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Session Outline

* Average-Case Problems
— The Small Integer Solution (SIS) problem

e Gaussian Distributions and Lattices

 Reducing a Worst-Case Lattice Problem to SIS



THE AVERAGE-CASE PROBLEMS
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Small Integer Solution Problem

Given: Random vectors a...,d N Zg

Find: non-trivial solution z,,...,z_in {-1,0,1} such that

" n
Z a, + z,| a, + . +z |3, | = 0 |an

Observations:

o If size of z_is not restricted, then the problem is trivial
« Immediately implies a collision-resistant hash function
« A relationship to lattices emerges ...



Relationship of SIS to Lattice Problems

Find: non-trivial solution z,,...,z_in {-1,0,1} such that

Let S be the set of all integer z=(z,,...,z,,),
suchthata,;z, +..+a_z =0 modq

Sis a lattice!

SIS problem asks to find a short vector in S.



Representing Lattices

L(B) = {z: z=Bx for x in Z"}

B X

A

L-(A) ={zinZ™: Az=0 mod q}

Worst-Case to Average-Case Reduction:

Approximately solving SIVP in all lattice

< Finding short vectors in these lattices
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(m = nlog n)
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| mod g
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Collision-Resistant Hash Functions

For arandom hin H,
It is hard to find:

Xy X, IND

such that

h(Xl) = h(xz)

v
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Collision-Resistant Hash Function

Given: Random vectors a,...,A_in Zg

Find: non-trivial solution z,...,z_in {-1,0,1} such that

A=(a,,...,a_) Define h,:{0,1}" > Zg where
h,(z,,....2 )=a,z, +...+a_z_

Domain of h ={0,1}™ (size =2™) Range of h = Zg (size = g")
Set m>nlog g to get compression
Collision:a,;z, +..+a _z =a,y,+..+a_y_

So, a,(z,-y,)+..+a_(z -y )=0andz-y arein{-1,0,1}
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THE GAUSSIAN (NORMAL) DISTRIBUTION



1-dimensional

0.(X) = (1/5)e /s

It’s @ Normal ¢
Centerec

Standard

Definition

Gaussian distribution:
2

istribution:
at O
deviation: s/V2n
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Example (s=1)

o.e—_ /
[

06—

|

0.4 i !
{ i

./ \

A W

0.0 T T T T T T T T
- - 2 - 0 1 2 3

15



Example (s=1 and 5)




2-Dimensional Gaussian

1-dim gaussian on the x, axis:
py(X;) = (1/5)e™/*"
1-dim gaussian on the x, axis:
py(X,) = (1/s)e/*"
ps(xyxz) = Ps(X1) - ps(x,)
= (1/s)e™i/5° . (1/s)e™™/s’
= (1/s)? e TUx] +x3)/s?

ps(x) = (1/s)? e Tlx|I*/s?



2-Dimensional Example
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n-Dimensional Gaussian

n-dimensional Gaussian distribution:
ps(x) = (1/s)" a-TlIx||%/s

It’s an n-dimensional Normal distribution:
Centered at 0
Standard deviation: s/V 2n




Useful Properties of the
Gaussian Distribution

1. It is a Product Distribution
2. Itis Spherically-Symmetric

3. Itis “uniform” modulo parallelepipeds



Product Distribution

Ps(X) = Pg(Xy) = oo - Po(X)



Spherically Symmetric

ps(x)= (1/s)" e™ | x| %/s?

The probability of x only depends on its length
The distribution is “axis-independent”
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Generating Uniform Elements on a
Line Segment

p,(x)= (1/s)e™/s*
and s=5M, for some positive M

if X~ p,, then for all m < M,
A (X mod m, Uniform [0, m) ) < 2-110



Example (s=1,m=1)
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Example (s=1,m=1, .9, .8)
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Example (s=2)
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Generating Uniform Elements in an
n-dimensional Parallelepiped

N

Reducing modulo a parallelepiped
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Generating Uniform Elements in an
n-Dimensional Box

Box B with dimensions (m,, ... ,m, ), all m, < M.

Generate X, ..., X, ~ p((x) = (1/s)e'"><2/SZ _where s=5M
For each j, A(X; mod m , Uniform [0, m)) ) < 2-11

Thus A((X; mod m, ..., X, mod m_), Uniform(B)) < n2-110

So, if X ~ p,(x) = (1/s)" e™IXI°/$* for s=5M, A(X mod B, Uniform(B)) < n2-110 = 0

\ 4
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Generating Uniform Elements in a
Rotated n-Dimensional Box

ps(x) =(1/s)" eTxI?/s* g 5 spherical distribution

So rotating axes doesn’t affect it

o L

\ 4
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Generating Uniform Elements in a
Rotated n-Dimensional Box

ps(x) =(1/s)" eTxI?/s* g 5 spherical distribution

So rotating axes doesn’t affect it

Thus, A(X mod B’, Uniform(B’)) = 0
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Generating Uniform Elements in
Parallelepipeds

Suppose we have X ~ p(X) = (1/s)" eTIxI°/s’
and
X mod A is uniform

Is X uniform modulo B?

N

© =

Lattice-Based Crypto & Applications
Bar-llan University, Israel 2012

2

\ 4

32



Generating Uniform Elements in
Parallelepipeds

If B is much bigger than A (i.e. has a bigger determinant),
then probably NO.

o

33
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Generating Uniform Elements in
Parallelepipeds

If B is much bigger than A (i.e. has a bigger determinant),
then probably NO.

But what if B=AU when det(U)=17?
Still ... not necessarily.
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Generating Uniform Elements in
Parallelepipeds

If B=AU and det(U)=1, then
X mod A is uniform = X mod B is uniform if:

1.) Uis an integer matrix or

2.) U is an upper-triangular matrix with 1’s
on the diagonal



Some Simplifying Assumptions

Pretend that the space R" is divided into a very
very fine grid.

Any two parallelepipeds that have the same
determinant have the same number of grid
points inside them.



1-to-1 Relationship Between
R"/AandR" /B

B=AU
By our assumption #(R"/A)=#(R"/B)
We will now show that:
For every a=Az, where zin [0,1)", a mod B is distinct
This implies that if X mod A is uniform, then
X mod B is uniform too.



1-to-1 Relationship Between
R"/AandR" /B

N

1-to-1

not 1-to-1
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1-to-1 Relationship Between
R"/AandR" /B

If B=AU and det(U)=1, then
X mod A is uniform = X mod B is uniform if:
1.) U is an integer matrix
Then L(A) = L(B), thus ...
If Az, mod B = Az, mod B, then
A(z,-z,)=0 mod B
A(z,-z,) is in L(B)
Z,-Z, 1S an integer vector
2,-2,=0 —2>¢&



1-to-1 Relationship Between
R"/AandR" /B

If B=AU and det(U)=1, then
X mod A is uniform = X mod B is uniform if:

2.) Uis an upper-triangular matrix with 1’s on the diagonal
If Az, mod B = Az, mod B, then

A(z,-z,)=0 mod B

BU(z,-z,) is in L(B)

U-(z,-z,) is an integer vector
why?  2,-2,=0 =€



1-to-1 Relationship Between
R"/AandR" /B

U is an upper-triangular matrix with 1’s on the diagonal
Thus U1 is also.

1 a b C 0
0 1 d e 0
0 1 f 0 o
0 0 0 1 0
| I Y ' ‘_Y_’
-1 _ integer
U Z,-2,

vector



The Gram-Schmidt Matrix

B is a basis for a lattice
Then B = BU where B is the Gram-Schmidt basis

1 Myp M31p - Has

0 1 i, Hn,2
cr R » .0 1 =B
b, b, b, b, o

U9 -
c



Generating Uniform Elements in
Parallelepipeds

Suppose we have X ~ p_(x) = (1/s)" e TIxI%/s*
and

X mod A is uniform

Is X uniform modulo B?

If A is the Gram-Schmidt basis of B, then YES!
So s needs to be big enough to make X uniform mod A

N

© =
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There is more ...

X mod A is uniform
Is X uniform modulo B?

If A is the Gram-Schmidt basis of BU for any integer matrix U
with determinant 1, then also YES!

o L

\ 4

\ 4
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And still more ...

X mod A is uniform
Is X uniform modulo B?

If A is the Gram-Schmidt basis of BU for any integer matrix U,
then also YES!

(This is because L(BU) is a sublattice of L(B), and so uniform
modulo BU implies uniform modulo B.)

N

o L

\ 4
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And in particular ...

B is a lattice basis

C=BU is a (sub)-lattice basis such that all vectors of C are at most A (B)
Then all vectors of C are of length at most A_(B)

So if s> 5\ (B), and X ~ p(x) = (1/s)" eTIxI°/s* then:
X is uniform mod € = uniform mod € = uniform mod B

N

,{Q'\'

2

v
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Uniform Distribution Over Lattices

Theorem [Micciancio and Regev 2004]:
if s> 5\ (B), and X ~ p.(x) = (1/s)" eIxl*s" then

A(X mod B, Uniform(B)) < n2-119
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Gaussians on Lattice Points
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Gaussians on Lattice Points
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Gaussians on Lattice Points
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Gaussians on Lattice Points
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THE REDUCTION

[Ajtai ‘96, Micciancio and Regev ‘04]
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Worst-Case to Average-Case Reduction




Worst-Case to Average-Case Reduction




Worst-Case to Average-Case Reduction

2
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Important: All lattice points have label (0,0)
and
All points labeled (0,0) are lattice points
(0" in n dimensional lattices)



1 2 0 1 2 0 1 2 0 1
How to use the SIS oracle to find a short vector in any lattice:

Repeat m times:
Pick a random lattice point
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How to use the SIS oracle to find a short vector in any lattice:

Repeat m times:
Pick a random lattice point
Gaussian sample a point around the lattice point

All the samples are uniform in Zg
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1 2 0 1 2 0 1 2 0 1
How to use the SIS oracle to find a short vector in any lattice:

Repeat m times:

Pick a random lattice point
Gaussian sample a point around the lattice point
Give the m ”Z: samples” a,,...,a_ to the SIS oracle
Oracle outputs z,,...,z_in {-1,0,1} such that:
a,z;+..+a z =0
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1 2 0 1 2 0o 1 2 0 1
Give the m ”Z: samples” a,,...,a_ to the SIS oracle

Getz,..,z_in{-1,0,1}such thata;z, +..+a z =0

° -y s,z,+...+s_z _is a lattice vector, so
S (vy+r )z +..+(v_+r )z  istoo
| .
(viz+..+v z )+ (rz +..+r z ) istoo
V.+r =5

So, r,z +...+r_z_is also lattice vector
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Give the m ”Z: samples” a,,...,a_ to the SIS oracle

Getz,..,z_in{-1,0,1}such thata;z, +..+a z =0

° -y So, ryz +...+r_z s also lattice vector
o =g r.are short vectors, z are in {-1,0,1}
i . .
Soryz +..+r_z_is ashort lattice vector
V.+r, =5

||rj_z]_+"'+rmzm|| = O(Vm)“rlll
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Give the m ”Z: samples” a,,...,a_ to the SIS oracle

Getz,..,z_in{-1,0,1}such thata,z, +..+a _z =0

® -y, Ir,z,+...4r z || = O(Vm)]|[ri|]
o =g Reduction works when
| r.~ p.(x) = (1/s)" eIXI?/s* for S>5A_
V.+r, =5

So [|ri|| = 5\ Vn
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Iz 4.4z, || = O(m)]Ir]
= O(Vmn) A, = O(n) A,
Can either guess A using binary search or keep
using s=length of the largest vector/O(n) to find a
shorter vector, and this should keep working until
the length of the largest vector < O(n) A, which solves SIVPs )



Some Technicalities

* You can’t sample a “uniformly random” lattice point

— In the proofs we work with R" / L
* Whatifrz+..4r_z is0?
— Can show that with non-negligible it is in fact linearly independent
of the n-1 non-longest vectors.
— This is because given an s, there are many possible r,

e Gaussian Sampling doesn’t give us points on the grid
— Can round to a grid point
— Need to be mindful to bound the extra
“rounding distance”
— Alternatively, sample the grid point directly
(using an algorithm you will see tomorrow)



