

Worksheet 11 Memorandum: Geometry of 2D Shapes

Grade 9

- 1. a) right-angled triangle A triangle that has one angle equal to 90°
 - b) isosceles triangle A triangle that has two sides equal, and two angles corresponding to those sides also equal.
 - c) equilateral triangle A triangle where all three sides are equal and all three angles are equal.
 - d) scalene triangle A triangle where no sides are equal and no angles are equal.

 All three sides and angles are different.
 - e) rectangle A quadrilateral with 4 sides, opposite pairs of sides are equal and parallel, and all four angles are equal to 90°
 - f) square A quadrilateral where all four sides are equal, opposite sides are parallel, and all four angles are equal to 90°
 - g) rhombus A quadrilateral where all four sides are equal, opposite sides are parallel, and opposite angles are equal.
 - h) trapezium A quadrilateral where one pair of sides is parallel.
 - i) parallelogram A quadrilateral where opposite sides are parallel and equal. Opposite angles are equal.
 - j) kite A quadrilateral where two pairs of adjacent sides are equal, and the diagonals intersect at 90°
 - k) similar Two shapes are similar when either all of their corresponding angles are equal, or their sides are in proportion.
 - l) congruent Two shapes are congruent when they are identical. To prove congruency, we need to either prove:
 - i) SSS all 3 sides are equal
 - ii) SAS two sides and an included angle are equal
 - iii) AAS two angles and a corresponding side are equal
 - iv) RHS Right angle, hypotenuse and side are equal.

2. a) Rhombus

b) Equilateral triangle

c) Rectangle

d) Parallelogram

e) Kite

f) Isosceles triangle.

g) Scalene triangle

- h) Trapezium
- 3. Look at each of the shapes below and name them based on their properties
 - a) Right-angled triangle
- b) Square

c) Trapezium

- d) Rhombus
- 4. What is the sum of interior angles for a
 - a) 180°

- b) 360°
- 5. a) $A\hat{B}C = B\hat{E}C + E\hat{C}B$

Exterior angle = sum of opp. Int angles.

$$A\hat{B}C = 90^{\circ} + 34^{\circ}$$

$$\therefore A\widehat{B}C = 124^{\circ}$$

b) $x = A\hat{B}C = 124^{\circ}$

opp. Angles of parallelogram are equal

- c) In $\triangle ABC$ and $\triangle ADC$.
 - 1. $A\widehat{B}C = A\widehat{D}C$

proven above

2. $B\hat{C}A = C\hat{A}D$

BC || AD

3. $B\hat{A}C = A\hat{C}D$

AB || DC

- ∴∆BCA |||∆DAC
- d) In $\triangle ABC$ and $\triangle ADC$
 - 1. AB = DC

opp. Sides of parallelogram are equal

2. BC = AD

opp. Sides of parallelogram are equal

- 3. AC is common
- $\therefore \triangle ABC \equiv \triangle DAC.$

- e) Trapezium, opposite sides parallel, no sides are equal.
- f) No, because AD is parallel to BC and BC and EC meet at C. Therefore, EC cannot be parallel to AD.

g)
$$D\hat{A}B + A\hat{D}C = 180^{\circ}$$

Co-int angles AB ∥ DC

$$\therefore D\hat{A}B = 180^{\circ} - 124^{\circ}$$

$$\widehat{ADC} = 124^{\circ}$$
 proven above

$$\therefore D\hat{A}B = 56^{\circ}$$

- 6. a) 6 squares
 - b) ΔBAD, ΔADC, ΔDCB, ΔCBA, ΔAED, ΔDEC, ΔCEB, ΔBEA (any 4)
 - c) Δ DEA, Δ AEB, Δ BEC, Δ CED, Δ DCB, Δ CBA, Δ BAD, Δ ADC, Δ HMI, Δ GLF, Δ DEJ, Δ DEN, HCI, Δ BIF, Δ GAF, Δ DHG (any 4)
 - d) BIDF
 - e) In ΔDGF and ΔDHI

f) LMNJ, JNIF, GLJK, LMIF, LHIF (any 2)

7. a)
$$A\hat{G}F + F\hat{G}D = 180^{\circ}$$
 An

$$\therefore A\hat{G}F = 180^{\circ} - 120^{\circ}$$

$$F\widehat{G}D = 120^{\circ}$$
 given

$$\therefore A\hat{G}F = 60^{\circ}$$

b) In $\triangle AGF$, $A\hat{G}F = 60^{\circ}$, CF = AD (regular hexagon), so that means FG = AG (because G is the midpoint of CF and AD. Thus $\triangle AGF$ is an isosceles triangle and $A\hat{F}G = G\hat{A}F$.

But,
$$A\hat{F}G + G\hat{A}F + A\hat{G}F = 180^{\circ}$$

Angles in
$$\Delta = 180^{\circ}$$

So,
$$2A\hat{F}G = 180^{\circ} - 60^{\circ}$$

$$A\widehat{F}G = G\widehat{A}F.$$

And
$$\therefore A\hat{F}G = 60^{\circ}$$

That means that
$$A\hat{F}G = G\hat{A}F = 60^{\circ}$$

And this proves that $\triangle AGF$ is an equilateral triangle.

c) In FEDG

And that
$$FG = GD$$
 Proved above

A hexagon has a sum of interior angles equal to
$$(6-2)x 180^{\circ} = 720^{\circ}$$

That means that each angle in the hexagon is
$$720^{\circ} \div 6 = 120^{\circ}$$

Then
$$F\widehat{E}D = F\widehat{G}D = 120^{\circ}$$

Now,
$$FG = AF$$
 (proved above)

So FEDG is a rhombus because all 4 sides are equal and opposite angles are equal.

$$\div$$
 EDCF is a trapezium as it has one set of side parallel.

e) In AFDC

$$G\widehat{F}A = 60^{\circ}$$
 Proven above

And \triangle GFD is an isosceles with GF = GD (proved above)

So
$$G\widehat{F}D = F\widehat{D}G$$

And
$$G\widehat{F}D + F\widehat{D}G + 120^{\circ} = 180^{\circ}$$

So,
$$2G\hat{F}D = 180^{\circ} - 120^{\circ}$$

Now
$$30^{\circ} + 60^{\circ} = 90^{\circ}$$

$$G\widehat{F}D + A\widehat{F}G = A\widehat{F}D = 90^{\circ}$$

And similarly, for $F\hat{A}C$, $A\hat{C}D$ and $C\hat{D}F$

- : AFDC is a rectangle; opposite sides are equal and all four angles are 90°
- f) In AFHI

Because FG = FA, it cannot be equal to FH, or $A\widehat{F}G$ would be 90° (we proved that it is actually 60°), this means that AFHI is a rectangle.

8. There are 11 squares