
Introduction to data analysis
using STATA

Miguel Niño-Zarazúa

World Institute for Development Economics Research

United Nations University

Background

• STATA is powerful command driven package for statistical
analyses, data management and graphics

• STATA provides commands to conduct statistical tests,
and econometric analysis including panel data analysis
(cross-sectional time-series, longitudinal, repeated-
measures), cross-sectional data, time-series, survival-time
data, cohort analysis, etc

• STATA is user friendly, it has an extensive library of tools
and internet capabilities, which install and update new
features regularly

Introduction

• Stata /IC (or Intercooled Stata) can handle up to 2,047
variables. There is a special edition, Stata/SE that can
handle up to 32,766 variables (and also allows longer
string variables and larger matrices), and a version for
multicore/multiprocessor computers called Stata/MP,
which has the same limits but is substantially faster

• These three versions of STATA are available both for 32-bit
and 64-bit computers; the latter can handle more
memory (and hence more observations) and tend to be
faster

Transferring other files into Stata format

• There are various ways to enter data into Stata:

1. Manual entry by typing or pasting data into data editor
2. Inputting ASCII files using infile, insheet or infix

i. If using text editing package to assemble dataset, save as text (.txt) file, not
default (e.g. .xlsx)

ii. Free format data (i.e. excel columns separated by space, tab or comma etc.):
use infile or insheet, for example: insheet using filename

iii. Fixed format data (i.e. data in fixed columns): use infix.

3. If data in another format (e.g. SAS, SPSS), Stat/Transfer can be
used to create a Stata dataset directly

• Stat/Transfer is able to optimise the size of the file (in terms of the

memory required for each variable)

Bonus for the session: You will get a copy of Stat transfer

Stata windows

• When Stata starts up you will see five docked windows, initially
arranged as shown below

Stata windows

• In the Command window you can type the commands. Stata shows the results in
the larger window immediately above, called Results

• The history of command operations is listed in the window Review on the left, so
you can keep track of the commands you have used.

• The Variables window, on the top right, lists the variables in the dataset

• The Properties window immediately below that (new in version 12), displays
properties of the variables and datasets

• There are other windows that are useful, namely the Graph, Viewer, Variables
Manager, Data Editor, and Do file Editor.

• Stata's graphical user interface allows selecting commands and options from a
menu and dialog system. I strongly recommend to use the command language,
and specifically do.files as a way to ensure replicability of the analysis

Exercise 1

1. Open Stata

2. Identify the Results window, Command window, Review window,
Variables window

3. Type use "C:\Documents and Settings\Miguel Zarazua\My
Documents\My documents\UNU-WIDER\GAPP project\STATA
course\stata files Zambia HH survey 1998\HHINCOME.DTA", clear

4. Open the data editor () and inspect the data. What do you
observe?

5. Exit the data editor and then clear the memory by typing clear in
Command window

6. Look at Help Menu: Help  Contents . Inspect the links

Variable types

• STATA can handle numbers or strings. Numeric variables can be stored as
integers (bytes, integers, or longs) or floating point (float or double).
Note: Stata does all calculations using doubles, and the compress command
finds the most economical way to store each variable in your dataset

• Strings have varying lengths up to 244 characters. Strings are ideally

suited for id variables

• You can convert between numeric and string variables. If a variable has
been read as a string but really contains numbers you can use the
command destring. Otherwise, you can use encode to convert string data
into a numeric variable or decode to convert numeric variables to strings

• To inspect the type of variables, look at the “Type” column in the
Variables window or type:
describe [varlist]

Getting started

• Stata syntax is case sensitive. All Stata command names must be in lower case

• Stata commands can often be abbreviated
 Look for underlined letters in “Help”)

• With large datasets, it may be necessary to increase the memory limit in Stata

from the default of 1 megabyte. Type:
set memory #
represents a number of kilobytes (k), megabytes (m) or gigabytes (g)

For example:
set memory 100m

• By default, Stata assumes all files are in c:\data. To change this working

directory, type:
cd foldername

Note: If the folder name contains blanks, it must be enclosed in quotation marks

Getting started

• Stata datasets always have the extension .dta

• Access existing Stata dataset filename.dta by selecting File  Open or
by typing:
use filename [, clear]

• If the file name contains blanks, the address must be enclosed in

quotation marks

• filename can also be a Stata file stored on the internet

• If a dataset is already in memory (and is not required to be saved),
empty memory with clear option

• To save a dataset, click or type:
save filename [, replace]

• Use replace option when overwriting an existing Stata (.dta) dataset

The use of commands

• To obtain help on a command (or function) type help
command_name, which displays the help on a separate window
called the Viewer
– Note: Stata commands are case-sensitive. They can also be abbreviated.

The documentation and online help underlines the shortest legal
abbreviation

• If you don't know the name of the command you need you can

search for it. Stata has a search command with a few options. You
can also type findit, which searches the Internet as well as your
local machine and shows results in the Viewer.
– Try search generate (the command used to generate new variables) or

findit generate

Operators and Expressions

Arithmetic Logical Relational

+ add ! not (also ~) == equal

- subtract | or != not equal (also ~=)

* multiply & and < less than

/ divide <= less than or equal

^ raise to power > greater than

+ string concatenation >= greater than or equal

These are key arithmetic, logical and relational operators you need to keep in mind:

Examples:

gen tothhincsq = tothhinc^2 /* generates HH income squared */

gen lntothhinc = log(tothhinc) /* generates HH income in log form */

Useful commands: variable transformations

• gen command creates a new variable using an expression that
may combine constants, variables, functions, and arithmetic and
logical operators

gen lnhinc = log(tothhinc) /* generates HH income in log

form */

gen hincsq = tothhinc^2 /* squared of hh income */

gen ten=10 /* constant value of 10 */

gen id=_n /* id number of observation */

gen total=_N /* total number of observations */

gen byte yr=year-1900 /* generates 50,51,…, n instead of

1950,1951,…,n */

gen rich=tothhinc if tothhinc> 1452500

Variable transformations

• The egen command creates new variables based on summary
measures, such as sum, mean, min and max. For example:

egen mhincp=mean(tothhinc), by(province) /*average hincome
by province */

egen maxhinc=max(tothhinc) /* largest hh income value */

egen counthinc=count(tothhinc) /* counts non-missing hh income
obs */

egen float tothinc= rowtotal(totfdinc totnfinc), missing

egen double idi= concat(hid pid) , format(%20.0g) punct(.) /*
creates string for individual identifiers using the 1998 Zambian Living
Conditions Monitoring Survey */

Variable transformations

rename command allows for changing the names of your variables:
rename tothhinc thinc

recode allows to change the values that variables take. Suppose value
2020 of variable year which actually referred to 2002:

recode year 2020=2002

Replace can be used to change the contents of an existing variable:
replace oldvar = exp1 [if exp2] , e.g.
replace unemplrate=. if unemplrate==999

Note: Any functions that can be used with generate can be also used
with replace. if can also be used to restrict the command to a desired
subset of observations. The double equal sign == is used to test for
equality, while the single equal sign = is used for assignment

Variable transformations

A label is a description of a variable in up to 80 characters. Useful
when producing graphs etc. To create/modify labels type:

label variable varname “label”

• rename may be used to rename variables, as follows:

rename oldvarname newvarname

To drop a variable or variables, type:
drop varlist

Alternatively, keep varlist eliminates everything but varlist.

To drop certain observations, use:

drop if exp

For example, drop if unemplrate==.

Exercise 2

• Open the dataset “HHROSTER.DTA”

• Use describe to ascertain which variables are in
string format and which are in real format

• Rename s1q5 as sex; s1q3b as age, and other
variables

• Keep only those observations for adults age 18 and
older

• Generate ids for each adult

Appending datasets

• To add another Stata dataset below the end of the dataset
in memory, type:
append using filename

• Dataset in memory is called “master dataset”.

• Dataset filename is called “using dataset”.

• Variables (i.e. with same name) in both datasets will be
combined

• Variables in only one dataset will have missing values for
observations from the other dataset.

Appending datasets

Example

use even
list

number even
 6 12
 7 14
 8 16

use odd
list
number odd
1 1
2 3
3 5
4 7
5 9

You can type append using even:

append using even
list

Number odd even
1 1 .
2 3 .
3 5 .
4 7 .
5 9 .
6 . 12
7 . 14
8 . 16

Note that the missing values are forward-
filled with (.)

Merging datasets

• To merge two datasets with identical identifiers (household ids) type:
merge 1:1 varlist using filename

For example:
use "E:\STATA course\stata\HHINCOME.DTA", clear
merge 1:1 hid using "E:\STATA
course\stata\TOTEXP.DTA“
Note, type:

duplicates report hid /* for a report on duplicated
observations */
duplicates examples hid /* lists one example for each group of
duplicated observations */
duplicates drop hid, force /* drops all but the first occurrence of
each group of duplicated observations. You can use if to restrict the
dropping */

Merging datasets

• Stata automatically creates a variable called _merge which
indicates the results of the merge operation. The variable takes
the values:
_merge==1 Observation from master data
_merge==2 Observation from using data
_merge==3 Observation from both master and

using data (ideal)

• You can check for non-matching values by typing:
tabulute _merge
proportion _merge

drop _merge

Merging datasets

• If more than one observation has the same identifier in the
master dataset, you can type:
merge m:1 varlist using filename

• Or if more than one observation has the same identifier in

the using dataset, type:
merge 1:m varlist using filename

NOTE: you will need to sort the sample by the matching variable.
For example:

use "E:\STATA course\stata\HHINCOME.DTA”, clear
sort hid
duplicates report hid

merge 1:m hid using "E:\STATA
course\stata\HHROSTER.DTA"

Exercise 3

1. Open “HHINCOME.DTA“ (as the master dataset)
and merge it with “TOTEXP.DTA”, using hid as
the matching variabkle

• Should you use merge 1:m, merge m:1, or merge 1:1?
• What happens when you try to merge?

• Look at the values that _merge takes: what does this
indicate?

2. Open “HHINCOME.DTA“ (as the master dataset)

and merge it with “HHROSTER.DTA

• Should you use merge 1:m, merge m:1, or merge 1:1?
• What happens when you try to merge?

• Look at the values that _merge takes: what does this
indicate?

Creating a dummy variable

• To create a dummy variable, you can do the following:

gen poor=0

replace poor=1 if tothhinc<= 1452500 & tothhinc~=.
gen poor=0

replace poor=1 if tothhinc<= 1452500 & tothhinc!=.

• A shorter alternative to the above code is:
gen poor=(incpc>=1.25 & incpc~=.)

• Imagine you have a variable province with categories for each province. You
could generate a set of dummy for each province:
tab province, gen(prdum)

This will create a dummy prdum1 equal to 1 for province 1 and zero otherwise; a
dummy prdum2 for province 2 and zero otherwise, etc. When using large numbers
of dummies in regressions, useful to name with pattern, e.g. id1, id2… Then id* can
be used to refer to all variables beginning with *

‘By’ group processing

To execute a Stata command separately for groups of observations
for which the values of the variables in varlist are the same, type:
 by varlist: command

Most commands allow the by prefix, but data should be sorted by
varlist (precede command with sort varlist or use bysort):
 bysort varlist: command

Examples (using data on education, try the following)

bysort province: summarize s4q8
bysort province: tabulate district
bysort province: ta s4q8 if s1q3b>=18

Inspecting the data

• All variables are formatted as either numeric (real) or alphanumeric (string).
You can inspect the format by typing:

 describe [varlist] /*’s’ for string and ‘g’ for numeric */

• codebook is useful for checking for data errors. This gives information on
each variable about data type, label, range, mean, standard deviation etc

• Alternatively, list simply prints out the data for inspect
 list varname 1/30

• tabulate generates one or two-way tables of frequencies (also useful for

checking data):
tabulate rowvar [colvar]

For example, to obtain a cross-tabulation of sex and educ type:

tab district s1q5

Collapsing datasets

• To create a dataset of means, medians and other statistics, we can use the collapse
command:

collapse (stat) varlist1 (stat) … [weight], by(varlist2)

where stat can be mean, sd, sum, median or any other statistics, and
by(varlist2) specifies the groups over which the means etc. are to be calculated

There are 4 types of weights that can be used in Stata:

1. fweight (frequency weights): weights indicate the number of duplicated

observations
2. pweight (sampling weights): weights denote the inverse of the probability that

an observation is included in the sample
3. aweight (analytic weights): weights are inversely proportional to the variance

of an observation to correct for heteroskedasticity. Often, observations represent
averages and weights are number of elements that gave rise to the average.

4. iweight (importance weights): weights have no other interpretation

Exercise 4

• Collapse the dataset “HHINCOME.DTA“ by province to
produce a dataset containing the means of total
household income in Zambia

• Use sampling weights so that the variables take into
account the inverse probabilities of the observations to be
included in the sample

• Which are the provinces with the highest and lowest
average household income?

• Repeat the exercise but now including the sex of the
household head. What do you observe?

How to deal with missing values

• Stata distinguishes missing values. The basic missing value for numeric
variables is represented by a dot .

• To check for missing values you can write:
– List hhn if missing(ageh) (here hhn is the HH number in the income file of

the Living Conditions Monitoring Survey 1998)

• Household survey data often use codes such as 888 for not applicable and
999 for not ascertained. For example age may be coded as 888 for people
who didn’t know their age and 999 for those who didn’t respond. You will
need to distinguish these two cases using different kinds of missing value
codes

• If you want to recode 888's to .n (for "na" or non-applicable) and 999's to
.m (for "missing") you could write:
– replace ageh = .n if ageh == 888
– replace ageh = .m if ageh == 999

Working with do.files

• A great advantage of STATA is that you can estimate equations and
save them into a ‘do.file’ for future tasks. You can open a do.file by
clicking on the ‘New Do.file Editor’ icon , by using Ctrl-9 in
version 12 (Ctrl-8 in earlier versions) or by selecting Window|Do-
file Editor|New Do-file Editor in the menu system and then save it.

• Alternatively, you can use an editor such as Notepad. Save the file
using extension .do and then execute it using the command do
filename

• To load a file you will need to type use in the command window or
preferably, by typing use in a do.file

Using annotations in do.files

• It is always good to make annotations to your do files with explanatory
comments that provide information of what you are trying to do

• In a do file you can use two types of comments: // and /* */

// is used to indicate that everything that follows to the end of the line is a
comment and should be ignored by Stata. For example:
gen one= 1 // this is a constant equal to one for a the model

/* */ is used to indicate that all the text between the opening /* and the
closing */, is a comment to be ignored by Stata

• It is a good practice to start a do file with comments that include at
least a title, and the analysis the researcher is seeking to undertake.
Assumptions and notes about required files could also be noted

Using annotations in do.files

• In a do-file you will probably want to break long commands into lines to
improve readability. You can use ///, which allows you to continue on
the next line. For example:

graph twoway (scatter hhsize sexh) ///
(lfit hhsize sexh)

• You can also write

graph twoway (scatter hhsize sexh) /*
 */ (lfit hhsize sexh)

• An alternative is to use a semi-colon instead through the command #delimit:
#delimit ;
graph twoway (scatter hhsize sexh)
(lfit hhsize sexh) ;

To return to using carriage return as the delimiter use #delimit cr

Using Log Files

• To keep a permanent record of your results, you could use a log file. Stata
writes all results to the log file, so you keep track of your work:

log using filename, replace (or text)

where filename is the name of your log file

• By default the log is written using SMCL, Stata Markup and Control
Language, which can only be viewed using Stata's Viewer. The text option
creates logs in plain text (ASCII) format, which can be viewed in Notepad
or a word processor

• The replace option specifies that the file is to be overwritten if it already

exists or append if you want to append chronologically your work. This is
useful if you need to run your commands several times

Exercise 6

Open the do-file editor in Stata. Run commands using throughout
the exercises using the dataset “HHINCOME.DTA“ and save it as a
different file:

use "E:\STATA course\stata\HHINCOME.DTA", clear
save "E:\STATA course\stata\HHINCOME_1.DTA", replace
Clear
use "E:\STATA course\stata\HHINCOME_1.DTA", clear

Use some of the commands you have learned to transform and

generate new variables, including dummies

Basic statistics

tabstat produces a table of summary statistics:
tabstat varlist [, statistics(statlist)]

Example:

tabstat hhsize sexh, stats(mean sd sdmean n)

summarize displays a variety of univariate summary
statistics (number of non-missing observations, mean,
standard deviation, minimum, maximum):

summarize [varlist]

Basic statistics

• table displays table of statistics:

table rowvar [colvar] [, contents(clist varname)]

clist can be freq, mean, sum etc.

• rowvar and colvar may be numeric or string variables.

Example:

table sexh, c(mean tothhinc)

Note: Missing values are excluded from tables by default. To
include them as a group, use the missing option with table.

Correlations

To obtain the correlation between a set of variables, type:
correlate [varlist] [[weight]] [, covariance]

covariance option displays the covariances rather than the correlation coefficients

pwcorr displays all the pairwise correlation coefficients between the variables in
varlist:
pwcorr [varlist] [[weight]] [, sig]
pwcorr [varlist] [[weight]] [, print(#] star(#)]

sig adds a line to each row of matrix reporting the significance level of each
correlation coefficient. print(#) specifies the significance level of coefficients.
star(#) specifies the significance level of correlation coefficients to be starred

Difference between correlate and pwcorr is that the former performs listwise
deletion of missing observations while the latter performs pairwise deletion

Cross-tabulations

• tabulate produces two-way tables of frequency
counts, along with various measures of association,
including the common Pearson's chi-squared, the
likelihood-ratio chi-squared, Cramér's V, Fisher's exact
test, Goodman and Kruskal's gamma, and Kendall's
tau-b

tabulate sexh marith, chi2
or
tabulate sexh marith, all

Linear regression

To perform a linear regression of depvar on varlist, type:

regress depvar varlist [[weight]] [if

exp] [, noconstant robust]

• where depvar is the dependent variable;

• varlist is the set of independent variables (regressors); The
noconstant option excludes the constant;

• robust specifies that Stata report the Huber-White
standard errors, which account for heteroskedasticity;

• With weights, you can obtain weighted least squares (GLS)

Exercise 7

1. Compute the correlation coefficients between these two
variables:

pwcorr tothhinc expfdhc [aweight=weight], sig
Are they significantly correlated at 5% level?

2. Cross-tabulate the following two variables: sexh and marith.

Compute the Chi2 and find out whether they are statistically
significantly correlated

3. Estimate a heteroskedastic-robust GLS model for lnhhinc on
sexh, ageh, ageh2 hhsize. What do you observe?

DASP poverty toolkit

Go to http://dasp.ecn.ulaval.ca/modules.htm

Click on Register and download it

Downloading DASP Package The Stata package DASP is freely
distributed. The user should be registered before downloading DASP

To register, choose the item "Registration" and submit your request after
completing the required information. You will receive your username
and password instantly by email

To download DASP, connect to the intranet service by choosing the item
"Login" and then select the item "Download DASP: Distributive Analysis
Stata Package"

http://dasp.ecn.ulaval.ca/modules.htm
http://dasp.ecn.ulaval.ca/downloadhelp.htm

DASP poverty toolkit

1. Installing and updating the DASP package

In general, the *.ado files are saved in the following main directories:
Priority Directory Sources
1 UPDATES: Official updates of Stata *.ado files
2 BASE: *.ado files that come with the installed Stata software
3 SITE: *.ado files downloaded from the net
4 PLUS: ..
5 PERSONAL: Personal *.ado files

2. Installing DASP modules.

a. Unzip the file dasp.zip in the directory c:
b. Make sure that you have c:/dasp/dasp.pkg or c:/dasp/stata.toc
c. In the Stata command windows, type the syntax
net from c:/dasp

DASP poverty toolkit

d. Type the syntax

net install dasp_p1.pkg, force replace
net install dasp_p2.pkg, force replace
net install dasp_p3.pkg, force replace

• To add the DASP sub menus, the file profile.do (which is

provided with the DASP package) must be copied into the
PERSONAL directory

• If the file profile.do already exists, add the contents of the
DASP –provided profile.do file into that existing file and save it.

• To check if the file profile.do already exists, type the command:

findfile profile.do

DASP submenu

Estimating poverty
(a hypothetical case!)

/* deriving income per capita per month */

gen incpc= tothhinc /hhsize
summarize incpc, d
inspect incpc
iqr incpc
iv incpc

/* Dealing with outliers at 5% */

hadimvo incpc, generate(outliers Doutliers) p(.05)
drop if outliers==1
iqr incpc
lv incpc, generate

Estimating poverty
(a hypothetical case!)

/* let us assume we want to estimate the FGT family of poverty
measures based on a poverty line set at per capita daily incomes <=2000
kwacha at prices of 1998 */

gen dayincpc = incpc/30.415

ifgt dayincpc, alpha(0) pline(2000)
ifgt dayincpc, alpha(1) pline(2000)
ifgt dayincpc, alpha(2) pline(2000)

/* Poverty estimates based on a relativist measures)*/

ifgt dayincpc, alpha(0) opl(mean) prop(50)
ifgt dayincpc, alpha(1) opl(mean) prop(50)
ifgt dayincpc, alpha(2) opl(mean) prop(50)

