Worst-Case to Average-Case Reduction for SIS

Vadim Lyubashevsky INRIA / ENS, Paris

Session Outline

- Average-Case Problems
 - The Small Integer Solution (SIS) problem
- Gaussian Distributions and Lattices
- Reducing a Worst-Case Lattice Problem to SIS

THE AVERAGE-CASE PROBLEMS

Bar-Ilan University Israel 2012

Small Integer Solution Problem

Given: Random vectors a_1, \dots, a_m in \mathbf{Z}_q^n

Find: non-trivial solution $z_1, ..., z_m$ in {-1,0,1} such that

Observations:

- If size of z_i is not restricted, then the problem is trivial
- Immediately implies a collision-resistant hash function
- A relationship to lattices emerges ...

Relationship of SIS to Lattice Problems

Find: non-trivial solution $z_1, ..., z_m$ in {-1,0,1} such that

Let S be the set of all integer $z=(z_1,...,z_m)$, such that $a_1z_1 + ... + a_mz_m = 0 \mod q$ S is a lattice! SIS problem asks to find a short vector in S.

Representing Lattices

 $L(B) = \{z: z=Bx \text{ for } x \text{ in } Z^n\}$ $L^{\perp}(A) = \{z \text{ in } Z^m : Az = 0 \mod q\}$

8

Bar-Ilan University Israel 2012

Collision-Resistant Hash Functions

For a random h in H, It is hard to find:

 x_1, x_2 in D

such that

 $h(x_1) = h(x_2)$

Collision-Resistant Hash Function

Given: Random vectors a_1, \dots, a_m in \mathbf{Z}_q^n

Find: non-trivial solution $z_1, ..., z_m$ in {-1,0,1} such that

THE GAUSSIAN (NORMAL) DISTRIBUTION

Definition

1-dimensional Gaussian distribution:

$$\rho_{s}(x) = (1/s)e^{-\pi x^{2}/s^{2}}$$

It's a Normal distribution:

Centered at 0

Standard deviation: $s/\sqrt{2\pi}$

Example (s=1)

Example (s=1 and 5)

2-Dimensional Gaussian

1-dim gaussian on the x_1 axis: $\rho_{s}(x_{1}) = (1/s)e^{-\pi x_{1}^{2}/s^{2}}$ 1-dim gaussian on the x₂ axis: $\rho_{s}(x_{2}) = (1/s)e^{-\pi x_{2}^{2}/s^{2}}$ $\rho_{s}(\mathbf{x}_{1},\mathbf{x}_{2}) = \rho_{s}(\mathbf{x}_{1}) \cdot \rho_{s}(\mathbf{x}_{2})$ = $(1/s)e^{-\pi x_1^2/s^2} \cdot (1/s)e^{-\pi x_2^2/s^2}$ = $(1/s)^2 e^{-\pi(x_1^2 + x_2^2)/s^2}$ $\rho_{s}(\mathbf{x}) = (1/s)^{2} e^{-\pi \|\mathbf{x}\|^{2}/s^{2}}$

2-Dimensional Example

n-Dimensional Gaussian

n-dimensional Gaussian distribution:

$$\rho_{s}(\mathbf{x}) = (1/s)^{n} e^{-\pi ||\mathbf{x}||^{2}/s^{2}}$$

It's an n-dimensional Normal distribution:

Centered at **0**

Standard deviation: $s/\sqrt{2\pi}$

Useful Properties of the Gaussian Distribution

1. It is a *Product Distribution*

2. It is Spherically-Symmetric

3. It is "uniform" modulo parallelepipeds

Product Distribution

$$\rho_{s}(\mathbf{x}) = \rho_{s}(\mathbf{x}_{1}) \cdot ... \cdot \rho_{s}(\mathbf{x}_{n})$$

Spherically Symmetric

$$\rho_{s}(\mathbf{x}) = (1/s)^{n} e^{-\pi \|\mathbf{x}\|^{2}/s^{2}}$$

The probability of **x** only depends on its length The distribution is "axis-independent"

Generating Uniform Elements on a Line Segment $\rho_s(x) = (1/s)e^{-\pi x^2/s^2}$ and s=5M, for some positive M

if X ~ ρ_s , then for all m < M, Δ (X mod m , Uniform [0, m)) < 2⁻¹¹⁰

Example (s=1,m=1)

Example (s=1,m=1, .9, .8)

Lattice-Based Crypto & Applications Bar-Ilan University, Israel 2012

Example (s=2)

Example (s=5, m=1)

Generating Uniform Elements in an n-dimensional Parallelepiped

Bar-Ilan University, Israel 2012

Generating Uniform Elements in an n-Dimensional Box

Box **B** with dimensions $(m_1, ..., m_n)$, all $m_i < M$.

Generate $X_1, ..., X_n \sim \rho_s(x) = (1/s)e^{-\pi x^2/s^2}$, where s=5M

For each j, $\Delta(X_i \mod m, \text{Uniform } [0, m_i)) < 2^{-110}$

Thus $\Delta((X_1 \mod m_1, ..., X_n \mod m_n), Uniform(B)) < n2^{-110}$

Generating Uniform Elements in a Rotated n-Dimensional Box

 $\rho_s(\mathbf{x}) = (1/s)^n e^{-\pi ||\mathbf{x}||^2/s^2}$ is a spherical distribution

So rotating axes doesn't affect it

Generating Uniform Elements in a Rotated n-Dimensional Box

 $\rho_s(\mathbf{x}) = (1/s)^n e^{-\pi \|\mathbf{x}\|^2/s^2}$ is a spherical distribution

So rotating axes doesn't affect it

Thus, $\Delta(\mathbf{X} \mod \mathbf{B'}, \operatorname{Uniform}(\mathbf{B'})) \approx 0$

Suppose we have $\mathbf{X} \sim \rho_{s}(\mathbf{x}) = (1/s)^{n} e^{-\pi \|\mathbf{x}\|^{2}/s^{2}}$ and $\mathbf{X} \mod \mathbf{A}$ is uniform

Is X uniform modulo B?

If **B** is much bigger than **A** (i.e. has a bigger determinant), then probably NO.

If **B** is much bigger than **A** (i.e. has a bigger determinant), then probably NO.

But what if **B**=**AU** when det(**U**)=1? Still ... not necessarily.

If **B=AU** and det(**U**)=1, then

X mod **A** is uniform \rightarrow **X** mod **B** is uniform if:

1.) U is an integer matrix or
2.) U is an upper-triangular matrix with 1's on the diagonal

Some Simplifying Assumptions

Pretend that the space **R**ⁿ is divided into a very very fine grid.

Any two parallelepipeds that have the same determinant have the same number of grid points inside them.

$\mathbf{B} = \mathbf{A}\mathbf{U}$

By our assumption $#(\mathbf{R}^n / \mathbf{A}) = #(\mathbf{R}^n / \mathbf{B})$ We will now show that:

For every **a**=**Az**, where **z** in [0,1)ⁿ, **a** mod **B** is distinct This implies that if **X** mod **A** is uniform, then **X** mod **B** is uniform too.

If **B**=**AU** and det(**U**)=1, then

X mod A is uniform \rightarrow X mod B is uniform if: 1.) U is an integer matrix Then L(A) = L(B), thus ... If Az₁ mod B = Az₂ mod B, then $A(z_1-z_2)=0 \mod B$ $A(z_1-z_2)$ is in L(B) z_1-z_2 is an integer vector $z_1-z_2 = 0 \rightarrow \leftarrow$

If **B**=**AU** and det(**U**)=1, then

X mod **A** is uniform \rightarrow **X** mod **B** is uniform if:

2.) **U** is an upper-triangular matrix with 1's on the diagonal If **Az**₁ mod **B** = **Az**₂ mod **B**, then

A(
$$z_1 - z_2$$
)=0 mod B
BU⁻¹($z_1 - z_2$) is in L(B)
U⁻¹($z_1 - z_2$) is an integer vector
 $z_1 - z_2 = 0 \rightarrow \leftarrow$

U is an upper-triangular matrix with 1's on the diagonal Thus **U**⁻¹ is also.

The Gram-Schmidt Matrix

B is a basis for a lattice Then **B** = $\mathbf{\tilde{B}U}$ where $\mathbf{\tilde{B}}$ is the Gram-Schmidt basis

Bar-Ilan University, Israel 2012

Generating Uniform Elements in Parallelepipeds

Suppose we have $\mathbf{X} \sim \rho_s(\mathbf{x}) = (1/s)^n e^{-\pi \|\mathbf{x}\|^2/s^2}$ and

X mod **A** is uniform Is **X** uniform modulo **B**?

If **A** is the Gram-Schmidt basis of **B**, then YES! So s needs to be big enough to make **X** uniform mod **A**

There is more ...

X mod **A** is uniform Is **X** uniform modulo **B**?

If **A** is the Gram-Schmidt basis of **BU** for any integer matrix **U** with determinant 1, then also YES!

Lattice-Based Crypto & Applications Bar-Ilan University, Israel 2012

3

62

And still more ...

X mod **A** is uniform Is **X** uniform modulo **B**?

If **A** is the Gram-Schmidt basis of **BU** for any integer matrix **U**, then also YES!

(This is because L(**BU**) is a sublattice of L(**B**), and so uniform modulo **BU** implies uniform modulo **B**.)

And in particular ...

B is a lattice basis

C=BU is a (sub)-lattice basis such that all vectors of **C** are at most $\lambda_n(B)$

Then all vectors of $\tilde{\mathbf{C}}$ are of length at most $\lambda_n(\mathbf{B})$

So if s> $5\lambda_n(\mathbf{B})$, and $\mathbf{X} \sim \rho_s(\mathbf{x}) = (1/s)^n e^{-\pi |\mathbf{x}|^2/s^2}$, then: **X** is uniform mod $\tilde{\mathbf{C}} \rightarrow$ uniform mod $\mathbf{C} \rightarrow$ uniform mod **B**

Uniform Distribution Over Lattices

Theorem [Micciancio and Regev 2004]:

if
$$s > 5\lambda_n(\mathbf{B})$$
, and $\mathbf{X} \sim \rho_s(\mathbf{x}) = (1/s)^n e^{-\pi \|\mathbf{x}\|^2/s^2}$, then

 Δ (**X** mod **B**, Uniform(**B**)) < n2⁻¹¹⁰

THE REDUCTION

[Ajtai '96, Micciancio and Regev '04]

Worst-Case to Average-Case Reduction

Worst-Case to Average-Case Reduction

Worst-Case to Average-Case Reduction

How to use the SIS oracle to find a short vector in any lattice:

Repeat m times:

Pick a random lattice point

How to use the SIS oracle to find a short vector in any lattice:

Repeat m times:

Pick a random lattice point

Gaussian sample a point around the lattice point

All the samples are uniform in \mathbf{Z}_{a}^{n}

How to use the SIS oracle to find a short vector in any lattice:

Repeat m times:

Pick a random lattice point

Gaussian sample a point around the lattice point Give the m " Z_q^n samples" $a_1,...,a_m$ to the SIS oracle Oracle outputs $z_1,...,z_m$ in {-1,0,1} such that:

$$a_1 z_1 + ... + a_m z_m = 0$$

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}$$

\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array}

\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
\bigg{)}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
\bigg{)} \end{array}
 \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
\bigg{)} \end{array}

\bigg{)} \end{array}
 \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
\bigg{)} \end{array}
 \\
\bigg{)} \end{array}

\bigg{)} \end{array}
 \\
\bigg{)} \\
\bigg{)} \\
\bigg{)} \end{array}
 \\
\bigg{)} \end{array}
 \\
\bigg{)} \\
\bigg{

Bar-Ilan University Israel 2012

Bar-Ilan University Israel 2012

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}$$
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}

\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}

\end{array} \\
\end{array} \\
\end{array}

}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}

} \\
\end{array} \\
\end{array} \\
\end{array}

} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}

} \\
\end{array} \\

} \\
\end{array}

} \\
\end{array}

} \\
\end{array} \\

} \\
\end{array} \\
\end{array}

} \\
\end{array}

} \\
\end{array}

} \\
\end{array}
} \\
\end{array}

} \\
\end{array}

} \\
\end{array}
} \\
\end{array}
} \\
\end{array}
} \\
\end{array}
} \\
\end{array}
} \\
\end{array}
} \\
\end{array}
} \\
\end{array}
} \\
\end{array}
} \\
\end{array}
} \\
\end{array}
} \\
\end{array}
} \\
\end{array}
} \\
\end{array}
} \\
\end{array}
} \\
\end{array}
} \\
\end{array}
} \\
\end{array}
} \\
\end{array}
} \\
\end{array}
} \\
\end{array}
} \\
\end{array}
} \\
\end{array}
} \\
\end{array}
} \\
\bigg
} \\
\end{array}
} \\
\bigg
} \\
\bigg
} \\
\bigg
} \\
\bigg
} \\
\end{array} \\
\bigg
} \\
\bigg

 $\|\mathbf{r}_{1}\mathbf{z}_{1}+...+\mathbf{r}_{m}\mathbf{z}_{m}\| \approx \tilde{O}(\forall m)\|\mathbf{r}_{i}\| \approx \tilde{O}(\forall m) \lambda_{n} \approx \tilde{O}(n) \lambda_{n}$

Can either guess λ_n using binary search or keep using s=length of the largest vector/ $\tilde{O}(n)$ to find a shorter vector, and this should keep working until the length of the largest vector < $\tilde{O}(n) \lambda_{n_r}$ which solves SIVP $_{\tilde{O}(n)}$

Bar-Ilan University Israel 2012

Some Technicalities

- You can't sample a "uniformly random" lattice point
 - In the proofs we work with \mathbf{R}^n / L
- What if $\mathbf{r}_1 \mathbf{z}_1 + \dots + \mathbf{r}_m \mathbf{z}_m$ is 0?
 - Can show that with non-negligible it is in fact linearly independent of the n-1 non-longest vectors.
 - This is because given an \mathbf{s}_{i} , there are many possible \mathbf{r}_{i}
- Gaussian Sampling doesn't give us points on the grid
 - Can round to a grid point
 - Need to be mindful to bound the extra "rounding distance"
 - Alternatively, sample the grid point directly (using an algorithm you will see tomorrow)