INS MATHS B UEST for Queensland SEC

MH

SECOND EDITION

YEAR

WorkSHEET 2.2 Relations and functions					Name:		
1	v	$f(x) = 3x^2 - 2$ $f(3)$	x+1 and $g(x) = 3x-2$, find:	(a)	$f(3) = 3(3)^2 - 2(3) + 1$ = 22	4	
	(b)	g(-2)		(b)	g(-2) = 3(-2) - 2 = -8		
	(c)	f(3x-2)		(c)	$f(3x - 2) = 3(3x - 2)^2 - 2(3x - 2) + 1$ = 3(9x ² - 12x + 4) - 6x + 4 + 1 = 27x ² - 36x + 12 - 6x + 4 + 1 = 27x ² - 42x + 17		
	(d)	g(f(x))		(d)	$g(f(x)) = 3(3x^2 - 2x + 1) - 2$ = 9x ² - 6x + 3 - 2 = 9x ² - 6x + 1		
	(e)	h(x), where	eh(x) = f(x) + g(x)	(e)	h(x) = f(x) + g(x)		
					$= 3x^2 - 2x + 1 + 3x - 2$		
					$= 3x^2 + x - 1$		
	(f)	k(x), where	$e_k(x) = f(x) - g(x)$	(f)	k(x) = f(x) - g(x)		
					$= 3x^2 - 2x + 1 - (3x - 2)$		
					$= 3x^2 - 2x + 1 - 3x + 2$		
					$= 3x^2 - 5x + 3$		
	(g)	m(x), where	e f(x) = g(x) - m(x)	(g)	f(x) = g(x) - m(x)		
				so,	m(x) = q(x) - f(x)		

$$m(x) = g(x) - f(x)$$

= 3x - 2 - (3x² - 2x + 1)
= 3x - 2 - 3x² + 2x - 1
:. m(x) = -3x² + 5x - 3

2 Determine the value of β , given that f(x) cuts the x-axis where x = 4 and where $f(x) = x^2 + 2x + \beta$ Since the point (4,0) lies on the function, it must satisfy its equation. By sub;

$$0 = 4^2 + 2 \times 4 + \beta$$
$$\beta = -24$$

You can justify this by graphing the function in Desmos: $y = x^2 + 2x - 24$

3 Consider an amalgamation of the last 2 questions:

and

and

$$m(x) = f(x) + g(x)$$

 $f(x) = x^2 + 2x + \beta$

 $q(x) = x^2 + 3x + 1$

If m(x) cuts the x-axis where x = 4, determine the value of β and hence state m(x).

$$m(x) = f(x) + g(x)$$

= $x^{2} + 2x + \beta + x^{2} + 3x + 1$
= $2x^{2} + 5x + 1 + \beta$

Since the point (4,0) lies on the function, it must satisfy its equation. By sub;

$$0 = 2 \times 4^2 + 5 \times 4 + 1 + \beta$$
$$\beta = -53$$

$$\therefore \quad m(x) = 2x^2 + 5x - 52$$

You can justify this by graphing the function in Desmos: $m(x) = 2x^2 + 5x - 52$

4 Determine the type of relation of: $y = 3x^2 - 2x + 1$ $v = 3x^2 - 2x + 1$ (a) (a) (a parabola) many-to-one relation (b) y = 3x - 2y = 3x - 2(b) (straight line) one-to-one-relation (c) $x^2 + y^2 = 36$ (circle) (c) $x^2 + y^2 = 36$ many-to-many relation (d) $x = y^2$ (d) $x = y^2$ (a parabola, symmetrical about *x*-axis) one-to-many relation

Hence,

4

5	Which of the relations in the last question are functions?	Only parts (a) and (b) are functions.	2
		Justification: a function is where for every value of x, there is only 1 value of y.	
6	Which of the following graphs are one-to-one functions? (use your calculator to graph) (a) $y = 3 \sin x$ (b) $y = x^2 - 1$	Only (c) and (e) are one-to-one functions. [(a), (b) and (d) correspond to many-to-one functions, as a horizontal line on each graph will pass through more than one <i>x</i> -value.]	2
	(c) $y = 1 - 3x$ (d) $y = \sqrt{1 + x^2}$ (e) $y = -\sqrt{2x - 1}$		
7	If $f(x) = \begin{cases} 2-x, & x \le 2\\ 4-x^2, & x > 2 \end{cases}$	(a) As the two separate parts of the graph connect, the range is <i>R</i> .	4
	(a) state the range of f	(b) $f(1) = 2 - 1 = 1$ f(2) = 2 - 2 = 0 $f(3) = 4 - 3^2 = -5$	
	(b) find $f(1), f(2)$ and $f(3)$.	J(3) - 4 - 55	

8	State the domain, range and if the following are functions: (Use your calculator to graph)	Which of the following graphs are one-to-one functions?	3
	a) $y = 3\sin x$	a) $y = 3 \sin x$ $-\infty < x < \infty$ $-3 \le y \le 3$ Function.	
	b) $y = x^2 - 1$	b) $y = x^2 - 1$ $-\infty < x < \infty$ $-1 \le y \le \infty$ Function.	
	c) $y = 1 - 3x$	c) $y=1-3x$ $-\infty < x < \infty$ $-\infty \le y \le \infty$ Function.	
	d) $y = \sqrt{1+x^2}$	d) $y = \sqrt{1 + x^2}$ $-\infty < x < \infty$ $1 \le y < \infty$ Function.	
	Plot this next one on Desmos, e) $(y-2)^2 = x + 1$	e) $y = -\sqrt{2x-1}$ $-1 \le x < \infty$	
		$-\infty < y < \infty$ NOT a Function, because it fails the VLT!	
9	State the implied domain restriction: $y = \frac{1}{x}$	Think : $\frac{1}{0} \rightarrow can't \ happen$ $\therefore -\infty < x < \infty, \qquad but \ x \neq 0$	

10 State the implied domain restriction: $y = \frac{1}{x-2} + 3$ $\therefore -\infty < x < \infty, \quad but \ x \neq 2$ Think : 11

State the implied domain restriction:

$$y = \sqrt{x}$$

12 State the implied domain restriction:

$$y = \sqrt{x - 1}$$

Think :

Think :

 $\sqrt{-ve} \rightarrow can't$ happen

 $\sqrt{-ve} \rightarrow can't$ happen

 $\therefore 0 \le x < \infty$

Clearly x = 1 is important

$$\therefore 1 \le x < \infty$$

13 State the implied domain restriction:

$$y = \sqrt{x^2 - 9}$$

Think :

 $\sqrt{-ve} \rightarrow can't$ happen

Clearly x = 3 or maybe - 3 is important

Needs further investigation ... check:

-4	-3	-2	-1	0	1	2	3	4
1	1	×	×	×	×	×	1	-

Hence;

Think :

 $\therefore -3 \ge x \ge 3$

14 State the implied domain restriction:

$$y = \sqrt{9 - x^2}$$

 $\sqrt{-ve} \rightarrow can't$ happen

Clearly x = 3 or maybe - 3 is important

Needs further investigation ... check:

-4	-3	-2	-1	0	1	2	3	4
×	1	-	-	-	-	-		×

Hence;

$$\therefore -3 \le x \le 3$$

15

Implied domains ... !

Do Question 18 on page 53

	Quesi Mains D Tear 11 jor Queensiana	Chapter 2. Relations and functions workSHEET 2.2		
16	State the translations of:	a, b, c, d		
	a) $y = 2(x-1)^2 + 4$	Dilation increased to 2 makes graph Steeper		
		Graph moved 1 unit to the Right		
	b) $y = 2(x-1)^3 + 4$	Graph moved 4 units Up		
	c) $y = 2(x-1)^4 + 4$			
	d) $y = 2\sqrt{x-1} + 4$	e)		
		Dilation increased to 2 makes graph flatter		
	e) $y = \frac{2}{x-1} + 4$	Graph moved 1 unit to the Right		
		Graph moved 4 units Up		
17	If $f(x) = x + 1$, determine $f(2)$.	f(2) = 2 + 1 = 3		
18	If $f(x) = x + 1$, determine $f(x + 1)$.	f(x+1) = x + 1 + 1 = x + 2		
19	If $f(x) = x + 1$, determine the value of x such	f(2) = f(x+1)		
	that $f(2) = f(x + 1)$.	3 = x + 2		
		x = 1		
20	If $f(x) = x^2 + 2x + 1$, determine $f^{-1}(x)$.	$\operatorname{Set} y = x^2 + 2x + 1$		
		To find inverse, swap <i>x</i> and <i>y</i>		
	(recall that $f^{-1}(x)$ means find the inverse function)	$x = y^2 + 2y + 1$		
		$x = (y+1)^2$		
		$\pm \sqrt{x} = y + 1$		
		$y = \pm \sqrt{x} - 1$		
		$\therefore f^{-1}(x) = \pm \sqrt{x} - 1$		

5

- 21 David rides his bike at a constant speed of 20 km/h for 3 hours, stops for 1 hour to rest, and then travels for another 2 hours at a constant speed of 25 km/h to reach his destination.
 - (a) Construct a function that describes the distance, *d* (km), that David has travelled at time *t* (hours).
- (a) For the first 3 hours, the distance travelled, d = 20t.

Between the 3rd and 4th hours, David does not travel, therefore the distance travelled is the same as that travelled when t = 3; that is, $d = 20 \times 3$ = 60 km

Between the 4th and 6th hours, the distance travelled, d = 25t - 40 (allows d(t) = 60, when t = 4).

	(20 <i>t</i>	$0 \le t \le 3$
$d(t) = \langle$	60	$3 < t \le 4$
	25t - 40	$4 < t \le 6$

- (b) State the domain and range of this function.
- (b) Domain: [0, 6]When t = 0, d = 0. When t = 6, d = 110. Range: [0, 110]

22	Is the factor and remainder theorem in the	YES.
	exam?	
		Make sure you do revision in Chapter 3 and 5 of the textbook!