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Abstract

We use a panel of county-level location data derived from cellular devices in the U.S.
to track travel behavior and its relationship with COVID-19 cases in the early stages
of the outbreak. We find that travel activity dropped significantly as case counts rose
locally. People traveled less overall, and they specifically avoided areas with relatively
larger outbreaks, independent of government restrictions on mobility. The drop in
activity limited exposure to out-of-county virus cases, which we show was important
because such case exposure generated new cases inside a county. This suggests the
outbreak would have spread faster and to a greater degree had travel activity not
dropped accordingly. Our findings imply that the scale and geographic network of
travel activity and the travel response of individuals are important for understanding
the spread of COVID-19 and for policies that seek to control it.
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1 Introduction

In the early stages of the COVID-19 outbreak, people drastically reduced their travel. Gov-

ernments enacted numerous policies including stay-at-home orders, business closures, and

limits on mass gatherings to reduce exposure and slow the spread of the virus. The change in

travel behavior may reflect the implementation of these policies but also may be attributed

to people responding to available information about the number of new coronavirus cases

in their proximity. How did people reduce their travel behavior during the onset of the

outbreak? Did they avoid places with larger outbreaks? And how did this response affect

exposure and slow the spread of the disease?

In this paper, we use data on the movement of cell phones between U.S. counties to study

the change in travel behavior and exposure in the early stages of the outbreak. The data

provide daily measures of the network of bilateral travel flows between counties.1

We use these data to construct a mobility index for each county and examine how this

index changed in response to government policies and the emergence of local cases. While

government policies reduced mobility, travel also declined in response to the number of local

cases in the county. This provides initial evidence that people adjusted travel behavior

based on available information about the geography of the outbreak. Importantly, failure

to account for this behavioral response would lead to overestimates of the effectiveness of

shutdown orders on travel.

People not only traveled less, but also avoided locations that had higher numbers of

cases. Using gravity regressions, we show that flows between locations declined in response

to increased cases in both origin and destination.2 This result holds even when controlling

for government orders. Cases alone predict much of the decline in mobility, although they

fail to capture the rise in travel that started in mid April.

1The measures were constructed by Couture et al. (2020) using cell phone data provided by PlaceIQ and
generously made publicly available at https://github.com/COVIDExposureIndices.

2As we will explain, the notions of “origin” and “destination” are somewhat blurred in the cellular device
data, although we use the terminology for expositional convenience.
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Changes in mobility had large effects on overall virus exposure. We construct a measure

of nonlocal (out-of-county) exposure as a sum of flows between counties that is weighted

by the number of confirmed cases in the counties visited. We then compare the observed

overall exposure to a counterfactual experiment that assumes mobility never changed from the

average in the pre-pandemic period. In the counterfactual, exposure would have been twice as

high at the end of April had people not changed their travel behavior. Furthermore, when we

decompose this reduction in exposure, we find that roughly one third of the difference came

from changes in the travel network, as opposed to overall declines in travel. The important

policy implication of this result is that providing accurate timely information about the

geography of an outbreak should be a policy priority.

The reduction in nonlocal exposure matters because such exposure led to increases in

new COVID-19 cases. Using both least squares and instrumental variables methods, we find

that a 1 percent increase in the exposure measure led to a 0.12 to 0.20 percent increase in

new cases. This is a direct effect estimated in the early stages and does not reflect the long-

run dynamics of the pandemic. Changes in travel patterns likely had significant benefits in

reducing the spread of the disease by decreasing exposure.

Finally, we provide a simple model of the spatial dynamics of an outbreak. The model is

used to illustrate the importance of the connectedness of locations and the mobility response

of individuals to the geographic spread of new cases early in a pandemic. The important

takeaway from the illustration is that connectedness between counties can both speed the

spread in the short run and perpetuate the outbreak over the longer run, while a mobility

response mitigates both of these effects. The model does not include important features of

an epidemiological model such as recovery rates, deaths, or immunity, that would determine

the arc of a disease outbreak. However, it is suggestive that reductions in mobility will reduce

aggregate infections.

Our findings complement other recent research that has looked at declines in mobility

during the outbreak using daily location data. Gupta et al. (2020) find that government
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policies led to significant declines in mobility, while Engle et al. (2020) find that policy as

well as local case levels reduced mobility. There is also recent evidence that reductions in

mobility and government policies mitigated the outbreak including work by Courtemanche

et al. (2020), Fang et al. (2020), Fenichel et al. (2020), and Kraemer et al. (2020). In

contrast to these studies, our research explicitly considers changes to the travel network in

addition to declines in mobility levels. In addition, we are able to disentangle the role of

policy interventions from behavioral responses to information.

Glaeser et al. (2020) study the effect of mobility on case growth using measures of within-

metropolitan area travel activity for several large cities in the U.S., focusing on New York

City. They find that mobility drops in response to cases, but when instrumenting for changes

in mobility, higher within-city mobility drives faster case growth at the neighborhood level.

Our study focuses on regional trip activity instead of neighborhoods, and we construct a

measure of case exposure in addition to generic trip rates, which we find is an important

determinant of case growth.

Other researchers have looked at the role of networks during the pandemic following work

by Christakis and Fowler (2010) and Bailey et al. (2018). Kuchler et al. (2020) show that

social networks in New York and Lodi, Italy predict the spread of COVID-19, while Coven

and Gupta (2020) perform a similar analysis for New York, but also consider differences

in mobility among demographic groups. In contrast to these papers, we consider how the

observed travel network changed in response to the outbreak, and how this affected the spread

of the disease. Monte (2020) also shows how the connectedness of counties shrank during the

pandemic, but does not explicitly study the effects on exposure or case growth.

Lastly, our research connects other work that seeks to inform policies that restrict mobility.

For example, Atalay et al. (2020) and Dingel and Neiman (2020) study the ability of workers

to work from home in different occupations and industries. Our work, along with papers like

these, can also help inform current theoretical research that seeks to understand the tradeoff

between controlling the outbreak and economic welfare, including work by Farboodi et al.
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(2020), Guerrieri et al. (2020), and Kaplan et al. (2020). These papers do not directly

address the spatial dynamics of the outbreak and the importance of travel behavior.

2 Data Description

There are two main datasets used in our analysis. The first is the record of COVID-19

daily case diagnoses by county as reported by Johns Hopkins University.3 We combine this

with a listing of state-level activity restrictions including stay-at-home orders, closure of

“nonessential” businesses and services, and restrictions on mass gatherings.4 The second is

a unique record of spatial travel activity as registered by cellular device locations, which we

will describe in detail.

2.1 Case Prevalence

First we present some basic statistics from the daily COVID-19 case data.5 In the spring

of 2020, the early phase of the pandemic, COVID-19 cases were relatively concentrated in

the Northeast U.S., and especially the New York City metro area, although there was some

presence of cases throughout the country.

Table 1 reports summary statistics on case prevalence in terms of per capita cumulative

diagnoses and rates of new diagnoses in each month of our period of interest. The distribution

of cases is skewed with a long right tail, with many counties having low rates but some having

major outbreaks. The ratio of the 99th percentile to the median per capita infection rate is

at or above 19 for each month in our sample. The mass of the distribution shifted to the right

3Johns Hopkins University Coronavirus Resource Center. Data were retrieved from
https://coronavirus.jhu.edu/.

4These data were collected by the Institute for Health Metrics and Evaluation at the University of Wash-
ington. They were downloaded from https://covid19.healthdata.org/.

5We have taken care to adjust the data for changes in reporting format or geography (e.g., counties that
report together in some periods and separately in others) and to exclude outliers and values outside the
domain of possible outcomes (e.g., negative case growth). Nevertheless, the data are reported subject to
some discretion by health care providers and state and local health departments that introduces unavoidable
measurement error.

5



Table 1: Summary of Case Prevalence
Time Mean SD 25th 50th 75th 90th 99th

Cases per 1k Residents
Last Week of March 0.150 0.459 0.022 0.059 0.135 0.278 1.413
Last Week of April 1.582 2.991 0.351 0.716 1.548 3.280 16.499
Last Week of May 3.000 5.087 0.685 1.414 3.252 6.757 26.790

New Cases in Preceding 2 Weeks
Last Week of March 65.99 578.89 0.71 3.00 13.00 60.00 843.00
Last Week of April 192.08 893.21 4.29 15.93 70.14 267.43 4,318.71
Last Week of May 150.99 644.21 4.71 17.79 78.43 278.57 2,350.00

NOTES: The table reports summary statistics of COVID-19 cases per capita and new case growth as reported by Johns
Hopkins University.

as the virus percolated throughout the country. The peak of new infections was in early to

mid April (although these rates have been surpassed by additional outbreaks in the summer

of 2020).

Our study will examine the implications of the skewed geographic pattern of virus preva-

lence on exposure and the spread of the virus across regions.

2.2 Measuring Travel Behavior From Cellular Devices

Our measure of mobility is an anonymized summary of movement between counties derived

from a microdata record of cellular device locations. The measure was constructed and

generously made publicly available by Couture et al. (2020) (hereafter, CDGHW) using data

provided by analytics firm PlaceIQ. The individual device location “pings” are aggregated at

the county level.6 We often refer to the cross-county travel behavior depicted by this dataset

interchangeably as “mobility” or “spatial activity.”

Specifically, we observe: (i) the number of devices registering in a county each day, and (ii)

the fraction of those devices that registered in each county elsewhere in the U.S. sometime

in the preceding 14 days. For convenience we will refer to the current county as “home”

and the previous county as the “visit(ed)” county because that is how the public data were

6Using the same underlying cellular device data, CDGHW also maintain a measure of device exposure
defined by points of interest (shops, parks, restaurants, etc.). Some of the work cited above studies activity
in the pandemic by point of interest. In this article, we have chosen to focus on regional travel activity.
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constructed by CDGHW, although as we will explain, the notions of origin and destination

are not completely straightforward. In our analysis, we use data running from January 20,

2020 until May 25, 2020.7

To protect confidentiality and to limit the size of matrix, CDGHW limited the reported

counties to those that had at least 1,000 devices registering over a one week period from

November 2019 to early January 2020. The resulting dataset consists of a time-consistent

list of 2,018 counties in the U.S., comprising 4,072,324 possible pairs, some of which may be

zero if no device from the home county has visited the destination county in the previous two

weeks. The average county exhibits 1,732 unique nonzero pairs per week in the base period

of January 20 to February 23, the first five weeks of data and before the onset of widespread

COVID-19 diagnoses. We do not observe activity outside the 2,018 county network, but the

observed counties encompass 97 percent of the U.S. population.

Under CDGHW’s selection method of a 1,000 device threshold, larger counties are more

likely to register in the data, but some rural areas and small towns are represented as well.

Among metro areas, 90 percent of counties (comprising 99 percent of metro population)

appear in the data. Counties in metro areas making up 87 percent of total U.S. population

comprise 86 percent of the devices registering in the dataset. Rural and micropolitan counties

appear at a rate of 48 percent, although 80 percent of the population in these areas is

represented. These smaller counties, making up 11 percent of U.S. population, account for

the remaining 14 percent of devices we observe.

Table 2 reports summary statistics for one of the main objects of interest, the fraction

of devices in a county that were also present in other counties in the previous 14 days. The

typical county has a same-county ping rate of 90 percent, meaning 10 percent of devices

present today are “new” and were not present in the preceding two weeks. When limiting

to the non-reflexive counties, the average ping rate is dramatically lower, but with a clear

geographic pattern. The average county pair has a ping rate of 0.3 percent. This rises to 0.5

7CDGHW continue to update the data on a regular basis, but we stop on May 25 in order to focus our
analysis on the initial phase of the outbreak.
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Table 2: Summary Statistics of Device Ping Rates by Geography
Pairs NT Mean SD P10 P50 p90

Same County na 70,630 89.08 4.78 82.69 90.01 94.19
Other Counties:

Neighbor 11,384 398,283 34.83 29.76 6.13 23.16 89.33
Within Metro Area 5,420 189,700 17.90 20.79 0.95 8.60 54.19
Within State 128,351 4,429,513 3.08 7.82 0.09 0.62 6.97
Within Division 573,239 17,131,215 1.00 4.29 0.02 0.12 1.43
Within Region 1,388,653 35,309,674 0.55 3.06 0.03 0.06 0.65
Any 3,905,332 84,612,867 0.27 2.01 0.01 0.04 0.30

NOTES: The table reports summary statistics of device ping activity occurring over a 14 day window in the pre-pandemic
period (January 20 to February 23, 2020). Statistics count only observations with nonzero ping rates. There are 2,018 counties
included in the dataset, and 1,004 in metro areas. Source: Couture et al (2020).

percent within region, 2 percent within metro area (among urban counties), 3 percent within

state, and up to 34 percent among neighboring counties, with some neighbors much higher.

The cellular device data roughly resemble other spatial connectedness measures normally

used by economists, such as commuting, migration, or trade flows, but with a few specific

features that are worth bearing in mind.

First, the public use data as produced by CDGHW embed a particular lag structure to

mobility events. The indicator measure is whether a given device has visited another county

in the prior two weeks.8 This mechanically builds in a moving-average nature to the data, in

that a single visit on one day will register for 14 days to come.

The second mechanical feature of the data is that the visit propensity measure for each

county is the probability of a binary event–whether it was in the county in the prior two

weeks–and not a transition matrix over an exhaustive set of alternatives. There are multiple

(2,018) potential binary events, and a device can trigger the affirmative in any and all of these,

so the probabilities are separate outcomes, not a vector of transition probabilities summing

to one. Moreover, because each county-event measure is a binary probability, we cannot

distinguish a small amount of mobility from a large number of devices from a large amount

of mobility for a small number of devices. For example, it is observationally equivalent

for a single device to ping in multiple counties, registering in each place, or many devices

8The data were constructed in this manner to capture potential exposure and are based on the estimates
of the COVID-19 incubation period that have been widely reported.
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disparately visiting single, separate counties. The visit probability measures are thus better

interpreted as indices of trip activity.

Third, by definition, a device visiting multiple counties is affirmatively “present” in each

one, and there is no natural definition of “origin” and “destination,” or even of “home”

and “away” for a given device. The cross-county visit rate is best viewed as a measure of

connectivity rather than a true directional trip. For example, a metro area commuter crossing

from a suburban county to a central county would register as present in both his county of

residence and his county of work on a given day, though we cannot distinguish which county

occupies either status.9 Bearing this caveat in mind, for ease of exposition, we will refer to the

focal county, i.e., the one in which devices register today, as “home,” and the visit counties,

i.e., the set of possibilities for which the indicator measures whether the focal devices were

present, as a “destination.”

Lastly, we note that visits are simply frequency counts, and do not measure any sort

of visit intensity, such as time spent or persons encountered in the visited county. At the

extreme, a device could register a visit by simply passing through in a car, having never

actually contacted anyone or anything in the county.

For all of these reasons, we avoid cardinal statements and cross-sectional comparisons in

our analysis, opting instead to form indices of mobility, normalizing each county or county-

pair by its pre-period regular activity. This allows us to control for idiosyncrasies in the data

and focus our attention on behavior in “pandemic times” compared with “normal times.”

3 Mobility During the Pandemic

In this section we describe the dynamics of mobility over the early phase of the COVID-19

pandemic and examine how travel activity changed with case counts. We first construct a

9The further implication is that prior visits would register for each county. If he visited a third county a
week ago, that visit would register for both the residence and the work counties–each of which we will read
as “home” for the visit event and for which we will separately count the events. In this way, the measure of
mobility is nonlinear in that one county crossing leads to observation of multiple other-county visits.
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measure of mobility for each county that captures changes in both overall activity and travel

to outside counties. We use this measure to show that while mobility declined in response to

government orders, there was also an independent response to proximate virus cases.

3.1 Dynamics of Mobility

Figure 1, panel A plots the two main pieces of information provided in the cellular device

dataset. To emphasize the changes over time, each of these is indexed within county so that

the period of January 20 to February 23 (the first five weeks of data) averages to one, and

the graph plots the median index value.

The blue solid line depicts the number of devices registering in each county j on each

day t, an object we will denote below as djt. The more spatially active a device is within or

between counties, the more likely it is to ping a cellular tower and register its location, and

therefore the count of devices in the data forms a sort of mobility metric. This has a clear

downward cycle, falling about 30 percent from normal times to the trough in mid-April and

recovering somewhat by the end of May to about a 15 percent reduction from normal times.

The red dashed line depicts the sum of out-of-county pings, the sum of the binary event

probabilities. Denoting the binary event of a visit from a device in j to a location i occurring

in the preceding 14 days t as σijt, the total activity for a county j is
∑

i σijt. This sum forms

another form of mobility metric, as higher rates of out-of-county location indicate higher prior

mobility of the devices registering in the county. The out-of-county ping rate also shows a

clear downward cycle, falling 40 percent to the trough in mid April and recovering to only

about 5-10 percent down by the end of May.

Panel B depicts a composite of the two mobility indices. The solid blue line is the device

ping count, the device-weighted sum of out-county pings, which essentially combines the two

highly variable series from panel A as

mjt =
∑
i

σijtdjt. (1)
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Figure 1: Mobility Indices

NOTES: The figures present the median index value taken across counties in the 2,018 national sample. Panel A displays the
median of the two subcomponents of device mobility, the count of active devices and the sum of out-of-county pings (“visit
rate”). Panel B reports the composite index, the active device-weighted visit rate. Source: Authors’ calculations using Couture
et al (2020).

We then index this composite series as m̃jt =
mjt

m̄j0
, where m̄j0 is the mean of the county’s

index in the pre-pandemic period (January 20 to February 23). Under this metric, mobility

fell by half from February to mid-April, recovering by late May to about 20 percent below

normal.10

Figure 2 plots the 90th and 10th percentiles in addition to the median, showing the entire

distribution of mobility indices moved to the left, though there is some heterogeneity in the

magnitude of declines. Some counties showed mobility declines greater than 60 percent while

others declined less than 40 percent.

3.2 Mobility and the Onset of the Pandemic

Next we use our composite mobility index to examine the how spatial activity changed in

the early stages of the outbreak. Figure 3 shows the dynamics of mobility in comparison to

common state-level mobility restrictions of bans on mass gatherings, closures of “nonessen-

tial” businesses, and stay-at-home orders (Panel A), as well as cumulative cases (Panel B)

and case growth (Panel C). The orders are plotted as the share of counties under each type

of restriction. A vertical line marks the national emergency declaration on March 13.

One notable feature is that the first drop in mobility occurred immediately following the

10We also considered a metric where we weighted the sum by distance between counties. The dynamics of
a distance-weighted mobility index are very similar to the unweighted measure we present here.
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Figure 2: Mobility Index Distribution Over Time

NOTES: The figure displays the time series of the 10th, 50th, and 90th percentile of the composite mobility index. Statistics
are unweighted, taken across all 2,018 counties in the national sample. Source: Author’s calculations using Couture et al
(2020).

initial run-up in cases–and before mobility restrictions were enacted–as it became clear that

the U.S. was experiencing community spread and not just isolated cases due to foreign travel.

From March 1 to March 14, though no county was yet under stay-at-home order, mobility

dropped by 20 percent as cases rose 500%.

Spatial activity continued its downward trend from that point into April as case counts

continued an exponential rise and stay-at-home orders and other mobility restrictions were

more widely enacted. Mobility reached a bottom in mid-April (coinciding with the Easter and

Passover holiday observances), with a trough on April 18 of 44; that is, 56 percentage points

below its pre-virus average. At that point, however, new case rates had started to flatten

and some mobility restrictions began to lift, and mobility crept back upward. Together,

these patterns suggest that households may have been responding to information about (or

at least perceptions of) the virus prevalence as well as formal emergency declarations and

restrictions, a hypothesis we will test.
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Figure 3: National Mobility Index, Mobility Restriction, and Case Growth

A. Mobility and Restrictions

B. Mobility and Cumulative Cases

C. Mobility and Case Growth

NOTES: The figures plot the median composite mobility index against: the fraction of counties under government restrictions
(A), the log of the national case count (B), and the number of new cases reported nationally in the preceding two weeks (C).
Sources: Couture et al (2020), all panels; healthdata.org (2020), panel A; Johns Hopkins University (2020), panels B and C.
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3.3 Mobility and Local Case Counts

The national series mask a fair amount of regional heterogeneity. For example, the New York

metro area alone accounted for 41 percent of cases on April 18. Moreover, states varied in

the timing and intensity of their spatial activity restrictions. Did households in more affected

areas respond more strongly?

To answer this question, we leverage the spatial variation in the mobility metric and case

counts by county in addition to state-level restrictions on mobility in the following model:

m̃jt = βccj,t−13:t +
∑
q

βqI(Rq
jt) + εt, (2)

where the left-hand side is the indexed mobility rate, cj,t−13:t denotes new case diagnoses

in the home county in the preceding two weeks,11 and the Rq terms denote type q govern-

ment restrictions on activity. These take the form of indicator variables I() for whether the

restriction is in place at time t.

Table 3 reports coefficients from this regression of county-level mobility rates on local

cases and restrictions.12 In the first column, we use (log) local new case counts from the

previous two weeks as the lone explanatory variable. The coefficient of -7.06 means that a

100 log point rise in new cases resulted in a 7 percentage point drop in the mobility index.

For some context, the average county saw about a 300 log point rise in case growth in April

(and some as large as 1,000 log points).

Mobility dropped across the board, however, and not only in places with outbreaks (see

Figure 2). Column 2 adds time dummies to pick up the common trend, meaning the estimated

coefficient is therefore the marginal effect, relative to national trends in mobility, of additional

cases in one’s own county.13 Column 2 shows that a 100 log point increase in local cases

11Case growth in a two week window corresponds with the time lag of visits embedded in the cellular device
data. We have checked that these results hold for cumulative cases, cases per capita, new cases per capita,
and deaths.

12Recall that each county has been indexed to a pre-period average of 100 so that level differences in
mobility levels between counties will not affect the covariances we estimate.

13Because the “common trend” was due to the outbreak of COVID-19 cases, however, it is debatable which
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results in a 3.7 percent drop in mobility relative to national trend. This coefficient is a more

conservative estimate of the direct effect of local cases instead of the more ethereal fear of

the virus.14 We continue to use time effects hereafter.

Around the same time cases were growing, state and local governments enacted restric-

tions designed to limit mobility of residents and suppress the spread of the virus. In column 3,

we include indicator variables for the presence of the three most common of these measures,

closure of nonessential services, bans on mass gatherings, and direct stay-at-home orders,

in order to measure their effects on cross-county activity.15 Each independently depressed

activity to a significant degree, although their inclusion scarcely affects the estimate of local

cases, suggesting people were still reacting to public information about the virus. In column

4, we remove the local case growth variable. Failure to include public information about local

cases causes a larger estimate of the marginal effect of government activity restrictions.

Of course, to exit a county, there must be a county to go, and these destinations may

themselves be under closures and restrictions. In columns 5 and 6, we measure destination

restrictions as the pre-pandemic mobility weighted average of other counties’ prevalence of

restrictions. The destination closure measure is R(dest)qjt =
∑

i 6=j σ̄ij0I(Rq
it).

16

Column 5 includes the destination measures jointly with home county restrictions, finding

a significant effect of nonessential business closures, perhaps the result of there being fewer

businesses to visit. The stay-at-home contribution is negligible, and the destination mass

gatherings ban is effectively collinear with the time dummies and not well estimated. In col-

umn 6, we remove the home county restrictions and find larger partial effects of destinations’

of these models estimates the causal effect of the virus more generally. The model with time effects serves
to isolate the contribution of local cases.

14In unreported results, we found a decaying spatial pattern in the marginal effect of cases on mobility.
County cases had the highest effect, while state and regional case counts contributed independently but to a
smaller degree.

15Many of these restrictions were designed to limit within-county activity as much as between-county
activity, which we do not study in this paper. These effects may show up in our measures to the extent that
they depressed the number of active devices in a county, djt.

16The timing for other counties’ restrictions is effectively the same for all places (but for the omission of
one’s own county from the destination network), but the measures will vary according to how frequently that
county interacted with the others according to baseline visit rates, σ̄ij0. As it turns out, the destination mass
gatherings index is effectively collinear with the time trend.
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Table 3: Mobility Index: The Effect of State Restrictions and Observed Cases
1 2 3 4 5 6

Log Cases (2 wk lag) -7.066 -3.674 -3.519 -2.560 -2.889
(0.071) (0.130) (0.127) (0.126) (0.125)

Home County:
Nonessential Services -2.143 -2.988 -0.872

(0.392) (0.468) (0.757)
Mass Gatherings -0.748 -0.523 -13.327

(0.540) (0.545) (0.747)
Stay Home -3.152 -4.458 -3.604

(0.437) (0.498) (0.797)

Destination County:
Nonessential Services -0.575 -0.614

(0.322) (0.122)
Mass Gatherings 6.521 5.538

(0.304) (0.210)
Stay Home -0.019 -0.765

(0.331) (0.134)
Constant 90.858 86.923 88.737 99.319 99.319 99.319

(0.126) (0.214) (0.412) (0.116) (0.116) (0.116)

Time Effects y y y y y

R2 0.329 0.767 0.771 0.736 0.815 0.801
NT 252,250 252,250 252,250 252,250 252,250 252,250

NOTES: The outcome variable is the county-level index of mobility as defined in equation 1, and indexed by the pre-pandemic
average for each county. Units are percentage points. Standard errors are clustered by county. Home state restrictions are
indicator variables, and destination state restrictions are a visit-weighted index of exposure to restrictions in potential
destinations; the units on the home and destination side are not directly comparable. Source: Authors’ calculations using data
retrieved as described in Section 2.

closures and stay-home orders. In neither case do these significantly affect the coefficient on

local cases. The destination restriction measures are additionally useful in that they predict

mobility for a county using outcomes outside of the county, a feature we exploit below in

estimating the effect of virus exposure from travel on new case growth.
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4 The Pattern of Changes in Mobility

Did mobility drop in a uniform way, or were some locations avoided more than others? That

is, what does the network of origins and destinations tell us about travel behavior during the

early phase of the pandemic? To examine these questions, we return to the raw, uncollapsed

structure of the data to see which sets of visits were declining.

4.1 A Gravity Model of Visits

We use a gravity model to examine how the network of travel flows between counties changed

in response to cases in both home and destination counties. Specifically, we regress county

pair ping rates on local case counts and mobility restrictions.17

σijt = ωici,t−13:t + ωjcj,t−13:t + βi,qI(Rit) + βj,qI(Rjt) + ρij. (3)

In using a gravity regression on bilateral flows, we can separately enter the case counts

on the focal (origin) and visit (destination) county sides of a trip. This is more informative

regarding exposure than the summarized mobility regression in Table 3. Because the visit

frequency is already reported as a moving average (and to economize on computational

requirements), we limit to weekly observations. All specifications include county pair and

week fixed effects, and the visit rates and case counts are log transformed.

Table 4 reports the results of the gravity regressions. Column 1 shows the coefficients

on the two-week new case count for the home and visit counties. Cases in the home county

reduce visits outside the county, but cases in the visit destination also limit the visit frequency.

That is, conditional on making a trip outside a county, devices are less likely to visit counties

with relatively higher infection rates.

The distribution of visit frequency to particular counties is highly skewed, as Table 2

17Note we are using the ping rate–the probability of a binary event of a visit between i and j counties–
without the device count. This is because the device count only affects the origin side. Results using a
device-weighted ping rate look similar, but the coefficients on the origin side variables are mechanically
larger.
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Table 4: Changes in Mobility - Gravity Regressions
1 2 3 4

Cases in Home County -0.0305 -0.0307 -0.0304 -0.0305
(0.0001) (0.0001) (0.0001) (0.0001)

Cases in Visited County -0.0493 -0.0480 -0.0486 -0.0473
(0.0001) (0.0001) (0.0001) (0.0001)

Cases in Visited X Baseline Visit Rate -0.2746 -0.2746
(0.0049) (0.002)

Stay at Home, Home County -0.0013 -0.0012
(0.0003) (0.0003)

Stay at Home, Visit County -0.0306 -0.0306
(0.0003) (0.0003)

Constant -7.5035 -7.5038 -7.4952 -7.4955
(0.0003) (0.0003) (0.0002) (0.0002)

Time Effects y y y y
County Pair Effects y y y y

R2 0.895 0.896 0.896 0.896
NT 41,253,269 41,253,269 41,253,269 41,253,269
Pairs 3,564,207 3,564,207 3,564,207 3,564,207
Weeks 18 18 18 18

NOTES: The table reports results from a gravity regression of log visit rate in the two weeks preceding observation date on
case growth and stay-at-home orders; see equation 3. The observation level is a weekly observation of a directed county pair
(i.e., A→ B 6= B → A). All specifications include directed county pair and week of year fixed effects. Standard errors are
clustered by directed county pair. Source: Authors’ calculations using data retrieved as described in Section 2.

showed, and it is a possibility that the elasticity of visit frequency is a function of the base

rate, which might in turn affect the parameter estimates. Therefore, in column 2 we add

an interaction of the baseline rate and the cases in the destination. More frequently visited

counties are substantially more affected by the count of cases registering there.18

The remaining columns of Table 4 add controls for mobility restrictions such as stay home

orders. These are highly correlated with each other, so are we deliberately parsimonious in

18We have examined the elasticity of the visit frequency with respect to its baseline rate, which we found
to be U-shaped. Rarely visited places, though very numerous in numbers of pairs, account for little of the
total outside visit frequency and even less of the change in mobility, with some actually increasing in visit
frequency in the depths of the pandemic. Then, the proportional change in visit rate is decreasing in the
baseline rate up until the highest centiles of the frequency distribution (which, as seen in Table 2, are mostly
the neighboring counties) at which point the rate of change is smaller. Some of this pattern is mechanical
in that visit frequency is bounded between zero and one, and the largest and smallest base rates move by
lower percentages. Some of it might indicate the nature of travel however, in that trips in the tails of the
distribution might be the most essential and least likely to change. We have run the regressions of Table 4
with controls for a time-varying slope of the elasticity of the visit frequency with respect to the baseline rate.
This does not materially affect our estimates.
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their inclusion. Stay home orders on both sides of the visit are negatively associated with

visit frequency, but the inclusion of these controls does not affect the coefficients on case

counts in the home or visit county.

In summary, it appears that not only are households traveling less, they are avoiding

more affected places. The data do not reveal precisely why people avoid places with high

case counts. It could be a fear of being exposed to the virus in high caseload areas. It

could be that reduced activity in the destination produces less of a reason to travel there; for

example, if more workplaces and stores are closed (beyond the government’s prescription).

The outcome is plausibly a combination of these mechanisms.19

Whatever the cause, the pattern is meaningful in two ways. First, it explains most of the

mobility decline in the pandemic (although less so its recovery in May), as we show next.

Second, it means that households were less exposed to virus cases than if they had continued

spatial activity as they had in the days before the pandemic, a topic we treat in more detail

in the subsequent section.

4.2 Case Avoidance and the Drop in Mobility

The avoidance of cases explains most of the mobility decline early in the U.S. outbreak. This

is illustrated in Figure 4, which plots the median mobility index from predicted values of

regression 3 (column 2 from Table 4) alongside the actual mobility index from Figures 1,

2, and 3. There are two versions of the projection: one with the time dummies factored in

and one with them excluded so that the projection relies only on case counts.20 In either

version, the projection does a remarkably good job of predicting the fall in mobility, indicating

that case avoidance was critically important in explaining the drop in spatial activity. The

version without time dummies fails to predict two blips in activity–just before the emergency

19Here, we note again that our designation of “origin” and “destination” is for convenience, as these are
difficult to distinguish given the way the cellular device locations are reported. What is important is that
activity between counties depends on case prevalence on either side of the connection.

20The time dummies are used in the regression in both cases. The difference is whether the time dummy
coefficients are included in the projection.
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Figure 4: Actual and Projected Median Mobility Index Over Time

NOTES: The figure displays the median composite mobility index against the median mobility index as projected by the
coefficients from the Table 4, column 2 estimate of (3). One projection uses the time dummies in its forecasted values, and the
other uses the coefficient estimates from the same model but omits the time dummies. Source: Authors’ calculations using
data retrieved as described in Section 2.

declaration and in the depths of the trough in mid-April–but more notably, it fails to predict

the rise in mobility in mid to late May, as cases were still fairly prevalent. A version of the

projection using the stay-at-home orders produces similar results and only slightly better

predicts the recovery in activity in May.

5 Case Exposure

Devices crossing county lines may indicate people coming in contact with cases from outside

their local areas. Are these encounters consequential for case growth? In order to study this

question, we develop a measure of case exposure that summarizes the number of case contacts

a county is incurring by encountering other places with active cases. Then we consider how

the pattern of case avoidance affected exposure and subsequently altered the trajectory of

virus spread.
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Table 5: Summary of Case Exposure
Time Mean SD 25th 50th 75th 90th 99th

Last Week of March 296.2 553.1 122.8 191.5 301.7 494.1 2,375.5
Last Week of April 798.3 937.2 321.1 506.8 897.2 1,554.2 5,316.3
Last Week of May 1,035.1 942.1 483.9 751.2 1,258.7 2,030.4 4,811.1

NOTES: The table reports summary statistics of exposure to nonlocal cases as defined in equation (4) for each listed point in
time. Source: Authors’ calculations using data retrieved as described in Section 2.

5.1 A Metric for Nonlocal Case Exposure

We define nonlocal case exposure as

xjt =
∑
i 6=j

(σijtdjt)
α1nα2

it , (4)

where nit represents cases in the destination county and σijtdjt is a pairwise mobility measure

(as in equation (1), but with the summation outside the exponent). The case exposure

measure is thus a sum of travel flows from an origin weighted by the number of cases in the

destination county. For the majority of what follows, we set the exponents as α1 = 1, α2 = 1,

but we examine robustness to alternative exponents. We focus on exposure to new cases in a

two week window, although the general patterns we find are robust to cumulative cases and

cases per capita.

Table 5 presents summary statistics of this exposure measure for the counties in our

mobility sample at each checkpoint as the case summary in Table 1. This measure averages

values in the hundreds, and like the cases themselves, is highly skewed to the right tail.

Exposure rose over time even as mobility fell because cases became more widespread.

Exposure measured in this way could be high for a given county because of some combi-

nation of (i) high frequency of travel and (ii) travel to high caseload areas. In Table 6, we

present some decompositions to illustrate the source of higher exposures. The general pat-

tern is that more exposed counties tend to have greater contact with extremely high caseload

areas and not necessarily higher levels of overall mobility.

The upper panel of Table 6 shows statistics for the whole sample and for a split between
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the 50 highest exposure areas and the lesser exposed areas. What caused the great difference

in exposures? The highest exposure areas had relatively less mobility on average, making

outside county trips at a rate of 287 percent compared to 317 percent for lesser exposed

counties. (Recall that the mobility measure is a sum of binary event probabilities and can

therefore sum to more than 100; other caveats from Section 2 apply.)

The differences appear when splitting by destination. Columns 4, 5, 6 and 7 show statistics

for contact with destinations among the highest two percent of cases per capita in the U.S. The

highest exposure areas visited these drastically more often the typical county, encountering

a high case area at a trip rate of 160 percent (or 58 percent share of all out-of-county visits)

versus 14 percent (4 percent share) for lesser exposed counties. These high case areas comprise

nearly all of a highly exposed county’s exposures (and still a significant fraction of the lesser

exposed places too).

As a benchmark, columns 8 to 11 show the travel to the counties’ top 50 most visited

destinations. The more exposed counties did not travel to their usual partners at any higher

frequency than the lesser exposed, but they accumulated much more exposure because these

partners had larger outbreaks. Thus, exposure is largely a function of outbreak size in a

county’s usual network.

To illustrate these patterns, the bottom panel of the table shows statistics for selected

metro areas from various regions of the country and with differing levels of outbreaks. In

this panel, we replace the “top 50 destinations” with a particularly hard-hit region, the New

York metro area.

The cities of Philadelphia and Pittsburgh provide a telling example because, among sev-

eral other similarities, they were both under the guidance of the same state government,

Pennsylvania. Philadelphia, however, had much greater exposure to high caseload areas in

the Northeast corridor, including a relatively high contact rate with the New York metro area.

Hence, its case exposure level was far greater than Pittsburgh’s, and its size of outbreak far

greater as well.

23



5.2 Case Avoidance and the Effect on Exposure

Next we examine the importance of changes in travel behavior on exposure. To do so we

compare actual exposure to counterfactual exposure measures that assume travel behavior

did not change despite the increase in cases. We then decompose the differences in exposure

to understand the importance of declines in overall travel activity versus the avoidance of

highly affected locations.

Figure 5 plots the median actual exposure, measured in counts of cases, and the median

exposure that would have been obtained had each county continued with business as usual.

(To obtain these series, each county’s exposure was scaled by its pre-pandemic mobility in

order to allow cross-sectional comparisons.) Clearly, the pullback in mobility significantly

altered the degree of outside exposure to virus cases: The median county would have been

exposed to twice as many cases if travel behavior had not adjusted.

From equations (1) and (4), there are three ways the contact intensity could change.

First, the number of devices registering as active could fall. Second, the total frequency

of out-of-county pings could change. Both of these did trend lower as activity dropped, as

Figure 1 showed. The third way is for the network of visit destinations to change, as Table

4 suggests did occur and Table 6 indicates could be important for explaining exposure.

Table 7 shows the ratio of counterfactual exposures to actual exposures for three points

in time (end of March, April, and May). The table lists the combined effect of all forms of

mobility and the univariate decompositions.21 To quantify the pattern from Figure 5, the

table shows that had spatial activity continued as usual, the median county would have had

exposure to 52 percent more cases at the end of March, 115 percent more cases in April, and

44 percent more cases in May.

Each component of spatial activity contributed to this drop. For example, in April, had

the active devices changed but out-of-county mobility continued as usual, case exposure would

have been 24 percent higher (Column 2). Had total out-of-county ping activity continued

21The decompositions do not add to the total because each is a median of a univariate calculation.
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Figure 5: Actual Exposure Compared With “Business As Usual” Exposure

NOTES: The figure plots the median exposure index across the sample of counties in the cellular device data. The unit of
measure is number of cases per unit of mobility in the pre-pandemic period; its scale is comparable across counties. Source:
Authors’ calculations using data retrieved as described in Section 2.

Table 7: Decomposition of Actual Exposure Relative to “Business As Usual,” By Mobility
Component

Partial Effect Of:

Time Combined Device Count Visit Rate Visit Geo. Network
1 2 3 4

Last Week of March 1.54 1.17 1.16 1.13
Last Week of April 2.09 1.24 1.34 1.22
Last Week of May 1.40 1.14 1.02 1.19

NOTES: The table reports the median ratio of counterfactual exposure, projected using pre-pandemic period mobility rates,
relative to actual exposure for each listed point in time. Nonlocal case exposure is defined in equation (4). Column 1 is the
combined exposure index, and columns 2 through 4 are its components. Column 2 holds fixed total active devices, column 3
holds fixed out-of-county pings per device, and column 4 holds fixed the destination share each origin’s travel network. Source:
Authors’ calculations using data retrieved as described in Section 2.

as usual, case exposure would have been 35 percent higher (Column 3). Had the network of

destinations remained the same, case exposure would have been 25 percent higher (Column

4). This last term is especially interesting because it shows a substantial amount of the change

in exposure resulted not just from staying home, but from avoiding places with higher levels

of outbreak when traveling. Notably, even as the level of mobility edged higher in May, a

reduction in exposure resulted from people avoiding counties with high caseloads.
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6 The Effect of Exposure on Case Growth

The remaining major question is whether out-of-county exposure to virus cases creates new

cases in the home county. To test this, we regress case growth in a county on our index

of exposure to out-of-county cases, controlling for lagged cases and other county attributes.

The baseline model is

nj,t = θ1nj,t−1 + θ2xjt + θ3mjt + Z ′jγ + εjt, (5)

where j, t are subscripts for county and time, respectively, n denotes new cases, x is the

out-of-county exposure from equation (4), and m denotes the mobility index from (1).

The θ’s are parameters of interest, and principally, the exposure parameter θ2. The

regression also independently controls for the county’s mobility index as a form of placebo

test; the mobility index term will reveal if higher mobility results in more cases for reasons

other than exposure. Z is a set of controls for county characteristics, such as population size

and density, or fixed effects to capture attributes nonparametrically. The ε is the error term.

The outcome variable is the natural logarithm of one plus the number of new cases

reported in the last week.22 The observation level is county by week beginning the first week

of March when community-spread cases began to emerge in the U.S. The lag cases variable

is the log number of new cases in the county in the preceding two weeks (i.e., one to three

weeks prior to the observation date).

Column 1 of table 8 presents results from the baseline model. The regression shows

two features of the contagion. First, and unsurprisingly, lagged cases in the county create

new cases. A one-percent rise in past cases is associated with a 0.74 percent rise in new

case growth. Second, and more novel, exposure to out-of-county cases also increases case

growth. A one percent rise in outside exposure is associated with a 0.12 percent increase in

case growth locally. However, mobility alone, absent an accounting of cases in the visited

22We use weekly case growth at the county level to limit the noise present in the daily series.
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Table 8: Case Exposure and New Case Growth
1 2 3 4 5 6 7

Model OLS OLS OLS OLS IV 2SLS IV GMM IV GMM

Network Case Expo. 0.123 0.192 0.133 0.115 0.151 0.120 0.217
(0.006) (0.010) (0.007) (0.008) (0.007) (0.012) (0.016)

Mobility Index -0.002 -0.005 -0.003 -0.003 -0.003 0.006 -0.022
(0.000) (0.000) (0.000) (0.000) (0.000) (0.002) (0.003)

Local Cases 0.742 0.619 0.739 0.712 0.737 0.755 0.696
(0.004) (0.005) (0.005) (0.005) (0.005) (0.008) (0.010)

Population 0.096 0.117 0.156 0.071 0.128 -0.048
(0.009) (0.010) (0.011) (0.010) (0.021) (0.027)

Pop. Density 0.052 0.030 0.027 0.049 0.051 0.048
(0.006) (0.007) (0.008) (0.006) (0.006) (0.009)

Constant -1.297 0.114 -1.474 -1.378 -0.253 -1.402 2.149
(0.071) (0.081) (0.077) (0.084) (0.077) (0.379) (0.487)

Fixed Effects
Level(s) Week County; Region X State X Week Week Week

Week Week Week
Number 12 2018; 12 108 612 12 12 12

Instruments:
Home County Orders y
Destination Orders y
Projected Exposure y y y

R2 0.861 0.868 0.865 0.875 0.861 0.858 0.848
NT 24,038 24,038 24,038 24,038 24,038 24,038 24,038

NOTES: The table reports regression results of the model represented by equation (5). The outcome variable is the log
number of new cases in the county. The observation level is county by week. Standard errors are clustered by county. Source:
Authors’ calculations using data retrieved as described in Section 2.

network, does not explain the case growth. Its coefficient is slightly negative, owing to the

pullback in mobility during the period of peak case growth. Thus it appears the actual

network exposure to active cases is meaningful, but travel activity, generally, is not.23

As noted above, there was regional heterogeneity in the severity of the outbreak and a

predictable geographic component to the observed travel network, and thus an alternative

explanation to the effect of exposure is spatial correlation in travel and case outcomes. In

other words, specification 1 could be simply picking up overlap in the regional components

of each variable. To address the potential for spatial correlation, column 2 includes county

23One specific implication is that counties with less reduction in mobility fared no worse in terms of case
growth, except to the extent captured by the exposure measure.
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fixed effects to absorb any county-level attributes that may contribute to case growth, relying

on within-county variation in exposure over time. This results in an even larger exposure

estimate than column 1. Columns 3 and 4 include time interacted with census division

and state, respectively. (The observation level is county by week.) Each of these arrives at

similar estimates as column 1. We conclude that despite the spatial correlation in the outcome

variable, the travel network is introducing independently meaningful variation through case

exposure.

We have already shown that mobility decreased in response to rising case counts, which

suggests some degree of reverse causality is present and may bias the effects we estimate.

We therefore instrument for actual exposure with the predicted exposure that would have

occurred had the county’s mobility not changed from the pre-pandemic period, reported in

column 5. The coefficient on exposure rises somewhat to 0.15, suggesting some attenuation

from reverse causality. For the mobility index, the stay-at-home orders and related closures

form natural instrumental variables (IV). The most straightforward IVs to use are the home

county’s social distancing orders. Column 6 expands to a GMM estimator, instrumenting for

exposure and mobility using predicted exposure and the three forms of governmental activity

restrictions from Table 3 within the home county. This results in no discernible effect on the

exposure coefficient, but the mobility index does flip to the intuitive sign. However, the home

county orders may not satisfy the exclusion restriction if they suppress new case diagnoses

through a channel other than out-of-county mobility (as it appears was their intended use),

such as fewer within-county contacts. Therefore our preferred instrument for the mobility

index is the pre-period mobility-weighted sum of closures in potential destination counties

from column 4 of Table 3. These indices affect out-of-county mobility but are mechanically

detached from the home county. Column 7 reports this specification, showing no impact on

the mobility coefficient but an increase in the exposure coefficient.

In summary, we find robust evidence that out-of-county exposure via the travel network

affects new case diagnoses. In the appendix, we run a gamut of robustness checks on the
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functional form and spatial scale of the exposure measure. Specifically, we build permutations

of alternative exposure indices of xj,t =
∑

i(dj,tσijt)
α1nα2

it , where the α terms are in the list

{0.5, 1, 1.5, 2}. These allow extreme observations to be more (when α1(2) > 1) or less (when

α1(2) < 1) important to the index value. As Table 6 would suggest, the extreme values of

cases tend to be more predictive, but overall, none of the conclusions are materially changed.

The baseline linear model provides the best fit.

The robustness checks for spatial scale split the exposure along geographic lines: in or

out of metro area, state, neighbor/adjacency status, or frequently-visited pair (top 10 desti-

nations for a county). Interestingly, the more distant exposures are more predictive than the

proximate/frequently visited destinations, but again, qualitative conclusions are unaffected.

Also in the appendix we present a brief look at heterogeneity in effects. We find that

own-county case spread is smaller in locations with stay-at-home orders, but also smaller in

larger counties. The effects of out-of-county exposure, however, are larger in more populous

and denser counties, and also in counties with stay-at-home orders enacted. These patterns

suggest that outside exposure is multiplied in bigger, more urban areas, and that outside

exposure can undo some of the suppression effects of stay-at-home orders.

7 Geographic Exposure and Virus Spread

We have marshaled evidence for three important facts: (i) Spatial activity dropped sig-

nificantly as case counts rose, with a particular avoidance of areas with relatively larger

outbreaks; (ii) Such a drop in activity limited exposure to out-of-county virus cases; (iii)

Out-of-county exposure matters for predicting new case growth, suggesting cases would have

been higher had travel activity not dropped in response to cases. We are now prepared to

summarize the combined effect of these components and, in particular, evaluate conjectures

about spread of the virus in alternative travel activity scenarios.

Our last exercise is to simulate a simple model of virus spread over space. We construct
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the following spatial autoregressive (SAR) model of mobility, case exposure, and case growth.

The primary outcome of interest is new case growth, in equation (6a), which is affected by

own-county and out-of-county exposure (the latter being the “spatial” element of the model).

We take point estimates from Table 8, column 3. To derive exposure, we model the effect

of mobility on exposure to out-of-county cases (6b), from our definition in equation (4).

Exposure is a function of mobility, which is itself affected by cases (equation 6c). We take

point estimates from Table 4, column 2. To illustrate the importance of endogenous spatial

activity in affecting the rate of disease spread, we simulate the model without mobility as a

default, and then with mobility but with and without the feedback effect of cases on mobility.

njt = θ1nj,t−1 + θ2xj,t−1 (6a)

xj,t =
∑
i

σij,tdj,tni,t (6b)

σij,tdj,t = βnj,t(δ1nj,t + δ2ni,t + δ3σ̄ij,0ni,t) (6c)

We must emphasize that this is only an SAR process and not an epidemiological model.

In particular, there are no notions of recovery, death, or immunity among the population.

(Indeed, our unit of analysis is a spatial area, not a person or household.) Our focus is

the rate of growth of new cases with and without endogenous mobility, not the arc of a

contagious disease in a population. We will note the values the model produces for the sake

of exposition, but we intend this exercise to be more illustrative than empirical.

Accordingly, to keep the model simple, we illustrate a three location system. Two counties

are calibrated with symmetric mobility rates to represent two closely connected counties, like

that of typical neighbors from Table 2. A third location has connectedness of a typical distant

within-region county.

The model is used for the following thought experiment: if an outbreak of new cases

exogenously appears in one of the two connected locations, what happens to the spread of
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the disease locally and throughout the system? To illustrate the importance of endogenous

spatial activity in affecting the rate of disease spread, we simulate the model in three scenarios:

(1) without mobility as a default ((6a) alone), (2) with mobility but without the feedback

effect of cases on travel ((6a) and (6b)), and (3) with mobility and endogenous feedback

((6a), (6b), and (6c)). Figure 6 plots the impulse responses for an experiment of 10 new

cases dropped into the “treated” county.

The rate of own-county spread is below one, so that if there were no mobility (and

consequently no out-of-county spread), the virus would eventually (but very slowly) die out

in the treated county, as illustrated by the “isolated/no mobility” lines. But with out-of-

county contact and infection, the disease jumps to the other locations, which then themselves

perpetuate through own-county spread, leading to the subsequent re-infection of other places

in the system, keeping the disease alive in perpetuity. In this calibration, the case growth

rates reach a steady state.24

The second row of subfigures shows the mobility rate. The “unresponsive” scenario is

fixed to have no endogenous change in mobility and mechanically results in the flat lines. In

the endogenous mobility scenario, we see spatial activity fall as the outbreak occurs. In the

two focal counties, mobility falls by almost 40 percent, though the untreated county drops

first because the effect of avoiding the destination is larger. The consequence of the mobility

drop is a reduction in exposure, shown in the third row of subfigures, which falls by over 60

percent by the end of the simulation period.

The drop in exposure then lowers the rate of disease transmission, creating the gap in new

case growth among scenarios shown in the first row of subfigures. In the treated county with

the exogenous outbreak, there is an initially oscillating pattern, as own-county case growth

slows but exposure to outside cases rises. Eventually, the new case growth reaches a constant

level, but about 70 percent higher in the scenario without mobility response.

In the connected county, spared the initial outbreak, it was out-of-county exposure that

24A steady state is not a general feature of the model. The parameters we find at the lags we estimate
them (2 weeks) happen to have a steady state growth rate, but in general, explosive paths are possible.
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Figure 6: Simulated Viral Spread Across Locations

NOTES: The figures report the time path of the variables in the dynamic system represented by equations 6a, 6b, and 6c.
Each line refers to a separate scenario using different assumptions about the reaction of mobility to local and nonlocal cases.
Source: Authors’ calculations using estimates from Tables 4 and 8.

seeded the local outbreak. When mobility does not decline in response to the outbreak, the

rate of new case growth is faster, and it reaches the same steady state level as the treated

location by the end of the simulation.

The distant county experiences its own outbreak, although its lower connectivity trans-

lates into a lower long run average rate of exposure, so its steady state is lower than the two

closely integrated counties.

In summary, the model shows why spatial connectedness matters for both the spread and

the perpetuation of the virus. Most directly, nonlocal exposure allows the virus to jump from

one area to another. Moreover, nonlocal exposure affects not only the rate of growth of cases,

but also the steady state level. That is, connectedness generates higher caseloads as travel

compounds baseline levels of transmission through reinfection across areas.
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8 Conclusion

This paper has used county level location data from cellular devices to document the change

in spatial activity during the early phase of the COVID-19 pandemic in the U.S. We find

that mobility across counties dropped substantially as case counts rose. Relatively larger case

counts decreased spatial activity on both sides of a trip: Mobility decreased more in counties

with more cases, and moreover, the activity that did occur tended to avoid areas with higher

case counts. Empirically, case avoidance is able to explain most of the observed drop in

activity. Restrictions on movement, such as closure of nonessential services and stay-home

orders, also contributed to the drop in activity but to a lesser extent than case avoidance.

Understanding the nature of the change in spatial activity is important because mobility

across county lines produces contact with nonlocal cases. Such case exposure contributes

to local case growth which in turn has a feedback effect on nonlocal case growth, in that it

creates exposure for other localities, and so on in an endogenous loop. Such connectedness

means the presence of the virus anywhere in the system is a threat everywhere else in the

system.

Our findings have several implications for policy and practice. First, public information

about the spread of the virus is important. We find people responding to such information

by restricting their activity in rational ways–both in level and in direction. In a sense, a

“healthy fear” of the virus appears an important applicator for social distancing and similar

behavioral interventions, perhaps even more so than government mandates.

Second, because spatial activity never entirely disappears, localities should coordinate

responses and share information. Connectedness will cause the virus to percolate through

the system, or in other words, there are spatial externalities. A policy that suits one area

may inadvertently produce a threat to a connected area. The adage that “we are all in it

together” seems to apply.

This is especially true for more connected regions and localities, as we found that most

exposure is produced by contact with areas of high outbreak. Our third implication is
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guidance for ways that health authorities can monitor the outbreak across areas and evaluate

their own level of exposure. When two cities have a high amount of activity between them,

an outbreak in one poses a direct and immediate threat to the other. This too suggests

that fragmented policy across regions could inhibit society’s ability to control the spread of

COVID-19.

34



References

Atalay, Enghin, Shigeru Fujita, Sreyas Mahadevan, and Ryan Michaels, “Essential Industries, Con-

tact Intensity, and Working from Home” Manuscript 2020.

Bailey, Michael, Rachel Cao, Theresa Kuchler, Johannes Stroebel, and Arlene Wong. “Social con-

nectedness: Measurement, determinants, and effects.” Journal of Economic Perspectives 32, no. 3

(2018): 259-80.

Christakis, Nicholas A., and James H. Fowler. “Social network sensors for early detection of conta-

gious outbreaks.” PLOS ONE 5, no. 9 (2010).

Courtemanche, Charles, Joseph Garuccio, Anh Le, Joshua Pinkston, and Aaron Yelowitz. “Strong

Social Distancing Measures In The United States Reduced The COVID-19 Growth Rate.” Health

Affairs 39, no. 7 (2020).

Couture, Victor, Jonathan I. Dingel, Allison E. Green, Jessie Handbury, and Kevin R. Williams.

“Measuring movement and social contact with smartphone data: a real-time application to COVID-

19.” No. w27560. National Bureau of Economic Research, 2020.

Coven, Joshua, and Arpit Gupta. “Disparities in mobility responses to COVID-19.” NYU Stern

Working Paper, 2020.

Dingel, Jonathan I., and Brent Neiman. “How many jobs can be done at home?.” No. w26948.

National Bureau of Economic Research, 2020.

Engle, Samuel, John Stromme, and Anson Zhou. “Staying at home: Mobility effects of COVID-19.”

Working Paper (2020).

Fang, Hanming, Long Wang, and Yang Yang. “Human mobility restrictions and the spread of the

novel coronavirus (2019-ncov) in China.” No. w26906. National Bureau of Economic Research,

2020.

Farboodi, Maryam, Gregor Jarosch, and Robert Shimer. “Internal and external effects of social

distancing in a pandemic.” No. w27059. National Bureau of Economic Research, 2020.

Fenichel, Eli P., Kevin Berry, Jude Bayham, and Gregg Gonsalves. “A cell phone data driven time

use analysis of the COVID-19 epidemic.” medRxiv (2020).

35



Glaeser, Edward L., Caitlin S. Gorback, and Stephen J. Redding. “How Much does COVID-19

Increase with Mobility? Evidence from New York and Four Other U.S. Cities.” NBER Working

Paper No. 27519. (2020).

Guerrieri, Veronica, Guido Lorenzoni, Ludwig Straub, and Ivan Werning. “Macroeconomic Im-

plications of COVID-19: Can Negative Supply Shocks Cause Demand Shortages?.” No. w26918.

National Bureau of Economic Research, 2020.

Gupta, Sumedha, Thuy D. Nguyen, Felipe Lozano Rojas, Shyam Raman, Byungkyu Lee, Ana

Bento, Kosali I. Simon, and Coady Wing. “Tracking public and private response to the COVID-19

epidemic: Evidence from state and local government actions.” No. w27027. National Bureau of

Economic Research, 2020.

Johns Hopkins University Coronavirus Resource Center. https://coronavirus.jhu.edu/ (2020).

Kaplan, Greg, Benjamin Moll, and Gianluca Violante. “Pandemics according to HANK.” Power-

point presentation, LSE 31 (2020).

Kraemer, Moritz UG, Chia-Hung Yang, Bernardo Gutierrez, Chieh-Hsi Wu, Brennan Klein, David

M. Pigott, Louis Du Plessis et al. “The effect of human mobility and control measures on the

COVID-19 epidemic in China.” Science 368, no. 6490 (2020): 493-497.

Kuchler, Theresa, Dominic Russel, and Johannes Stroebel. “The geographic spread of COVID-19

correlates with structure of social networks as measured by Facebook.” No. w26990. National

Bureau of Economic Research, 2020.

Monte, Ferdinando. “Mobility Zones.” No. w27236. National Bureau of Economic Research, 2020.

36



Appendix: Additional Exhibits

Table 9 reports robustness checks on the baseline exposure-to-case growth model in Table

8. The upper panel displays results from permutations of the exponents used to weight

the exposure metric in (4). In the second set of rows (in which α1 = 1), columns 2 and 6

correspond to the estimates in the baseline (Table 8, columns 1 and 2). Coefficients decline

mechanically as the mean of the index increases, but otherwise results are similar across

specifications. Over weighting the mobility component relative to the case count component

depresses coefficients, likely because what matters for variance in exposure is contact with

high caseload areas (see Table 6).

The lower panel reports results when exposure is measured separately for mutually exclu-

sive geographic areas. The table shows larger marginal affects for contact with farther-away

areas than more proximate areas.

Table 10 reports results from a county heterogeneity analysis of the baseline exposure

model. The results indicate the effect of local cases on new case growth is depressed by stay-

at-home orders. The effect of outside exposure is magnified in larger and denser counties,

and also in locations under stay-at-home orders.
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Table 9: Robustness Checks: Case Exposure and New Case Growth
A. Functional Form

1 2 3 4 5 6 7 8
OLS OLS FE

α2 = 1
2

1 3
2

2 1
2

1 3
2

2

α1 = 1
2

[mean] [8.331] [10.86] [14.07] [17.63] [8.331] [10.86] [14.07] [17.63]
Coef. 0.169 0.165 0.130 0.102 0.297 0.317 0.226 0.160
(se) (0.011) (0.009) (0.007) (0.006) (0.017) (0.014) (0.010) (0.008)
R2 0.859 0.860 0.860 0.860 0.866 0.867 0.867 0.867

α1 = 1
[mean] [10.11] [12.48] [15.50] [18.93] [10.11] [12.48] [15.50] [18.93]
Coef. 0.126 0.123 0.101 0.085 0.153 0.192 0.161 0.127
(se) (0.006) (0.005) (0.004) (0.004) (0.009) (0.008) (0.006) (0.005)
R2 0.860 0.861 0.861 0.860 0.866 0.868 0.868 0.867

α1 = 3
2

[mean] [12.76] [14.87] [17.54] [20.68] [12.76] [14.87] [17.54] [20.68]
Coef. 0.067 0.074 0.069 0.062 0.075 0.109 0.111 0.096
(se) (0.004) (0.003) (0.003) (0.003) (0.005) (0.005) (0.005) (0.004)
R2 0.860 0.860 0.861 0.860 0.866 0.867 0.867 0.867

α1 = 2
[mean] [15.84] [17.75] [20.12] [22.91] [15.84] [17.75] [20.12] [22.91]
Coef. 0.040 0.048 0.048 0.046 0.044 0.066 0.077 0.075
(se) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.003) (0.003)
R2 0.859 0.860 0.860 0.860 0.865 0.866 0.867 0.867

B. Destination
1 2 3 4 5 6 7 8

OLS OLS FE

α2 State CBSA Neighbor Top 10 Visit State CBSA Neighbor Top 10 Visit

Inside/Same
[mean] [10.60] [4.126] [8.679] [10.61] [10.60] [4.126] [8.679] [10.61]
Coef. 0.044 0.009 0.036 0.047 0.061 0.029 0.060 0.058
(se) (0.002) (0.000) (0.001) (0.002) (0.003) (0.001) (0.002) (0.003)

Outside/Other
[mean] [11.92] [12.30] [12.29] [11.97] [11.92] [12.30] [12.29] [11.97]
Coef. 0.089 0.091 0.082 0.075 0.158 0.151 0.126 0.135
(se) (0.005) (0.006) (0.005) (0.006) (0.009) (0.009) (0.009) (0.010)

R2 0.861 0.860 0.862 0.861 0.868 0.868 0.871 0.868

NOTES: The table reports robustness results for the model represented by equation (5). The outcome variable is the log
number of new cases in the county. The observation level is county by week. The upper panel uses different calibration for the
exponents in the exposure measure, equation 4. The lower panel uses exposure measured at different geographies. Source:
Authors’ calculations using data retrieved as described in Section 2.
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Table 10: County Heterogeneity: Case Exposure and New Case Growth
1 2

Model OLS OLS FE

Population -0.213
(0.038)

Pop. Density -0.011
(0.026)

Local Cases 0.750 0.575
(0.006) (0.007)

X Population -0.007 -0.007
(0.004) (0.005)

X Pop. Density 0.006 -0.007
(0.003) (0.005)

X Stay-at-home Order -0.049 -0.065
(0.006) (0.007)

Mobility Index 0.002 0.003
(0.000) (0.000)

Network Case Expo. 0.299 0.377
(0.032) (0.035)

X Population 0.199 0.356
(0.018) (0.019)

X Pop. Density 0.045 0.105
(0.016) (0.016)

X Stay-at-home Order 0.027 0.042
(0.006) (0.008)

Constant 0.343 -0.883
(0.182) (0.080)

Time Effects y y
County FEs y

NOTES: The table reports regression results of the model represented by equation (5) but with county attributes interacted
with the main variables of interest. The outcome variable is the log number of new cases in the county. The observation level
is county by week. Source: Authors’ calculations using data retrieved as described in Section 2.
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