WorkSHEET 2.2 Relations and functions Name: \qquad

1 If $f(x)=3 x^{2}-2 x+1$ and $g(x)=3 x-2$, find:
(a) $f(3)$
(a) $f(3)=3(3)^{2}-2(3)+1$ $=22$
(b) $g(-2)$
(b) $\quad g(-2)=3(-2)-2$

$$
=-8
$$

(c) $f(3 x-2)$
(c) $f(3 x-2)=3(3 x-2)^{2}-2(3 x-2)+1$ $=3\left(9 x^{2}-12 x+4\right)-6 x+4+1$ $=27 x^{2}-36 x+12-6 x+4+1$

$$
=27 x^{2}-42 x+17
$$

(d) $g(f(x))$
(d) $g(f(x))=3\left(3 x^{2}-2 x+1\right)-2$

$$
\begin{aligned}
& =9 x^{2}-6 x+3-2 \\
& =9 x^{2}-6 x+1
\end{aligned}
$$

(e) $h(x)$, where $h(x)=f(x)+g(x)$
(e) $h(x)=f(x)+g(x)$

$$
\begin{gathered}
=3 x^{2}-2 x+1+3 x-2 \\
=3 x^{2}+x-1
\end{gathered}
$$

(f) $k(x)$, where $k(x)=f(x)-g(x)$

$$
\text { (f) } \quad \begin{aligned}
& k(x)= \\
& =3(x)-g(x) \\
& =3 x^{2}-2 x+1-(3 x-2) \\
& =3 x^{2}-2 x+1-3 x+2 \\
& =3 x^{2}-5 x+3
\end{aligned}
$$

(g) $m(x)$, where $f(x)=g(x)-m(x)$
(g) $\mathrm{f}(x)=g(x)-m(x)$
so,

$$
\begin{aligned}
& m(x)=g(x)-f(x) \\
= & 3 x-2-\left(3 x^{2}-2 x+1\right) \\
= & 3 x-2-3 x^{2}+2 x-1 \\
\therefore & m(x)=-3 x^{2}+5 x-3
\end{aligned}
$$

2 Determine the value of β, given that $f(x)$ cuts the x-axis where $x=4$ and where

$$
f(x)=x^{2}+2 x+\beta
$$

Since the point $(4,0)$ lies on the function, it must satisfy its equation.
By sub;

$$
\begin{gathered}
0=4^{2}+2 \times 4+\beta \\
\beta=-24
\end{gathered}
$$

You can justify this by graphing the function in Desmos: $y=x^{2}+2 x-24$

3 Consider an amalgamation of the last 2 questions:

$$
f(x)=x^{2}+2 x+\beta
$$

and

$$
g(x)=x^{2}+3 x+1
$$

and

$$
m(x)=f(x)+g(x)
$$

If $\mathrm{m}(x)$ cuts the x-axis where $x=4$, determine the value of β and hence state $m(x)$.

$$
\begin{gathered}
m(x)=f(x)+g(x) \\
=x^{2}+2 x+\beta+x^{2}+3 x+1 \\
=2 x^{2}+5 x+1+\beta
\end{gathered}
$$

Since the point $(4,0)$ lies on the function, it must satisfy its equation.
By sub;

$$
0=2 \times 4^{2}+5 \times 4+1+\beta
$$

$$
\beta=-53
$$

Hence,

$$
\therefore \quad m(x)=2 x^{2}+5 x-52
$$

You can justify this by graphing the function in
Desmos: $m(x)=2 x^{2}+5 x-52$
4 Determine the type of relation of:
(a) $y=3 x^{2}-2 x+1$
(a) $y=3 x^{2}-2 x+1 \quad$ (a parabola)
many-to-one relation
(b) $y=3 x-2$
(b) $y=3 x-2$
one-to-one-relation
(c) $x^{2}+y^{2}=36$
(c) $x^{2}+y^{2}=36$
(circle)
many-to-many relation
(d) $x=y^{2}$
(d) $x=y^{2}$
(a parabola, symmetrical about x-axis) one-to-many relation

5 Which of the relations in the last question are functions?

Only parts (a) and (b) are functions.
(Only one-to-one and many-to-one relations are functions.)

Justification: a function is where for every value of x, there is only 1 value of y.

6 Which of the following graphs are one-to-one Only (c) and (e) are one-to-one functions. [(a), (b) and (d) correspond to many-to-one functions, as a horizontal line on each graph
(a) $y=3 \sin x$ will pass through more than one x-value.]
(b) $y=x^{2}-1$
(c) $y=1-3 x$
(d) $y=\sqrt{1+x^{2}}$
(e) $y=-\sqrt{2 x-1}$

7 If $f(x)=\left\{\begin{array}{l}2-x, x \leq 2 \\ 4-x^{2}, x>2\end{array}\right.$
(a) state the range of f
(b) $f(1)=2-1=1$
$f(2)=2-2=0$
$f(3)=4-3^{2}=-5$
$8 \quad$ State the domain, range and if the following are \quad Which of the following graphs are one-to-one $\quad 3$ functions:
(Use your calculator to graph)
a) $y=3 \sin x$
a) $y=3 \sin x$

$$
\begin{gathered}
-\infty<x<\infty \\
-3 \leq y \leq 3 \\
\text { Function. }
\end{gathered}
$$

b) $y=x^{2}-1$
b) $y=x^{2}-1$

$$
\begin{gathered}
-\infty<x<\infty \\
-1 \leq y \leq \infty \\
\text { Function. }
\end{gathered}
$$

c) $y=1-3 x$
c) $y=1-3 x$

$$
\begin{gathered}
-\infty<x<\infty \\
-\infty \leq y \leq \infty \\
\text { Function. }
\end{gathered}
$$

d) $y=\sqrt{1+x^{2}}$
d) $y=\sqrt{1+x^{2}}$

$$
\begin{gathered}
-\infty<x<\infty \\
1 \leq y<\infty \\
\text { Function. }
\end{gathered}
$$

Plot this next one on Desmos,
e) $(y-2)^{2}=x+1$
e) $y=-\sqrt{2 x-1}$

$$
\begin{aligned}
& -1 \leq x<\infty \\
& -\infty<y<\infty
\end{aligned}
$$

NOT a Function, because it fails the VLT!
$9 \quad$ State the implied domain restriction:

$$
y=\frac{1}{x}
$$

Think :

$$
\begin{gathered}
\frac{1}{0} \rightarrow \text { can't happen } \\
\therefore-\infty<x<\infty, \quad \text { but } x \neq 0
\end{gathered}
$$

10 State the implied domain restriction:

$$
y=\frac{1}{x-2}+3
$$

Think :

$$
\begin{gathered}
\frac{1}{0} \rightarrow \text { can't }^{\prime} \text { happen } \\
\therefore-\infty<x<\infty, \quad \text { but } x \neq 2
\end{gathered}
$$

11 State the implied domain restriction:

$$
y=\sqrt{x}
$$

Think :

$$
\sqrt{-v e} \rightarrow \text { can't happen }
$$

$$
\therefore 0 \leq x<\infty
$$

12 State the implied domain restriction:

$$
y=\sqrt{x-1}
$$

Think :

$$
\sqrt{-v e} \rightarrow \text { can't }^{\prime} \text { happen }
$$

Clearly $x=1$ is important

$$
\therefore 1 \leq x<\infty
$$

13 State the implied domain restriction:

$$
y=\sqrt{x^{2}-9}
$$

Think :

$$
\sqrt{-v e} \rightarrow \text { can't happen }
$$

Clearly $x=3$ or maybe -3 is important
Needs further investigation ... check:

-4	-3	-2	-1	0	1	2	3	4
\downarrow	\jmath	\times	\times	\times	\times	\times	\jmath	\jmath

Hence;

$$
\therefore-3 \geq x \geq 3
$$

14 State the implied domain restriction:

$$
y=\sqrt{9-x^{2}}
$$

Think :

$$
\sqrt{-v e} \rightarrow \text { can't happen }
$$

Clearly $x=3$ or maybe -3 is important
Needs further investigation ... check:

-4	-3	-2	-1	0	1	2	3	4
\times	\downharpoonleft	\times						

Hence;

$$
\therefore-3 \leq x \leq 3
$$

15
Do Question 18 on page 53

16 State the translations of:
a) $y=2(x-1)^{2}+4$
b) $y=2(x-1)^{3}+4$
c) $y=2(x-1)^{4}+4$
d) $y=2 \sqrt{x-1}+4$
e) $y=\frac{2}{x-1}+4$
a, b, c, d
Dilation increased to $2 \ldots$ makes graph Steeper
Graph moved 1 unit to the Right
Graph moved 4 units Up
e)

Dilation increased to $2 \ldots$ makes graph flatter
Graph moved 1 unit to the Right
Graph moved 4 units Up

17
If $f(x)=x+1$, determine $f(2)$.

$$
f(2)=2+1=3
$$

18
If $f(x)=x+1$, determine $f(x+1)$.

$$
f(x+1)=x+1+1=x+2
$$

19
If $f(x)=x+1$, determine the value of x such

$$
\begin{gathered}
f(2)=f(x+1) \\
3=x+2 \\
x=1
\end{gathered}
$$

20
Set $y=x^{2}+2 x+1$
If $f(x)=x^{2}+2 x+1$, determine $f^{-1}(x)$.
To find inverse, swap x and y
(recall that $f^{-1}(x)$ means find the inverse function)

$$
\begin{gathered}
x=y^{2}+2 y+1 \\
x=(y+1)^{2} \\
\pm \sqrt{x}=y+1 \\
y= \pm \sqrt{x}-1 \\
\therefore \quad \\
f^{-1}(x)= \pm \sqrt{x}-1
\end{gathered}
$$

21 David rides his bike at a constant speed of $20 \mathrm{~km} / \mathrm{h}$ for 3 hours, stops for 1 hour to rest, and then travels for another 2 hours at a constant speed of $25 \mathrm{~km} / \mathrm{h}$ to reach his destination.
(a) Construct a function that describes the distance, $d(\mathrm{~km})$, that David has travelled at time t (hours).
(a) For the first 3 hours, the distance travelled, $d=20 t$.

Between the 3rd and 4th hours, David does not travel, therefore the distance travelled is the same as that travelled when $t=3$; that is, $d=20 \times 3$

$$
=60 \mathrm{~km}
$$

Between the 4th and 6th hours, the distance travelled, $d=25 t-40$ (allows $d(t)=60$, when $t=4$).

$$
d(t)= \begin{cases}20 t & 0 \leq t \leq 3 \\ 60 & 3<t \leq 4 \\ 25 t-40 & 4<t \leq 6\end{cases}
$$

(b) State the domain and range of this function.
(b) Domain: $[0,6]$

When $t=0, d=0$.
When $t=6, d=110$.
Range: [0, 110]

22 Is the factor and remainder theorem in the exam?

YES.
Make sure you do revision in Chapter 3 and 5 of the textbook!

