
Workshop 1: Introduction to UNIX
command-line

Peter Scott, PhD | pscott17@ucla.edu

QCBio Fellow

Swiss Army knife” set of tools

mailto:smangul@ucla.edu

Day 1

pwd - report your current directory

cd <to where> - change your current directory

ls <directory> -list contents of directory

cp <old file> <new file> - copy file

cp –r <old dir> <new dir> - copy a directory and its contents

mv <old file/dir> <new file/dir> - move (or rename)

rm <file> -delete a file

rm –r <dir> - remove a directory and its contents

mkdir <new directory name> -make a directory

Using hoffman2

• Log on to hoffman2:
– ssh myname@hoffman2.idre.ucla.edu

• Request an interactive shell:
– qrsh –l i,time=3:00:00,h_data=2g

You can make a “program” with the

interactive shell script

Copy the working materials
[pscott17@login2 ~]$ git clone

https://github.com/p-scott17/Intro2Unix.git

Initialized empty Git repository in

/u/home/b/brigitta/code/W1.UNIX.command.line/.git/

remote: Counting objects: 88, done.

remote: Compressing objects: 100% (5/5), done.

remote: Total 88 (delta 0), reused 7 (delta 0), pack-reused 79

Unpacking objects: 100% (88/88), done.

https://github.com/p-scott17/Intro2Unix.git

https://qcb.ucla.edu/collaboratory/workshops/introtounix/

https://github.com/p-scott17/Intro2Unix.git
https://qcb.ucla.edu/collaboratory/workshops/introtounix/

Working materials

• cd Intro2Unix

• ls

bwa_loop_pipe.sh bwa_loop.sh bwa.sh

day1_Unix_PAS_winter2020.pdf day2_Unix_PAS_winter2020.pdf

day3_Unix_PAS_winter2020.pdfemp.txt hg19.gtf

file_sed.txt f.txt numbers.txt regex2.txt regex_sort.txt

regex.txt sales.txt tobe.txt toy3.reads.fastq

toy2.reads.fastq toy.reads.fastq toy.ref.fasta

toy.ref.fasta.amb toy.ref.fasta.ann toy.ref.fasta.bwt

toy.ref.fasta.pac toy.ref.fasta.sa

Relative vs. absolute path

• A file or a directory can be referred to by
– Relative path

• if you are at /u/home/p/pscott17/test/new/

• and you want text.txt

• ../test.txt

– Absolute path
• /u/home/p/pscott17/test/test.txt

245 Highland Ave, Manhattan

Beach, California 90266

Relative

Absolute

File permissions

• Each file in Unix has an associated permission
level

• This allows the user to prevent others from
reading/writing/executing their files or
directories

• Use “ls -l filename” to find the permission level
of that file

• There are 3 kinds of people in the world: you
(user), your friends (group) and
the world (others).

Permission levels

• “r” means “read only” permission

• “w” means “write” permission

• “x” means “execute” permission

– In case of directory, “x” grants permission to list
directory contents

File Permissions

User (you)

-rw-r--r-- 1 pscott17 hbshaffe 72 Mar 11 14:22 large.txt

-rw-r--r-- 1 pscott17 hbshaffe 263 Mar 11 15:18 new.tar

-rw-r--r-- 1 pscott17 hbshaffe 13 Mar 11 15:27 test.txt

drwxr-xr-x 2 pscott17 hbshaffe4096 Mar 11 15:36 dfgdf

Type

File Permissions

Group

-rw-r--r-- 1 pscott17 hbshaffe 72 Mar 11 14:22 large.txt

-rw-r--r-- 1 pscott17 hbshaffe 263 Mar 11 15:18 new.tar

-rw-r--r-- 1 pscott17 hbshaffe 13 Mar 11 15:27 test.txt

drwxr-xr-x 2 pscott17 hbshaffe4096 Mar 11 15:36 dfgdf

Type

File Permissions

“The World”

-rw-r--r-- 1 pscott17 hbshaffe 72 Mar 11 14:22 large.txt

-rw-r--r-- 1 pscott17 hbshaffe 263 Mar 11 15:18 new.tar

-rw-r--r-- 1 pscott17 hbshaffe 13 Mar 11 15:27 test.txt

drwxr-xr-x 2 pscott17 hbshaffe4096 Mar 11 15:36 dfgdf

Type

Command: chmod
• If you own the file, you can change it’s permissions with
“chmod”
– Syntax:

chmod [user/group/others/all]+-[permission] [file(s)]

[pscott17@login2 test]$ ls –l

drwxr-xr-x 3 pscott17 hbshaffe4096 Mar 11 15:23 archive

-rw-r--r-- 1 pscott17 hbshaffe 72 Mar 11 14:22 large.txt

-rw-r--r-- 1 pscott17 hbshaffe 263 Mar 11 15:18 new.tar

-rw-r--r-- 1 pscott17 hbshaffe 13 Mar 11 15:27 test.txt

[pscott17@login2 test]$ chmod g+w large.txt

[pscott17@login2 test]$ ls –l

drwxr-xr-x 3 pscott17 hbshaffe4096 Mar 11 15:23 archive

-rw-rw-r-- 1 pscott17 hbshaffe 72 Mar 11 14:22 large.txt

-rw-r--r-- 1 pscott17 hbshaffe 263 Mar 11 15:18 new.tar

-rw-r--r-- 1 pscott17 hbshaffe 13 Mar 11 15:27 test.txt

Redirection

• program_a

– display program_a’s output at the terminal

• program_a > file.txt

– program_a’s output is written to file.txt

– “>” will overwrite any existing data in file.txt

• program_a < input.txt

– program_a gets its input from a file called “input.txt”

• program_a >> file.txt

– program_a’s output is appended to the end of file.txt

Let’s practice!

[pscott17@login4 test]$ wc –l large.txt

300 large.txt

[pscott17@login4 test]$ wc –l large.txt > f_ls.txt

[pscott17@login4 test]$ head f_ls.txt

[pscott17@login4 test]$ ls > f_ls.txt

[pscott17@login4 test]$ head f_ls.txt

[pscott17@login4 test]$ head large.txt >> f_ls.txt

[pscott17@login4 test]$ head f_ls.txt

Pipeline

• program_a | program_b

– program_a’s output becomes program_b’s input

– Analogous to

program_a > temp.txt

program_b < temp.txt

pipe character

Command: wc

• To count the characters, words, and lines in a
file use wc

wc <filename>

– The first column in the output is lines, the second
is words, and the last is characters

– -l to count the lines

300 300 1092 large.txt

#lines #words #characters

Let’s practice!

[pscott17@login2 test]$ wc test.txt

300 300 1092 large.txt

[pscott17@login2 test]$ wc -l test.txt

300 large.txt

[pscott17@login2 test]$ ls | wc -l

5

Command : cat

• Concatenate files together and displayed in
the terminal.

cat <file1> <file2> …

[pscott17@login2 test]$ cat large.txt f_ls.txt | wc -l

301

[pscott17@login2 test]$ cat large.txt test.txt > all.txt

[pscott17@login2 test]$ tail –n 3 all.txt

299

300

300 large.txt

Find

• find new -name test.txt -type f

File

Directory

Tools for processing text files

Command : grep

• allows to search one file or multiple files for lines
that contain a certain string

• g/re/p (globally search a regular expression and
print)

• grep options
– lines not containing the selected string (-v)
– line numbers where the string occurs (-n)
– number of lines containing the string (-c)
– filenames where the string occurs (-l)

– makes the match case-insensitive (-i)

Grep syntax treats the first argument as the pattern and the rest as
filenames

Let’s practice!
[pscott17@login4 test]$ grep "1" large.txt

1

10

…

19

[pscott17@login4 test]$ grep -n "1" large.txt

1:1

10:10

…

19:19

[pscott17@login4 test]$ grep -c "1" large.txt

138

[pscott17@login4 test]$ grep -l "1" large.txt f_ls.txt

large.txt

[pscott17@login4 test]$ grep "1" large.txt f_ls.txt

large.txt:1

large.txt:10

…
Grep syntax treats the first argument as the
pattern and the rest as filenames

Alternative?

Lines corresponding to chr2

[pscott17@login4 test]$ cd ~/Intro2Unix

[pscott17@login4 test]$ grep "chr2" hg19.gtf > chr2.txt

[pscott17@login4 test]$ tail –n 1 chr2.txt

chr21 hg19_knownGene CDS 33066517 33066602 0.000000

gene_id "uc002ypd.2"; transcript_id "uc002ypd.2";

Gtf file: The Gene transfer format (GTF) is a file format used to hold information
about gene structure. It is a tab-delimited text format based on the general
feature format (GFF), but contains some additional conventions specific to gene
information. (https://en.wikipedia.org/wiki/Gene_transfer_format)

https://en.wikipedia.org/wiki/Gene_transfer_format

Regular Expression

• A regular expression is a string that can
be used to describe several sequences of
characters.

24

UNIX Tools rocks.

match

UNIX Tools sucks.

match

UNIX Tools are okay.

no match

regular expression c k s

Regular Expressions

• A regular expression can match a string in
more than one place.

Scrapple from the apple.

match 1 match 2

regular expression a p p l e

Regular Expressions

• The . regular expression can be used to
match any character.

For me to fool with.

match 1 match 2

regular expression o .

Character Classes

• Character classes [] can be used to match
any specific set of characters.

beat a brat on a boat

match 1 match 2

regular expression b [eor] a t

match 3

Negated Character Classes

• Character classes can be negated with the
[^] syntax.

beat a brat on a boat

match

regular expression b [^eo] a t

Let’s practice!

[pscott17@login4 intro2unix]$ grep "boat" regex.txt

[pscott17@login4 intro2unix]$ grep "b[eor]at" regex.txt

[pscott17@login4 intro2unix]$ grep "b.at” regex.txt

[pscott17@login4 intro2unix]$ grep "b[^eor]at" regex.txt

[pscott17@login4 intro2unix]$ grep "b[^eor]" regex.txt

More About Character Classes

– [aeiou] will match any of the characters a, e, i, o, or u

– [kK]orn will match korn or Korn

• Ranges can also be specified in character classes

– [1-9] is the same as [123456789]

– [abcde] is equivalent to [a-e]

– You can also combine multiple ranges

• [abcde123456789] is equivalent to [a-e1-9]

– Note that the - character has a special meaning in a
character class but only if it is used within a range,
[-123] would match the characters -, 1, 2, or 3

Alphanumeric characters

• Alphabetic characters

– [a-zA-Z]

– [[:alpha:]]

• Digits

– [0-9]

– [[:digit:]]

• Alphanumeric characters

– [a-zA-Z0-9]

– [[:alnum:]]

Anchors

• Anchors are used to match at the beginning or
end of a line (or both).

^ means beginning of the line

$ means end of the line

beat a brat on a boat

match

regular expression ^ b [eor] a t

regular expression b [eor] a t $

beat a brat on a boat

match

^word

Let’s practice!

grep "[Aa]1" regex2.txt

grep "^[Aa]1" regex2.txt

grep "[Aa][0-9]$” regex2.txt

grep "[0-9]" regex2.txt

grep "[[:alnum:]]" regex2.txt

grep "[[:alpha:]]" regex2.txt

Repetition operators

• The * (asterisk) matches the zero or more
occurrences of the preceding character

I got mail, yaaaaaaaaaay!

match

regular expression y a * y

For me to fool with.

match

regular expression o a * o

.*

Special characters

• \s space

• \t tab

• \s+ many spaces

• \t\t two adjacent tabs

Lines corresponding to chr2

[pscott17@login4 test]$ grep "chr2" hg19.gtf > chr2.txt

[pscott17@login4 test]$ tail –n 1 chr2.txt

chr21 hg19_knownGene CDS 33066517 33066602 0.000000

gene_id "uc002ypd.2"; transcript_id "uc002ypd.2";

Lines corresponding to chr2

grep "chr2\s" hg19.gtf > chr2.gtf

Or more specific:

grep “^chr2\s" hg19.gtf > chr2.gtf

* Zero or more...

?
Zero or one... (i.e. optional

element)

+ One or more...

{x} x instance of...

{x,y} between x and y instances of...

{x,} at least x instances of...

r1|r2 regular expressions r1 or r2

Repetition operators

-E

grep –E <pattern> <filename>

Let’s practice!

grep -E "a1|b1" regex2.txt
Alternative?

Let’s practice!

grep -E "a1|b1" regex2.txt

grep "[ab]1" regex2.txt

Alternative?

Repetition operators

• If you want to group part of an expression so that *
or { } applies to more than just the previous
character, use () notation

• Subexpresssions are treated like a single character

– a* matches 0 or more occurrences of a

– abc* matches ab, abc, abcc, abccc, …

– (abc)* matches abc, abcabc, abcabcabc, …

– (abc){2,3} matches abcabc or abcabcabc

Let’s practice!

grep -E "a+" regex2.txt

grep -E "a{3}" regex2.txt

grep -E "a{2,3}" regex2.txt

grep -E "a{2}" regex2.txt

grep -E "(abc)*" regex2.txt

grep -E "(abc)+" regex2.txt

grep -E "(abc){2}" regex2.txt

grep -E "[[:alpha:]]{3}" regex2.txt

grep -E "[[:alpha:]][0-9]{2}" regex2.txt

grep -E "([[:alpha:]][0-9]){2}" regex2.txt

grep -E "[[:alpha:]][0-9]\sa" regex2.txt

?

• grep –E "[0-9]{3}[-]{0,1}[0-9]{3}[-]{0,1}[0-9]{4}"

f.txt

sed : a “stream editor”

• A non-interactive text editor

• Routine editing tasks
– find, replace, delete, append, insert

• Input text flows through the program, is
modified, and is directed to standard output.

sed [options] commands [file-to-edit]

• Sed is designed to be especially useful in
three cases:
– files are too large for interactive editing

– editing is too complicated for regular text
editors

– multiple editing in one pass

Why use sed?

sed : Substitute command s

sed 's/old_word/new_word/’ [file-to-edit]

sed 's/bee/be/‘ tobe.txt

To bee, or not to bee

To be, or not to bee

sed : g - Global replacement

• Normally, substitutions apply to only the first
match in the string.

• To apply the substitution to all matches in the string
use “g” options

To bee, or not to bee

be ?

sed 's/bee/be/g‘ tobe.txt

Edit matched text

• Put parentheses around the matched text:

sed –E 's/<pattern>/(&)/' annoying.txt

Let’s practice!

less tobe.txt

sed 's/bee/be/' tobe.txt

To be, or not to bee

sed 's/bee/be/g' tobe.txt

To be, or not to be

To bee, or not to bee

sed ’s/seven/nine/g’ file_sed.txt | sed ’s/nine/two/g’

sed ’s/a/o/g’ file_sed.txt

sed 's/^and/or/’ file_sed.txt

sed 's/s..../xxxxx/g’ file_sed.txt

sed 's/ago$/ago!/’ file_sed.txt

sed 's/[12]/3/g' regex2.txt

sed 's/[[:alpha:]]/B/g' regex2.txt

sed -E 's/[[:alnum:]]{2}/(&)/g' regex2.txt

Don’t read and write the same file!

• sed 's/seven/nine/g' sed_file.txt >sed_file.txt

Redirections are done by the shell, before the command runs. This
means that the shell is told to write the file before sed gets a chance
to read it. There is no way around this if you are using shell
redirection.

Delete lines with sed

• Remove the 3rd line:
– sed '3d' fileName.txt

• Remove the line containing the string "awk":
– sed '/awk/d' filename.txt

• Remove the last line:
– sed '$d' filename.txt

Let’s practice!

sed '3d’ regex2.txt

sed '/a/d' regex2.txt

sed '/[0-9]/d' regex2.txt

sed '$d' regex2.txt

Summary

file permissions

cat

wc

>, >>, <

pipeline

ln –s

grep

regex

Set up the alias for Mac OS/linux

• Go to home directory ON YOUR COMPUTER: cd ~

• Open file .bash_profile: nano .bash_profile

• Add in the end of the file:

• alias hoffman=’pscott17@hoffman2.idre.ucla.edu’

• Restart the session

Run from the local session
of the terminal. To open a
local session : Control-T

Set up the alias for Cygwin

• Go to home directory :
– This PC / Windows (C:) / Cygwin64 / etc

• Open file ssh_config in text editor

• Add in the end of the file:
• Host hoffman

HostName hoffman2.idre.ucla.edu

Port 22

User username

• Restart the session Run from the local session
of the terminal. To open a
local session : Control-T

