) span.
2 Design moment $=$ coeff $\times n \times \operatorname{span}^{2}$ and design shear $=$ coeff $\times n \times$ span where n is a UDL with a single variable action $=\gamma_{G} g_{\mathrm{k}}+\psi \gamma_{\mathrm{Q}} q_{\mathrm{k}}$ where g_{k} and q_{k} are characteristic permanent and variable actions in kN / m.
3 Basis: Yield line design (assumed 20\% redistribution ${ }^{[7]}$)

Table C3
Coefficients for use with beams (and one-way spanning slabs) to Eurocode 2

Coefficient	Location					
	Outer support	Near middle of end span	At 1st interior support	At middle of interior spans	At interior supports	
Moment $\boldsymbol{g}_{\mathrm{k}}$ and $\boldsymbol{q}_{\mathbf{k}}$	25% span $^{\mathrm{a}}$	-	0.094	-	0.075	
Moment $\boldsymbol{g}_{\mathrm{k}}$	-	0.090	-	0.066	-	
Moment $\boldsymbol{q}_{\mathbf{k}}$	-	0.100	-	0.086	-	
Shear	0.45	-	$0.63: 0.55$	-	$0.50: 0.50^{\mathrm{b}}$	

Notes

1 For beams and slabs, 3 or more spans. (They may also be used for 2 -span beams but support moment coefficient $=0.106$ and internal shear coefficient $=0.63$ both sides).
2 Generally $Q_{k} \leq G_{k}$, and the loading should be substantially uniformly distributed. Otherwise special curtailment of reinforcement is required.
3 Minimum span $\geq 0.85 \times$ maximum (and design) span.
4 Design moment at supports $=$ coeff $\times n \times \operatorname{span}^{2}$
or in spans
$=\left(\right.$ coeff $g_{k} \times \gamma_{G} g_{k}+$ coeff $\left.q_{k} \times \psi \gamma_{Q} q_{k}\right) \times$ span 2.

5 Design shear at centreline of supports $=$ coeff $\times n \times$ span where n is a UDL with a single variable action $=\gamma_{\mathrm{C}} g_{\mathrm{k}}+\psi \gamma_{\mathrm{Q}} q_{\mathrm{k}}$ where g_{k} and q_{k} are characteristic permanent and variable actions in kN / m. γ_{G} and $\psi \gamma_{\mathrm{Q}}$ are dependent on use of BS EN 1990, Expressions (6.10), (6.10a) or (6.10b). See Section C1.
6 Basis: All- and alternate-spans-loaded cases as UK National Annex and 15\% redistribution at supports.

Key

a At outer support ' 25% span' relates to the UK Nationally Determined Parameter for Eurocode 2, Cl. 9.2.1.2(1) for minimum percentage of span bending moment to be assumed at supports in beams in monolithic construction. 15\% may be appropriate for slabs (see Eurocode 2, Cl. 9.3.1.2).
b For beams of five spans, 0.55 applies to centre span.

Cl. 9.2.1.2

Cl. 9.3.1.2

C4 Design for bending

Determine whether $K \leq K^{\prime}$ or not (i.e. whether under-reinforced or not).
where
$K=M_{\mathrm{Ed}} /\left(b d^{2} f_{\mathrm{ck}}\right)$
where
$d=$ effective depth $=h-$ cover $-\phi / 2$
$b=$ width of section in compression
K^{\prime} may be determined from Table C4 and is dependent on the redistribution ratio used.
Table C4
Values for K^{\prime}

Redistribution ratio, $\boldsymbol{\delta}$	$\mathbf{z} / \boldsymbol{d}$ for $\boldsymbol{K}^{\text {a }}$	$\boldsymbol{K}^{\mathbf{a}}$	$\mathbf{1 - \delta}$
$\mathbf{1 . 0 0}$	$0.76(0.82)$	$0.208(0.168)$	0%
$\mathbf{0 . 9 5}$	$0.78(0.82)$	$0.195(0.168)$	5%
$\mathbf{0 . 9 0}$	$0.80(0.82)$	$0.182(0.168)$	10%
$\mathbf{0 . 8 5}$	0.82	0.168	15%
$\mathbf{0 . 8 0}$	0.84	0.153	20%
$\mathbf{0 . 7 5}$	0.86	0.137	25%
$\mathbf{0 . 7 0}$	0.88	0.120	30%
Note			

Class A reinforcement is restricted to a redistribution ratio, $\delta \leq 0.8$
Key
a It is recommended that x / d is limited to $0.45^{[35]}$. As a consequence z / d is limited to a minimum of 0.820 and K^{\prime} to a minimum of 0.168

If $K \leq K^{\prime}$, section is under-reinforced.
For rectangular sections:

$$
\begin{aligned}
& A_{\mathrm{s} 1}= M_{\mathrm{Ed}} / f_{\mathrm{yd}} z \\
& \text { where }
\end{aligned} \quad \begin{aligned}
A_{\mathrm{s} 1} & =\text { area of tensile reinforcement } \\
M_{\mathrm{Ed}} & =\text { design moment } \\
f_{\mathrm{yd}} & =f_{\mathrm{yk}} / \gamma_{\mathrm{S}}=500 / 1.15=434.8 \mathrm{MPa} \\
z & =d\left[0.5+0.5(1-3.53 \mathrm{~K})^{0.5}\right] \leq 0.95 \mathrm{~d}
\end{aligned}
$$

Values of z / d (and x / d) may be taken from Table C5
For flanged beams where $\mathrm{x}<1.25 h_{f}$
$A_{s 1}=M_{E d} / f_{y d}{ }^{z}$
where $x=$ depth to neutral axis. Values of x / d may be taken from Table C5
$h_{f}=$ thickness of flange

For flanged beams where $x \geq 1.25 h_{f}$, refer to How to design concrete structures using Eurocode $2^{[8]}$.

■ If $K>K^{\prime}$, section is over-reinforced and requires compression reinforcement.
$A_{\mathrm{s} 2}=\left(M_{\mathrm{Ed}}-M^{\prime}\right) / f_{\mathrm{sc}}\left(d-d_{2}\right)$
where
$A_{\mathrm{s} 2}=$ compression reinforcement
If $d_{2} / x>0.375$ then the term $A_{s 2}$ should be replaced by the term
1.6($\left.1-d_{2} / x\right) A_{s 2}$
$M^{\prime}=K^{\prime} b d^{2} f_{c k}$
$f_{\text {sc }}=700\left(x_{u}-d_{2}\right) / x_{u} \leq f_{y d}$
where
$d_{2}=$ effective depth to compression reinforcement

$$
x_{u}=(\delta-0.4) d
$$

where

$$
\delta=\text { redistribution ratio }
$$

$$
\text { Total area of steel } A_{s 1}=M^{\prime} /\left(f_{y d} z\right)+A_{s 2} f_{s c} / f_{y d}
$$

Table C5
Values of z / d and x / d for singly reinforced rectangular sections

C5 Design for beam shear

C5.1 Requirement for shear reinforcement

If $v_{\mathrm{Ed}}>v_{\mathrm{Rd}, \mathrm{c}}$ then shear reinforcement is required
where
$v_{\mathrm{Ed}}=V_{\mathrm{Ed}} / b_{\mathrm{w}} d$, for sections without shear reinforcement (i.e. slabs)
$v_{\mathrm{Rd}, \mathrm{c}}=$ shear resistance without shear reinforcement, from Table C6.

Table C6
Shear resistance without shear reinforcement, $v_{\mathrm{Rd}, \mathrm{c}}(\mathrm{MPa})$

$\begin{aligned} & \rho_{i}=A_{\mathrm{sl}} l \\ & b_{\mathrm{w}} d \end{aligned}$	Effective depth d (mm)										
	$\leqslant 200$	225	250	275	300	350	400	450	500	600	750
$\leq 0.25 \%$	0.54	0.52	0.50	0.48	0.47	0.45	0.43	0.41	0.40	0.38	0.36
0.50\%	0.59	0.57	0.56	0.55	0.54	0.52	0.51	0.49	0.48	0.47	0.45
0.75\%	0.68	0.66	0.64	0.63	0.62	0.59	0.58	0.56	0.55	0.53	0.51
1.00\%	0.75	0.72	0.71	0.69	0.68	0.65	0.64	0.62	0.61	0.59	0.57
1.25\%	0.80	0.78	0.76	0.74	0.73	0.71	0.69	0.67	0.66	0.63	0.61
1.50\%	0.85	0.83	0.81	0.79	0.78	0.75	0.73	0.71	0.70	0.67	0.65
1.75\%	0.90	0.87	0.85	0.83	0.82	0.79	0.77	0.75	0.73	0.71	0.68
$\geq 2.00 \%$	0.94	0.91	0.89	0.87	0.85	0.82	0.80	0.78	0.77	0.74	0.71

Notes

1 Table derived from Eurocode 2 and UK National Annex.
2 Table created for $f_{c k}=30 \mathrm{MPa}$ assuming vertical links.
3 For $\rho_{l} \geq 0.4 \%$ and

$$
\begin{array}{lll}
f_{c k}=25 \mathrm{MPa}, \text { apply factor of } 0.94 & f_{c k}=40 \mathrm{MPa} \text {, apply factor of } 1.10 & f_{c k}=50 \mathrm{MPa} \text {, apply factor of } 1.19 \\
f_{c k}=35 \mathrm{MPa} \text {, apply factor of } 1.05 & f_{c k}=45 \mathrm{MPa} \text {, apply factor of } 1.14 & \text { Not applicable for } f_{c k}>50 \mathrm{MPa}
\end{array}
$$

C5.2 Section capacity check

If $v_{E d, Z}>v_{\mathrm{Rd}, \text { max }}$ then section size is inadequate where
$v_{\mathrm{Ed}, \mathrm{z}}=V_{\mathrm{Ed}} / b_{\mathrm{w}} Z^{2}=V_{\mathrm{Ed}} / b_{\mathrm{w}} 0.9 d$, for sections with shear reinforcement
$v_{\text {Rd,max }}=$ capacity of concrete struts expressed as a stress in the vertical plane

$$
\begin{aligned}
& =V_{R d, \max } / b_{W} z \\
& =V_{R d, \max } / b_{w} 0.9 d
\end{aligned}
$$

$V_{R d, \max }$ can be determined from Table C7, initially checking at $\cot \theta=2.5$. Should it be required, a greater resistance may be assumed by using a larger strut angle, θ.

Table C7
Capacity of concrete struts expressed as a stress, $v_{\text {Rd,max }}$

$f_{\text {ck }}$		$v_{\text {Rd,max }}(\mathrm{MPa})$						Strength reduction factor, v
	$\boldsymbol{\operatorname { c o t }} \theta$	2.50	2.14	1.73	1.43	1.19	1.00	
	θ	$2.18{ }^{\circ}$	25°	30°	35°	40°	45°	
20		2.54	2.82	3.19	3.46	3.62	3.68	0.552
25		3.10	3.45	3.90	4.23	4.43	4.50	0.540
30		3.64	4.04	4.57	4.96	5.20	5.28	0.528
35		4.15	4.61	5.21	5.66	5.93	6.02	0.516
40		4.63	5.15	5.82	6.31	6.62	6.72	0.504
45		5.09	5.65	6.39	6.93	7.27	7.38	0.492
50		5.52	6.13	6.93	7.52	7.88	8.00	0.480
Notes								
1 Table derived from Eurocode 2 and UK National Annex assuming vertical links, i.e. cot								
$3 v_{\text {Rd, max }}=v f_{c d}(\cot \theta+\cot \alpha) /\left(1+\cot ^{2} \theta\right)$								

C5.3 Shear reinforcement design

$A_{\mathrm{sw}} / s \geq v_{\mathrm{Ed}, \mathrm{z}} b_{\mathrm{w}} / f_{\mathrm{ywd}} \cot \theta$
where
$A_{s w}=$ area of shear reinforcement (vertical links assumed)
$s=$ spacing of shear reinforcement
$v_{\mathrm{Ed}, \mathrm{z}}=V_{\mathrm{Ed}} / b_{\mathrm{w}} \mathrm{z}$, as before
$b_{w}=$ breadth of the web
$f_{y w d}=f_{y w k} / \gamma_{S}=$ design yield strength of shear reinforcement
Generally $A_{\mathrm{sw}} / s \geq V_{\mathrm{Ed}, \mathrm{z}} b_{\mathrm{w}} / 1087$
where $f_{\text {ywk }}=500 \mathrm{MPa}, \gamma_{\mathrm{S}}=1.15$ and $\cot \theta=2.5$

Alternatively, $A_{\text {sw }} / s$ per metre width of b_{w} may be determined from Figure C1a) or C1b) as indicated by the blue arrows in Figure C1a). These figures may also be used to estimate the value of $\cot \theta$.

Beams are subject to a minimum shear link provision. Assuming vertical links,
$A_{\text {sw, min }} / s b_{w} \geq 0.08 f_{\mathrm{ck}}^{0.5} / f_{\mathrm{yk}}$ (see Table C8).

Table C8
Values of $A_{\mathrm{sw}, \min } / s b_{\mathrm{w}}$ for beams for vertical links and $f_{\mathrm{yk}}=500 \mathrm{MPa}$ and compatible resistance, v_{Rd}

Concrete class	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
$A_{\text {sw, min }} / s b_{\text {w }}$ for beams ($\times 10^{3}$)	0.72	0.80	0.88	0.95	1.01	1.07	1.13
$v_{\text {Rd }}$ for $A_{\text {sw,min }} / s b_{\text {w }}$ (MPa)	0.78	0.87	0.95	1.03	1.10	1.17	1.23

Figure C1a)
Diagram to determine $A_{s w} / s$ required (for beams with high shear stress)

Figure C1b)
Diagram to determine $A_{\text {sw }} / s$ required (for slabs and beams with low shear stress)

C6 Design for punching shear

Concise: 10.4.2
12.4.3

Determine if punching shear reinforcement is required, initially at u_{1}, then if necessary at subsequent perimeters, u_{i}. If $v_{\mathrm{Ed}}>v_{\mathrm{Rd}, \mathrm{c}}$ then punching shear reinforcement is required where

$$
\begin{aligned}
& v_{\mathrm{Ed}}=\beta V_{\mathrm{Ed}} / u_{\mathrm{i}} d \\
& \text { where } \\
& \beta=\text { factor dealing with eccentricity } \\
& V_{\mathrm{Ed}}=\text { applied shear force } \\
& u_{\mathrm{i}}=\text { length of the perimeter under consideration } \\
& \text { d }=\text { mean effective depth } \\
& v_{\mathrm{Rd}, \mathrm{C}}=\text { shear resistance without shear reinforcement (see Table C6) }
\end{aligned}
$$

For vertical shear reinforcement
$\left(A_{\text {sw }} / s_{\mathrm{r}}\right)=u_{1}\left(v_{\text {Ed }}-0.75 v_{\text {Rd, }}\right) /\left(1.5 f_{\text {ywd,ef }}\right)$
where
$A_{\text {sw }}=$ area of shear reinforcement in one perimeter around the column.
For $A_{\text {sw,min }}$ see Concise Eurocode 2, Section 10.4.2 and for layout see Section 12.4.3
$s_{r} \quad=$ radial spacing of perimeters of shear reinforcement
$u_{1}=$ basic control perimeter $2 d$ from column face
$f_{\text {ywd,ef }}=$ effective design strength of reinforcement $=(250+0.25 d) \leq f_{\text {ywd }}$. For Grade 500 shear reinforcement see Table C9

Table C9
Values of $f_{\text {ywd,ef }}$ for grade 500 reinforcement

\boldsymbol{d}	$\mathbf{1 5 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$	$\mathbf{3 0 0}$	$\mathbf{3 5 0}$	$\mathbf{4 0 0}$	$\mathbf{4 5 0}$
$f_{\mathrm{ywd}, \mathrm{ef}}$	287.5	300	312.5	325	337.5	350	362.5

At the column perimeter, check $v_{\text {Ed }} \leq V_{\text {Rdmax }}$ for $\cot \theta=1.0$ given in Table C7.

C7 Check deflection

In general, the SLS state of deflection may be checked by using the span-to-effective-depth approach. More critical appraisal of deformation is outside the scope of this publication. To use the span-to-effective-depth approach, verify that:

Allowable $/ / d=N \times K \times F 1 \times F 2 \times F 3 \geq$ actual $/ / d$
where
$N=$ basic span-to-effective-depth ratio derived for $K=1.0$ and $\rho^{\prime}=0$ from Section 10.5.2 of Concise Eurocode 2 or Table C10 or Figure C2

Concise: 10.5.2
$K=$ factor to account for structural system. See Table C11
F1 $=$ factor to account for flanged sections. When $b_{\text {eff }} / b_{w}=1.0$, factor F1 $=1.0$.
When $b_{\text {eff }} / b_{w}$ is greater than 3.0, factor $\mathrm{F} 1=0.80$.
For values of $b_{\text {eff }} / b_{w}$ between 1.0 and 3.0, interpolation may be used (see Table C12) where
$b_{\text {eff }}$ is defined in Section 5.2.2 of Concise Eurocode 2
$b_{w}=$ width of web
In I beams $b_{w}=$ minimum width of web in tensile area.
Concise: 5.2.2

F2 = factor to account for brittle partitions in association with long spans. Generally F2
$=1.0$ but if brittle partitions are liable to be damaged by excessive deflection, F2 should be determined as follows:
a) in flat slabs in which the longer span is greater than $8.5 \mathrm{~m}, \mathrm{~F} 2=8.5 / /_{\text {eff }}$ b) in beams and other slabs with spans in excess of $7.0 \mathrm{~m}, \mathrm{~F} 2=7.0 / \mathrm{l}_{\text {eff }}$ Values of F2 may be taken from Table C13
F3 $=$ factor to account for service stress in tensile reinforcement $=310 / \sigma_{\mathrm{s}} \leq 1.5$ Conservatively, if a service stress, $\sigma_{s^{\prime}}$ of 310 MPa is assumed for the designed area of reinforcement, $A_{s, \text { req }}$ then $F 3=A_{s, \text { prov }} / A_{s, \text { req }} \leq 1.5$.
More accurately, ${ }^{\ddagger}$ the serviceability stress, $\sigma_{s^{\prime}}$ may be estimated as follows:
$\sigma_{\mathrm{s}}=f_{\mathrm{yk}} / \gamma_{\mathrm{S}}\left[\left(G_{\mathrm{k}}+\psi_{2} Q_{\mathrm{k}}\right) /\left(1.25 G_{\mathrm{k}}+1.5 \mathrm{Q}_{\mathrm{k}}\right)\right]\left[A_{\mathrm{s}, \text { req }} / A_{\mathrm{s}, \mathrm{prov}}\right](1 / \delta)$
or
$\sigma_{\mathrm{s}}=\sigma_{\mathrm{su}}\left[A_{\mathrm{s}, \text { req }} / A_{\mathrm{s}, \mathrm{prov}}\right](1 / \delta)$
where
$\sigma_{\text {su }} \quad=$ the unmodified SLS steel stress, taking account of γ_{M} for reinforcement and of going from ultimate actions to serviceability actions
$=500 / \gamma_{\mathrm{s}}\left(G_{k}+\psi_{2} \mathrm{Q}_{\mathrm{k}}\right) /\left(1.25 G_{k}+1.5 \mathrm{Q}_{\mathrm{k}}\right)$ $\sigma_{\text {su }}$ may be estimated from Figure C3 as indicated by the blue arrow
$A_{\text {s,req }} / A_{\text {s,prov }}=$ area of steel required divided by area of steel provided.
$(1 / \delta) \quad=$ factor to 'un-redistribute' ULS moments so they may be used in this SLS verification (see Table C14)
Actual $/ / d=$ actual span divided by effective depth, d.

[^57]Table C10
Basic ratios of span-to-effective-depth, N, for members without axial compression

Required reinforcement, ρ	$f_{\text {ck }}$						
	20	25	30	35	40	45	50
0.30\%	25.9	32.2	39.2	46.6	54.6	63.0	71.8
0.40\%	19.1	22.4	26.2	30.4	35.0	39.8	45.0
0.50\%	17.0	18.5	20.5	23.0	25.8	28.8	32.0
0.60\%	16.0	17.3	18.5	19.8	21.3	23.1	25.2
0.70\%	15.3	16.4	17.4	18.5	19.6	20.6	21.7
0.80\%	14.8	15.7	16.6	17.6	18.5	19.4	20.4
0.90\%	14.3	15.2	16.0	16.8	17.7	18.5	19.3
1.00\%	14.0	14.8	15.5	16.3	17.0	17.8	18.5
1.20\%	13.5	14.1	14.8	15.4	16.0	16.6	17.3
1.40\%	13.1	13.7	14.2	14.8	15.3	15.8	16.4
1.60\%	12.9	13.3	13.8	14.3	14.8	15.2	15.7
1.80\%	12.7	13.1	13.5	13.9	14.3	14.8	15.2
2.00\%	12.5	12.9	13.3	13.6	14.0	14.4	14.8
2.50\%	12.2	12.5	12.8	13.1	13.4	13.7	14.0
3.00\%	12.0	12.3	12.5	12.8	13.0	13.3	13.5
3.50\%	11.9	12.1	12.3	12.5	12.7	12.9	13.1
4.00\%	11.8	11.9	12.1	12.3	12.5	12.7	12.9
4.50\%	11.7	11.8	12.0	12.2	12.3	12.5	12.7
5.00\%	11.6	11.8	11.9	12.1	12.2	12.4	12.5
Reference reinforcement ratio, ρ_{0}	0.45\%	0.50\%	0.55\%	0.59\%	0.63\%	0.67\%	0.71\%
Notes							
2 For T-sections ρ is the area of reinforcement divided by the area of concrete above the centroid of the tension reinforcement.							
3 The values for span-to-effective-depth have been based on Table 7.4 N in Eurocode 2, using $K=1$ (simply supported) and $\rho^{\prime}=0$ (no compression reinforcement required).							

Figure C2
Basic span-to-effective depth ratios, N, for $K=1, \rho^{\prime}=0$

Table C11
K factors to be applied to basic ratios of span-to-effective-depth

Structural system		\boldsymbol{K}
Beams	Slabs	
Simply supported beams	One- or two-way spanning simply supported slabs	1.0
End span of continuous beams	End span of one-way spanning continuous slabs, or two-way spanning slabs continuous over one long edge	1.3
Interior spans of continuous beams	Interior spans of continuous slabs	1.5
-	Flat slabs (based on longer span)	1.2
Cantilevers	Cantilever	0.4

Table C12
Factor F1, modifier for flanged beams

$\boldsymbol{b}_{\text {eff }} / b_{w}$	$\mathbf{1 . 0}$	$\mathbf{1 . 5}$	$\mathbf{2 . 0}$	$\mathbf{2 . 5}$	$\mathbf{\geq 3 . 0}$
Factor	1.00	0.95	0.90	0.85	0.80

Table C13
Factor F2, modifier for long spans supporting brittle partitions

Span, \mathbf{m}	$\boldsymbol{l}_{\text {eff }}$	$\leq \mathbf{7 . 0}$	$\mathbf{7 . 5}$	$\mathbf{8 . 0}$	$\mathbf{8 . 5}$	$\mathbf{9 . 0}$	$\mathbf{1 0 . 0}$	$\mathbf{1 1 . 0}$	$\mathbf{1 2 . 0}$	$\mathbf{1 3 . 0}$	$\mathbf{1 4 . 0}$	$\mathbf{1 5 . 0}$	$\mathbf{1 6 . 0}$
Flat slabs	$\mathbf{8 . 5 / \boldsymbol { l } _ { \text { eff } }}$	1.00	1.00	1.00	1.00	0.94	0.85	0.77	0.71	0.65	0.61	0.57	0.53
Beams and other slabs	$\mathbf{7 . 0 / \boldsymbol { l } _ { \text { eff } }}$	1.00	0.93	0.88	0.82	0.78	0.70	0.64	0.58	0.54	0.50	0.47	0.44

Figure C3
Determination of unmodified SLS, stress in reinforcement, $\sigma_{\text {su }}$

Table C14
$(1 / \delta)$ factor to be applied to unmodified $\sigma_{\text {su }}$ to allow for redistribution used

Average redistribution used	$\mathbf{2 0 \%}$	$\mathbf{1 5 \%}$	$\mathbf{1 0 \%}$	$\mathbf{5 \%}$	$\mathbf{0 \%}$	$\mathbf{- 5 \%}$	$\mathbf{- 1 0 \%}$	$\mathbf{- 1 5 \%}$	$\mathbf{- 2 0 \%}$	$\mathbf{- 2 5 \%}$	$\mathbf{- 3 0 \%}$
Redistribution ratio used, δ	$\mathbf{1 . 2 0}$	$\mathbf{1 . 1 5}$	$\mathbf{1 . 1 0}$	$\mathbf{1 . 0 5}$	$\mathbf{1 . 0 0}$	$\mathbf{0 . 9 5}$	$\mathbf{0 . 9 0}$	$\mathbf{0 . 8 5}$	$\mathbf{0 . 8 0}$	$\mathbf{0 . 7 5}$	$\mathbf{0 . 7 0}$
$\mathbf{(1 / \delta)}$	83%	87%	91%	95%	100%	105%	111%	118%	125%	133%	143%

Notes

1 Where coefficients from Table C2 have been used in design and where $Q_{k} \approx 1.25 G_{k}$, the coefficients in Table $C 2$ may be considered to represent moment distribution of:
-8% near middle of end span with pinned end support
-22% at first interior support, as a worst case
$+3 \%$ near middle of internal spans, as a worst case
-28% at interior supports, as a worst case.
2 Where coefficients from Table C3 have been used in design and where $Q_{k} \approx G_{k}$, the coefficients in Table C3 may be considered to represent moment redistribution of:
$+3 \%$ near middle of end span with pinned end support, as a worst case
$+9 \%$ near middle of internal spans, as a worst case
-15% at all interior supports.

C8 Control of cracking

Cracking may be controlled by restricting either maximum bar diameter or maximum bar spacing to the relevant diameters and spacings given in Table C15. The appropriate SLS stress in reinforcement, $\sigma_{s^{\prime}}$, may be determined as outlined for F3 in Section C7.

Minimum areas and aspects of detailing should be checked.

Table C15
Maximum bar diameters ϕ or maximum bar spacing for crack control

Steel stress (MPa) σ_{s}	Maximum bar size (mm)		OR	Maximum bar spacing (mm)	
	$w_{k}=0.3 \mathrm{~mm}$	$\mathrm{w}_{\mathrm{k}}=0.4 \mathrm{~mm}$		$w_{k}=0.3 \mathrm{~mm}$	$w_{k}=0.4 \mathrm{~mm}$
160	32	40		300	300
200	25	32		250	300
240	16	20		200	250
280	12	16		150	200
320	10	12		100	150
360	8	10		50	100
1 The 'normal' limit of 0.3 mm may be relaxed to 0.4 mm for XO and $\mathrm{XC1}$ exposure classes if there is no specific requirement for appearance.					
2 Table assumptions include $\mathrm{c}_{\text {nom }}=25 \mathrm{~mm}$ and $f_{\mathrm{ct}, \text { eff }}\left(=f_{\mathrm{ctm}}\right)=2.9 \mathrm{MPa}$.					

C9 Design for axial load and bending

C9.1 General

In columns, design moments $M_{E d}$ and design applied axial force $N_{\text {Ed }}$ should be derived from analysis, consideration of imperfections and, where necessary, 2nd order effects.

It is necessary to calculate effective lengths in order to determine whether a column is slender (see Eurocode 2, Cl. 5.8.3.2 and Expression (5.15)). The effective length of most columns will be $l / 2<I_{0}<l$ (see Eurocode 2 Figure 5.7 f). PD $6687^{[6]} \mathrm{Cl}$. 2.10 suggests that using the procedure outlined in Eurocode 2 (5.8.3.2(3) and 5.8.3.2(5)) leads to similar effective lengths to those tabulated in BS 8110 ${ }^{[7]}$ as reproduced below as Table C16. Experience suggests that these tabulated values are conservative.

Table C16
Effective length l_{0} : conservative factors for braced columns

End condition at top	End condition at bottom		
	1	2	3
1	0.75	0.80	0.90
2	0.80	0.85	0.95
3	0.90	0.95	1.00
Key			
Condition 1	Column connected monolithically to beams on each side that are at least as deep as the overall depth of the column in the plane considered		
	Where the column is connected to a foundation this should be designed to carry moment in order to satisfy this condition		
Condition 2 Column connected monolithically to beams on each side that are shallower than the overall depth of the column in the plane considered by generally not less than half the column depth			
Condition 3 Column connected to members that do not provide more than nominal restraint to rotation			
Note			
Table taken from Manual for the design of concrete building structures to Eurocode 2 ${ }^{[35]}$. The values are those used in BS 8110: Part 1: 1997 ${ }^{[7]}$ for braced columns. These values are close to those values that would be derived if the contribution from adjacent columns were ignored.			

C9.2 Design by calculation

Assuming two layers of reinforcement, A_{51} and $A_{s 2}$, the total area of steel required in a column, $A_{s^{\prime}}$ may be calculated as shown below.

- For axial load
$A_{\mathrm{sN}} / 2=\left(N_{\mathrm{Ed}}-\alpha_{\mathrm{cc}} \eta f_{\mathrm{ck}} b d_{\mathrm{c}} / \gamma_{\mathrm{C}}\right) /\left(\sigma_{\mathrm{sc}}-\sigma_{\mathrm{st}}\right)$
where
$A_{S N}=$ total area of reinforcement required to resist axial load using this method.

$$
A_{\mathrm{sN}}=A_{\mathrm{s} 1}+A_{\mathrm{s} 2} \text { and } A_{\mathrm{s} 1}=A_{\mathrm{s} 2}
$$

where
$A_{\mathrm{s} 1}\left(A_{\mathrm{s} 2}\right)=$ area of reinforcement in layer 1 (layer 2)
$N_{\text {Ed }}=$ design applied axial force
$\alpha_{c \mathrm{cc}}=0.85$

Concise:
Fig. 6.3

Concise:
where
$\lambda \quad=0.8$ for \leq C50/60
$x \quad=$ depth to neutral axis
$h \quad=$ height of section
$\sigma_{\mathrm{sc}}\left(\sigma_{\mathrm{st}}\right)=$ stress in compression (and tension) reinforcement

- For moment
$A_{\mathrm{sM}} / 2=\left[M_{\mathrm{Ed}}-\alpha_{\mathrm{cc}} \eta f_{c k} b d_{c}\left(h / 2-d_{c} / 2\right) / \gamma_{\mathrm{C}}\right] /\left[\left(h / 2-d_{2}\right)\left(\sigma_{\mathrm{sc}}+\sigma_{\mathrm{st}}\right)\right]$
where
$A_{\mathrm{SM}}=$ total area of reinforcement required to resist moment using this method

$$
A_{\mathrm{sM}}=A_{\mathrm{s} 1}+A_{\mathrm{s} 2} \text { and } A_{\mathrm{s} 1}=A_{\mathrm{s} 2}
$$

Where reinforcement is not concentrated in the corners, a conservative approach is to calculate an effective value of d_{2} as illustrated in Figures (4a) to e).

- Solution: iterate x such that $A_{S N}=A_{S M}$

C9.3 Rectangular column charts

Alternatively A_{s} may be estimated from column charts.
Figures (4a) to (4e) give non-dimensional design charts for symmetrically reinforced rectangular columns where reinforcement is assumed to be concentrated in the corners.

In these charts:
$\alpha_{\text {cc }}=0.85$
$f_{c k} \leq 50 \mathrm{MPa}$
$f_{y k} \leq 500 \mathrm{MPa}$
Simplified stress block assumed.
$A_{s}=$ total area of reinforcement required
$=\left(A_{s} f_{\mathrm{yk}} / b h f_{c k}\right) b h f_{c k} / f_{\mathrm{yk}}$
where
$\left(A_{s} f_{y k} / b h f_{c k}\right)$ is derived from the appropriate design chart interpolating as necessary between charts for the value of d_{2} / h for the section.
$b=$ breadth of section
$h=$ height of section
Where reinforcement is not concentrated in the corners, a conservative approach is to calculate an effective value of d_{2} as illustrated in Figures $(4 a)$ to e).
$d_{2}=$ effective depth to steel in layer 2

Figure C4a)
Rectangular columns $d_{2} / h=0.05$

Figure C4b)
Rectangular columns $d_{2} / h=0.10$

Figure C4c)
Rectangular columns $d_{2} / h=0.15$

Figure C4d)
Rectangular columns $d_{2} / h=0.20$

Figure C4e)
Rectangular columns $d_{2} / h=0.25$

C9.4 Biaxial bending in rectangular columns

As a first step, separate design in each principal direction, disregarding biaxial bending, may be undertaken. No further check is necessary if $0.5 \leq \lambda_{y} / \lambda_{z} \leq 2.0$ and, for rectangular sections, 0.2 $\geq\left(e_{\mathrm{y}} / h_{\mathrm{eq}}\right) /\left(e_{\mathrm{z}} / b_{\text {eq }}\right)$ or $\left(e_{\mathrm{y}} / h_{\text {eq }}\right) /\left(e_{\mathrm{z}} / b_{\text {eq }}\right) \geq 5.0$. Otherwise see Section 5.6.3 of Concise Eurocode 2.

For square columns $\left(e_{\mathrm{y}} / h_{\text {eq }}\right) /\left(e_{\mathrm{z}} / b_{\text {eq }}\right)=M_{\text {Edy }} / M_{\text {Edz }}$.

C9.5 Circular column charts

In a similar manner to C9.3, the area of reinforcement for circular columns A_{s} may be estimated from the charts in Figures C5a) to C5d).

In these charts:
$\alpha_{c \mathrm{CC}}=0.85$
$f_{c k} \leq 50 \mathrm{MPa}$
$f_{y k}=500 \mathrm{MPa}$
$A_{\mathrm{s}}=$ total area of reinforcement required
$=\left(A_{s} f_{y k} / h^{2} f_{c k}\right) h^{2} f_{c k} / f_{y k}$
where $\left(A_{s} f_{\mathrm{yk}} / h^{2} f_{\mathrm{ck}}\right)$ is derived from the appropriate design chart interpolating as necessary.
$d / h=$ effective depth/overall diameter.

C9.6 Links

[^58]

Figure C5a)
Circular columns $d / h=0.6$

Figure C5b)
Circular columns $d / h=0.7$

Figure C5c)
Circular columns $d / h=0.8$

Figure C5d)
Circular columns $d / h=0.9$

Eurocode 2 resources

Publications

Concise Eurocode 2

CCIP-005, The Concrete Centre, 2006
A handbook for the design of in-situ concrete buildings to Eurocode 2 and its UK National Annex

How to design concrete structures using Eurocode 2

CCIP-004, The Concrete Centre, 2006
Guidance for the design and detailing of a broad range of concrete elements to Eurocode 2
Economic concrete frame elements to Eurocode 2
CCIP-025, The Concrete Centre, 2009
A selection of reinforced concrete frame elements in multi-storey buildings

Precast Eurocode 2: Design manual

CCIP-014, British Precast Concrete Federation, 2008
A handbook for the design of precast concrete building structures to Eurocode 2 and its National Annex
Precast Eurocode 2: Worked examples
CCIP-034, British Precast Concrete Federation, 2008
Worked examples for the design of precast concrete buildings to Eurocode 2 and its National Annex
Concrete buildings scheme design manual
CCIP-051, The Concrete Centre 2009
A handbook for the ISructE chartered membership examination, based on EC2
Properties of concrete for use in Eurocode 2
CCIP-029, The Concrete Centre, 2008
How to optimize the engineering properties of concrete in design to Eurocode 2
Standard method of detailing structural concrete
Institution of Structural Engineers/The Concrete Society, 2006
A manual for best practice
Manual for the design of concrete building structures to Eurocode 2
Institution of Structural Engineers, 2006
A manual for the design of concrete buildings to Eurocode 2 and its National Annex
BS EN 1992-1-1, Eurocode 2 - Part 1-1: Design of concrete structures General rules and rules for buildings
British Standards Institution, 2004
National Annex to Eurocode 2 - Part 1-1
British Standards Institution, 2005

Software

RC spreadsheets: V3. User guide and CD
CCIP-008. The Concrete Centre, 2006
Excel spreadsheets for design to BS 8110 and Eurocode 2 and its UK National Annex

Websites
 Eurocode 2 - www.eurocode2.info
 Eurocodes Expert - www.eurocodes.co.uk
 The Concrete Centre - www.concretecentre.com Institution of Structural Engineers - www.istructe.org

Members of the Steering Group

John Mason	Alan Baxter \& Associates (Chairman)
Stuart Alexander	WSP Group plc
Pal Chana	Mineral Products Association - Cement
Charles Goodchild	The Concrete Centre
Tony Jones	Arup
Andy Lyle	NRM Consultants
Richard Moss	Powell Tolner Associates
Nary Narayanan	Clark Smith Partnership
Richard Shipman	DCLG
Robert Vollum	Imperial College, University of London
Russ Wolstenholme	WS Atkins \& DTI Project Officer
Rod Webster	Concrete Innovation and Design

Members of the Concrete Industry Eurocode 2 Group (CIEG)

John Moore	Consultant (Chairman)
Clive Budge	British Precast Concrete Federation
Pal Chana	Mineral Products Association - Cement
John Clarke	The Concrete Society
Colin Cleverly	Construct
Charles Goodchild	The Concrete Centre
Haig Gulvanessian	BRE
Geoff Harding	DCLG
Tom Harrison	Mineral Products Association - Concrete
Tony Jones	Arup
John Mason	Alan Baxter \& Associates
Richard Moss	Powell Tolner Associates
Nary Narayanan	Clark Smith Partnership
Richard Shipman	DCLG
Martin Southcott	Consultant
Russ Wolstenholme	WS Atkins
Rod Webster	Concrete Innovation and Design

Initial section drafts

1	Introduction	Nary Narayanan
2 Analysis, actions and load arrangements	Nary Narayanan	
3	Slabs	Charles Goodchild
4 Beams	Charles Goodchild, Rod Webster	
5	Columns	Tony Jones, Jens Tandler
6 Walls	Tony Jones, Jens Tandler	
Appendix A: Derivation of formulae	Charles Goodchild, Rod Webster, Owen Brooker	
Appendix B: Serviceability limit state	Charles Goodchild, Nary Narayanan	
Appendix C: Design aids	Charles Goodchild, Rod Webster	

Worked Examples to Eurocode 2: Volume 1

This publication gives examples of the design to Eurocode 2 of common reinforced concrete elements in reinforced concrete framed buildings.

With extensive clause referencing, readers are guided through design examples to Eurocode 2 and other relevant Eurocodes and references. The publication, which includes design aids, aims to help designers with the transition to design to Eurocodes.

Volume 1 Worked Examples to Eurocode 2 is part of a range of resources available from The Concrete Centre to assist engineers with design to Eurocodes. For more information visit www.eurocode2.info.

Charles Goodchild is principal structural engineer for The Concrete Centre where he promotes efficient concrete design and construction. Besides project managing and authoring this publication he has undertaken many projects to help with the introduction of Eurocode 2 to the UK.

CCIP-041
Published December 2009
ISBN 1-904818-84-7
Price Group P
© MPA - The Concrete Centre
Riverside House, 4 Meadows Business Park,
Station Approach, Blackwater, Camberley, Surrey GU17 9AB
Tel: +44((0) 126606800 Fax: +44 (0)1276 606801
www.concretecentre.com

[^0]: \# This could also be determined from Figure 2.5 or by determining that $g_{k}>4.5 q_{k}$

[^1]: ${ }^{\mp}$ This could also be determined from Figure 2.5 or by determining that $g_{k}>4.5 q_{k}$

[^2]: \ddagger Variable actions may be subjected to reduction factors: α_{A}, according to the area supported $\left(m^{2}\right), \alpha_{A}=1.0-\mathrm{A} / 1000 \geq 0.75$.

[^3]: Notes
 $\gamma_{G K, \text { inf }} g_{k}=1.0 g_{k}$ may be critical in terms of curtailment of top bars $B A$.

[^4]: ₹ See Appendix B1.5

[^5]: \# Designers may choose to use another form of this equation: $z / d=0.5+(0.25-0.882 K)^{0.5} \leq 0.95$

[^6]: ${ }^{\mp}$ See Appendix B1.5
 ${ }^{5}$ The use of Table C3 implies certain amounts of redistribution, which are defined in Table C14.

[^7]: \#Detail MS2 of SMDSC[9], suggests 50\% of T1 legs of U-bars should extend 0.31 (= say 1800 mm) from face of support by placing U-bars alternately reversed.

[^8]: ${ }^{\ddagger}$ Maximum $z=0.947$ at mid-span and greater towards support.

[^9]: ${ }^{\ddagger}$ In this case, assuming the patch load analysis is accurate, taking the weight of solid area to be spread over the whole span would overestimate span and support moments by $6-8 \%$ and shears at the solid/rib interface by $8-9 \%$. lgnoring the weight of the solid area in the analysis of this ribbed slab would lead to underestimates of span moments by 1%, support moments by 3% and no difference in the estimation of shear at the solid shear interface. The latter may be the preferred option.

[^10]: ${ }^{5}$ Note 1: A ribbed slab need not be treated as discrete elements provided rib spacing $\leq 1500 \mathrm{~mm}$, depth of the rib $\leq 4 \times$ its width, the flange is $>0.1 \times$ distance between ribs and transverse ribs are provided at a clear spacing not exceeding $10 \times$ overall depth of the slab.
 Note 2: As $7.5 \mathrm{~m}<85 \%$ of 9.0 m , coefficients presented in Concise Eurocode $2^{[5]}$ are not applicable.

[^11]: \mp Section 2.18 of PD $6687^{[6]}$ suggests that ρ in T-beams should be based on the area of concrete above the centroid of the tension steel.

[^12]: \ddagger See Appendix B1.5
 ${ }^{5}$ In analysis, 15% redistribution of support moments led to redistribution of span moments:
 $\delta=61.7 / 65.3=0.94$.
 \# Both $A_{\text {s.prov }} / A_{\text {s.req }}$ and any adjustment to N obtained from Exp. (7.16a) or Exp. (7.16b) is restricted to 1.5 by Note 5 to Table NA. 5 in the UK NA. Therefore, 310/ σ_{5} is restricted to 1.5.

[^13]: * An alternative method would have been to calculate the reinforcement required to resist $M_{E d}$ at the shift distance, a_{p}, from the interface.

[^14]: \# Both $A_{\text {s.prov }} / A_{\text {s,req }}$ and any adjustment to N obtained from Exp. (7.16a) or Exp. (7.16b) is restricted to 1.5 by Note 5 to Table NA. 5 in the UK NA.

[^15]: ${ }^{\ddagger}$ Whilst this would comply with the requirements of Eurocode 2, it is common practice to take bottom bars $0.5 \times$ a tension lap beyond the centreline of support
 ($=250 \mathrm{~mm}$ beyond the centreline of support; see model detail MS1 in SMDSC[9] $)$.
 ${ }^{5}$ It is usual to curtail 50% of the required reinforcement at 0.21 and to curtail the remaining 50% at 0.31 or line of zero moment (see model detail MS2 in SMDSC ${ }^{[9]}$).

[^16]: \#The all-spans-loaded case with 20% redistribution of support moments would also have been acceptable but would have involved some analysis. The use of Table 5.9 in BS EN 1992-1-2 (Fire resistance of solid flat slabs) is restricted to where redistribution does not exceed 15%; the coefficients presume 15% redistribution at supports.

[^17]: ${ }^{5}$ The Concrete Society's TR 64[27] recommends a percentage, k_{1}, based on I_{y} / I_{z}
 Assuming $I_{y} / I_{z}=1.5$ the distribution of moments in the long span between column strips and middle strips is given as 70% and 30%.

[^18]: \ddagger As punching shear force (rather than a beam shear force) 'effective' span is not appropriate.
 ${ }^{5}$ Cladding and strip of slab beyond centre of support.
 \# Otherwise for flat slabs 8.5/9.5 = 0.89 as span $>8.5 \mathrm{~m}$.

 * See Appendix B1.5

[^19]: ${ }^{\ddagger}$ Note: Continuity into columns will reduce sagging moments and criticality of deflection check (see Figures 3.26 and 3.27).
 ${ }^{5}$ Note requirement for at least 2 bars in bottom layer to carry through column.
 \# The hogging moment could have been considered at face of support to reduce the amount of reinforcement required.

[^20]: \# The hogging moment could have been considered at face of support to reduce the amount of reinforcement required. This should be balanced against the effect of the presence of a 200×200 hole at some supports which would have the effect of increasing K but not unduly increasing the total amount of reinforcement required in the column strip (a 1.5% increase in total area would been required).

[^21]: \# The hogging moment could have been considered at face of support to reduce the amount of reinforcement required.

[^22]: \# Column C2 is taken to be an internal column. In the case of a penultimate column, an additional elastic reaction factor should have been considered.

[^23]: ${ }^{5}$ At the perimeter of the column, $v_{R d, m a x}$ assumes the strut angle is 45°, i.e. that $\cot \theta=1.0$. Where $\cot \theta=<1.0, v_{\text {Rd,max }}$ is available from Table C7.
 \#The values used here for $\rho_{\mathrm{ly}}, \rho_{\mathrm{lz}}$ ignore the fact that the reinforcement is concentrated over the support. Considering the concentration would have given a higher value of $V_{\text {Rd,c }}$ at the expense of further calculation to determine $\rho_{l y}, \rho_{l z}$ at 3 d from the side of the column.

 * $v_{\text {Rd, }, ~}$ for various values of d and ρ_{1} is available from Table C6.

[^24]: ${ }^{\ddagger}$ Clause 6.4.5 provides Exp. (6.52), which by substituting $v_{E d}$ for $v_{R d, c}$, allows calculation of the area of required shear reinforcement, $A_{s w}$ for the basic control perimeter, u_{1}.
 ${ }^{5}$ The same area of shear reinforcement is required for all perimeters inside or outside perimeter u_{1}. See Commentary on design, Section 3.4.14. Punching shear reinforcement is also subject to requirements for minimum reinforcement and spacing of shear reinforcement (see Cl. 9.4.3).

[^25]: $\ddagger v_{R d, c}$ for various values of d and ρ_{1} is available from Table C6.

[^26]: § See Commentary on design Section 3.4.14. Punching shear reinforcement is also subject to requirements for minimum reinforcement and spacing of shear reinforcement (see Cl. 9.4.3).

[^27]: ${ }^{\ddagger} v_{R d, c}$ for various values of d and ρ_{1} is available from Table C6.

[^28]: \ddagger See Commentary on design Section 3.4.14. Punching shear reinforcement is also subject to requirements for minimum reinforcement and spacing of shear reinforcement.

[^29]: $\ddagger K^{\prime}$ is limited to 0.208 . However, if, as is usual practice in the UK, x / d is limited to $0.45, z / d$ is as a consequence limited to 0.82 and K^{\prime} to 0.168 .

[^30]: ${ }^{5}$ Where applied actions are predominantly uniformly distributed, shear may be checked at d from the face of support. See also Section 4.2.11.
 \# The absolute maximum for $v_{R d, \text { max }}$ (and therefore the maximum value of $v_{E d}$) would be 5.28 MPa when cot θ would equal 1.0 and the variable strut angle would be at a maximum of 45°.
 *For determination of $V_{\text {Rd,max }}$ see Section 4.2.10.
 \# As maximum spacing of links is 294 mm, changing spacing of links would appear to be of limited benefit.

[^31]: ${ }^{\ddagger}$ Note: 350×350 is a minimum for columns requiring a fire resistance of 120 minutes.

[^32]: ${ }^{5}$ The distance I_{0} is described as the distance between points of zero moment, 'which may be obtained from Figure 5.2'. In this case $I_{0}=0$. (see Figure 4.11).

[^33]: ${ }^{\ddagger}$ Anchorage lengths may be obtained from published tables. In this instance, a figure of 900 mm may be obtained from Table 13 of Section 10 of How to design concrete structures using Eurocode 2.
 ${ }^{5}$ The distance I_{0} is described as the distance between points of zero shear, which may be obtained from Figure 5.2'. From the analysis, I_{0} could have been taken as 7200 mm .

[^34]: $\ddagger 2.18$ of PD $6687^{[6]}$ suggests that ρ in T sections should be based on the area of concrete above the centroid of the tension steel.

[^35]: ${ }^{\ddagger} c f .126 .7 \mathrm{kN} / \mathrm{m}$ from analysis of slab ($63.2 \mathrm{kN} / \mathrm{m}+63.5 \mathrm{kN} / \mathrm{m}$). See Figure 3.12 .

[^36]: $\ddagger 2.18$ of PD $6687^{[6]}$ suggests that ρ in T sections should be based on the area of concrete above the centroid of the tension steel.
 ${ }^{5}$ See Appendix B1.5

[^37]: ${ }^{\ddagger}$ Both $A_{\text {s.prov }} / A_{\text {s.req }}$ and any adjustment to N obtained from Exp. (7.16a) or Exp.
 (7.16b) is restricted to 1.5 by Note 5 to Table NA. 5 in the UK NA.

[^38]: $\ddagger 2.18$ of PD $6687^{[6]}$ suggests that ρ in T sections should be based on the area of concrete above the centroid of the tension steel.
 Ssee Appendix B1.5
 \# 12 no. H2O B (3768 mm^{2}) used to suit final arrangement of links.

[^39]: $\ddagger 12$ no. H25 used to suit final arrangement of links.

[^40]: ${ }^{S}(2000 \mathrm{~mm}-2 \times 25 \mathrm{~mm}$ cover -10 mm diameter $) / 175=11$ spaces, $\therefore 12$ legs.

[^41]: \ddagger In this case, at the perimeter of the column, it is assumed that the strut angle is 45°, i.e. that $\cot \theta=1.0$. In other cases, where $\cot \theta<1.0, v_{R d, m a x}$ is available from Table C7.

[^42]: ${ }^{5}$ See Section 3.4.14 with respect to possible limit of 2.0 or 2.5 on $V_{E d} / V_{\text {Rd,c }}$ within punching shear requirements.
 \# $v_{\text {Rd, }, ~}$ for various values of d and ρ_{1} is available from Table C6.

[^43]: * The same area of shear reinforcement is required for all perimeters inside or outside perimeter u_{1}. See Section 3.4.13.

 Punching shear reinforcement is also subject to requirements for minimum reinforcement and spacing of shear reinforcement (see Cl. 9.4.3). The centre of links from the centreline of the column shown in Figure 4.21 have been adjusted to accommodate a perimeter of links at between 0.3 d and 0.5 d from the column face.

[^44]: ${ }^{\ddagger}$ According to BS EN 1991-1-1 6.3.1.2 ${ }^{[11]}$ the imposed load on the roof is category H and therefore does not qualify for reduction factor α_{n}.

[^45]: \#FEM 23 = Fixed end moment in span 23 at grid 2.

[^46]: ₹ PD 6687 states that to allow for cracking, the contribution of each beam should be taken as 2EI/I beam

[^47]: \ddagger Using design actions to Exp. (6.10) would have resulted in a requirement for $8500 \mathrm{~mm}^{2}$.

[^48]: \ddagger On first pass the default value for B is used. It should be noted that in the final design $\omega=A_{s} f_{y d} / A_{c} f_{c d}=6432 \times(500 / 1.15) /\left(350^{2} \times 30 \times 0.85 / 1.5\right)=$ $2796 / 2082=1.34$. So $B=(1+2 \omega)^{0.5}=(1+1.34)^{0.5}=1.92$ and the column would not have been deemed 'slender'. $B=1.1$ relates approximately to a column with $f_{c k}=30 \mathrm{MPa}$ and $\rho=0.4 \%$.

 * PD 6687 states that to allow for cracking, the contribution of each beam should be taken as 2EI/I beam

[^49]: \# Includes storeys supporting Categories A (residential and domestic), B (office), C (areas of congregation) and D (shopping), but excludes E (storage and industrial), F (traffic), G (traffic) and H (roofs).

[^50]: ${ }^{\ddagger}$ Assuming centreline of wall A is 50 mm to right hand side of grid.
 \#Had there been significant torsion this would have been resolved into +/-forces in a couple based on the shear walls.

[^51]: ${ }^{\text { }}$ For medium-rise shear walls there are a number of methods of design. Cl. 9.6.1 suggests strut-and-tie (see Volume 2 of these worked examples ${ }^{[30]}$). Another method ${ }^{[26]}$ is to determine elastic tensile and compression stresses from $N_{E d} / b L$ $+/-6 M_{E d} / b L^{2}$ and determine reinforcement requirements based on those maxima. The method used here assumes a couple, consisting of 1.0 m of wall either end of the wall. The reinforcement in tension is assumed to act at the centre of one end and the concrete in compression (with a rectangular stress distribution) acts at the centre of the other end. The forces generated by the couple add or subtract from the axial load in the 1 m ends of the walls. The method is useful for typical straight shear walls of say 2.5 to 5.0 m in length.

[^52]: ${ }^{5}$ As H_{i} derives mainly from permanent actions its resulting effects are considered as being a permanent action too.

[^53]: ₹ FEM: fixed end moment

[^54]: ${ }^{\ddagger}$ Assuming wind load is lead variable action.

[^55]: \ddagger Strictly incompatible with $Q_{k}=0$. However, allow $Q_{k}=0$.

[^56]: ${ }^{\mp}$ See Appendix B1.5

[^57]: ₹ See Appendix B1.5

[^58]: Links in columns should be at least 8 mm or maximum diameter of longitudinal bars/4 in diameter and adjacent to beams and slabs spaced at the least of:

 - 12 times the minimum diameter of the longitudinal bar,
 - 60% of the lesser dimension of the column, or

 ■ 240 mm .

