Worksheet 11 Memorandum: Geometry of 2D Shapes

Grade 9

1. a) right-angled triangle - A triangle that has one angle equal to 90°
b) isosceles triangle - A triangle that has two sides equal, and two angles corresponding to those sides also equal.
c) equilateral triangle - A triangle where all three sides are equal and all three angles are equal.
d) scalene triangle - A triangle where no sides are equal and no angles are equal. All three sides and angles are different.
e) rectangle - A quadrilateral with 4 sides, opposite pairs of sides are equal and parallel, and all four angles are equal to 90°
f) square - A quadrilateral where all four sides are equal, opposite sides are parallel, and all four angles are equal to 90°
g) rhombus - A quadrilateral where all four sides are equal, opposite sides are parallel, and opposite angles are equal.
h) trapezium - A quadrilateral where one pair of sides is parallel.
i) parallelogram - A quadrilateral where opposite sides are parallel and equal. Opposite angles are equal.
j) kite - A quadrilateral where two pairs of adjacent sides are equal, and the diagonals intersect at 90°
k) similar - Two shapes are similar when either all of their corresponding angles are equal, or their sides are in proportion.
I) congruent - Two shapes are congruent when they are identical. To prove congruency, we need to either prove:
i) SSS - all 3 sides are equal
ii) SAS - two sides and an included angle are equal
iii) AAS - two angles and a corresponding side are equal
iv) RHS - Right angle, hypotenuse and side are equal.

Maths
 b) Equilateral triangle

2.

a) Rhombus

c) Rectangle
d) Parallelogram
e) Kite
f) Isosceles triangle.
g) Scalene triangle
h) Trapezium
3. Look at each of the shapes below and name them based on their properties
a) Right-angled triangle
b) Square
c) Trapezium
d) Rhombus
4. What is the sum of interior angles for a
a) 180°
b) $\quad 360^{\circ}$
5.
a) $\quad A \hat{B} C=B \hat{E} C+E \hat{C} B$
$A \widehat{B} C=90^{\circ}+34^{\circ}$
$\therefore A \hat{B} C=124^{\circ}$
b) $\quad x=A \widehat{B} C=124^{\circ}$
opp. Angles of parallelogram are equal
c) In $\triangle A B C$ and $\triangle A D C$.

1. $A \widehat{B} C=A \widehat{D} C$
proven above
2. $B \hat{C} A=C \hat{A} D$
$B C \| A D$
3. $B \hat{A} C=A \hat{C} D$
$A B \| D C$
$\therefore \triangle \mathrm{BCA}|\mid \triangle \mathrm{DAC}$
d) In $\triangle A B C$ and $\triangle A D C$
4. $A B=D C$
opp. Sides of parallelogram are equal
5. $B C=A D$ opp. Sides of parallelogram are equal
6. AC is common
$\therefore \triangle A B C \equiv \triangle D A C$.

Maths
 at

e) Trapezium, opposite sides parallel, no sides are equal.
f) No, because $A D$ is parallel to $B C$ and $B C$ and $E C$ meet at C. Therefore, $E C$ cannot be parallel to AD.
g) $\quad D \hat{A} B+A \widehat{D} C=180^{\circ} \quad$ Co-int angles $\mathrm{AB} \| \mathrm{DC}$
$\therefore D \hat{A} B=180^{\circ}-124^{\circ} \quad A \widehat{D} C=124^{\circ}$ proven above
$\therefore D \hat{A B}=56^{\circ}$
6. a) 6 squares
b) $\quad \triangle \mathrm{BAD}, \triangle \mathrm{ADC}, \triangle \mathrm{DCB}, \triangle \mathrm{CBA}, \triangle \mathrm{AED}, \triangle \mathrm{DEC}, \triangle \mathrm{CEB}, \triangle \mathrm{BEA}$ (any 4)
c) $\triangle \mathrm{DEA}, \triangle \mathrm{AEB}, \triangle \mathrm{BEC}, \Delta \mathrm{CED}, \triangle \mathrm{DCB}, \Delta \mathrm{CBA}, \Delta \mathrm{BAD}, \Delta \mathrm{ADC}, \Delta \mathrm{HMI}, \Delta \mathrm{GLF}, \Delta \mathrm{DEJ}$, $\Delta \mathrm{DEN}, \mathrm{HCl}, \Delta \mathrm{BIF}, \Delta \mathrm{GAF}, \Delta \mathrm{DHG}$ (any 4)
d) BIDF
e) $\quad \ln \Delta$ DGF and $\triangle \mathrm{DHI}$

1. $D G=D H \quad$ midpoints of a square
2. $\mathrm{DF}=\mathrm{DI}$ midpoints of a square from same point.
3. $\mathrm{HI}=\mathrm{GF}$ midpoint to midpoint on square equal.
$\therefore \Delta \mathrm{DFG} \equiv \Delta \mathrm{DIH}$
f) LMNJ, JNIF, GLJK, LMIF, LHIF (any 2)
4. a) $A \hat{G} F+F \hat{G} D=180^{\circ}$

Angles on a straight line
$\therefore A \hat{G} F=180^{\circ}-120^{\circ} \quad F \hat{G} D=120^{\circ}$ given
$\therefore A \widehat{G} F=60^{\circ}$
b) In $\triangle \mathrm{AGF}, A \hat{G} F=60^{\circ}, \mathrm{CF}=\mathrm{AD}$ (regular hexagon), so that means $\mathrm{FG}=\mathrm{AG}$ (because G is the midpoint of $C F$ and $A D$. Thus $\triangle A G F$ is an isosceles triangle and $A \widehat{F} G=G \hat{A} F$.

But, $A \hat{F} G+G \hat{A} F+A \widehat{G} F=180^{\circ}$
So, $2 A \widehat{F} G=180^{\circ}-60^{\circ}$
Angles in $\Delta=180^{\circ}$
$A \widehat{F} G=G \hat{A} F$.

Maths
 at

$\therefore 2 A \widehat{F} G=120^{\circ}$
And $\therefore A \widehat{F} G=60^{\circ}$

That means that $A \hat{F} G=G \hat{A} F=60^{\circ}$

And this proves that $\Delta \mathrm{AGF}$ is an equilateral triangle.
c) $\quad \ln$ FEDG

We know that $\mathrm{FE}=\mathrm{ED}$ Regular hexagon
And that $F G=G D \quad$ Proved above
A hexagon has a sum of interior angles equal to $(6-2) \times 180^{\circ}=720^{\circ}$

That means that each angle in the hexagon is $720^{\circ} \div 6=120^{\circ}$
Then $F \hat{E} D=F \hat{G} D=120^{\circ}$

Now, FG = AF (proved above)
And $A F=F E \quad$ Regular hexagon
So that means $F E=E D=D G=G F$

So FEDG is a rhombus because all 4 sides are equal and opposite angles are equal.
d)

ED || FC
EDGF is a rhombus (proved above)
\therefore EDCF is a trapezium as it has one set of side parallel.
e) $\quad \ln$ AFDC
$A F=D C \quad$ Regular hexagon, sides are equal
$G \widehat{F} A=60^{\circ} \quad$ Proven above
And Δ GFD is an isosceles with GF = GD (proved above)
So $G \widehat{F} D=F \widehat{D} G$

And $G \widehat{F D}+F \widehat{D} G+120^{\circ}=180^{\circ}$
So, $2 G \hat{F} D=180^{\circ}-120^{\circ}$

Maths ${ }^{\text {®il }}$ SHARP
 $\therefore G \widehat{F} D=30^{\circ}$

Now $30^{\circ}+60^{\circ}=90^{\circ} \quad G \widehat{F} D+A \widehat{F} G=A \widehat{F} D=90^{\circ}$
And similarly, for $F \hat{A} C, A \hat{C} D$ and $C \widehat{D} F$
\therefore AFDC is a rectangle; opposite sides are equal and all four angles are 90°
f) $\quad \ln \mathrm{AFHI}$

Because $\mathrm{FG}=\mathrm{FA}$, it cannot be equal to FH , or $A \hat{F} G$ would be 90° (we proved that it is actually 60°), this means that AFHI is a rectangle.
8. There are 11 squares

