Worst-Case to Average-Case Reduction for SIS

Vadim Lyubashevsky
INRIA / ENS, Paris

Session Outline

- Average-Case Problems
- The Small Integer Solution (SIS) problem
- Gaussian Distributions and Lattices
- Reducing a Worst-Case Lattice Problem to SIS

THE AVERAGE-CASE PROBLEMS

(Minicrypt)

(Minicrypt)

Small Integer Solution Problem

Given: Random vectors $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}$ in $\mathbf{Z}_{\mathrm{q}}^{\mathrm{n}}$
Find: non-trivial solution z_{1}, \ldots, z_{m} in $\{-1,0,1\}$ such that

Observations:

- If size of z_{i} is not restricted, then the problem is trivial
- Immediately implies a collision-resistant hash function
- A relationship to lattices emerges ...

Relationship of SIS to Lattice Problems

Find: non-trivial solution z_{1}, \ldots, z_{m} in $\{-1,0,1\}$ such that

Let S be the set of all integer $\mathbf{z}=\left(z_{1}, \ldots, z_{m}\right)$, such that $a_{1} z_{1}+\ldots+a_{m} z_{m}=0 \bmod q$
S is a lattice!
SIS problem asks to find a short vector in S.

Representing Lattices

$L(B)=\left\{\mathbf{z}: \mathbf{z}=\mathbf{B x}\right.$ for \mathbf{x} in $\left.\mathbf{Z}^{\mathrm{n}}\right\} \quad \mathrm{L}^{\perp}(\mathbf{A})=\left\{\mathbf{z}\right.$ in $\left.\mathbf{Z}^{\mathbf{m}}: \mathbf{A z}=\mathbf{0} \bmod q\right\}$

Worst-Case to Average-Case Reduction:
Approximately solving SIVP in all lattices < Finding short vectors in these lattices

$$
(m \approx n \log n)
$$

(Minicrypt)

Collision-Resistant Hash Functions

For a random h in H , It is hard to find:

$\mathrm{x}_{1}, \mathrm{x}_{2}$ in D
such that
$h\left(x_{1}\right)=h\left(x_{2}\right)$

Collision-Resistant Hash Function

Given: Random vectors $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}$ in $\mathbf{Z}_{\mathrm{q}}^{\mathrm{n}}$
Find: non-trivial solution $\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{m}}$ in $\{-1,0,1\}$ such that

$A=\left(a_{1}, \ldots, a_{m}\right)$ Define $h_{A}:\{0,1\}^{m} \rightarrow Z_{q}^{n}$ where

$$
h_{A}\left(z_{1}, \ldots, z_{m}\right)=a_{1} z_{1}+\ldots+a_{m} z_{m}
$$

Domain of $h=\{0,1\}^{m}\left(\right.$ size $\left.=2^{m}\right)$ Range of $h=Z_{q}^{n}\left(\right.$ size $\left.=q^{n}\right)$
Set $\mathrm{m}>\mathrm{nlog} \mathrm{q}$ to get compression
Collision: $a_{1} z_{1}+\ldots+a_{m} z_{m}=a_{1} y_{1}+\ldots+a_{m} y_{m}$
So, $a_{1}\left(z_{1}-y_{1}\right)+\ldots+a_{m}\left(z_{m}-y_{m}\right)=0$ and $z_{i}-y_{i}$ are in $\{-1,0,1\}$

(Minicrypt)

THE GAUSSIAN (NORMAL) DISTRIBUTION

Definition

1-dimensional Gaussian distribution:

$$
\rho_{s}(x)=(1 / s) e^{-\pi x^{2} / s^{2}}
$$

It's a Normal distribution:
Centered at 0
Standard deviation: $s / \sqrt{2 \pi}$

Example ($s=1$)

Example (s=1 and 5)

2-Dimensional Gaussian

1-dim gaussian on the x_{1} axis:

$$
\rho_{s}\left(x_{1}\right)=(1 / s) e^{-\pi x_{1}^{2} / s^{2}}
$$

1-dim gaussian on the x_{2} axis:

$$
\begin{aligned}
& \rho_{s}\left(x_{2}\right)=(1 / s) e^{-\pi x_{2}^{2} / s^{2}} \\
& \rho_{s}\left(x_{1}, x_{2}\right)=\rho_{s}\left(x_{1}\right) \cdot \rho_{s}\left(x_{2}\right) \\
& =(1 / s) e^{-\pi x_{1}^{2} / s^{2}} \cdot(1 / s) e^{-\pi x_{2}^{2} / s^{2}} \\
& =(1 / s)^{2} e^{-\pi\left(x_{1}^{2}+x_{2}^{2}\right) / s^{2}} \\
& \rho_{s}(x)=(1 / s)^{2} e^{-\pi\|x\|^{2} / s^{2}}
\end{aligned}
$$

2-Dimensional Example

n-Dimensional Gaussian

n-dimensional Gaussian distribution:

$$
\rho_{s}(x)=(1 / s)^{n} e^{-\pi\|x\|^{2} / s^{2}}
$$

It's an n-dimensional Normal distribution:
Centered at $\mathbf{0}$
Standard deviation: $s / \sqrt{2 \pi}$

Useful Properties of the Gaussian Distribution

1. It is a Product Distribution
2. It is Spherically-Symmetric
3. It is "uniform" modulo parallelepipeds

Product Distribution

$$
\rho_{s}(\mathbf{x})=\rho_{s}\left(x_{1}\right) \cdot \ldots \cdot \rho_{s}\left(x_{n}\right)
$$

Spherically Symmetric

$$
\rho_{s}(\mathbf{x})=(1 / s)^{n} e^{-\pi\|x\| 2 / s^{2}}
$$

The probability of \mathbf{x} only depends on its length The distribution is "axis-independent"

Generating Uniform Elements on a

 Line Segment $\rho_{s}(x)=(1 / s) e^{-\pi x^{2} / s^{2}}$and $s=5 \mathrm{M}$, for some positive M
if $X \sim \rho_{s}$, then for all $m<M$,
$\Delta(X \bmod m$, Uniform $[0, m))<2^{-110}$

Example ($s=1, m=1$)

Example ($s=1, m=1, .9, .8$)

Example ($s=2$)

Example ($s=5, \mathrm{~m}=1$)

Generating Uniform Elements in an n-dimensional Parallelepiped

Generating Uniform Elements in an n-Dimensional Box

Box \boldsymbol{B} with dimensions $\left(m_{1}, \ldots, m_{n}\right)$, all $m_{i}<M$.
Generate $X_{1}, \ldots, X_{n} \sim \rho_{s}(x)=(1 / s) e^{-\pi x^{2} / s^{2}}$, where $s=5 M$
For each $\mathrm{j}, \Delta\left(\mathrm{X}_{\mathrm{j}} \bmod \mathrm{m}\right.$, Uniform $\left.\left[0, \mathrm{~m}_{\mathrm{j}}\right)\right)<2^{-110}$
Thus $\Delta\left(\left(X_{1} \bmod m_{1}, \ldots, X_{n} \bmod m_{n}\right)\right.$, Uniform $\left.(B)\right)<n 2^{-110}$
So, if $X \sim \rho_{s}(\mathbf{x})=(1 / s)^{n} e^{-\pi|x|^{2} / s^{2}}$ for $s=5 M, \Delta(X \bmod B$, Uniform $(B))<n 2^{-110} \approx 0$

Generating Uniform Elements in a Rotated n-Dimensional Box

$\rho_{s}(\mathbf{x})=(1 / s)^{n} e^{-\pi\|x\|^{2} / s^{2}}$ is a spherical distribution
So rotating axes doesn't affect it

Generating Uniform Elements in a Rotated n-Dimensional Box

$\rho_{s}(\mathbf{x})=(1 / \mathrm{s})^{\mathrm{n}} \mathrm{e}^{-\pi\|x\|^{2} / s^{2}}$ is a spherical distribution
So rotating axes doesn't affect it
Thus, $\Delta\left(\mathbf{X} \bmod \mathbf{B}^{\prime}\right.$, Uniform $\left.\left(\mathbf{B}^{\prime}\right)\right) \approx 0$

Generating Uniform Elements in Parallelepipeds

Suppose we have $X \sim \rho_{s}(\mathbf{x})=(1 / s)^{n} e^{-\pi\|x\|^{2} / s^{2}}$ and
$\mathbf{X} \bmod \mathbf{A}$ is uniform

Is \mathbf{X} uniform modulo \mathbf{B} ?

Generating Uniform Elements in Parallelepipeds

If \mathbf{B} is much bigger than \mathbf{A} (i.e. has a bigger determinant), then probably NO.

Generating Uniform Elements in Parallelepipeds

If \mathbf{B} is much bigger than \mathbf{A} (i.e. has a bigger determinant), then probably NO.

But what if $\mathbf{B}=\mathbf{A U}$ when $\operatorname{det}(\mathbf{U})=1$?
Still ... not necessarily.

Generating Uniform Elements in Parallelepipeds

If $\mathbf{B}=\mathbf{A U}$ and $\operatorname{det}(\mathbf{U})=1$, then
$\mathbf{X} \bmod \mathbf{A}$ is uniform $\rightarrow \mathbf{X} \bmod \mathbf{B}$ is uniform if:
1.) \mathbf{U} is an integer matrix or
2.) \mathbf{U} is an upper-triangular matrix with 1 's on the diagonal

Some Simplifying Assumptions

Pretend that the space $\mathbf{R}^{\mathbf{n}}$ is divided into a very very fine grid.

Any two parallelepipeds that have the same determinant have the same number of grid points inside them.

1-to-1 Relationship Between $\mathbf{R}^{\mathrm{n}} / \mathbf{A}$ and $\mathbf{R}^{\mathrm{n}} / \mathbf{B}$

$B=A U$
By our assumption \#($\left.\mathbf{R}^{\mathrm{n}} / \mathbf{A}\right)=\#\left(\mathbf{R}^{\mathrm{n}} / \mathbf{B}\right)$
We will now show that:
For every $\mathbf{a}=\mathbf{A} \mathbf{z}$, where \mathbf{z} in $[0,1)^{\mathrm{n}}, \mathbf{a} \bmod \mathbf{B}$ is distinct
This implies that if $\mathbf{X} \bmod \mathbf{A}$ is uniform, then
$\mathbf{X} \bmod \mathbf{B}$ is uniform too.

1-to-1 Relationship Between $\mathbf{R}^{\mathrm{n}} / \mathbf{A}$ and $\mathbf{R}^{\mathrm{n}} / \mathbf{B}$

1-to-1 Relationship Between $\mathbf{R}^{\mathrm{n}} / \mathbf{A}$ and $\mathbf{R}^{\mathrm{n}} / \mathbf{B}$

If $\mathbf{B}=\mathbf{A U}$ and $\operatorname{det}(\mathbf{U})=1$, then
$X \bmod \mathbf{A}$ is uniform $\rightarrow X \bmod B$ is uniform if:
1.) U is an integer matrix

Then $L(A)=L(B)$, thus ...
If $A z_{1} \bmod B=A z_{2} \bmod B$, then

$$
\begin{aligned}
& \mathbf{A}\left(\mathbf{z}_{1}-\mathbf{z}_{2}\right)=0 \bmod \mathbf{B} \\
& \mathbf{A}\left(\mathbf{z}_{1}-\mathbf{z}_{2}\right) \text { is in } L(\mathbf{B}) \\
& \mathbf{z}_{1}-\mathbf{z}_{\mathbf{2}} \text { is an integer vector } \\
& \mathbf{z}_{1}-\mathbf{z}_{\mathbf{2}}=\mathbf{0} \quad \rightarrow \leftarrow
\end{aligned}
$$

1-to-1 Relationship Between $\mathbf{R}^{\mathrm{n}} / \mathbf{A}$ and $\mathbf{R}^{\mathrm{n}} / \mathbf{B}$

If $\mathbf{B}=\mathbf{A U}$ and $\operatorname{det}(\mathbf{U})=1$, then
$\mathbf{X} \bmod \mathbf{A}$ is uniform $\rightarrow \mathbf{X} \bmod \mathbf{B}$ is uniform if:
2.) \mathbf{U} is an upper-triangular matrix with 1 's on the diagonal If $A z_{1} \bmod B=A z_{2} \bmod B$, then

$$
\begin{aligned}
& \mathbf{A}\left(\mathbf{z}_{1}-\mathbf{z}_{2}\right)=0 \bmod \mathbf{B} \\
& \mathbf{B U} \mathbf{U}^{-1}\left(\mathbf{z}_{1}-\mathbf{z}_{2}\right) \text { is in } L(\mathbf{B})
\end{aligned}
$$

$\mathbf{U}^{-1}\left(\mathbf{z}_{1}-\mathbf{z}_{\mathbf{2}}\right)$ is an integer vector
why? $\quad \mathbf{z}_{1}-\mathbf{z}_{\mathbf{2}}=\mathbf{0} \quad \rightarrow \leftarrow$

1-to-1 Relationship Between $\mathbf{R}^{\mathrm{n}} / \mathbf{A}$ and $\mathbf{R}^{\mathrm{n}} / \mathbf{B}$

\mathbf{U} is an upper-triangular matrix with 1's on the diagonal Thus \mathbf{U}^{-1} is also.

The Gram-Schmidt Matrix

\mathbf{B} is a basis for a lattice
Then $\mathbf{B}=\tilde{\mathbf{B}} \mathbf{U}$ where $\tilde{\mathbf{B}}$ is the Gram-Schmidt basis

Generating Uniform Elements in Parallelepipeds

Suppose we have $\mathbf{X} \sim \rho_{s}(\mathbf{x})=(1 / s)^{n} e^{-\pi\|x\|^{2} / s^{2}}$ and
$\mathbf{X} \bmod \mathbf{A}$ is uniform Is \mathbf{X} uniform modulo \mathbf{B} ?

If \mathbf{A} is the Gram-Schmidt basis of \mathbf{B}, then YES!
So s needs to be big enough to make \mathbf{X} uniform $\bmod \mathbf{A}$

43

There is more

$\mathbf{X} \bmod \mathbf{A}$ is uniform Is \mathbf{X} uniform modulo \mathbf{B} ?

If \mathbf{A} is the Gram-Schmidt basis of $\mathbf{B U}$ for any integer matrix \mathbf{U} with determinant 1, then also YES!

And still more ...

$\mathbf{X} \bmod \mathbf{A}$ is uniform Is \mathbf{X} uniform modulo \mathbf{B} ?

If \mathbf{A} is the Gram-Schmidt basis of $\mathbf{B U}$ for any integer matrix \mathbf{U}, then also YES!
(This is because $L(B U)$ is a sublattice of $L(\mathbf{B})$, and so uniform modulo BU implies uniform modulo B.)

45

And in particular ...

B is a lattice basis
$\mathbf{C = B U}$ is a (sub)-lattice basis such that all vectors of \mathbf{C} are at most $\lambda_{n}(\mathbf{B})$
Then all vectors of $\tilde{\mathbf{C}}$ are of length at most $\lambda_{n}(\mathbf{B})$
So if $s>5 \lambda_{n}(B)$, and $X \sim \rho_{s}(\mathbf{X})=(1 / s)^{n} e^{-\pi|x|^{2} / s^{2}}$, then:
\mathbf{X} is uniform $\bmod \tilde{\mathbf{C}} \rightarrow$ uniform $\bmod \mathbf{C} \rightarrow$ uniform $\bmod \mathbf{B}$

Uniform Distribution Over Lattices

Theorem [Micciancio and Regev 2004]:
if $s>5 \lambda_{n}(B)$, and $X \sim \rho_{s}(x)=(1 / s)^{n} e^{-\pi\|x\|^{2} / s^{2}}$, then
$\Delta(X \bmod B$, Uniform $(B))<n 2^{-110}$

Gaussians on Lattice Points

THE REDUCTION

[Ajtai ‘96, Micciancio and Regev ‘04]

Worst-Case to Average-Case Reduction

Worst-Case to Average-Case Reduction

Worst-Case to Average-Case Reduction

Important: All lattice points have label $(0,0)$ and

All points labeled $(0,0)$ are lattice points ($\mathbf{0}^{\mathbf{n}}$ in n dimensional lattices)
 How to use the SIS oracle to find a short vector in any lattice:
Repeat m times:
Pick a random lattice point

How to use the SIS oracle to find a short vector in any lattice:

Repeat m times:

Pick a random lattice point
Gaussian sample a point around the lattice point

All the samples are uniform in $\mathbf{Z}_{\mathrm{q}}^{\mathrm{n}}$

How to use the SIS oracle to find a short vector in any lattice:
Repeat m times:
Pick a random lattice point
Gaussian sample a point around the lattice point
Give the m " Z_{q}^{n} samples" a_{1}, \ldots, a_{m} to the SIS oracle
Oracle outputs z_{1}, \ldots, z_{m} in $\{-1,0,1\}$ such that:

$$
a_{1} z_{1}+\ldots+a_{m} z_{m}=0
$$

Give the m " Z_{q}^{n} samples" a_{1}, \ldots, a_{m} to the SIS oracle Get z_{1}, \ldots, z_{m} in $\{-1,0,1\}$ such that $a_{1} z_{1}+\ldots+a_{m} z_{m}=0$

- = $v_{i} \quad s_{1} z_{1}+\ldots+s_{m} z_{m}$ is a lattice vector, so
$0=\mathbf{s}_{\mathrm{i}}$
$\left(v_{1}+r_{1}\right) z_{1}+\ldots+\left(v_{m}+r_{m}\right) z_{m}$ is too
$\left(v_{1} z_{1}+\ldots+v_{m} z_{m}\right)+\left(r_{1} z_{1}+\ldots+r_{m} z_{m}\right)$ is too
$v_{i}+r_{i}=s_{i} \quad$ So, $r_{1} z_{1}+\ldots+r_{m} z_{m}$ is also lattice vector

Give the m " Z_{q}^{n} samples" a_{1}, \ldots, a_{m} to the SIS oracle Get z_{1}, \ldots, z_{m} in $\{-1,0,1\}$ such that $a_{1} z_{1}+\ldots+a_{m} z_{m}=0$

- = $v_{i} \quad$ So, $r_{1} z_{1}+\ldots+r_{m} z_{m}$ is also lattice vector
$0=\boldsymbol{s}_{\mathrm{i}}$
r_{i} are short vectors, z_{i} are in $\{-1,0,1\}$
So $r_{1} z_{1}+\ldots+r_{m} z_{m}$ is a short lattice vector

$$
\left\|r_{1} z_{1}+\ldots+r_{m} z_{m}\right\| \approx \tilde{O}(v m)\left\|r_{i}\right\|
$$

Give the m " Z_{q}^{n} samples" a_{1}, \ldots, a_{m} to the SIS oracle Get z_{1}, \ldots, z_{m} in $\{-1,0,1\}$ such that $a_{1} z_{1}+\ldots+a_{m} z_{m}=0$

- = $v_{i} \quad\left\|r_{1} z_{1}+\ldots+r_{m} z_{m}\right\| \approx \tilde{O}(V m)\left\|r_{i}\right\|$
$0=\mathbf{s}_{\mathrm{i}}$
Reduction works when

$$
v_{i}+r_{i}=s_{i}
$$

$$
r_{i} \sim \rho_{s}(\mathbf{x})=(1 / s)^{n} e^{-\pi|x|^{2} / s^{2}} \text { for } s>5 \lambda_{n}
$$

$$
\text { So }\left\|\mathbf{r}_{i}\right\| \approx 5 \lambda_{n} V n
$$

$$
\begin{aligned}
& \left\|r_{1} z_{1}+\ldots+r_{m} z_{m}\right\| \approx \tilde{O}(V m)\left\|r_{i}\right\| \\
& \quad \approx \tilde{O}(V m n) \lambda_{n} \approx \tilde{O}(n) \lambda_{n}
\end{aligned}
$$

Can either guess λ_{n} using binary search or keep using $s=$ length of the largest vector/Õ(n) to find a shorter vector, and this should keep working until the length of the largest vector $\left\langle\tilde{O}(n) \lambda_{n}\right.$, which solves $\operatorname{SIVP}_{\text {Õ(n) }}$

Some Technicalities

- You can't sample a "uniformly random" lattice point
- In the proofs we work with $\mathbf{R}^{n} / \mathbf{L}$
- What if $r_{1} z_{1}+\ldots+r_{m} z_{m}$ is 0 ?
- Can show that with non-negligible it is in fact linearly independent of the $\mathrm{n}-1$ non-longest vectors.
- This is because given an s_{i}, there are many possible \mathbf{r}_{i}
- Gaussian Sampling doesn't give us points on the grid
- Can round to a grid point
- Need to be mindful to bound the extra
"rounding distance"
- Alternatively, sample the grid point directly
(using an algorithm you will see tomorrow)

