Worksheet 1: Math review and 1D motion

1 Sig Figs and Scientific Notation

1.1 How many significant figures does each of the following numbers have? a. 6.21 **3** e. 0.062 _____ i. 1.062 _____ j. 6.21×10^3 _____ f. 0.620 _____ b. 62.1 _____ g. 0.62 _____ k. 6.21×10^{-3} _____ c. 6210 _____ l. 62.1×10^3 _____ d. 6210.0 _____ h. .62 _____ 1.2Compute the following numbers with the correct number of sig figs: a. $33.3 \times 25.4 = _846$ d. $2.345 \times 3.321 =$ e. $(4.32 \times 1.23) - 5.1 =$ b. 33.3 - 25.4 = _____ f. $33.3^2 =$ _____ c. $33.3 \div 45.1 =$ _____

1.3 Express the following numbers and computed results in scientific notation

a. 9,827 $_$ 9.827 $ imes$ 10^3	d. $32,041 \times 47 =$
b. 0.0000000550	e. $0.059 \div 2,304 =$
c. 3,200,000	f. $320. \times 0.050 =$

2 Algebra Review:

2.1 Simplify or solve each:

a.	$\frac{10^2}{(10^2)^2}$	10^{-4}	b. $\frac{(10^2)^9}{(10^2)^{10}}$	C. $\frac{(10^2)^{10}}{10^{20}}$	d. $\frac{10^9}{(10^4)^2}$
	$(10^3)^2$		$(10^2)^{10}$	1020	$(10^{-1})^{-1}$

e. Solve for a: $y = v_0 t + \frac{1}{2}at^2$ f. Solve for g: $T = 2\pi \sqrt{\frac{L}{g}}$ g. Solve for $\mu : mv^2 \frac{1}{r = \mu mg}$

Solving systems of equations 2.2

A)
$$h = h_0 + v_0 t - \frac{1}{2}gt^2$$
, B) $v^2 = v_0^2 - 2gh$, C) $v = v_0 - gt$

1) You are given v_0 , h_0 , and g and the equations above. Do you have enough equations to solve for v? Can you do it with two equations? With one? Solve for v:

2) You are given v, t, and g. Do you have enough equations to solve for h? Can you do it with two equations? With one? Solve for h:

3 SI Units and Dimensional analysis:

3.1Convert the following to SI units. Work across the line and show all steps in the conversion. Use scientific notation and apply the proper use of significant figures.

a. 9.12
$$\mu$$
s × $\frac{1s}{10^6 \mu s} = 9.12 \times 10^{-6} {
m s}$

b. 3.42 km \times

- c. 44 cm/ms \times
- d. 80 km/hr \times
- e. 8 in \times
- f. 13 in² \times
- g. 250 cm³×

3.2 Determine which of the following statements are *reasonable*:

a. Joe is 180 cm tall. $1.80 \text{ m} \approx 6 \text{ ft tall, which is reasonable}$

b. I rode my bike to campus at a speed of 50 m/s

c. A skier reaches the bottom of the hill going 25 m/s

d. I can throw a ball a distance of 2 km $\,$

e. I can throw a ball at a speed of 50 km/hr

3.3 Use the following dimensions for variables to determine which equations are valid:

 $[x] = [L], \qquad [m] = [M], \qquad [v] = [L]/[T], \qquad [t] = [T], \qquad [a] = [L]/[T]^2, \qquad [A] = [L]^2,$

$$[E] = [M][L]^2/[T]^2, \qquad [F] = [M][L]/[T]^2, \qquad [p] = [M][L]/[T], \qquad [P] = [M][L]^3/[T]^2$$

x = vt	$[\mathbf{L}] = \frac{[L]}{[T]} \cdot [T] = [L],$	which is <i>valid</i>	
$x = \frac{1}{2}at^2 _$			
$v^2 = x + a$	<i>x</i>		
v = at			
F = ma			
E = Fx			
$E = \frac{1}{2}p^2x$			

4 Reading graphs

