SIEMENS

SIMATIC

Working with STEP 7

Getting Started

This manual is part of the documentation
package with the order number:
6ES7810-4CA10-8BW0O

05/2010

A5E02904800-01

Introduction to STEP 7

The SIMATIC Manager

Programming with
Symbols

Creating a Program in

W DN

Creating a Program with
Function Blocks and Data
Blocks

()]

Configuring the Central
Rack

Downloading and
Debugaing the Program

Programming a Function

Programming a
Shared Data Block

© o0 N O

Programming a Multiple
Instance

Configuring the
Distributed 1/0

Appendix A

Legal information
Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to
property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring
only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of

danger.

I DANGER

indicates that death or severe personal injury will result if proper precautions are not taken.
/N WARNING

indicates that death or severe personal injury may result if proper precautions are not taken.

/N CAUTION

with a safety alert symbol, indicates that minor personal injury can result if proper precautions are not taken.

CAUTION

without a safety alert symbol, indicates that property damage can result if proper precautions are not taken.

NOTICE

indicates that an unintended result or situation can occur if the corresponding information is not taken into account.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A
notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by personnel qualified for the specific task in
accordance with the relevant documentation for the specific task, in particular its warning notices and safety instructions.

Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding
potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

/A WARNING

Siemens products may only be used for the applications described in the catalog and in the relevant technical documentation.
If products and components from other manufacturers are used, these must be recommended or approved by Siemens.
Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the

products operate safely and without any problems. The permissible ambient conditions must be adhered to. The information in
the relevant documentation must be observed.

Trademarks

All names identified by ® are registered trademarks of the Siemens AG. The remaining trademarks in this publication may be
trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since
variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is
reviewed regularly and any necessary corrections are included in subsequent editions.

Siemens AG A5E02904800-01 Copyright © Siemens AG 2010.
Industry Sector ® 02/2010 Technical data subject to change
Postfach 48 48

90026 NURNBERG
GERMANY

Welcome to STEP 7...

...the SIMATIC standard software for creating programmable logic control programs in Ladder
Logic, Function Block Diagram, or Statement List for SIMATIC S7-300/400 stations.

About This Getting Started Manual

In this manual, you will get to know the basics of SIMATIC STEP 7. We will show you the most
important screen dialog boxes and the procedures to follow using practical exercises, which are
structured so that you can start with almost any chapter.

Each section is split into two parts: a descriptive part, marked in gray, and a process-oriented
part, marked in green. The instructions start with an arrow in the green margin and may be
spread out over several pages, finishing in a full stop and a box containing related topics.

Previous experience of working with the mouse, window handling, pull-down menus, etc. would
be useful, and you should preferably be familiar with the basic principles of programmable logic
control.

The STEP 7 training courses provide you with in-depth knowledge above and beyond the
contents of this Getting Started manual, teaching you how entire automation solutions can be
created with STEP 7.

Requirements for Working with the Getting Started Manual

In order to carry out the practical exercises for STEP 7 in this Getting Started manual, you
require the following:

e A Siemens programming device or a PC
e The STEP 7 software package and the respective license key

e A SIMATIC S7-300 or S7-400 programmable controller
(for Chapter 7/"Downloading and Debugging the Program").

Additional Documentation on STEP 7
e STEP 7 Basic Information
e STEP 7 Reference Information

After you have installed STEP 7, you will find the electronic manuals in the Start menu under
Simatic > Documentation or alternatively, you can order them from any Siemens sales center.
All of the information in the manuals can be called up in STEP 7 from the online help.

Have fun and good luck!
SIEMENS AG

Getting Started STEP 7

A5E02904800-01

Welcome to STEP 7...

Getting Started STEP 7
4 A5E02904800-01

Contents

Getting Started STEP 7

A5E02904800-01

1.1
1.2
1.3
1.4

2.1
22

3.1
3.2

41
42
4.3
4.4

5.1
5.2
5.3
54
5.5
5.6
5.7
5.8

Introduction to STEP 7

What You Will Learn

Combining Hardware and Software
Basic Procedure Using STEP 7
Installing STEP 7

The SIMATIC Manager
Starting the SIMATIC Manager and Creating a Project

The Project Structure in the SIMATIC Manager
and How to Call the Online Help

In Chapters 3 to 5, you create a
simple program. I

Programming with Symbols
Absolute Addresses

Symbolic Programming

Creating a Program in OB1

Opening the LAD/STL/FBD Program Window
Programming OB1 in Ladder Logic
Programming OB1 in Statement List

Programming OB1 in Function Block Diagram

Creating a Program with Function Blocks and Data Blocks
Creating and Opening Function Blocks (FB)

Programming FB1 in Ladder Logic

Programming FB1 in Statement List

Programming FB1 in Function Block Diagram

Generating Instance Data Blocks and Changing Actual Values
Programming a Block Call in Ladder Logic

Programming a Block Call in Statement List

Programming a Block Call in Function Block Diagram

10
11

13

16

19
20

23
26
30
33

37
39
43
46
50
52
55
57

Contents

7.1
7.2
7.3
7.4
7.5

8.1
8.2
8.3

10

10.1
10.2
10.3
10.4

11
11.1

In Chapters 6 and 7, you
configure the hardware and test
your program.

Configuring the Central Rack

Configuring Hardware 61

Downloading and Debugging the Program

Establishing an Online Connection 63
Downloading the Program to the Programmable Controller 65
Testing the Program with Program Status 68
Testing the Program with the Variable Table 70
Evaluating the Diagnostic Buffer 74

In Chapters 8 to 11, you can
extend your knowledge to include
new functions.

Programming a Function

Creating and Opening Functions (FC) 77
Programming Functions 79
Calling the Function in OB1 82

Programming a Shared Data Block
Creating and Opening Shared Data Blocks 85

Programming a Multiple Instance

Creating and Opening a Higher-Level Function Block 89
Programming FB10 91
Generating DB10 and Adapting the Actual Value 95
Calling FB10 in OB1 97

Configuring the Distributed 1/0
Configuring the Distributed I/O with PROFIBUS DP 101

109
Appendix A

Overview of the Sample Projects for the Getting Started Manual

Index 111

Getting Started STEP 7
A5E02904800-01

1 Introduction to STEP 7

1.1 What You Will Learn
Using practical exercises, we will show you how easy it is to program in Ladder Logic, Statement
List, or Function Block Diagram with STEP 7.

Detailed instructions in the individual chapters will show you step-by-step the many ways in which
you can use STEP 7.

Creating a Program with Binary Logic

In Chapters 2 to 7, you will create a program with binary logic. Using the programmed logic
operations, you will address the inputs and outputs of your CPU (if present).

The programming examples in the Getting Started manual are based, among other things, on
three fundamental binary logic operations.

The first binary logic operation, which you will program later on, is the AND function. The AND
function can be best illustrated in a circuit diagram using two keys.

If both Key 1 and Key 2
Key 1 Key 2 are pressed, the bulb

lights up.

The second binary logic operation is the OR function. The OR function can also be represented in

a circuit diagram.
/g Key 3

« o If either key 3 or key 4
Key 4 is pressed, the bulb

lights up.

Getting Started STEP 7
A5E02904800-01

Introduction to STEP 7

The third binary logic operation is the memory element. The SR function reacts within a circuit
diagram to certain voltage states and passes these on accordingly.

Key S Memory Element
],
+ =S)
‘ o—— R
Key R
_—

If key S is pressed, the bulb lights up
and remains lit until key R is pressed.

Getting Started STEP 7
8 A5E02904800-01

Introduction to STEP 7

1.2 Combining Hardware and Software

Using the STEP 7 software, you can create your S7 program within a project. The S7
programmable controller consists of a power supply unit, a CPU, and input and output modules

(/O modules).

The programmable logic controller (PLC) monitors and controls your machine with the S7
program. The I/O modules are addressed in the S7 program via the addresses.

Programming
device cable

Programming device

Transferring a program

CPU

Machine to be
controlled

Output module

Power supply module

Input module

Getting Started
A5E02904800-01

STEP 7

Introduction to STEP 7

1.3 Basic Procedure Using STEP 7

Before you create a project, you should know that STEP 7 projects can be created in different

orders.

Designing the solution to the automation task

Option 1

Creating a project (Chapter 2)

Option 2

Configuring the hardware
(Chapter 6)

Creating a program
(Chapters|3ito 5)

Creating a program
(Chapters 3 to 5)

Configuring the hardware
(Chapter 6)

Y

Transferring the program to the CPU and debugging
(Chapter 7)

If you are creating comprehensive programs with many inputs and outputs, we recommend you configure
the hardware first. The advantage of this is that STEP 7 displays the possible addresses in the Hardware

Configuration Editor.

If you choose the second option, you have to determine each address yourself, depending on your selected

components and you cannot call these addresses via STEP 7.

In the hardware configuration, not only can you define addresses, but you can also change the parameters
and properties of modules. If you want to operate several CPUs, for example, you have to match up the

MPI addresses of the CPUs.

10

programming.

Since we are only using a small number of inputs and
outputs in the Getting Started manual, we will skip the
hardware configuration for now and start with the

Getting Started STEP 7
A5E02904800-01

Introduction to STEP 7

1.4 Installing STEP 7

Regardless of whether you want to start with programming or configuring hardware, you first
have to install STEP 7. If you are using a SIMATIC programming device, STEP 7 is already
installed.

When installing the STEP 7 software on a
programming device or PC without a
previously installed version of STEP 7, note
the software and hardware requirements. You
can find these in the Readme.wri on the
STEP 7 CD under <Drive>:\STEP 7 \Disk1.

If you need to install STEP 7 first, insert the
STEP 7 CD in the CD-ROM drive now. The
installation program starts automatically.
Follow the instructions on the screen.

If the installation does not start auto-
matically, you can also find the
installation program on the CD-ROM
under

<Drive>:\STEP 7 \Disk1\setup.exe.

Once the installation is complete and you
have restarted the computer, the "SIMATIC
Manager" icon will appear on your Windows

E desktop.

If you double-click the "SIMATIC Manager" icon following installation, the STEP 7 Wizard will be started
automatically.

You can find additional notes on installation in the
Readme.wri file on the STEP 7 CD under
<Drive>:\STEP 7 \Disk1\Readme.wri.

Getting Started STEP 7
A5E02904800-01 11

Introduction to STEP 7

Getting Started STEP 7
12 A5E02904800-01

2 The SIMATIC Manager

2.1

Starting the SIMATIC Manager and Creating a Project

The SIMATIC Manager is the central window which becomes active when STEP 7 is started.
The default setting starts the STEP 7 Wizard, which supports you when creating a STEP 7
project. The project structure is used to store and arrange all the data and programs in order.

Within the project, data are stored in the
form of objects in a hierarchical structure

SIMATIC 300 Statio

SIMATIC kanager

STEP 7 Wizard: "New Project™ [x|
", Introduction 18]

STEP 7 Wizard: "New Project"

You can create STEP 7 projects quickly and easil using
the STEP 7'wizard. You can then start programming
immediately.

A 1 Click ane of the following optiors:
5 U i

1 "Mext" to create pour project step-by-step

¥

“Make" to create your praject according to the preview,

‘ Preview< |

[# Display Wizard on starting the SIMATIC Managen

A

57 Pro2
=l §IMATIC 300 Station

= J] cPUz12IFM(T)
£)-(51] 57 Program(1)

Block Hame
Hoe

Symbolic Name
Cyile Execution

" {23 Blocks
g
< of Make Cancel | Help |
S

Getting Started STEP 7
A5E02904800-01

The SIMATIC station and the CPU
contain the configuration and
parameter data of the hardware

The S7 program comprises all the
blocks with the programs necessary for
controlling the machine

Double-click the SIMATIC Manager icon on the
Windows desktop, then select the File > Wizard
"New Project™ menu command if the wizard does
not start automatically.

In the preview, you can toggle the view of the project
structure being created on and off.

To move to the next dialog box, click Next.

13

The SIMATIC Manager

SLERUIVan RHE ki For the "Getting Started" sample project, select
CPU 314. The example has been created in such a
T way that you can actually select the CPU you have
EES 315 D e been supplied with at any time.

BES7 3141AE04-04B0
BES7 314-B4E03-04B0
EES7 315-14F03-04B0

e The default setting for the MPI address is 2.

Click Next to confirm the settings and move to the
next dialog box.

STERHAW = RHer i s Select the organization block OB1 (if this is not

= already selected).
i ot Doy g0 Select one of the programming languages: Ladder
T Logic (LAD), Statement List (STL), or Function Block
Time of Day Interupt 3 Diagram (FBD).

Confirm your settings with Next.

Cyele Execution

Getting Started STEP 7
14 A5E02904800-01

The SIMATIC Manager

a

STEP 7 Wizaid: "New Froject”

;‘\) What do you want to call your project? 44]
S
N
Project name: IGetting Started)
Existing projects: d
57_Piol
57 _Pio2 j
-

Checl your new project in the preview.
Click "Make'" to create the project with the displayed
structure.

=) Getting Stated Block Name [Symbolic Nams [
=+l SIMATIC 300 Statior 3 0B Cycle Execution
=l cPu3140)
E-{3] 57 Program(1]
43 Blocks

\
< Back | ﬂexw(l Make)I Cancel Help
N
T —

Double-click to select the suggested name in
the "Project name" field and overwrite it with
"Getting Started."

Click Make to generate your new project
according to the preview.

When you click the Make button, the SIMATIC Manager will open with the window for the "Getting Started"
project you have created. On the following pages, we will show you what the created files and folders are
for and how you can work effectively with them.

The STEP 7 Wizard is activated each time the program is started. You can deactivate this default setting in
the first dialog box for the Wizard. However, if you create projects without the STEP 7 Wizard, you must
create each directory within the project yourself.

Getting Started STEP 7
A5E02904800-01

You can find more information under
Help > Contents in the topic "Setting
Up and Editing the Project."

15

The SIMATIC Manager

2.2 The Project Structure in the SIMATIC Manager and How to Call the
Online Help

As soon as the STEP 7 Wizard is closed, the SIMATIC Manager appears with the open project
window "Getting Started." From here, you can start all the STEP 7 functions and windows.

Opening, organizing, and printing
projects

Editing blocks and inserting program

Setting the window display and
components

arrangement, selecting the
language, and making settings for
process data

Downloading the program
and monitoring the
hardware

Calling the STEP 7 online help

E‘SIMATIC Manager/ Getting Started

File Edit Inset FPLC “iew Option: ‘Window Help

0| 83|77 & |22 dal [= =[5 [< Mo Fiter > =™ 38=| =5|m| 2]

El- Getting Started
-l SIMATIC 300 Station
=@ crusdr
7] 57 Program

Prezz F1 to get Help.

The contents of the right-hand pane
show the objects and other folders
for the folder selected on the left

The contents of the left-hand pane
show the project structure

Getting Started STEP 7
16 A5E02904800-01

The SIMATIC Manager

Calling the Help on STEP 7

F1 Option 1:

Place the cursor on any menu command and press the
F1 key. The context-sensitive help for the selected
menu command will appear.

Option 2:
Use the menu to open the STEP 7 online help.

The contents page with various help topics appears in
R - the left-hand pane and the selected topic is displayed
e : in the right-hand pane.

It | g | Suchen | .
o T Overview of STEP 7

uf;%“"m: What s STER 72 Navigate to the topic you want by clicking the + sign in

ETER 7 i th software package

s for contguing and programming the Contents list. At the same time, the contents of
“ the selected topic are displayed in the right-hand pane.

+ @ Semreg Up ol Ectig e Project
Cilting Frowscts with afferend Versior
"Working vk Frofects inthe Mstipror

5 @ Meer than Ore iner Erting Projacts

% @ Configuring the Hardware

+ @ Contiguring € tiong and Dats B

Using Index and Find, you can enter search strings
and look for the specific topics you require.

Option 3:

Click on the "Start page" icon in the STEP 7 Online
Help to open the information portal. This portal
provides compact access to major topics of the Online
Help, e.g.:

e Getting Started with STEP 7

e Configuring & Programming

P Testing & Debugging

e SIMATIC on the Internet

h? Option 4:

Click on the question mark button in the toolbar to turn
your mouse into a help cursor. The next time you click
on a specific object, the online help is activated.

Getting Started STEP 7
A5E02904800-01 17

The SIMATIC Manager

Navigating in the Project Structure

QSIMATIC Manager - Getting Started

Fle Edt Inset PLC View Dptions ‘window Help The project you have just created is displayed with the
Ol 22lel ¢ el &l [F =l selected S7 station and CPU.

i Geting Staried - C:\Siemens\Step7\S 7ol Gl Click the + or — sign to open or close a folder.
E}‘E’;: Getting Started

=E SIMATIC 300 Station S You can start other functions later on by
E."-USB;‘;'[I‘IU]gram 081 clicking the symbols displayed in the
(B Sources i - .
e right-hand pane

Click the 87 Program (1) folder. This contains all the
necessary program components.

You will use the Symbols component in Chapter 3|to
give the addresses symbolic names.

The Source Files component is used to store source
file programs. These are not dealt with in the Getting
Started manual.

-) Click the Blocks folder. This contains the OB1 you
have already created and, later on, all the other
blocks.

From here, you will start programming in Ladder Logic,
Statement List, or Function Block Diagram in Chapters
4/and 5.

Click the SIMATIC 300 Station folder. All the
hardware-related project data are stored here.

wibGmitin_1
o

[TEl

You will use the Hardware component in Chapter 6|to
specify the parameters of your programmable
controller.

If you require further SIMATIC software for your automation task; for example, the optional packages
PLCSIM (hardware simulation program) or S7 Graph (graphic programming language), these are also
integrated in STEP 7. Using the SIMATIC Manager, for example, you can directly open the relevant objects
such as an S7 Graph function block.

You can find more information under Help > Contents in the topics "Working
Out the Automation Concept" and "Basics of Designing the Program Structure".

You can find more information on optional packages in the SIMATIC catalog
ST 70, "Components for Completely Integrated Automation."

Getting Started STEP 7
18 A5E02904800-01

3 Programming with Symbols

3.1 Absolute Addresses

Every input and output has an absolute address predefined by the hardware configuration. This
address is specified directly; that is, absolutely.

The absolute address can be replaced by any symbolic name you choose.

Digital input NS Digital output
module - module
Byte 0 - : _Byte 4
Bits0to 7 o BitsOto 7
—0
n
Digital input E : Digital output |
o)
module - module ,
Byte 1 —i0 Byte 5
Bits 0 to 7 — b Bits 0 to 7

Absolute address: | 1.5

Input Byte 1 Bit 5

Getting Started STEP 7
A5E02904800-01 19

Programming with Symbols

3.2 Symbolic Programming

In the symbol table, you assign a symbolic name and the data type to all the absolute addresses
which you will address later on in your program; for example, for input | 0.1 the symbolic name
Key 1. These names apply to all parts of the program and are known as global variables.

Using symbolic programming, you can considerably improve the legibility of the S7 program you
have created.

Working with the Symbol Editor

Skatu Address Data bype

1 o8 1 o8 1

2
Status | Swmbal Address Data bype ‘

1 hain Program o8 1 OB 1

2 Green Light o] 4.0 BCOOL

| Comment |

Status | Symbol Address Data type

1 hdzin Program o8B 1 o 1

2 Green Light Q 40 BOOL

3 Feed Light Q 4.1 BOOL

20

Navigate in the project window "Getting Started" until
you reach S7 Program (1) and double-click to open
the Symbols component.

Your symbol table currently only consists of the
predefined organization block OB1.

Click Cycle Execution and overwrite it with "Main
Program" for our example.

Enter "Green Light" and "Q 4.0" in row 2. The data
type is added automatically.

Click in the comment column of row 1 or 2 to enter a
comment on the symbol. You complete your entries
in a row by pressing Enter, which then adds a new
row.

Enter "Red Light" and "Q 4.1" in row 3 and press
Enter to complete the entry.

In this way, you can assign symbolic names to all
the absolute addresses of the inputs and outputs
which your program requires.

Getting Started STEP 7
A5E02904800-01

Programming with Symbols

| E Save the entries or changes you have made in the
symbol table and close the window.

Because there are lots of names for the entire "Getting Started" project, you can copy the symbol

table to your "Getting Started" project in Section 4.1.

ﬁ:w_ﬁymhnl Editor - 57-Program(1)(Symbaols)--ZEn01_01_STEP7__STL_1-RASIMATIC 300(1)\C... =] E3
Symbol Table Edit Inset Miew Options Window Help

S| & 4B o o [[asmbos =% w2

Status | Symbol ¢ Address Datatype | Comment
1 2.1t _Mode Q 4.2 BOOL Retentive output
2 Automatic_On | 05 BOOL Faor the memary function (sywitch on)
3 DE_Actual_Speed M 4 INT Actual speed for diesel engine
4 DE_Failure | 16 BOOL Diesel engine failure Here yOU can see the symb0|
5 DE_Fan_on Q S5E BOOL Command for switching on diesel engine ta table for the S7 program in the
3 DE_Fallow _On T 2 TIMER: Follow-on time for diesel engine fan "Getting Started" examp|e for
7 DE_On o] 5.4 BOOL Command for switching on diesel engine .
a8 DE_Presst_Speed R... |Q 8.5 BOOL Dizplay "Diesel engine preset speed reache Statement LISt'
9 Dies.el DB 2 FB 1 Daté for diesel engine Genera"y Speaking, onIy one
10 Engine FB 1 FB 1 Engine cortrol -
11 Fan FC 1 FC 1 Fan cortral symbol table is created per
1z Green_Light @ 40 |BOOL Result 0f AHD query S7 program, regardless of
13 Key_1 | 01 BOOL For the AND query A A
14 Key_2 | 0z BOOL For the AND guery WhICh prerammmg Ianguage
15 Key 3 | 03 [pool For the OR query you have selected.
16 Key_4 | 0.4 BOOL Far the OR quer .
17 Ma?l"__Prngram o8 1 o8 1 Thiz block canvta?ns the user program A" prlntable ChlaraCters (for
18 Manual_0n | 0B BOOL For the memory function (Switch off) example, SpeCIaI Characters,
19 PE_Actusl_Speed A 2 INT Actual speed for petrol engine Spaces) are permitted in the
Z0 PE_Failure i 1.2 BOOL Petroi engine faiure
21 PE_Fan_0Cn Q 8.2 BOOL Comtmand for switching on petrol enging fal SYmbOI table'
2z PE_Follow_On T 1 TIMER: Follawy-on time far petrol engine fan
23 PE_On o] 50 BOOL Command for switching on petrol engine
24 PE_Preset_Speed_Re..|Q 51 BOOL Display "Petral engine preset speed reache
25 Petral oE 1 FB 1 Data for petrol encgine
26 Fed_Light o] 41 BOOL Result of OR query
27 S_Data DB 3 oE 3 Shared data block
28 Switch_Off_DE | 1.5 BOOL Switch off diesel engine
29 Swvitch_Of1_PE | 1.1 BOOL Swvitch off petral engine
30 Swvitch_0On_DE | 1.4 BOOL Switch on diesel engine
E EH Switan_0n_PE I 10 [BooL Switah an petrol engine
32

I |

The data type which was previously added automatically to the symbol table determines the type of the
signal to be processed for the CPU. STEP 7 uses, among others, the following data types:

BOOL Data of this type are bit combinations. 1 bit (type BOOL) to 32 bits (DWORD).

BYTE

WORD

DWORD

CHAR Data of this type occupy exactly one character of the ASCII character set.

INT They are available for the processing of numerical values (for example, to calculate

DINT arithmetic expressions).

REAL

S5TIME Data of this type represent the different time and date values within STEP 7 (for

TIME example, to set the date or to enter the time value for a timer).

DATE

TIME_OF_DAY
You can find more information under Help >
Contents in the topics “Programming Blocks*
and "Defining Symbols".

Getting Started STEP 7
A5E02904800-01 21

Programming with Symbols

Getting Started STEP 7
22 A5E02904800-01

4 Creating a Program in OB1

4.1 Opening the LAD/STL/FBD Program Window

Choosing Ladder Logic, Statement List, or Function Block Diagram

With STEP 7, you create S7 programs in the standard languages Ladder Logic (LAD), Statement
List (STL), or Function Block Diagram (FBD). In practice, and for this chapter too, you must decide
which language to use.

C

Getting Started STEP 7
A5E02904800-01

Ladder Logic (LAD)

Suitable for users from the electrical engineering industry, for example.

"Green Lig
FFKE ?_1 r L Ke ?_2 L ht L
| | | | |'|l'

1 |
T |

Statement List (STL)

Suitable for users from the world of computer technology, for example.

A rr KE .E;r_ 1 rr
A rr KE .5;.._2 rr
= "Green Light"

Function Block Diagram (FBD)

Suitable for users from the world of circuit engineering, for example.

& "Green Lig

"KEE’_]. LLE— ht'r

L ?_2 LU

The block OB1 will now be opened according to the language you chose
when you created it in the project Wizard. However, you can change the
default programming language again at any time.

23

Creating a Program in OB1

Copying the Symbol Table and Opening OB1

Dpen Project If necessary, open your "Getting Started" project. To
do this, click the Open button in the toolbar, select
the "Getting Started" project you created, and confirm
with OK.

Depending on which programming language you
have decided to use, in the "Sample projects"” tab
open one of the following projects as well:

e ZEn01_05_STEP7__LAD_1-9

e ZEn01_01_STEP7__STL_1-9

User projects ILiblariesI S:

or
e ZEn0O1 03 STEP7__FDB_1-9
.,m,..h‘.n Here you can see all three sample projects displayed.

ks 3] Syt

Navigate in the "ZEn01_XXX* until you reach the
Symbols component and copy this by dragging and
dropping it to the S7 Program folder in your project
window "Getting Started."

Then close the window "ZEn01_XXX*.

Drag and drop means that you click any object
with the mouse and move it whilst keeping the
mouse button depressed. When you release the
mouse button, the object is pasted at the selected
position.

Double-click OB1 in the "Getting Started" project. The
LAD/STL/FBD program window is opened.

= @ SIMATIC T Slabens
) crumap)
(£ 57 Prograssll]
5] Source Fies

EER

In STEP 7, OB1 is processed cyclically by the CPU. The CPU reads line by line and executes the program
commands. When the CPU returns to the first program line, it has completed exactly one cycle. The time
required for this is known as the scan cycle time.

Depending on which programming language you have selected, continue reading in either Section 4.2 for
programming in Ladder Logic, Section 4.3 for Statement List, or Section 4.4 for Function Block Diagram.

You can find more information under Help > Contents I
in the topics “Programming Blocks" and "Creating
I Blocks and Libraries.” I

Getting Started STEP 7
24 A5E02904800-01

Creating a Program in OB1

The LAD/STL/FBD Program Window

All blocks are programmed in the LAD/STL/FBD program window. Here, you can see the view

for Ladder Logic.

Inserting a new
network

To

structure" on and off

(Pane can be placed anywhere in the
program window)

ggling "Program elements" and "Call

Changing the programming
language view

The most important program
elements for Ladder Logic and
Function Block Diagram

ELADISTLIFBD - [0B1 -- Getting Started\SIMATIC 300 Station\CPU314(1]]

£+ File Edit |nset PLC Debug ¥iew DOptions Window Help _|5 ﬂ
D@ S| &[®le] o]c] vl o = D L2 JHEHolEe |] x|
|} |Contents OF. ‘EnvitonmentiInterface\TEMP'
Irterface][mame Data Type [Address [Commant [=]
= E|d§- TEMP ‘@ |[0B1_EY_C... |Byte 0.0 Bits 0-3 = 1 (Coming event), Bit...
- OB1_EV_CLASS @ OBT_SCAN.. |Byte 1.0 1 (Cold restart scan 1 of QB 1), ..
8 0B1_SCAN_1 = OB1_PRIO.. |Byte 20 Priafity of OB Execution
@ OB1_PRIORITY ——
Program o toeERlm opi_rd The variable declaration table contains | —
elements = 081 REsERvED 2 |2 0B1_RE the parameters and local variables for
(here for @ OB1_PREY_CYCLE - = OB_PH the block -
Ladder LOg|C) : = 0B1 MIN CYCLE ‘= OB1_MI - l... _I
and cal etk i Tacies
structure Comment: Title and comment field for D
O {3ANE) the block or network
FT HEG
- FOs |
B-{£] Comparator ‘ [|
-5 Converter
-3 Counter
EII- DB cal Program input line (also network
[Jumps:
Bl Integer fel, and current path)
[E-{z&] Floating-paint fet
4 I »
Bit logic 3'
i Ej fagram .. E_E Call stru ;I
x|
MIEIETE GEmor A Znfe A 3 CrossReferences b & Addressinfo. b 5 Modify 6 Diagnostics 7. Comparison__f

Press F1 to get Help.

Getting Started
A5E02904800-01

Information on the selected program element

STEP 7

The different tabs of the "Details” window
are for displaying error messages and
information on addresses, for editing
symbols, monitoring addresses,
comparing blocks and for editing error
definitions for the process diagnostics.

25

Creating a Program in OB1

4.2 Programming OB1 in Ladder Logic

In the following section, you will program a series circuit, a parallel circuit, and the set / reset

memory function in Ladder Logic (LAD).

Programming a Series Circuit in Ladder Logic

() Ctrke1

STL Chil+2
EED Chrl+3
Comment :

Dizplay with ¥ v Sumbolic Representation Cil+Q
Symbol Information Ctrl+Shift+Cl

Sembol Selection Chil+7
v Comment Clrl+Shift+k,

Address |dentification

26

If necessary, set LAD as the programming language
in the View menu.

Click in the title area of OB1 and enter "Cyclically
processed main program," for example.

Select the current path for your first element.

Click the button in the toolbar and insert a normally
open contact.

In the same way, insert a second normally open
contact.

Insert a coil at the right-hand end of the current path.

The addresses of the normally open contacts and the
coil are still missing in the series circuit.

Check whether symbolic representation is activated.

Getting Started STEP 7
A5E02904800-01

Creating a Program in OB1

. I
22,2 < 22,2 2?7
}—H i —

"Key 1" "Key 2" hi"

‘ I | { —

‘ "Green Lig

Getting Started STEP 7
A5E02904800-01

Click the ?7?.? sign and enter the symbolic name
"Key_1" (in quotation marks). Alternatively, you can
select the name from the displayed pull-down list.
Confirm with Enter.

Enter the symbolic name "Key_2" for the second
normally open contact.

Enter the name "Green_Light" for the caoil.

You have now programmed a complete series circuit.

Save the block if there are no more symbols shown in
red.

27

Creating a Program in OB1

Programming a Parallel Circuit in Ladder Logic

p—
‘llet.wurk k) Title:

Comment :

7 27

f —
7

"Red Light

"KEY 3 " -

| r

1T \)_|
"Eey 4

|

1

28

Select Network 1.

Insert a new network.

Select the current path again.

Insert a normally open contact and a coil.
Select the vertical line of the current path.
Insert a parallel branch.

Add another normally open contact in the parallel
branch.

Close the branch (if necessary, select the lower
arrow).

The addresses are still missing in the parallel circuit.

To assign symbolic addresses, proceed in the same
way as for the series circuit.

Overwrite the upper normally open contact with
"Key_3," the lower contact with "Key_4," and the coil
with "Red_Light."

Save the block.

Getting Started STEP 7
A5E02904800-01

Creating a Program in OB1

Programming a Memory Function in Ladder Logic

Select Network 2 and insert another network.

|-||-n|
===

2.7

SR

Select the current path again.

Navigate in the Program Elements catalog under Bit
Logic until you reach the SR element. Double-click to
insert the element.

Insert a normally open contact in front of each of the

"Automatic

"Automatic
_Mode™

=

"Manual On
"

SR

inputs S and R.

Enter the following symbolic names for the SR
element:
Upper contact "Automatic_On"

[o]

Lower contact "Manual_On"
SR element "Automatic_Mode"

Save the block and close the window.

=1

If you want to see the difference between absolute and symbolic addressing, deactivate the menu
command View > Display > Symbolic Representation.

"Green Lig

Example:
- p

| Symbolic addressing in LAD

—A

|
i 1

Q4.0 Example:

{ }u- I Absolute addressing in LAD

You can change the line break for symbolic addressing in the LAD/STL/FBD program window by using the
menu command Options > Customize and then selecting "Width of address field" in the "LAD/FBD" tab.
Here you can set the line break between 10 and 26 characters.

Getting Started STEP 7
A5E02904800-01

You can find more information under Help >
Contents in the topics "Programming Blocks,"
"Creating Logic Blocks," and "Editing Ladder
Instructions."

29

Creating a Program in OB1

4.3 Programming OB1 in Statement List

In the following section, you will program an AND instruction, an OR instruction, and the memory

instruction set/reset in Statement List (STL).

Programming an AND Instruction in Statement List

Al Crl+1
CsiL) Cike2
FED Chrl+3
Dizplay with ¥+ Sumbolic Representation Chl+Q
Symbal Infarmation Chrl+Shift+3
Sembol Selection Chil+7
v Comment Chrl+5hift+£

Address |dentification

OBl :(Title :>

Comment :

Comment :

>

A rr KE .5?._1 rr

30

If necessary, set STL as the programming language
in the View menu.

Check whether symbolic representation is activated.

Click in the title area of OB1 and enter "Cyclically
processed main program," for example.

Select the area for your first statement.

Type an A (AND) in the first program line, a space,
and then the symbolic name "Key_1" (in quotation
marks).

Complete the line with Enter. The cursor jumps to the
next line.

Getting Started STEP 7
A5E02904800-01

Creating a Program in OB1

Getting Started STEP 7
A5E02904800-01

T

rr KE .E;r_ 1 rr
rr KE .5;.._2 rr
"Green Light"

Hetwork 1’ Title:

I = e

Fr KE ?_3 Fr

r KE .3?._3 r
r KE ?_4 r
"Red Light"

In the same way, complete the AND instruction as
shown.

You have now programmed a complete AND
instruction. Save the block if there are no more
symbols shown in red.

Programming an OR Instruction in Statement List

Select Network 1.

Insert a new network and select the input area again.

Enter an O (OR) and the symbolic name "Key_3" (in
the same way as for the AND instruction).

Complete the OR instruction and save it.

31

Creating a Program in OB1

Programming a Memory Instruction in Statement List

I|1H:| Select Network 2 and insert another network.

A "Automatic Cn" In the first line, type the instruction A with the
symbolic name "Automatic_On."

"Automatic_ On" Complete the memory instruction and save it. Close
"Automatic Mode" the block.

"Manual On'"

"Automatic Mode"

ol

a

If you want to see the difference between absolute and symbolic addressing, deactivate the menu
command View > Display > Symbolic Representation.

A. "KE? 1 rr

" et Example:
A Key 2 Symbolic addressing in STL
= "Green Light"
2 I 0.1 Example:
2 I 0.2 Absolute addressing in STL
= 4.0

You can find more information under Help >
Contents in the topics "Programming Blocks,
"Creating Logic Blocks," and "Editing STL
Statements."

Getting Started STEP 7
32 A5E02904800-01

Creating a Program in OB1

4.4 Programming OB1 in Function Block Diagram

In the following section, you will program an AND function, an OR function, and a memory function
in Function Block Diagram (FBD).

Programming an AND Function in Function Block Diagram

L&D Ctrke1

Crl+2
Chrl+3

Comment :

Comoent :

77—

2. 7—

Dizplay with

Getting Started STEP 7
A5E02904800-01

* w Symbolic Representation Chil+0

Symbal Infarmation Chrl+Shift+3
Symbal Selection Clrl+7
v Comment Chrl+5hift+£

Address |dentification

If necessary, set FBD as the programming language
in the View menu.

Click in the title area of OB1 and enter "Cyclically
processed main program," for example.

Select the input area for the AND function (below the
comment field).

Insert an AND box (&) and an assignment (=).
The addresses of the elements are still missing in the

AND function.

Check whether symbolic representation is activated.

33

Creating a Program in OB1

22 2=

PP P

2.7

7.7 —

PP P

"KEY_]." _—

"Ee Y_z [

"Green Lig

ht"

34

Click on the ??.? sign and enter the symbolic name
"Key_1" (in quotation marks). Alternatively, you can
also select the name from the displayed pull-down
list.

Confirm with Enter.

Enter the symbolic name "Key_2" for the second
input.

Enter the name "Green_Light" for the assignment.

You have now programmed a complete AND
function.

If there are no more symbols shown in red, you can
save the block.

Getting Started STEP 7
A5E02904800-01

Creating a Program in OB1

Programming an OR Function in Function Block Diagram

I|1H:| Insert a new network.

TR Ticle: Select the input area again for the OR function.
Comrent :
by _|E| Insert an OR box (>1) and an assignment (=).
=1 The addresses are still missing in the OR function.
P77 — 2.z Proceed in the same way as for the AND function.
23— — i
- "Red Light Enter t‘Key_3“ fo!: the up_per“input, "Key__4" for the
SRR o lower input, and "Red_Light" for the assignment.
EY_ —

"KE?_4 LLE— I

E | Save the block.

Getting Started STEP 7
A5E02904800-01 35

Creating a Program in OB1

Programming a Memory Function in Function Block Diagram

HH2 Select Network 2 and insert another network. Select
_|"" the input area again (below the comment field).

Navigate in the Program Elements catalog under Bit
Logic until you reach the SR element. Double-click to
insert the element.

" Automatic Mode" Enter the following symbolic names for the SR
element:
"Automatic on - AR Set "Automatic_On"
utomatic on 4 " — "
s Reset "Manual_On

Memory bit "Automatic_Mode"

"Manual on" —E o

El Save the block and close the window.

a

If you want to see the difference between absolute and symbolic addressing, deactivate the menu
command View > Display > Symbolic Representation.

4 "Green_Light"

"Key 1" = Example:

= Symbolic addressing in FBD
"Key 2" — —

&
Example:
04,0

et Absolute addressing in FBD
10.2 — —

You can change the line break for symbolic addressing in the LAD/STL/FBD program window by using the
menu command Options > Customize and then selecting "Address Field Width" in the "LAD/FBD" tab.
Here you can set the line break between 10 and 26 characters.

You can find more information under Help >
Contents in the topics "Programming Blocks,"
"Creating Logic Blocks," and "Editing FBD
Statements."

Getting Started STEP 7
36 A5E02904800-01

5 Creating a Program with Function Blocks and Data

Blocks

5.1 Creating and Opening Function Blocks (FB)

The function block (FB) is below the organization block in the program hierarchy. It contains a part
of the program which can be called many times in OB1. All the formal parameters and static data
of the function block are saved in a separate data block (DB), which is assigned to the function

block.

You will program the function block (FB1, symbolic name "Engine"; see symbol table, page 21) in
the LAD/STL/FBD program window, which you are now familiar with. To do this, you should use
the same programming language as in Chapter 4 (programming OB1).

Open Project

®

= projects | Libraries] 5

a | E:

efting Started

‘ Inzert Mew Object) 3
oo < Function Black >

Getting Started STEP 7
A5E02904800-01

You should have already copied the symbol table into
your project "Getting Started." If not, read how to do
this on page 24, copying the symbol table, and then
return to this section.

If necessary, open the "Getting Started" project.

Navigate to the Blocks folder and open it.

Click in the right-hand half of the window with the
right mouse button.

The pop-up menu for the right mouse button contains
the most important commands from the menu bar.
Insert a function block as a new object.

37

Creating a Program with Function Blocks and Data Blocks

Eigenschalten - Funktionsbaustein

General- Fat 1 | Genersl -Part 2| Calls | Attibutes |
Name: =
Spmbolic Mame: Engine

[Multile Instance Capabil

Symbol Comment
Created in Languad STL zl

Project Path

|

Storage losation
of project

Code

12.04.2000 130218
12.04.2000 130218

Date created:
Last modified:

[C:ASiemens'StepT\S TprofGetin_1

Interface

12.04.2000 13:02.18

Comment (=]
| ;
) Cancel Hep

B Gimlting Stasted — CASIEMENSAS TERIS Fpsof\Getle_1

In the "Properties — Function Block" dialog box, select
the language in which you want to create the block,
activate the check box "Multiple instance FB," and
confirm the remaining settings with OK.

The function block FB1 has been inserted in the
Blocks folder.

Double-click FB1 to open the LAD/STL/FBD program
window.

Depending on which programming language you have selected, continue reading in either Section 5.2 for
Ladder Logic, Section|5.3 for Statement List, or Section 5.4 for Function Block Diagram.

| You can find more information under Help >

Contents in the topics "Programming Blocks" and
"Creating Blocks and Libraries."

38

Getting Started STEP 7
A5E02904800-01

Creating a Program with Function Blocks and Data Blocks

5.2 Programming FB1 in Ladder Logic

Getting Started
A5E02904800-01

We will now show you how to program a function block which can, for example, control and
monitor a petrol or diesel engine using two different data blocks.

All "engine-specific" signals are passed on as block parameters from the organization block to the
function block and must therefore be listed in the variable declaration table as input and output
parameters (declaration "in" and "out").

You should already know how to enter a series circuit, a parallel circuit, and a memory function
with STEP 7.

Declare / Define Variables First

e =l Your LAD/STL/FBD program window is open and the
Dlzlzlal & x|wle] =] el [= option View > LAD (programming language) is
Lo] ol 1ol v activated
- — Contords U1 & moscremet it e’)
§T Note that FB1 is now in the header, because you
Ao _jl double-clicked FB1 to open the program window.
|?,;;.,Li“
= [T .
E
) 1 3 (1 W N PN T
Press F1 4o oot Help, D loffine Ab Hwl Lni Insest | -

The variable declaration area consists of a variable overview (left pane) and of the variable detail
view (right pane).

In the variable overview, select the declaration types "IN", "OUT" and "STAT" one after the other
and enter the following declarations into the corresponding variable details.

In the variable overview, click the corresponding cells and apply the entries from the subsequent
figures. You can select the data type from the pull-down list displayed.

STEP 7
39

Creating a Program with Function Blocks and Data Blocks

Contents OF: 'EnvironmentilnterfacesIM'
|Name Data Type |Address |Initial Yalue|Comment
‘B |Switch_On Boal 0.0 FALSE Switch on enaine
‘E Switch_Off |[Bool 0.1 FALSE Switch off engine
‘& Failure Bool 0.z FALSE Engine failure, causes the engine to switch off
‘&= Actual_Speed|int 20 i] Actual engine speed
=

Contents OF 'Environmentinterfacet0OUT!

[Mame Data Type [Address [Initial value [Camment
@ [Engine_on Boal 4.0 FALSE Engine is switched on
‘E Preset_Speed_FReached [Bool 4.1 FALEE Preset speed reached

Contents OF ‘EnvironmenthntefacetSTAT'

|Name Data Type|Address|Initial Yalue|Comment
‘B (Preset_Speed]int 6.0 1500 Reguested engine speed

a

Only letters, numbers, and the underscore are permitted
characters for the names of the block parameters in the
variable declaration table.

If all the columns required are not displayed in your
variable details, you can display it via the shortcut menu
command (via a right-mouse click).

Programming an Engine to Switch On and Off

‘ 2.7

Insert a normally open contact, a normally closed

77.? 7.7 SR

| I 4 o contact, and an SR element in series in Network 1
—r using the corresponding buttons in the toolbar or the
Program Elements catalog.
$2.2 Then select the current path immediately before the
?2. 7 SR input R.
{ F——r o
e
2.7 Insert another normally open contact. Select the
i P current path immediately before this contact.

Ly | _M_l _.rl Insert a normally closed contact parallel to the

normally open contact.

Getting Started STEP 7
40 A5E02904800-01

Creating a Program with Function Blocks and Data Blocks

Check whether symbolic representation is activated.

Select the question marks and enter the corresponding names from the variable declaration table
(the # sign is assigned automatically).

Enter the symbolic name "Automatic_Mode" for the normally closed contact in the series circuit.

Then save your program.

"Rutomatic #Engine Cn

#8witch _On _Mode” SR

| | | /|

1] I s @
#3witch Of
f

| |

1] e
#iFailure

| /|

I/I

Getting Started STEP 7
A5E02904800-01

41

Creating a Program with Function Blocks and Data Blocks

Programming Speed Monitoring

W, s

Insert a new network and select the current path.

> Compare Then navigate in the Program Elements catalog until

you reach the Compare function and insert a

_()l Also insert a coil in the current path.

Select the question marks again and label the coil and the comparator with the names from the
variable declaration table.

Then save your program.

#Preset_Sp
eed Reache
CMF == C
Y |
W]
#actual sSp
eed —Iu1
#Preset Sp
eed —INZ

[o]

When is the engine switched on and off?

When the variable #Switch_On has signal state "1" and the variable "Automatic_Mode" has signal state "0,"
the engine is switched on. This function is not enabled until "Automatic_Mode" is negated (normally closed

contact).

When the variable #Switch_Off has signal state "1" or the variable #Fault has signal state "0," the engine is
switched off. This function is achieved again by negating #Fault (#Fault is a "zero-active" signal and has the
signal "1" in the normal state and "0" if a fault occurs).

How does the comparator monitor the engine speed?

The comparator compares the variables #Actual_Speed and #Setpoint_Speed and assigns the result of the
variables to #Setpoint_Speed Reached (signal state "1").

You can find more information under Help >
Contents in the topics "Programming Blocks,"
"Creating Logic Blocks," and "Editing the Variable
Declaration" or in "Editing LAD Instructions."

Getting Started STEP 7
42 A5E02904800-01

Creating a Program with Function Blocks and Data Blocks

5.3 Programming FB1 in Statement List

We will now show you how to program a function block which can, for example, control and
monitor a petrol or diesel engine using two different data blocks.

All "engine-specific" signals are passed on as block parameters from the organization block to the
function block and must therefore be listed in the variable declaration table as input and output
parameters (declaration "in" and "out").

You should already know how to enter an AND instruction, an OR instruction, and the set/reset
memory instructions with STEP 7.

Declare / Define Variable First

B LAD/STLATDD - [TB1 - Gedting Stasted\SIMATIC 300 Station\CPUI1TH{1]]

FEie E8 et PO Doy Ve ok okt =21 Your LAD/STL/FBD program window is open and the
2-| e o[o] = . - . .
_IEI_I_I_I? FEQIE_I_I_IE, ;_*fﬁ_l_lﬂ I_I_It_ljl_I o gg;cil\?;lt;l(;ew > STL (programming language) is

5 | =
Lﬁfé g Note that FB1 is now in the header, because you

_il double-clicked FB1 to open the program window.

JJ
L0 3 L1 O N J__ @A oy
Prews F1 b oot Help. © offine Ab Hw1 Ln1 Insest |

The variable declaration area consists of a variable overview (left pane) and of the variable detail
view (right pane).

In the variable overview, select the declaration types "IN", "OUT" and "STAT" one after the other
and enter the subsequent declarations into the corresponding variable details.

In the variable overview, click the corresponding cells and apply the entries from the subsequent
figures. You can select the data type from the pull-down list displayed.

Getting Started STEP 7

A5E02904800-01

43

Creating a Program with Function Blocks and Data Blocks

Switch_Cf [Boal 0.1 Switch off engine
Failure
Actual_Speed|int

Bool 0.2

Engine failure, causes the engine to switch off
2.0 0 Actual engine speed

‘2 |Preset_Speed

AN

QN

44

Preset_Speed_Reached [Bool . FALSE Preset speed reached

Programming an Engine to Switch On and Off

Check whether symbolic representation is activated.

#5uitch On Enter the corresponding instructions in Network 1.
"Automatic Mode'

#Engine On
#switch Off
#Failure

#Engine_On

Getting Started STEP 7
A5E02904800-01

Creating a Program with Function Blocks and Data Blocks

Programming Speed Monitoring

L #actual Speed Insert a new network and enter the corresponding
L #Preset Speed instructions. Then save your program.
=TI

E = #Preset_Speed Reached

When is the engine switched on and off?

When the variable #Switch_On has signal state "1" and the variable "Automatic_Mode" has signal state "0,"
the engine is switched on. This function is not enabled until "Automatic_Mode" is negated (normally closed
contact).

When the variable #Switch_Off has signal state "1" or the variable #Fault has signal state "0," the engine is
switched off. This function is achieved again by negating #Fault (#Fault is a "zero-active" signal and has the
signal "1" in the normal state and "0" if a fault occurs).

How does the comparator monitor the engine speed?

The comparator compares the variables #Actual_Speed and #Setpoint_Speed and assigns the result of the
variables to #Setpoint_Speed_Reached (signal state "1").

You can find more information under Help >

Contents in the topics "Programming Blocks,"
"Creating Logic Blocks," and "Editing the Variable
Declaration" or in "Editing STL Statements."

Getting Started STEP 7
A5E02904800-01

45

Creating a Program with Function Blocks and Data Blocks

5.4 Programming FB1 in Function Block Diagram

46

We will now show you how to program a function block which can, for example, control and
monitor a petrol or diesel engine using two different data blocks.

All "engine-specific" signals are passed on as block parameters from the organization block to the
function block and must therefore be listed in the variable declaration table as input and output
parameters (declaration "in" and "out").

You should already know how to enter an AND function, an OR function, and a memory function
with STEP 7.

Declare / Define Variables First

EHLAD/STLADD - [FB1 -~ Gelting Started\SIMATIC 300 Stotion\CPUT14(1]]

I e i e ===l Your LAD/STL/FBD program window is open and the
Dlslela) &) 2ve] -] el ion View > ' '
D T e e opt!on View > FBD (programming language) is
-"I i Comterts O ErwierammtIimdoes activated.
[Ere= 3l =T, e [
2 Coetn v Sl ., Note that FB1 is now in the header, because you
ra@o — 4 double-clicked FB1 to open the program window.
58 Pt =
irogeam oo M|:_|mv _.ﬁ'
g
B 3 e N PN o T
Prers F1 ho got Help. O Loifire (Ab M1 Ln1 Ingent |

The variable declaration area consists of a variable overview (left pane) and the variable detail
view (right pane).

In the variable overview, select the declaration types "IN", "OUT" and "STAT" one after the other
and enter the subsequent declarations into the corresponding variable details.

In the variable overview, click the corresponding cells and apply the entries from the subsequent
figures. You can select the data type from the pull-down list displayed.

Getting Started STEP 7
A5E02904800-01

Creating a Program with Function Blocks and Data Blocks

Contents OF: ‘Environmentsnterface\N'

Data Type |Address |Initial Value|Comment

[rame
& |Switch_On Bool 0.0
‘= Switch_COff |Boo! 0.
‘& Failure Boal 0.z
‘B Actual_Speed|int 2.0
=

FALSE

=N =] =
rALOC

FALSE

0

Switch an engine
Choasite b —fF oo
Switch off engine

Engine failure, causes the engine to switch off
Actual engine speed

Contents OF ‘Ervironmentinterfacet0UT'

|Name Data Type |Address |Initial Value [Comment
= |Engine_0n Boal 4.0 FALSE Engine is switched an
‘B Preset_Speed_Reached |Bool 4.1 FALSE Preset speed reached

Contents OF ‘Envinonmentslnterfaceh 5 TAT"

p=]

|Name Diata Type |Address|Initial Walue| Comment
‘@ |Preset_Speed|int 6.0 1500 Requested engine speed

Local block variables are indicated with a # sign
and are only valid in the block.

Global variables appear in quotation marks.
These are defined in the symbol table and are
valid for the entire broaram.

Programming an Engine to Switch On and Off

PP

2P

PP

22, P—

Diizplay with

Getting Started STEP 7
A5E02904800-01

* v Symbaolic Reprezentation Chl+0
Symbal Infarmation Chrl+Shift+3
Sembol Selection Chil+7

v Comment Chrl+5hift+£

Address |dentification

Insert an SR function in Network 1 using the Program

Elements catalog (Bit Logic folder).

Add an AND box at input S (Set), and an OR box at

input R (Reset).

Check whether symbolic representation is activated.

47

Creating a Program with Function Blocks and Data Blocks

48

Click the ??.? sign and enter the corresponding names from the declaration table (the # sign is
assigned automatically).

Make sure that one input of the AND function is addressed with the symbolic name

"Automatic_Mode."

Negate the inputs "Automatic_Mode" and #Fault with the corresponding button from the toolbar.

Then save your program.

#owitch On—

"Automatic
_Mode" =

#zwitch of
T —

#Failure =

>:1

#Engine On

—13

SR

Getting Started STEP 7
A5E02904800-01

Creating a Program with Function Blocks and Data Blocks

Programming Speed Monitoring

Insert a new network and select the input area.

Then navigate in the Program Elements catalog
under you reach the Compare function, and insert a
CMP>=l.

ChP_| >=

Append an output assignment to the comparator and address the inputs with the names from the
variable declaration table.

Then save your program.

ChP ==|
#ictual Sp #Preset Sp
eed - IN1 eed Reache

d
#Preset Sp =

E eed — INZ

When is the engine switched on and off?

When the variable #Switch_On has signal state "1" and the variable "Automatic_Mode" has signal state "0,"
the engine is switched on. This function is not enabled until "Automatic_Mode" is negated (normally closed
contact).

When the variable #Switch_Off has signal state "1" or the variable #Fault has signal state "0," the engine is
switched off. This function is achieved again by negating #Fault (#Fault is a "zero-active" signal and has the
signal "1" in the normal state and "0" if a fault occurs).

How does the comparator monitor the engine speed?

The comparator compares the variables #Actual_Speed and #Setpoint_Speed and assigns the result of the
variables to #Setpoint_Speed_Reached (signal state "1").

You can find more information under Help >
Contents in the topics "Programming Blocks,"
"Creating Logic Blocks," and "Editing the Variable
Declaration" or in "Editing FBD Instructions."

Getting Started STEP 7
A5E02904800-01 49

Creating a Program with Function Blocks and Data Blocks

5.5 Generating Instance Data Blocks and Changing Actual Values

50

You have just programmed the function block FB1 ("Engine") and defined, among other things,
the engine-specific parameters in the variable declaration table.

In order for you to be able to program the call for the function block in OB1 later on, you must
generate the corresponding data block. An instance data block (DB) is always assigned to a
function block.

The function block is to control and monitor a petrol or diesel engine. The different setpoint speeds
of the engines are stored in two separate data blocks, in which the actual value
(#Setpoint_Speed) is changed.

By centrally programming the function block only once, you can cut down on the amount of

programming

involved.

'Ei‘: Getting Started -- C:\SIEMENSASTEP7AS 7proj\Gettin_1

{2 Getting Started

= [@ cruziam

.45 Blocks

= SIMATIC 300 Station

=& 57 Program(1)
" {f Source Fles

@ New DbieD ,

< [;a.h; Block. >

Goneral-Fatt 1 | General -

Mame and type

Syrbolic Mame:

Project pat

Storage location
of pioject

Date created:
Last modified:

Comment

Part2| Calls | Attributes |

[oe1 [instencepe =] [Fet |
Petiol
Symbal Comment: [Daata for petrol engine
Created in Language: [ol:} =
[CASiemens\Step7\S7prai Giettin™1
Code Interface
03/10/2002 02 4256
09/10/2002 02:42.56 03/10/2002 02:42:56
Cancel Help

[o)

The "Getting Started" project is open in the SIMATIC
Manager.

Navigate to the Blocks folder and click in the right
half of the window with the right mouse button.

Insert a data block using the pop-up menu with the
right mouse button.

Apply the name DB1 in the “Properties Data Block"
dialog box, then select the application “Instance DB*
in the adjacent pull-down list and apply the name of
the function block "FB1" assigned. Apply all the
settings displayed in the "Properties" dialog box with
OK.

The data block DB1 is added to the "Getting Started"
project.

Double-click to open DBA1.

Getting Started STEP 7
A5E02904800-01

Creating a Program with Function Blocks and Data Blocks

Dpen Data Block

By default, instance data blocks are opened with "Parameter assignment
for data biocks" az of STEF 7 ¥0.Z [see Heipj,

There is no functional difference for this DB to the editor in
LAD/STL/FED

R

(1)
The DB could be opened with the DB editor in LAD/STL/FED [as in
Va.1).

Do you want ta open the DB with "Parameter assignment for data
blocks"?

¥ Always display this message for Open Instance DB

Help |
Addess | Dedusen e Tope | dekis vk Actus vk | Comenent
1 i n [Sotch B PASE pai Swedhenengne
3 oiln e 08 0L FASE TR Swecha engne
2 Pk DoCL M tir G ek, Gt s b it ol

[ETI0Y [T 0 BT o

5 ETiETs Engee_on B e Engre b smaihed on

0 Aot [Preset_Soeed Paached BOCL| grevet speed reached

7 0 sta Freeet Soeed v qusiedamgre mesd

A | Dederation Mame Troe | Inti vebe | Actudl vk | Comment.

1 i on (B FASE rai Sweshonengee

oiln Swach A L P se Seeshell

a3 Tk [BoCs FMET M Cgee ke, g e e i amteh s
[ETI0 et Sy] > ras—r—
[a0 ok om0 T Engue b st un
6 CXYET [Fueos Speed Raached |BOCL F 2 Preset spesd reached
T (11T Frece:_Sgeed i

Confirm the subsequent dialog with Yes to assign
parameters to the instance data blocks.

Next enter the value "1500" for the petrol engine in
the Actual Value column (in the row
"Setpoint_Speed). You have now defined the
maximum speed for this engine.

Save DB1 and close the program window.

In the same way as for DB1, generate another data
block, DB2, for FB1.

Now enter the actual value "1200" for the diesel
engine.

Save DB2 and close the program window.

By changing the actual values, you have finished your preparations for controlling two engines with just one
function block. To control more engines, all you have to do is generate additional data blocks.

The next thing you have to do is prograrn the call for the function block in OB1. To do this, continue reading
in Section 5.6 for Ladder Logic, Section 5.7 for Statement List, or Section 5.8 for Function Block Diagram,

depending on the programming language you are using.

Data Blocks."

You can find more information under Help > Contents
in the topics "Programming Blocks" and "Creating

Getting Started STEP 7

A5E02904800-01

51

Creating a Program with Function Blocks and Data Blocks

5.6 Programming a Block Call in Ladder Logic

All the work you have done programming a function block is of no use unless you call this block in
OB1. A data block is used for each function block call, and in this way, you can control both
engines.

DB1
Petrol Engine
Data

FB1
OoB1
|

> D DB2

Diesel Engine
Data

Tt

_ E The SIMATIC Manager is open with your "Getting
1 eririney - . p Started" project.

Smm Navigate to the Blocks folder and open OB1.

HH Select network 3 and then insert network 4 in the
S LAD/STL/FBD program window.

In the program elements catalog navigate to FB1 and
insert it via a double-click.

Insert a normally open contact in front of each of the
o following: Switch_On, Switch_Off, and Fault.

preset_pesd feec| Click the ??? sign above "Engine" and then, keeping
the cursor in the same position, click in the input
frame with the right mouse button.

Click on Insert Symbol in the shortcut menu via a

ight-click tton. A pull- list i
@[@mw) Chl gigsplgylecd.on mouse button. A pull-down list is

Getting Started STEP 7
52 A5E02904800-01

Creating a Program with Function Blocks and Data Blocks

Getting Started
A5E02904800-01

Double-click the data block Petrol. This block is then

I:

@f‘eﬁ)lFB 1 |DE 1 | Data for petrol engine
| | |

entered automatically in the input frame in quotation
marks.

Click the question marks and after entering a quotation mark address all the other parameters of
the function block using the corresponding symbolic names in the pull-down list.

"Switch On_PE"
| |
[

"switch Off PE"
||
1T

"PE Failure”
| |

"PE_Actual Speed"” —

ENO

Engine On

Preset_Zpeed_ Reac

"Engine "
EN
Gwitch On
hed
Switch Off
Failure

Actual Speed

-"PE On'"

"PE Preset Speed R
Feached”

STEP 7

53

Creating a Program with Function Blocks and Data Blocks

Program the call for the function block "Engine" (FB1) with the data block "Diesel" (DB2) in a new

network and use the corresponding addresses from the pull-down list.

"DE Actual Speed"” —qActual Speed

"Diesel"”
"Engine"
EN ENC
"Switeh On DE" Engine Cni—"pE On"
| | Switeh On
Freset_Speed Reac| "DE Preset Speed R
"Zwitch off DE” hed eached"”
| | Switeh Off
"DE_Failure”
| Pailure A signal "DE_xxx" is

assigned to each of the
variables for the diesel
engine.

E El Save your program and close the block.

When you create program structures with organization blocks, function blocks, and data blocks, you must
program the call for subordinate blocks (such as FB1) in the block above them in the hierarchy (for

example, OB1). The procedure is always the same.

You can also give the various blocks symbolic names in the symbol table (for example, FB1 has the name

"Engine" and DB1 the name "Petrol").

You can archive or print out the programmed blocks at any time. The corresponding functions can be found

in the SIMATIC Manager under the menu commands File > Archive or File > Print.

You can find more information under Help > Contents

54

in the topics "Calling Reference Helps" under
"Language Description: LAD," and "Program Control
Instructions."

Getting Started STEP 7
A5E02904800-01

Creating a Program with Function Blocks and Data Blocks

5.7 Programming a Block Call in Statement List

All the work you have done programming a function block is of no use unless you call this block in
OB1. A data block is used for each function block call, and in this way, you can control both
engines.

DB1
Petrol Engine
Data

FB1
OoB1
"Engine™ M D
L

> E' DB2

Diesel Engine
Data

T

The SIMATIC Manager is open with your "Getting
Started" project.

Navigate to the Blocks folder and open OB1.

HHa Select network 3 and then insert network 4 in the
_|"" LAD/STL/FBD program window.

"Engine" , "Petrol” Type CALL "Engine", "Petrol" in the code section

witch On 1= and then press Enter.
Switch Off E All the parameters of the function block "Petrol" are
Failure H= d|Sp|ayed

Actual Zpeed =
Engine On =
Preset Speed Reached:=

Position the cursor after the equals sign of
Switch_On and press the right mouse button.

... Click on Insert Symbol in the shortcut menu via a
ight-click . A pull- listi
@E[@mbul) Chial right-click on mouse button. A pull-down list is

displayed.

Getting Started STEP 7
A5E02904800-01 55

Creating a Program with Function Blocks and Data Blocks

| Click the name Switch_On_PE. This is taken from

EEBEEAP; . ﬁj‘t: stv : the pull-down list and added automatically in
_Actual Spes 2 .
3] PE_Failure pooL |1 12 quotation marks.

=] PE_Fan_On BOOL (@ &2

18] PE_Fallow_On TIMER | T 1

FE_On BOOL O &0

@ FPE_Preset_Speed_Reached BOOL | 0O 51

@ Petral FE 1 /DB 1

Fed_Light BOOL | O 41

Switch_OF_DE BOOL | 15

18] Switch_0Of_PE BOOL |1 11

5 Sl BOOL | 14

G2 Switch_(n_PE BOOL || 1.0

4 |
R L U Assign all the required addresses to the variables of
Switch Off ="Suiteh Off_PE" the function block using the pull-down list.
Failure :="PE_Failure"

Actual Speed 1="PE_Actual Speed"

Engine_oOn :="FE_On"

Preset_Speed Reached:="PE_Preset_Speed Reached™ A Signa] "PE xxx"is assigned
to each of the variables for
the petrol engine.

G L T Program the call for the function block "Engine" (FB1)
Switeh Off Suitch Off _DEV with the data block "Diesel" (DB2) in a new network.

Failure 'DE_Failure”

Actual Speed 'DE_Actual Speesd”

Engine oOn :="DE_Omn'"

Preset Speed Reached:="DE Preset Speed Reached”

Proceed in the same way as for the other call.

El Save your program and close the block.

a

When you create program structures with organization blocks, function blocks, and data blocks, you must
program the call for subordinate blocks (such as FB1) in the block above them in the hierarchy (for
example, OB1). The procedure is always the same.

You can also give the various blocks symbolic names in the symbol table (for example, FB1 has the name
"Engine" and DB1 the name "Petrol").

You can archive or print out the programmed blocks at any time. The corresponding functions can be found
in the SIMATIC Manager under the menu commands File > Archive or File > Print.

You can find more information under Help > Contents
in the topics "Calling Reference Helps" under
"Language Description: STL," and "Program Control
Instructions."

Getting Started STEP 7
56 A5E02904800-01

Creating a Program with Function Blocks and Data Blocks

5.8 Programming a Block Call in Function Block Diagram

All the work you have done programming a function block is of no use unless you call this block in
OB1. A data block is used for each function block call, and in this way, you can control both

engines.

OB1

CASIEMERSASTERTAS Tproj\sttin_1

‘ "Engine" ’
. —EN

.. =—{Switch On

.. —{8witch Off
Preset_Speed Reac

.. =—Failure hed ...

.. —actual Speed ENC f—

Engine_ont-

< Inzert Symbol > Chrl+]

Getting Started STEP 7
A5E02904800-01

DB1
Petrol Engine
Data

==

FB1
"Engine"
=1}

Diesel Engine
Data

T

The SIMATIC Manager is open with your "Getting
Started" project.

Navigate to the Blocks folder and open OBA1.

Select network 3 and then insert network 4 in the
LAD/STL/FBD program window.

Then navigate in the Program Elements catalog until
you reach FB1 and insert this block.

All the engine-specific input and output variables are
displayed.

Click the ??? sign above "Engine" and then, keeping
the cursor in the same position, click in the input
frame with the right mouse button.

Click on Insert Symbol in the shortcut menu via a
right-click on mouse button. A pull-down list is
displayed.

57

Creating a Program with Function Blocks and Data Blocks

Double-click the data block Petrol. It is taken from

]

J@_\ the pull-down list and entered automatically in the
Petol) FB 1 DB 1 Dataforpetiol engine input frame in quotation marks.
N | | |

Address all the other parameters of the function block using the corresponding symbolic names in
the pull-down list.

"Petrol"”

"Engine"™

., —{EN

"Switch On PE" — Switch On
T Engine One—"pg om"
"switch Off PE" —{Switch Off -
- Freset_Speed Reac| "PE_Preset_Speed R
"PE Failure" —{Failure hed —cached™

"PE Actual Speed” —Actual Speed ENQ [~

Getting Started STEP 7
58 A5E02904800-01

Creating a Program with Function Blocks and Data Blocks

Program the call for the function block "Engine" (FB1) with the data block "Diesel" (DB2) in a new
network and use the corresponding addresses from the pull-down list.

"Diesel™

A signal "DE_xxx" is assigned to
each of the variables for the
diesel engine.

"Switch On DE™ —
"switeh Off DE" —|

"DE Failure" —

"DE_Actual Speed"” —

EN
Switech Om
Switch Off
Failure

Actual Speed

"Engine"™

Engine On

Preset Speed Reac

hed

ENO

—"DE_on"

"DE_Preset Speed R
eached”

a

El Save your program and close the block.

When you create program structures with organization blocks, function blocks, and data blocks, you must
program the call for subordinate blocks (such as FB1) in the block above them in the hierarchy (for example,
OB1). The procedure is always the same.

You can also give the various blocks symbolic names in the symbol table (for example, FB1 has the name
"Engine" and DB1 the name "Petrol").

You can archive or print out the programmed blocks at any time. The corresponding functions can be found
in the SIMATIC Manager under the menu commands File > Archive or File > Print.

Ins

tructions."

You can find more information under Help > Contents
in the topics "Calling Reference Helps" under
"Language Description: FBD," and "Program Control

Getting Started STEP 7
A5E02904800-01

59

Creating a Program with Function Blocks and Data Blocks

60

Getting Started STEP 7
A5E02904800-01

6 Configuring the Central Rack

6.1 Configuring Hardware

You can configure the hardware once you have created a project with a SIMATIC station. The
project structure which was created with the STEP 7 Wizard in Section 2.1/ meets all the

requirements for this.

The hardware is configured with STEP 7. These configuration data are transferred to the
programmable controller later on "downloading” (see Chapter|7).

B fmtting Stacted - CASIEMENSAS TERING Zosnj\Gmitin

1
£ isting Siaied g
S EL |

Harchwar [TEl

The starting point is the open SIMATIC Manager
together with the "Getting Started" project.

Open the SIMATIC 300 Station folder and double-
click the Hardware symbol.

The "HW Config“ window opens. The CPU you selected on creating the project is displayed. For
the "Getting Started" project, this is CPU 314.

Eﬁ:HW Config - SIMATIC 300 Station

Station Edit |nset PLC Miew Option: ‘window Help

Dl{e-{® (%) &) (0] sl [o] %

Tl SIMATIC 300 Station [Configuration] - Getting Started

=0 UR Rack with individual slots
1

F IR

2
3
Il

4] |

| ntlaj
= Erofile I Standard j

¥ PROFIEUS DP
- 28 PROFIBUS-Pa&
SIMATIC 300

SIMATIC 400

Hardware bntral 300,400

:lﬂ 0] UR

CPUF140)

Catalog

PROFIBUS-DP slaves for SIMATIC 57, M7, isl

and C7 [distributed rack)

Configuration table with the MPI

PressF1 and 1/0 addresses

[

Short information on the
selected element

Getting Started STEP 7
A5E02904800-01

61

Configuring the Central Rack

nan
=@ sMaTIC 300
- =0 Ps-300

C:: q Foa

First you require a power supply module. Navigate in
the catalog until you reach the PS307 2A and drag
and drop this onto slot 1.

Navigate until you find the input module (DI, Digital
=[] SIMATIC 300 2 A P (J

=-23 5M-300

E|

Input) SM321 DI32xDC24V and insert this in slot 4.
Slot 3 remains empty.

i SM32T DI32xDC24Y)

{1 DO-200 In the same way, insert the output module SM322

- D0O32xDC24V/0.5A in slot 5.

E ShE22 DO32DC24W 0.

In order to change the parameters (for example, address) of a module within a project, double-
click the module. However, you should only change the parameters if you are sure you know what
effects the changes will have on your programmable controller.

No changes are necessary for the "Getting Started" project.

M Module Order Number MPI Address lAdd.. | B... | Comment
1 || Ps307 24 EEST 307-1BA00-0440

2 | CcPu314) EEST 314-14E04-04B0 2

3

Z DI32:DC24y BESY 321-1BLOC-0AAD 0.3

5 |l DO32:DC24v/0.54 |EEST 322-1BLOC-0AAD 4.7
B

7

8

&

10

11

Station

The data are prepared for transfer to the CPU using
the menu command Save and Compile.

3 Once you close the "HW Config" application, the
C Save and Compile> System Data symbol will appear in the Blocks folder.

a

You can also check your configuration for errors using the menu command Station > Consistency Check.
STEP 7 will provide you with possible solutions to any errors which may have occurred.

You can find more information under Help > Contents in

the topics "Configuring theHardware" and "Configuring
Central Racks."

62

Getting Started STEP 7
A5E02904800-01

7 Downloading and Debugging the Program

7.1 Establishing an Online Connection

Using the supplied project "GS-LAD_Example" or the "Getting Started" project you have created
and a simple test configuration, we will show you how to download the program to the
programmable logic controller (PLC) and then debug it.

You should have:
e Configured the hardware for the "Getting Started" project (see Chapter 6)

e Set up the hardware according to the installation manual

Example of a series circuit (AND function):

Output Q 4.0 is not to light up (diode Q 4.0 lights up on the digital output module) unless both
Key 1 0.1 and Key | 0.2 are pressed. Set up the test configuration below using wires and your
CPU.

Power supply Operating mode Rack Programming
(on / off) keyswitch device with
STEP 7
software

fpoool™

e?éoo
& 7

Programming device
cable

v—(/
__—

Connection bridge

Getting Started STEP 7

A5E02904800-01

63

Downloading and Debugging the Program

Configuring the Hardware

To assemble a module on the rail, proceed in the order given below:

ol

Attach the module onto the bus connector

Hang the module on the rail and swing it downwards
Screw the module in place

Assemble the remaining modules

Insert the key in the CPU once you have finished assembling all the modules.

You can still carry out the test even if you are using different hardware to that shown in the diagram. You
simply have to keep to the addressing of the inputs and outputs.

STEP 7 offers you various ways of debugging your program; for example, using the program status or by
means of the variable table.

64

You can find more information on configuring the
central rack in the manuals "S7-300, Hardware and
Installation / Module Specifications" and "S7-400 /
M7-400 — Hardware."

Getting Started STEP 7
A5E02904800-01

Downloading and Debugging the Program

7.2 Downloading the Program to the Programmable Controller

You must have already established an online connextion in order tp download the program.

Applying Voltage
Switch on the power supply using the ON/OFF
= switch. The diode "DC 5V" will light up on the CPU.
ON
OFF

Turn the operating mode switch to the STOP position

S — (if not already in STOP). The red "STOP" LED wil
STOP light up.
MRES ——

Resetting the CPU and Switching it to RUN

SN Turn the operating mode switch to the MRES position

RUN — and hold it there for at least 3 seconds until the red
STOF —r "STOP" LED starts flashing slowly.
MRES —
Release the switch and, after a maximum of 3
seconds, turn it to the MRES position again. When
the "STOP" LED flashes quickly, the CPU has been
A memory reset deletes reset.
?',Lé“&i‘ﬂ‘?;{ﬁéﬁ?nﬁﬁg ' If the "STOP" LED does not start flashing quickly,
initial state. repeat the procedure.

Downloading the Program to the CPU

Now turn the operating mode switch to "STOP" again
i — to download the program.

STOP
MRES —

Getting Started STEP 7
A5E02904800-01 65

Downloading and Debugging the Program

ral

SIMATIC M anager

66

Start the SIMATIC Manager and open the "Getting
Started" project in the "Open" dialog box (if it is not
already open).

In addition to the "Getting Started Offline" window,
open the "Getting Started ONLINE" window. The
online or offline status is indicated by the different
colored headers.

Navigate in both windows to the Blocks folder.

The offline window shows the situation on the
programming device; the online window shows the
situation on the CPU.

Select the Blocks folder in the offline window and
then download the program to the CPU using the
menu command PLC > Download.

Confirm the prompt with OK.

The program blocks are displayed in the online
window when you download them.

Getting Started STEP 7
A5E02904800-01

Downloading and Debugging the Program

Switching on the CPU and Checking the Operating Mode

NP — Turn the operating mode switch to RUN-P. The green
AN — @ "RUN" LED lights up and the red "STOP" LED goes

S out. The CPU is ready for operation.

When the green LED lights up, you can start testing
the program.

If the red LED remains lit, an error has occurred. You
would then have to evaluate the diagnostic buffer in
® order to diagnose the error.

Downloading individual blocks

In order to react to errors quickly in practice, blocks can be transferred individually to the CPU using the

drag and drop function.

When you download blocks, the operating mode switch on the CPU must be in either "RUN-P" or "STOP"

mode. Blocks downloaded in "RUN-P" mode are activated immediately. You should therefore remember the

following:

e If error-free blocks are overwritten with faulty blocks, this will lead to a plant failure. You can avoid this
by testing your blocks before you download them.

e If you do not observe the order in which blocks are to be downloaded — first the subordinate blocks and
then the higher-level blocks — the CPU will go into "STOP" mode. You can avoid this by downloading
the entire program to the CPU.

Programming online

In practice, you may need to change the blocks already downloaded to the CPU for test purposes. To do
this, double-click the required block in the online window to open the LAD/STL/FBD program window. Then
program the block as usual. Note that the programmed block immediately becomes active in your CPU.

You can find more information under Help >
Contents and then under "Downloading and
Uploading" and under "Establishing an Online
Connection and Making CPU Settings".

Getting Started STEP 7
A5E02904800-01 67

Downloading and Debugging the Program

7.3 Testing the Program with Program Status

Using the program status function, you can test the program in a block. The requirement for this is
that you have established an online connection to the CPU, the CPU is in RUN or RUN-P mode,

and the program has been downloaded.

ekling Started -~ CASIEMERS\S TLPIS fprofiliettin_1 0 Lol
maicmes | gy 0@ 209= 2@
= 57 Programi]) Syitem Date FR1 o0& DB
“Em
it = Tt
SFCX SFCh FL
= = =
SFC23 SFCN SFCI7 SFCaE
it =
wes SFCEL

< v b onitor >

Debugging with Ladder Logic

"Green Light”

Open OB1 in the project window "Getting Started
ONLINE."

The LAD/STL/FBD program window is opened.

Activate the function Debug > Monitor.

The series circuit in Network 1 is displayed in Ladder
Logic. The current path is represented as a full line
up to Key 1 (1 0.1); this means that power is already
being applied to the circuit.

Debugging with Function Block Diagram

Debugging with Statement List

[rnol sTa| standard
A "Key_1" 1] 0
A "Key 2" 0 1] 1]
= "sreen Light" _I 0 0 0

68

The signal state is indicated by "0" and "1." The
dotted line means that there is no result of logic
operation.

For Statement List the following is displayed in
tabular form:

— Result of logic operation (RLO)

— Status bit (STA)

— Standard status (STANDARD)

Using Options > Customize
you can change the way in
which the programming
language is represented during
testing.

Getting Started STEP 7
A5E02904800-01

Downloading and Debugging the Program

N
S

cocococoCcCocCe ocoOGOOCOQOCOO
[=)

‘% 3Byte 1

o

‘ "Key_1" "Key 2" "Green Light

{
1

1 &
Key 1" — "Green Light"
1 =
Key 2" —]
«|[rno] sTa| standard
A "Key 1" 1 1 1}
A "Key 2" 1 1 0
= "Green Light"” 1 1 0

C v Monitor >

a

Now press both keys in your test configuration.

The diodes for input | 0.1 and 1 0.2 light up on the
input module.

The diode for output Q 4.0 lights up on the output
module.

In the graphic programming languages Ladder Logic
and Function Block Diagram, you can trace the test
result by following the change in color in the
programmed network. This color change shows that
the result of logic operation is fulfilled up to this point.

With the Statement List programming language, the
display in the STA and RLO columns changes when
the result of logic operation is fulfilled.

Deactivate the function Debug > Monitor and close
the window.

Then close the online window in the SIMATIC
Manager.

We recommend you do not completely download extensive programs onto the CPU to run them, because
diagnosing errors is more difficult due to the number of possible sources of an error. Instead, you should
download blocks individually and then test them in order to obtain a better overview.

I Status."

I You can find more information under Help > Contents
in the topics "Debugging" and "Testing with Program I

Getting Started STEP 7
A5E02904800-01

69

Downloading and Debugging the Program

7.4 Testing the Program with the Variable Table

You can test individual program variables by monitoring and modifying them. The requirement for
this is that you have established an online connection to the CPU, the CPU is in RUN-P mode,

and the program has been downloaded.

As with testing with program status, you can monitor the inputs and outputs in Network 1 (series
circuit or AND function) in the variable table. You can also test the comparator for the engine
speed in FB1 by presetting the actual speed.

Creating the Variable Table

57 Geltng Staried - CASIEMENSUSTERTS Tprag\Gettin_1

Inzert Mew Object

3

‘ariable T able

Properties - Variable Table =]

Gioneral -Patt 1 | General - Part 2| Atibutes |

[VAT1

Hare
Symbalic Name:

Symbal Comment

Project path

Starage location
of project:

Date created:
Last modified:

Comment

|- Siemens\Step7\S 7proftGettin™1

Code Intertace

03/10/2002 03:27:26

03/10/2002 03:27:26 03/10/2002 03:27:26

|
|
Cancel Help

Ea

70

Getling Stated
E-EJ SIMATIC 300 Station
[=} CRUZ14(1]

57 Program

s

E

ource:
3 Blocks

System data 0Bl

T It

[ol:1) oe2

The starting point is the SIMATIC Manager again with
the open project window "Getting Started Offline."

Navigate to the Blocks folder and click in the right
half of the window with the right mouse button.

Use the right mouse button to insert a Variable Table
from the pop-up menu.

Apply the default settings by closing the "Properties"
dialog box with OK.

Alternatively, you can assign a symbol name to the
variable table and enter a symbol comment.

A VAT1 (variable table) is created in the Blocks
folder.

Double-click to open VAT1; the "Monitoring and
Modifying Variables" window will open.

Getting Started STEP 7
A5E02904800-01

Downloading and Debugging the Program

At first, the variable table is empty. Enter the symbolic names or the addresses for the "Getting
Started" example according to the illustration below. The remaining details will be added when
you complete your entry with Enter.

Change the status format of all the speed values to DEC (decimal) format. To do this, click the
corresponding cell and select DEC format using the right mouse button.

Ehivar - VAT 1 M=l E3

Table Edit Ingert PLC “anable Yiew Ophons Window Help
| Dl2d| 8| &|wle|o|c] x| z=| 8] 82| e[| 86)
[ETE[E 23 st Ew

e T
] YAT_T - Getting Started\SIMATIC 300 Station\CPU3TA(1\57 Frogram = |O)=
- A Address Symbol Dizpl| Status walue | Modify value

1 |01 "Kep_ 1" BOOL

2 I 0z ey 2" BOOL

3 Q40 "Green_Light" BOOL

4

5 Mws 2 "PE_Actual Speed” DEC

5 DB1.0BW & "Petral.Preset_Speed DEC

7 o a1 "PE_Preset_Speed Reached" i BOOL

g8

3 M 4 "DE_Actual Speed” DEC

10 DB2DBW &:"Diesel" Preset_Speed DEC

11 0 55 "DE_Preset_Speed Reached" : BOOL

12

Fress F1 for help. | 2 |Dffline |#bz <52 | 4

| = Save your variable table.

Switching the Variable Table Online

%l Establish a connection to the configured CPU. The
operating mode of the CPU is displayed in the status
bar.

NP — Set the keyswitch of the CPU to RUN-P (if you have
RUN —\@ not already done so).

STOP
MRES

Getting Started STEP 7
A5E02904800-01 71

Downloading and Debugging the Program

72

Monitoring Variables

%

¥AT 1 - @Gelling Started\SIMATIC 300 Station\CPU3T4[1)\S7 Piagram |

£ Address Symbol Display fpffal| Statioualue |
il o ey 1" BOOL e
z| oz ey 3 ool [e
3| T Green Light" [T \§ tue
4
Modifying Variables

Click the Monitor Variables button in the toolbar.

Press Key 1 and Key 2 in your test configuration and
monitor the result in the variable table.

The status values in the variable table will change

from false to true.

Enter the value "1500" for the address MW?2 in the Modify Value column and "1300" for the

address MW4.

PR Var - VAT 1
Tahle Edit [nsert

PLC ‘“arable “iew Options Window Help

(=] E3

e =TT = e R ™

Sofés wn| 6] |

[l 2IS ot [a]e

|ﬁ| YAT 1 -- @Getting Started\SIMATIC 300 StationA\CPU314(1])\57 Program 0. |_ |EI| XI

A Address Symbol Display format| Statuz walue | Modify value|
1 [1 o "Kep_ 1" BOOL T te
2 | 0z "Ry 2" BOOL " true
3 o 40 "Green_Light" BOOL " true
4
5 M 2 "PE_Actual_Speed” DEC 0 C_1500 D
B DB1.DBW & "Petrol”.Preset_Speed DEC 1500
7 51 "PE_Prezet_Speed Reached" (BOOL " tiue
]
5 M 4 "DE_Actual_Speed” DEC i 1z
10 DB2DBEwW 6:"Diesel" Preset_Spesd DEC 1200
11 o &h "DE_Preset_Speed Reached" :BOOL " true
12

Pl = 2 [directiy]

| <> [RUN

[8bs<52 |

4

ﬂ.;ll | Transfer the modify values to your CPU.

Getting Started STEP 7

A5E02904800-01

Downloading and Debugging the Program

Following transfer, these values will be processed in your CPU. The result of the comparison
becomes visible.

Stop monitoring the variables (click the button in the toolbar again) and close the window.
Acknowledge any queries with Yes or OK.

3 Var - VAT 1 (=l E3
Tahle Edit |nzert PLC ‘“arable “iew Options ‘wWindow Help

| Dlle| g slele|of] x| 2=ls K| Sfer v &[]
[e[Ale Z]2 2l (ale

|ﬁ| VAT 1 - @Getting Started\SIMATIC 300 StationA\CPU314[1)\S7 Program 0. |_ |EI| Xl
A Addiess Symbol Display format| Statuz walue | Modify value

1 [1 o ey 1" BOOL Tlte

2 |02 ey 2" BOOL

3 o 40 "Green_Light" BOOL

4

5 M 2 "PE_actual_Speed” DEC s _2 1500

B DB1.DBW B "Petrol”.Preset_Speed DEC 1500

7 2 a1 "PE_Preset_Speed Reached" (BOOL . tiue

g b 4 “DE_~ctual_Speed” DEC C iz D> 1300

10| DBEZDEW 6 'Diesel Preset Speed DEC 1200

11 o &h "DE_Preset_Speed Reached" :BOOL - true

12 :

E MPI = 2 [directly] A [RONT labs <62 [4

Very large variable tables often cannot be displayed fully due to the limited screen space.

If you have large variable tables, we recommend you create several tables for one S7 program using
STEP 7. You can adapt the variable tables to precisely match your own test requirements.

You can assign individual names to variable tables in the same way as for blocks (for example, the name
OB1_Network1 instead of VAT1). Use the symbol table to assign new names.

| You can find more information under Help > Contents |
in the topics "Debugging" under "Testing with the
Variable Table."

Getting Started STEP 7

A5E02904800-01 73

Downloading and Debugging the Program

7.5 Evaluating the Diagnostic Buffer

If, in an extreme case, the CPU goes into STOP while processing an S7 program, or if you cannot
switch the CPU to RUN after you have downloaded the program, you can determine the cause of
the error from the events listed in the diagnostic buffer.

The requirement for this is that you have established an online connection to the CPU and the

CPU is in STOP mode.

RUNP e
RUN =

MRES —

-
DiagnosticiSeting @
Diagnosing Hardware - Quick Yiew [x]

Path: IEaltlng Started\SIMATIC 300 StationSCPL 31411557 Program(1]

CPU / faulty modules:

g T
=7 ko[
? ———

4 IE;‘LI 10 - i

Open Station Orline.
Update
I¥ Display quick view when disgnosing hardwars
Closs Help |

74

First turn the operating mode switch on the CPU to
STOP.

The starting point is the SIMATIC Manager again with
the open project window "Getting Started Offline."

Select the Blocks folder.

If there are several CPUs in your project, first
determine which CPU has gone into STOP.

All the accessible CPUs are listed in the "Diagnosing
Hardware" dialog box. The CPU with the STOP
operating mode is highlighted.

The "Getting Started" project only has one CPU
which is displayed.

Click Module Information to evaluate the diagnostic
buffer of this CPU.

If only one CPU is connected, you can
query the module information for this
CPU directly using the menu command
PLC > Diagnostic/Setting > Module
Information.

Getting Started STEP 7
A5E02904800-01

Downloading and Debugging the Program

The "Module Information" window provides you with information on the properties and
parameters of your CPU. Now select the "Diagnostic Buffer" tab to determine the cause of the
STOP state.

PO e formation —CP0 77 E ||

Path: |Getting Started SIMATIC 300 StationhCPLU3 Operating mode of the CPU: & STOP

Status: #24 Error Mot a farce job
Time Spstem I Communication I Stacks
General b ermory I Scan Cycle Time
Events: ™| Eilten settinas active ™| Timeincliding ERU Y aeal ke difteretce

2 B I T TS a 5 =

3 04:13:35:825 pm 04/25/001 Reguest for manual warm restart

4 04:13:35%:791 pm 04/25/01 Mode transition fram STOP ta STARTUP

5 041302818 pm 04/25/001 STOP cauged by programming ermror [0 not loaded or m...

B 04:13:02:818 pm 04/25/01 FC not loaded

7 04:1202:813 pm 04/25/001 Mode tranzition from STARTUP to RUM

a 04:13:02:813 pm 04/25/01 Request for manual warm restart ;I
Detailz on Event: 1 of 100 Ewvent ID: 16H# 4303

STDF cauzed I:!_l,l stop switch being activated The "Open Block” button is

Previous operating mode: FFUN . disabled, because there was no

Requested operating maode: STOR [intemal] error in the block in the "Gettin

Incoming event » : 9

Started" project.

[pen Black:

Save As... ‘m Help on Event |
Cloze I Update | Frint... | Help |

The latest event (number 1) is at the top of the list. The cause of the STOP state is displayed.
o Close all windows except for the SIMATIC Manager.

If a programming error caused the CPU to go into STOP mode, select the event and click the "Open Block"
button.

The block is then opened in the familiar LAD/STL/FBD program window and the faulty network is
highlighted.

With this chapter you have successfully completed the "Getting Started" sample project, from creating a
project through to debugging the finished program. In the next chapters, you can extend your knowledge
further by working through selected exercises.

You can find more information under Help > Contents
under "Diagnostics" in the topic "Calling the Module

Information."

Getting Started STEP 7
A5E02904800-01

75

Downloading and Debugging the Program

Getting Started STEP 7
76 A5E02904800-01

8 Programming a Function

8.1 Creating and Opening Functions (FC)

Functions, like function blocks, are below the organization block in the program hierarchy. In order
for a function to be processed by the CPU, it must also be called in the block above it in the
hierarchy. In contrast to the function block, however, no data block is necessary.

With functions, the parameters are also listed in the variable declaration table, but static local data
are not permitted.

You can program a function in the same way as a function block using the LAD/STL/FBD program
window.

You should already be familiar with programming in Ladder Logic, Function Block Diagram, or
Statement List (see Chapters|4|and|5) and also symbolic programming (see Chapter 3).

If you have worked through the "Getting Started"
sample project in Chapters|1/to 7, open this now.

eI projects | Libraries] E

If not, create a new project in the SIMATIC Manager
using the menu command File > "New Project"
Wizard. To do this, follow the instructions in Section
2.1land rename the project "Getting Started
Function."

We will continue with the "Getting Started" project.
However, you can still carry out each step using a
new project.

Navigate to the Blocks folder and open it.

Click in the right half of the window with the right
mouse button.

Getting Started STEP 7
A5E02904800-01 77

Programming a Function

@rt New O bieD 3

Insert a Function (FC) from the pop-up menu.

Properties - Function

General - Pant 1 | General - Part 2| Calls | atibutes |

Mame finteinal}
Language:

Symbol

FC1

—

In the "Properties — Function" dialog box, accept the
name FC1 and select the required programming
language.

Symbel camment: < o —

Project path:

Storage locafion
of project

Date created:
Last madified:

Comment:

Confirm the remaining default settings with OK.

[CoxSiemens'Step?\S 7profsGettin_1
Code

12.04.2000 130218

12.04.2000 13.0218

Intert

12,

face

042000 13:02:18

=
]
Abbrechen Hilte:

The function FC1 is added to the Blocks folder.

Double-click to open FCA1.

In contrast to the function block, no static data can be defined in the variable declaration table for a function.

The static data defined in a function block are retained when the block is closed. Static data can be, for
example, the memory bits used for the "Speed" limit values (see Chapter 5).

To program the function, you can use the symbolic names from the symbol table.

78

You can find more information under Help > Contents in the topics
"Working Out the Automation Concept," "Basics of Designing a
Program Structure," and "Blocks in the User Program".

Getting Started STEP 7
A5E02904800-01

Programming a Function

8.2 Programming Functions

In this section, you will program a timer function in our example. The timer function enables a fan

to switch on as soon as an engine is switched on (see Chapter 5), and the fan then continues
running for four seconds after the engine is switched off (off-delay).

As mentioned earlier, you must specify the input and output parameters of the function ("in" and
"out" declaration) in the variable detail view.

The LAD/STL/FBD program window is open. You work with this variable detail view in the same
way as with the detail view for the function block (see Chapter 5).

Enter the following declarations:

Caontents OF: 'EnvironmentsnterfacehN'

Inke

..
-0 OUT
40k IN_OUT

fE@ TEMP

T EETIIEN

[Mame

Data Type |Comment

‘# |Engine_0On Bool

‘E= Timer_Function

| =]

Signal for switching on the engine

Timer Tirmer function used for the switch-of delay

Contents OF ‘Environmentsnterfaces0UT'

CEs
Lk IN_OUT
& TEMP

=

Interface [Mame Data Type |Comment
3 m | @ [Fan_on Bool Signal for switching on the fan

Programming the Timer Function in Ladder Logic

Getting Started STEP 7
A5E02904800-01

™

...R

S_OFFDT
E Q

BI...

BCD, ..

Select the current path for entering the Ladder
instruction.

Navigate in the Program Elements catalog until you
reach the element S_OFFDT (start off-delay timer),
and select the element.

Insert a normally open contact in front of input S.
Insert a coil after output Q.

79

Programming a Function

Select the question marks, enter "#" and select the corresponding names.

Set the delay time at input TV of S_OFFDT. Here, S5T#4s means that a constant has been
defined with the data type S5Time#(S5T#), lasting four seconds (4s).

Then save the function and close the window.

#Tiwer Function

#Engine On S OFFOT #Fan_On
| |) Q {} |
S5THEs TV EIf—...
The "#Timer_Function" is started with
. R ECD -, the input parameter "#Engine_On." Later

on when the function is called in OB1, it
will be supplied once with the
parameters for the petrol engine and
once with the parameters for the diesel
engine (for example, T1 for
"PE_Follow_on"). You will enter the
symbolic names of these parameters
later in the symbol table.

Programming the Timer Function in Statement List

A #Engine On If you are programming in Statement List, select the
I S5THAS input area below the network and enter the statement
3F #Timer Function as shown here.

A #Timer Function

= #Fan_On Then save the function and close the window.

Getting Started STEP 7
80 A5E02904800-01

Programming a Function

Programming the Timer Function in Function Block Diagram

If you are programming in Function Block Diagram, select the input area below the network and
enter the FBD program below for the timer function.

Then save the function and close the window.

#Timer Function

S_OFFDT
#Engine On—3 BIf...

S5THES — TV BCD [=... #Fan_On

E ... —R o

In order for the timer function to be processed, you need to call the function in a block which is higher up in
the block hierarchy (in our example, jp=QR1
You can find more information under Help >
Contents in the topics "Calling Reference Helps,"
"The STL, FBD, or LAD Language Description,"
and "Timer Instructions."

Getting Started STEP 7
A5E02904800-01 81

Programming a Function

8.3 Calling the Function in OB1

The call for the function FC1 is carried out in a similar way to the call for the function block in OB1.
All the parameters of the function are supplied in OB1 with the corresponding addresses of the
petrol or diesel engine.

Since these addresses are not yet defined in the symbol table, the symbolic names of the
addresses will now be added.

An address is part of a STEP 7 statement and specifies
what the processor should execute the instruction on.
Addresses can be absolute or symbolic.

The SIMATIC Manager is open with the "Getting
Started" project or your new project.

Navigate to the Blocks folder and open OB1.
The LAD/STL/FBD program window opens.

Programming the Call in Ladder Logic

HH You are in LAD view. Select network No. 5 and insert
_|"" a new network No. 6.

Then navigate in the Program Elements catalog until
you reach FC1 and insert the function.

) Insert a normally open contact in front of
"Engine_On."

?7.# =|Timer_Funceion

Using the menu command View >
Display > Symbolic Representation,
you can toggle between symbolic and
absolute addresses.

Click the question marks for the FC1 call and insert the symbolic names.

Getting Started STEP 7
82 A5E02904800-01

Programming a Function

Getting Started
A5E02904800-01

"PE Cn"

"PE_Follow On" —

EN

Engine on

Timer Function

HRont

ENO

Fan On

~"PE_Fan On"

Program the call for the function FC1 in Network 7 using the addresses for the diesel engine. You
can do this in the same way as for the previous network (you have already added the addresses
for the diesel engine to the symbol table).

"DE On"
[

"DE_Follow On'"—

EN

Engine On

Timer Function

"Fan"

ENO

Fan On

~"DE_Fan_ On"

STEP 7

. Save the block and then close the window.

83

Programming a Function

Programming the Call in Statement List

Hetwork 6 : Controlling the Fan for the Petrol Engine If you are programmlng |n Statement LISt, Select the

CALL "Fan"
Engine_On
Timer Function:
Fan_oOn =

i="PE_On"

input area below a new network and enter the STL
"PE_Follew_on"” statements shown here.

"PE_Fan_On"

Wetwork 7: controlling the Fan for the Diesel Engine Then save the call and close the window.

CALL "Fan"

Engine_On :="DE_on"
Timer Function:="DE_Follow On™
Fan_On :="DE_Fan_0n"

Programming the Call in Function Block Diagram

If you are programming in Function Block Diagram, select the input area below a new network and
enter the FBD instructions shown below.

Then save the call and close the window.

"PE On" —

"PE_Follow On' —

"DE On' —

"Fan"
EN
Engine On Fan One—="pE Fan On"
Timer Function ENO[—

"Fan"
EN
Engine On Fan One="pE Fan On"
Timer Function ENC|—

E "DE_Follow On'" —

The call for the functions was programmed as an unconditional call in our example; that is, the function will

always be processed.

Depending on the requireme

nts of your automation task, you can make the call for a function or function

block dependent on certain conditions; for example, an input or a preceding logic operation. The EN input
and the ENO output are provided in the box for programming conditions.

You can find more information under Help >

84

Contents and then under "Calling Reference
Helps," in the topics "The LAD, FBD, or STL
Language Description".

Getting Started STEP 7
A5E02904800-01

9 Programming a Shared Data Block

9.1 Creating and Opening Shared Data Blocks

If there are not enough internal memory bits in a CPU to save all the data, you can store specific
data in a shared data block.

The data in a shared data block are available to every other block. An instance data block, on the
other hand, is assigned to one specific function block, and its data are only available locally in this
function block (see Section|5.5).

You should already be familiar with programming in Ladder Logic, Function Block Diagram, or
Statement List (see Chapters/4 and|5) and also symbolic programming (see Chapter 3).

= foen Project
E Eyforojects Libraries] 5

Marne
Getting Started
E 2

Getting Started STEP 7
A5E02904800-01

If you have worked through the "Getting Started"
sample project in Chapters |1/to 7, open this now.

If not, create a new project in the SIMATIC Manager
using the menu command File > "New Project"
Wizard. To do this, follow the instructions in

Section 2.1/ and rename the project "Getting Started
Function."

We will continue with the "Getting Started" project.
However, you can still carry out each step using a
new project.

Navigate to the Blocks folder and open it.

Click in the right half of the window with the right
mouse button.

85

Programming a Shared Data Block

86

< Inzert Mew Object > 3

D ata Block
Properties - Data Block [x]
General -Part 1 | General -Pait 2| Calls | Attibutes |
Mame and type: [hared DE: = =l
Symbolic Name: 5 Data

Symbol Comment [Shared data tlock

Created in Language: DB B

Froject path: [

Storage local
o e peen [CGiemens\Step7 S Tpra Getin 1
Code

08/10/2002 0421:42

0941072002 04:21:42

Date created:
Last modified:

Interface:

0941072002 04:21:42

Comment:

- |

—~——

Cancel s Help >

Insert a Data Block (DB) from the pop-up menu.

In the "Properties — Data Block" dialog box, accept all
the default settings with OK.

Use the "Help* Button for further information.
The data block DB3 has been added to the Blocks
folder.

Double-click to open DB3.

Remember: In Section 5.5, you
generated an instance data block by
activating the option "Data block
referencing a function block." In
contrast, using "Data block" you
create a shared data block.

Programming Variables in the Data Block

ritiat et eoment

Enter "PE_Actual_Speed" in the Name column.

Click with the right mouse button to select the type
using the menu command Elementary Types > INT
from the pop-up menu.

In the example below, three shared data are defined in DB3. Enter these data accordingly in the

variable declaration table.

Address |Narr|a

Type Initial wvali|Comment

Ao

15
+0. a [pB_var

Temporary placeholder wariable

The variables for the actual speeds in the data block
"PE_Actual_Speed" and "DE_Actual_Speed" are treated
in the same way as the memory words MW2
(PE_Actual_Speed) and MW4 (DE_Actual_Speed). This
can be seen in the next chapter.

=1

Save the shared data block.

Getting Started STEP 7
A5E02904800-01

Programming a Shared Data Block

Assigning Symbols

You can also assign symbolic names to data blocks.

Open the Symbol Table and enter the symbolic

name "S_Data" for the data block DB3.

If you copied the symbol table from a sample
project (zEn01_02_STEP7__STL_1-10,
zEn01_06_STEP7__LAD_1-10 or
zEn01_04_STEP7__FBD_1-10) to your
"Getting Started" project in Chapter 4, you do
not need to add any symbols now.

Symbhol | Address Data
S Data DE 3 DE 3 | Shared data block

El Save the symbol table and close the "Symbol Editor"
window.

Also close the shared data block.

a

Shared data blocks in the variable declaration table:

Using the menu command View > Data View, you can change the actual values of the data type INT in the
table for the shared data block (see Section 5.5).

Shared data blocks in the symbol table:

In contrast to the instance data block, the data type for the shared data block in the symbol table is always
the absolute address. In our example, the data type is "DB3." With the instance data block, the
corresponding function block is always specified as the data type.

e YOU can find more information under Help > Contents in the topics
"Programming Blocks" and "Creating Data Blocks."

Getting Started STEP 7
A5E02904800-01 87

Programming a Shared Data Block

Getting Started STEP 7
88 A5E02904800-01

10 Programming a Multiple Instance

10.1 Creating and Opening a Higher-Level Function Block

In Chapter 5|you created a program for controlling an engine with the function block "Engine"
(FB1). When the function block FB1 was called in the organization block OB1, it used the data
blocks "Petrol" (DB1) and "Diesel" (DB2). Each data block contained the different data for the
engines (for example, #Setpoint_Speed).

Now imagine that you require other programs to control the engine for your automation task; for
example, a control program for a rapeseed oil engine, or a hydrogen engine, etc.

Following the procedure you have learned so far, you would now use FB1 for each additional
engine control program and assign a new data block each time with the data for this engine; for
example, FB1 with DB3 to control the rapeseed oil engine, FB1 with DB4 for the hydrogen engine,
etc. The number of blocks would increase significantly as you created new engine control
programs.

By working with multiple instances, on the other hand, you can reduce the number of blocks. To do
this, you create a new, higher-level function block (in our example, FB10), and call the unchanged
FB1 in it as a "local instance." For each call, the subordinate FB1 stores its data in data block
DB10 of the higher-level FB10. This means that you do not have to assign any data blocks to FB1.
All the function blocks refer back to a single data block (here DB10).

The data blocks DB1 and DB2 are integrated in DB10. To do
this, you must declare FB1 in the static local data of FB10. I

OB1 FB10

CALL FB1 (for petrol engine)
CALL FB10, DB10 CALL FB1 (for diesel engine)

FB1

"Petrol engine" data
"Diesel engine" data

eagine: it
3

You should already be familiar with programming in Ladder Logic, Function Block Diagram, or
Statement List (see Chapters 4|and|5) and also symbolic programming (see Chapter3).

Getting Started STEP 7
A5E02904800-01 89

Programming a Multiple Instance

Open Project

SEr projects | Librariesi 5

e —
[aetting Started

<

ed - <OMline> (Projekt] ~ CASIEMERSASTEPTAS 7piof\Gettin_1

G = = = =

o WAT1 FC1 oo

Praperties - Function block <]

General -Pant 1 |

Gengiale 2 Attibutes |
Mame: [V Multiple Instance Capaly
Symbolic Name

Symbol Comment |

Created inLanguags: |STL -

Froject Path |
Storage location

of project [ENSiemens\Step7 S 7profGettin_1
Code Interface
Dale created: 18/05/2000 08:48.27
Last modfied: 18/05/2000 08:48.27 16/05/2000 084827
Comment; ’ =
E) Cancel Help

If you have worked through the "Getting Started"
example in Chapters|1/to 7, open the "Getting
Started" project.

If not, open one of the following projects in the
SIMATIC Manager:

ZEn01_05 STEP7_ __LAD 1-9 for Ladder Logic,
ZEnO1_01_STEP7__STL_1-9 for Statement List
ZEn01_03 _STEP7__FBD_1-9 for Function Block
Diagram.

Navigate to the Blocks folder and open it.

Click with the right mouse button in the right half of
the window and insert a function block using the
pop-up menu.

Change the name of the block to FB10 and select the
required programming language.

Activate Multiple instance FB (if necessary) and
accept the remaining default settings with OK.

FB10 has been added to the Blocks folder. Double-
click to open FB10.

multiple instance capability.

You can create multiple instances for any function block, even for valve control programs, for example. If
you want to work with multiple instances, note that both the calling and the called function blocks must have

You can find more information under Help > Contents in the topics
"Programming Blocks" and "Creating Blocks and Libraries."

90

Getting Started STEP 7
A5E02904800-01

Programming a Multiple Instance

10.2 Programming FB10

To call FB1 as a "local instance" of FB10, in the variable detail view a static variable must be
declared with a different name for each planned call of FB1. Here, the data type is FB1 ("Engine").

Declare / Define Variables

FB10 is open in the LAD/STL/FBD program window. Transfer the declarations of the subsequent
image to your variable detail view. To do this, select the declaration types "OUT", "STAT" and
"TEMP" one after the other and make your entries in the variable detail view. Select "FB <nr>" as
the data type for the declaration type "STAT" from the pull-down list and replace the character
string "<nr>" with the "1".

i Contents OF: 'Environmentsnterface’OUT'

Interface EName Data Type |Address |Initial Value|Comment

‘= Preset_Speed_Reached|Boaol 0.0 FALSE Both engines have reached the preset speed
a2

Contents OF: Environmenthnterface\STAT®

EName Data Type (Address (Initial Yalue| Comment
@ Fetral_Engine |Engine 20 First local instance of FB1 "Enging"
@ Diesel_Engine |Engine 100 Second local instance of FB1 "Enging"
=

Contents OF: EnvironmentilntefacehTEMP

Interface EName Data Type (Address|Comment
‘B PE_Preset_Speed_Reached |Bool 0.0 Preset speed reached {petrol engine)
‘B DE_Preset_Speed_Reached |Bool 0.1 FPreset speed reached {diesel engine)
=]

The declared local instances will then appear in the
"Program elements" tab under "Multiple Instances."

Getting Started STEP 7
A5E02904800-01 91

Programming a Multiple Instance

92

Programming FB10 in Ladder Logic

~t£Z] hezel_Engine

Insert the call "Petrol_Engine" as the
multiple-instance block "Petrol_Engine" in Network 1.

Then insert the required normally open contacts and complete the call with the symbolic names.

"Switch On PE"
| |

"Switch Off_PE"
|l
1

"PE_Failure”
| |

"3_Data".PE_Actual
_Speed

#Petrol Engine
EN

Switch On

ENQ

Engine_ On

Preset_Speed Reac

hed
Switch Off

Failure

Actual Speed

The "Actual_Speed" for the engines is not
taken from a memory bit (see Section 5.6
onwards), but from a shared data block
(see Section 9.1). The general address
assignment is as follows:
"Data_Block".Address, for example:
"S_Data".PE_Actual_Speed.

#PE_Preset_Speed R

Insert a new network and program the call for the diesel engine. Proceed in the same way as for

Network 1.

"Switch On DE™
| |

"Switch Off DE"
|

"DE_Failure"

"3_Data".DE_Actual
_Speed

#Diesel Engine
EN

Switch On

ENO

Engine_On

Preset_Speed Reac

hed
Switch Off

Failure

Actual Speed

#DE_Preset_Speed R

Getting Started STEP 7
A5E02904800-01

Programming a Multiple Instance

Insert a new network and program a series circuit with the corresponding addresses. Then save
your program and close the block.

E Use the respective temporary variables. You will
recognize the temporary variables in the pull-down
menu by the symbols displayed on the left.

Then save your program and close the block.

#PE_Preset Zpeed R #DE Preset Speed R #Preset Zpeed Reac
eached eached hed

|| || !
| [[L

1 |
i 1

The temporary variables
("PE_Setpoint_Reached" and
"DE_Setpoint_Reached") are
supplied to the output parameter
"Setpoint_Reached," which is then
processed further in OB1.

Programming FB10 in Statement List

CALL fPefrol Engine If you are programming in Statement List, select the
Switch Cn ="Zwitch On PE" .

Switch Off i="Zuitch 0ff PE" input area under a new network and enter the STL
Fatlure PTTPE_Fallure” instructions shown here.

Actual Speed 1="3 _Data".PE_Actual Speed

Engine On :="PE_0On"

Preset_Speed Reached:=#PE Preset Speed Reached Then save your program and C|OSG the bIOCk

CALL #Diesel Engine

Switeh On 1="Switch On DET

Switch Off :="Switch Off DE"

Failure :="DE_Failure"”

Actual Speed :="3_Data".DE_Actual Speed

Engine_0On :="DE_On"

Preset_Speed Reached:=#DE_Preset_Speed Reached

#PE_Preset_Speed Reached
#DE_Preset_Speed Reached
#Preset_Speed Reached

(IS

Getting Started STEP 7
A5E02904800-01 93

Programming a Multiple Instance

Programming FB10 in Function Block Diagram

If you are programming in Function Block Diagram, select the input area under a new network and

enter the FBD instructions below.

Then save your program and close the block.

. —{EN
"Switch On PE" —Switch On
"Switch Off PE" ——Switch Off
"PE_Failure" —Failure

"3 Data".PE Actual
Speed —Actual Zpeed

#Petrol Engine

Engine_On =

Preset Speed Reac
hed -

ENO (=

. —{EN
"Switch On DE" — 3witch On
"Switch Off DE" —|Switch Off
"DE_Failure" —Failure

"3 Data".DE_Actual
Speed —{Zctual Speed

#Diesel Engine

Engine Omnf—

Preset Zpeed Reac
hed -

ENQ f—

#PE_Preset Speed R
eached —

#DE_Preset Speed R
eached —

#Preset_Speed Reac
hed

a

"EE On'"

#PE_Preset_Speed R
eached

"DE_On"

#DE_Preset Speed R
eached

(FCs) is not possible.

To edit both calls for FB1 in FB10, FB10 must be called itself.
Multiple instances can only be programmed for function blocks. Creating multiple instances for functions

You can find more information under Help > Contents in the
topics "Programming Blocks," "Creating Logic Blocks," and
"Multiple Instances in the Variable Declaration."

94

Getting Started STEP 7
A5E02904800-01

Programming a Multiple Instance

10.3 Generating DB10 and Adapting the Actual Value

The new data block DB10 will replace the data blocks DB1 and DB2. The data for the petrol
engine and the diesel engine are stored in DB10 and will be required later for calling FB10 in OB1
(see "Calling FB1 in OB1" from Section 5.6 onwards).

ed - <OMline> (Projekt] ~ CASIEMERSASTEPTAS 7piof\Gettin_1

g Shatad
SIMATIC 3005 tston
B crumam

= (g1) 57 Frograel]

Properties - Data Block

General- Part 1 | General- P2l Lol | Atributs
A
Heme and type < DB10 Instance DE { -

Symbolic Name:

Symbol Comment: |

Created in Language: DB B

Project path:

Storage lacation
of project

[CASiemens\Step?\S 7ol Getin™1
Code Intesface
09/10/2002 04:32:50
09/10/2002 04:32:50

Date created:

Last modified: 08/10/2002 04:32:50

Comment |
|
[o |J Cancel Help

Open Data Block

By default, instance data blocks are opened with "Parameter assighment
for data blocks" az of STEP 7 W5.2 [see Help).
There iz no functional difference for this DB to the editor in

LADJSTLAFED.

The DB could be opened with the DB editor in LAD/STLAFED (as in
Wa 1)

['o you want ta open the DB with ""Parameter assignment for data
blocks™?

W Always display this message for Dpen Instance DB

Mo Help |

Getting Started STEP 7
A5E02904800-01

Create the data block DB10 in the Blocks folder of
the "Getting Started" project in the SIMATIC Manager
using the pop-up menu.

To do this, change the name of the data block to
DB10 in the dialog box "Properties - Data Block",
then select the application "Instance DB" in the
adjacent pull-down list". In the right pull-down list,
select the function block "FB10" to be assigned and
confirm the remaining settings with OK.

The data block DB10 has been added to the "Getting
Started" project.

Double-click on DB10.

In the following dialog box, answer with Yes to open
the instance DB. Select the menu command View >
Data View.

The data view displays each individual
variable in DB10, including the "internal"
variables of the two calls for FB1 ("local
instances").

The declaration view displays the variables
as they are declared in FB10.

95

Programming a Multiple Instance

Change the actual value of the diesel engine to "1300," save the block, and then close it.

Address | Declaration | Mame Type | Initial value | Actual value | Comment
1 0.0 | out Preset_Speed_Reached BOOL | FALSE FALSE Both engines have reached the preset speed
z 2.0 | stat:in Petrol_Engine, Switch_on BOOL | FALSE FALSE Switch on engine
3 2.1 | skat:in Petrol_Engine. Switch_OFf BOOL | FALSE FaLsE Switch off engine
4 2.2 | stak:in Petrol_Engine.Failure BOOL | FALSE FALSE Engine failure, causes the engine ko swikch off
5 4,0 | stat:in Petrol_Engine. Actual_Speed INT |0 1] Actual engine spesd
3] 6.0 | stak:out Petrol_Engine Engine_On BOOL | FALSE FALSE Engine is switched on
7 6.1 | stat:out Petrol_Engine.Preset_Speed_Reached BOOL | FALSE FALSE Preset speed reached
g 3.0 | stak Petrol_Engine.Preset_Speed INT | 1500 1500 Requested engine speed
9 10,0 | skat:in Diesel_Engine. Switch_on BOOL | FALSE FaLSE Switch on engine
10 10,1 | skat:in Diesel_Engine, Switch_OFF BOOL | FALSE FALSE Switch of f engine
11 10,2 | skat:in Diesel_Engine. Failure BOOL | FALSE FaLSE Engine Failure, causes the enging to switch of f
12 12.0 | skat:in Diesel_Engine. Actual_Speed INT |0 1] Actual engine speed
13 14.0 | skat:out Diesel_Engine Engine_On BOOL | FALSE FALSE Engine is switched on
14 14,1 | skat:out Diesel_Engine.Preset_Speed_Reached BOOL |FALSE eset speed reached
15 16,0 | skat Diesel_Engine.Preset_Speed INT | 1500 & uested engine speed

a

All the variables are now contained in the variable declaration table of DB10. In the first half, you can see
the variables for calling the function block "Petrol Engine" and in the second half the variables for calling
the function block "Diesel_Engine" (see Section 5.5).

The "internal" variables of FB1 retain their symbolic names; for example, "Switch_On." The name of the
local instance is now placed in front of these names; for example, "Petrol_Engine.Switch_On."

96

You can find more information under Help > Contents in the
topics "Programming Blocks" and "Creating Data Blocks."

Getting Started STEP 7
A5E02904800-01

Programming a Multiple Instance

10.4 Calling FB10 in OB1

The call for FB10 is made in OB1 in our example. This call represents the same function which
you have learned while programming and calling FB1 in OB1 (see Section 5.6 onwards.). Using
multiple instances, you can replace Networks 4 and 5 programmed from Section 5.6/ onwards.

:Iie'.tlinn‘}l.-'.lilr'llrg:- [Projekt] - C:ASIEMERSAS TEFTAS Fproi\Gettin_1 = Open OB1 in the project in Wh|Ch yOU haVe jUSt
e | 8 o & o programmed FB10.
= (@) 7 Progmedl P ™ o ooz
(@) Sowce Fis
=i fi i3 i
wAT1 2] [}
= =

Defining Symbolic Names

The LAD/STL/FBD program window is open. Open the symbol table using the menu command
Options > Symbol Table and enter the symbolic names for the function block FB10 and the data
block DB10 in the symbol table.

Then save the symbol table and close the window.

Symhol | Address |Data Type| Comment
Engines FE 10 FE 10 Example of multiple instances

Engine Data OB 10 FEB 10 |Instance data block for FB10 10

Programming the Call in Ladder Logic

Insert a new network at the end of OB1 and add the
call for FB10 ("Engines").

Getting Started STEP 7
A5E02904800-01 97

Programming a Multiple Instance

Complete the call below with the corresponding symbolic names.
Delete the call for FB1 in OB1 (Networks 4 and 5 from Section| 5.6/ onwards), since we are now
calling FB1 centrally via FB10.

Then save your program and close the block.
"Engine Data"

"Engines"
EN ENO

Preset_Speed Reac| "5 Data”.Preset Sp
hed [-eed Reached

The output signal "Setpoint_Reached" for FB10
("Engines") is passed on to the variable in the
shared data block.

Programming the Call in Statement List

If you are programming in Statement List, select the input area under the new network and enter
the STL instructions below. To do this, use the FB Blocks > FB10 Engines in the Program
Elements catalog.

Delete the call for FB1 in OB1 (Networks 4 and 5 from Section|5.6 onwards), since we are now
calling FB1 centrally via FB10.
Then save your program and close the block.

CALL "Engines" , "Engine Data"
Preset Speed Reached:="3 Data".Preset Speed Reached

Getting Started STEP 7
98 A5E02904800-01

Programming a Multiple Instance

[o]

Programming the Call in Function Block Diagram

If you are programming in Function Block Diagram, select the input area under the new network

and enter the FBD instructions below. To do this, use the FB Blocks > FB10 Engines in the

Program Elements catalog.

Delete the call for FB1 in OB1 (Networks 4 and 5 from Section|5.6/onwards), since we are now

calling FB1 centrally via FB10.
Then save your program and close the block.

"Engine Data"

"Engines®
Preset_Speed Reac| "3 Data".Preset Sp
. —EN hed —eed Reached
ENOC fm

If you require additional engine control programs for your automation task; for example, for gas engines,
hydrogen engines, etc., you can program these as multiple instances in the same way and call them from

FB10.

To do this, declare the additional engines as shown in the variable declaration table of FB10 ("Engines")
and program the call for FB1 in FB10 (multiple instance in the Program Elements catalog). You can then
define the new symbolic names; for example, for the switch-on and switch-off procedures in the symbol

table.

FBD, or LAD Language Description".

You can find more information under Help > Contents and
then under "Calling References Helps" in the topics "The STL,

Getting Started STEP 7
A5E02904800-01

99

Programming a Multiple Instance

Getting Started STEP 7
100 A5E02904800-01

11 Configuring the Distributed 1/O

11.1 Configuring the Distributed I/O with PROFIBUS DP

Automation systems with conventional configurations have the cable connections to the sensors
and actuators inserted directly into the /O modules of the central programmable logic controller.
This often means a considerable amount of wiring is involved.

Using a distributed configuration, you can considerably reduce the amount of wiring involved by
placing the input and output modules close to the sensors and actuators. You can establish the
connection between the programmable logic controller, the I/O modules, and the field devices
using the PROFIBUS DP.

You can find out how to program a conventional configuration in Chapter 6. It makes no
difference whether you create a central configuration or a distributed configuration. You select
the modules to be used from the hardware catalog, arrange them in the rack, and adapt their
properties according to your requirements.

It would be an advantage when reading this chapter if you have already familiarized yourself
with creating a project and programming a central configuration (see Section|2.1 and

Chapter 6).

Compact slaves: Modular slaves:
for example, 1/0 modules for example, ET 200 M-IM153

ET 200B-16DI / 16DO

PROFIBUS-DP network
between master and
slaves

Direct connection between
CPU and programming
device / PC via MPI

Master device:

for example, CPU 315-2DP

Getting Started STEP 7

A5E02904800-01

101

Configuring the Distributed I/O

Creating a New Project

K SIMATIC Manager |- (O] x|

File PLC ¥iew Options “Window Help

D|=| g2l @] =] x|

Prezz F1 to get Help.

< ‘Mew Project’ wWizard... >
STEP 7 Wizard: "New Project™ [<]
Hl Which CPU are you using in your project? 24)
CPL:
= CPU-Typ [Bestallhr [=]
75%31520? BES7 315.24F 010480 >
=i |EFU31 520P
MFI address
Preview< |
57_Proz Black Hame | Symbolic Name [
i SIMATIC 300 Station TFOB Cyels Eracution
=-J cruzis2 op
=] _| 57 Program(1)
L Blocks
cBak [Mes | Make | Cancel Help

Inserting the PROFIBUS Network

SIMATIC 2000

MR

FROFIBUS

A
I ¢

SIMATIC 2000)

MR

.|u St
By Soce Fis
2 Blocks

102

The starting point is the SIMATIC Manager. To make
things easier to follow, close any open projects.

Create a new project.

Select the CPU 315-2DP in the corresponding dialog
box (CPU with PROFIBUS-DP network).

Now proceed in the same way as for Section 2.1 and
assign the project the name "GS-DP" (Getting Started
— Distributed 1/0).

If you want to create your own configuration at this

point, specify your CPU now. Note that your CPU
must support distributed I/Os.

Select the folder GS-DP.

Insert the PROFIBUS network using the right mouse
button in the right half of the window.

Getting Started STEP 7
A5E02904800-01

Configuring the Distributed I/0O

Configuring the Station

E“‘ GS-DP - C:\Siemens\STEP7\S7PROJAGS_DP

[Bsn
433 SIMATIC 300 Stai) ﬂqﬂ
salEL LRI TR

Bl 57 Progiam(l)

(2 Source Files
L Blocks

8]

CPU314{1)

= (0] UR

1 pssoras
CPUF15-2 DP{1)
oF

~a| @ |||y
e

......
- SIMATIC 300
-] PS-300

-

{5 SIMATIC 200
-3 5M-300
=-{1 DI-200

SM321 DIFZRDC24Y

&2 D0-300

Select the folder SIMATIC 300 Station and double-
click Hardware.

The "HW Config" window is opened

(see Section 6.1).

The CPU 315-2 DP already appears in the rack. If
necessary, open the Hardware catalog using the
menu command View > Hardware Catalog or the
corresponding button in the toolbar.

Drag and drop the power supply module PS307 2A
into slot 1.

In the same way, insert the 1/O modules
DI32xDC24V and DO32xDC24V/0.5A in slots 4
and 5.

Getting Started STEP 7
A5E02904800-01

- (1] 5M322D032DC24v/05E

In addition to the CPU which supports the
distributed 1/0O, you can also place other CPUs in
the same rack (not described here).

103

Configuring the Distributed I/O

Configuring the DP-Master System

Inzert

< DF M aster SysteS

Prapetties - PROFIBUS interface DP (R0/52.1)
Genersl Parametars |
Address: E ~
Highes! address: 125
Transmission rate: 1.5 Mbps
Subnet
ot netorked - Hew.
Plopertes.
Delete

PROMBUSHE DF mastes cyatess (1]

= PROFIBUS-DP
o@

Properties - PROFIBUS Node B-16DI DP

Gerfral Paramaters

Addizss: (=
Transmission ra te:15 Mibp

Hew

Propetties...
L
0K Abbrech Hilf

104

Select the DP master in slot 2.1 and insert a DP-
master system.

Apply the suggested address in the dialog box
displayed. Select "PROFIBUS(1)" in the "Subnet"
field and then apply your settings with OK.

You can now move any objects which you
place in the master system by dragging
them with the left mouse button held down.

Navigate in the Hardware catalog until you reach the
module B-16DI and insert this module in the master
system (drag the object to the master system until the
cursor changes to a "+" sign; then drop the object).

You can change the node address of the module you
have inserted in the "Parameters" tab of the
"Properties" dialog box.

Confirm the suggested address with OK.

Getting Started STEP 7
A5E02904800-01

Configuring the Distributed I/0O

PSdIoh
CPUSIS-2 DPTT
o0

=48 PROFIBUS DP

&3 .-

=4 PROFIBUS-DP

Co@ M15D

17181600

& B-1E0I

[EIEl
DOARDCIABA

:|2| 4] 1M 152

Slot

— | o [ao | = o

=

Getting Started STEP 7

A5E02904800-01

=% PROFIBUSDP
D EEg .-

=2 Dl-300

: [st321 DIZ2eDC24

In the same way, drag and drop the module B-16DO
onto the master system.

The node address is automatically adapted in the
dialog box. Confirm this entry with OK.

Drag and drop the interface module IM153 onto the
master system and confirm the node address again
with OK.

In our example, we are using the default
node addresses. However, you can change
these addresses at any time to meet your
requirements.

Select the ET 200M in the network.
The free slots for the ET 200M are displayed in the
lower configuration table.

Select slot 4 here.

The ET 200M itself can have additional /O modules.
Select, for example, the module DI32xDC24YV for slot
4 and double-click this module to insert it.

You should always make sure that you are in
the right folder when using the Hardware
catalog. For example, navigate to the

ET 200M folder to select modules for the

ET 200M.

105

Configuring the Distributed I/O

106

Changing the Node Address

Proj

In our example, we do not need to change the node
address. In practice, however, this is often
necessary.

Select the other nodes one after another and check
the input and output addresses. The "Configuring
Hardware" application has adapted all the addresses,
so there are no double assignments.

Let us imagine that you want to change the address
of the ET 200M:

Select the ET 200M and double-click DI32xDC24V
(slot 4).

Now change the input addresses in the "Addresses"
tab of the "Properties" dialog box from 6 to 12.
Close the dialog box with OK.

Getting Started STEP 7
A5E02904800-01

Configuring the Distributed I/0O

Station [T Finally, save and compile the distributed I/O
configuration.

Close the window.

Save and Compile

The menu command Save and Compile means that the
configuration is automatically checked for consistency. If
there are no errors, the system data are generated and can
be downloaded to the programmable controller.

With Save, you can save the configuration even if it
contains errors. However, you cannot then download the
configuration to the programmable controller.

Alternative: Configuring Networks

IE7 GS:DP .- C:\Siemens\S TEP7\S7PROJAGS_DP

Ll =

SIMATIC 300 MPI)
Station

You can also configure the distributed I/O using the
optional package "Configuring Networks."

i

PROFIBUS(1)

AT TIC 300 Stotion
=@ crusis2oP

1 57 Program(3)
(@ Source Files
2 Blocks

Double-click the network PROFIBUS (1) in the
SIMATIC Manager.

The "NetPro" window is opened.

You can drag and drop additional DP slaves onto the
PROFIBUS DP from the catalog of network objects.

Double-click any element to configure it. The
"Configuring Hardware" window is opened.

Using the menu commands Station > Consistency Check ("Configuring Hardware" window) and Network
> Consistency Check ("Configuring Networks" window), you can check the configuration for errors before
saving. Any errors are displayed and STEP 7 will suggest possible solutions.

| You can find more information under Help > Contents in the topics
"Configuring the Hardware" and "Configuring the Distributed 1/0."

Getting Started STEP 7
A5E02904800-01 107

Configuring the Distributed I/O

Congratulations! You have worked through the Getting Started manual and learned the most important terms,
procedures, and functions of STEP 7. Now you can get started on your first project.

If, while working on future projects, you are looking for specific functions or have forgotten any of the operating
instructions in STEP 7, you can use our comprehensive Help on STEP 7.

If you want to extend your knowledge of STEP 7, there are a number of specialized training courses available.
Your local Siemens representative will be happy to help you.

We wish you lots of success with your projects!

Siemens AG

Getting Started STEP 7
108 A5E02904800-01

Appendix A

Overview of the Sample Projects for the Getting Started Manual

ZEn01_02_STEP7__STL_1-10:
The programmed Chapters 1 to 10 including the symbol table in the STL programming
language.

ZEn01_01_STEP7__STL_1-9:
The programmed Chapters 1 to 9 including the symbol table in the STL programming
language.

ZEn01_06_STEP7__LAD_1-10:
The programmed Chapters 1 to 10 including the symbol table in the LAD programming
language.

ZEn01_05_STEP7__LAD_1-9:
The programmed Chapters 1 to 9 including the symbol table in the LAD programming
language.

ZEn01_04_STEP7__FBD_1-10:
The programmed Chapters 1 to 10 including the symbol table in the FBD programming
language.

ZEn01_03_STEP7__FBD_1-9:
The programmed Chapters 1 to 9 including the symbol table in the FBD programming
language.

ZEn01_07_STEP7__Dist_IO:
The programmed Chapter 11 with the distributed 1/O.

Getting Started STEP 7

A5E02904800-01

109

Appendix A

Getting Started STEP 7
110 A5E02904800-01

Index

A

Absolute address |19
Actual values
changing |50
AND function 7
Applying voltage |65

B

Block call in function block diagram 57
Block call in ladder logic 52
Block call in statement list 55

C

Calling the function 82

Calling the Help (17

Changing the node address 106

Configuring hardware |61

Configuring networks | 107

Configuring the central rack 61

Configuring the Distributed 1/0 /101

Configuring the Distributed 1/0 with PROFIBUS DP 101

Configuring the DP-Master System | 104

Configuring the hardware 63

CPU, switching on |67

Creating a program with function blocks and data blocks
37

Creating a Project 13

Creating function blocks 37

Creating functions |77

Creating Shared data blocks |85

Creating the variable table |70

D

Data blocks

generating instance data blocks 50
Data type |21
Debugging with function block diagram 68
Debugging with ladder logic |68
Debugging with statement list 68
Declaring variables

FBD |46

LAD 139

STL 43
Diagnostic Buffer, evaluating 74
Distributed 1/0O, configuring | 101
Downloading the program to the

programmable controller 65
DP-Master system, configuring ' 104

Getting Started STEP 7
A5E02904800-01

E

Establishing an online connection 63
Evaluating the Diagnostic Buffer 74

F
Function block diagram
block call 57

debugging 68

programming the timer function 81
Function block, programming in

function block diagram 46

Function block, programming in ladder logic 39
Function block, programming in statement list 43

Function blocks, creating 37
Function blocks, opening 37
Function, calling 82
Functions, creating 77
Functions, opening 77

H
Hardware, configuring 61
Help, calling 17

Installation 11

Instance data blocks
generating 50

Introduction to STEP 7 7

L

Ladder logic
block call 52
debugging 68
programming the timer function 79

Modifying variables 72

Module information, query 74
Monitoring variables 72

Multiple instance, programming 89

N

Node addresses, changing 106

111

Index

(o) S
Online connection, establishing (63 Shared data block, programming |85
Opening function blocks 37 Shared data blocks in the symbol table |87
Opening functions |77 Shared data blocks in the variable declaration table 87
Opening shared data blocks 185 Shared data blocks, creating |85
Operating Mode, checking 67 Shared data blocks, opening |85
OR function 7 SIMATIC Manager

project structure |16
P SIMATIC Manager, starting |13
SIMATIC, further software (18

Procedure using STEP 7 |10 SR function 8
Program, downloading to the programmable controller Starting the SIMATIC Manager |13

65 Statement list
Programming a function (FC) |77 block call |55
Programming a multiple instance (89 debugging |68 .
Programming a shared data block 85 programming the timer function |80
Programming FB1 in function block diagram |46 Switching the variable table online |71
Programming FB1 in ladder logic |39 Symbol editor |20
Programming FB1 in statement list 43 Symbol table 20
Programming the timer function in Symbolic programming |20

function block diagram 81
Programming the timer function in ladder logic 79 VvV
Programming the timer function in statement list |80
Programming, symbolic |20 Variable table, creating |70
Project structure in the SIMATIC Manager 16 Variable Table, switching online |71
Project structure, navigating 18 Variable, modifying |72
Projects, creating 13 Variables, monitoring |72

R

Resetting the CPU and switching it to RUN |65

Getting Started STEP 7
112 A5E02904800-01

	Working with STEP 7
	Legal information
	Welcome to STEP 7...
	Contents
	1 Introduction to STEP 7
	1.1 What You Will Learn
	1.2 Combining Hardware and Software
	1.3 Basic Procedure Using STEP 7
	1.4 Installing STEP 7

	2 The SIMATIC Manager
	2.1 Starting the SIMATIC Manager and Creating a Project
	2.2 The Project Structure in the SIMATIC Manager and How to Call the Online Help
	F1

	3 Programming with Symbols
	3.1 Absolute Addresses
	3.2 Symbolic Programming

	4 Creating a Program in OB1
	4.1 Opening the LAD/STL/FBD Program Window
	4.2 Programming OB1 in Ladder Logic
	4.3 Programming OB1 in Statement List
	4.4 Programming OB1 in Function Block Diagram

	5 Creating a Program with Function Blocks and Data Blocks
	5.1 Creating and Opening Function Blocks (FB)
	5.2 Programming FB1 in Ladder Logic
	5.3 Programming FB1 in Statement List
	5.4 Programming FB1 in Function Block Diagram
	5.5 Generating Instance Data Blocks and Changing Actual Values
	5.6 Programming a Block Call in Ladder Logic
	5.7 Programming a Block Call in Statement List
	5.8 Programming a Block Call in Function Block Diagram

	6 Configuring the Central Rack
	6.1 Configuring Hardware

	7 Downloading and Debugging the Program
	7.1 Establishing an Online Connection
	7.2 Downloading the Program to the Programmable Controller
	7.3 Testing the Program with Program Status
	7.4 Testing the Program with the Variable Table
	7.5 Evaluating the Diagnostic Buffer

	8 Programming a Function
	8.1 Creating and Opening Functions (FC)
	8.2 Programming Functions
	8.3 Calling the Function in OB1

	9 Programming a Shared Data Block
	9.1 Creating and Opening Shared Data Blocks

	10 Programming a Multiple Instance
	10.1 Creating and Opening a Higher-Level Function Block
	10.2 Programming FB10
	10.3 Generating DB10 and Adapting the Actual Value
	10.4 Calling FB10 in OB1

	11 Configuring the Distributed I/O
	11.1 Configuring the Distributed I/O with PROFIBUS DP

	Appendix A
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	V

