Worksheet 27: Revision Term 2
Grade 9 Mathematics

1. Construct the following using only your compass, pencil and ruler:
a) An equilateral triangle with sides of length 4 cm .
b) Draw a rhombus with sides 5 cm and one set of opposite angles at 45°
2. Identify the following shapes and give two reasons why for each shape:
a)

b)

c)

3. How do the diagonals in each of the following shapes behave?

For example: The diagonals in a square bisect each other at 90°, they are equal in length and they bisect the angles of the square into 45° angles.
a) rectangle
b) rhombus
c) parallelogram
d) kite
4. Say whether the following triangles are similar, congruent or neither and give proof:
a)

b)

c)

d)

e)

5. For each of the following questions, study the diagrams carefully before answering the question. Make sure that you give a valid reason for each statement you make.

In the diagram on the left, $A B$ is parallel to CD, AF is parallel to GD, and GD is perpendicular to BF.
i) Prove that $\triangle \mathrm{BDG}$ is similar to \triangle DFE.
ii) Hence, or otherwise, prove that $\triangle \mathrm{BDG}$ is similar to $\triangle B F A$.
iii) Is $\triangle A G E$ congruent with $\Delta G E D$? Give reasons for your answer.
iv) What type of quadrilateral is $A E D G$?
v) Given that AF is $12 \mathrm{~cm}, \mathrm{BF}$ is 18 cm and that the ratio of BD : DF is $4: 5$. Determine the area of $\triangle \mathrm{BDG}$.
vi) Hence, or otherwise, find the length of AG.
b) In the diagram below, A is the center of the circle where points B, D, E and J lie on the circumference. BC is perpendicular to $F G$. $F G$ is parallel to $E D$ and $C J$.

i) Given that $\mathrm{EH}=\mathrm{HD}$, prove that $\triangle \mathrm{EHC}$ is congruent to $\Delta \mathrm{DHC}$.
ii) Prove that BECD is a kite.
iii) Prove that $F \hat{B} E=G \hat{B} D$.
iv) Is $\triangle \mathrm{BEF}$ similar to $\triangle \mathrm{CEH}$? Show all working out.
v) If a line was drawn to connect point E with point A, and a line was drawn to connect point D with point A, would the $\triangle A E B$ be congruent with $\triangle \mathrm{ADB}$? Show all working out.
vi) Hence, what type of triangles would $\triangle A B E$ and $\triangle A B D$ be? Give a reason for your answer.
6. For the following questions, study the diagrams given carefully. Make sure that your answers contain the correct units of measurement if required.

In the diagram on the left, BDEF is a square. BF is 16.4 cm and I is the midpoint (in the middle of) BD . Al is equal to IG .
$G E=10.4 \mathrm{~cm}$.
i) Prove that $\triangle \mathrm{DEI}$ is congruent with $\Delta \mathrm{BFI}$.
ii) Is the area of $\Delta \mathrm{EFI}$ the same as the area of $\Delta \mathrm{DEI}$ and $\Delta \mathrm{BFI}$ combined? Show all working out.
iii) Prove that $\triangle A D I$ is congruent with $\Delta \mathrm{DGI}$.
iv) Find the length of Al
v) Given that the distance of AG is 14.1 cm , find the area of quadrilateral ADGI.

In the diagram on the left, $A B C D E F$ is a regular hexagon with length 22.13 cm . DB $\perp F C ; D B \| E A$ and $E D\|F C\| A B$.
i) Prove that DC is parallel to EB.
ii) Hence, or otherwise, prove that $B C D I$ is a rhombus and find its area.
iii) Find the area of $\Delta E D I$. What is special about $\Delta \mathrm{EDI}$?
iv) Hence, or otherwise, find the area of the hexagon.
v) What is the area and perimeter of the rectangle $A B D E$?
vi) If a circle was drawn the points of the hexagon with point I as the center, determine the circumference of the circle, as well as the area of the circle not covered by the hexagon.
7. For each of the diagrams given below, find the value of the given variables.
a)

b) $\quad A B C D E$ is a regular pentagon; $B E\|C D ; F D \perp A B ; A B\| C E$ and $B D \| A E$.

c) $\quad A B$ is parallel to $G D$. Note that F is NOT the center of the circle.

