South College PA Course University of Tennessee Medical Center at Knoxville

"For I am fearfully and wonderfully made...that my soul knoweth right well" ~ Ps. 139:14~

<u>Edwin Smith Papyrus</u> ~ 1650 B.C.

---- [1021 - 19 . 12 8 . 1- 2- LANSO A 133 - 135 H = 33 - 2 min = = FE - 1 33 min 15世まり、2011月1915 251月3 21-11-2 שובות וביושובייבייבי גאוגובישובישובי -11(13) - the - the - 151- 1895 - 3 通いでこここころしいのころ ひんしんし 20 Mais 11-1340 112 2 2 2 2 2 2 2 2 2 2 2 2 2 1 . H # ~ = [=] [= 01 | = = = = [kut 2 kg 153 153 - Sur 117 19 - 28: 27 - 28 That I we we we we Be I 8-1-111-12 33 202 =3130 NA 1 -13 33- = 37 = -10 TOTAL MAN =1-B=# ======

Ebers Papyrus

~ 1550 B.C.

- 1. Classification
 - Acute vs chronic
- 2. Phases of Healing
 - Coagulation
 - Inflammation
 - Proliferation
 - Maturation
- 3. <u>Components of healing</u>
 - Cellualar/mechanical constituents
 - Neutrophils
 - Macrophages
 - Fibroblasts
 - Collagen
 - Chemical/cytokine constituents
- 4. Factors Affecting Wound Healing
 - Extrinsic
 - Instrinsic
- 5. Pathologic States
 - Impaired vs excessive healing
 - Organ specific problems
 - Genetic abnormalities
- 6. Treatment Options
 - Local wound care
 - Skin replacement/ adjuncts
 - New horizons

<u>Chronic Wounds</u>

- Diabetic
- Arterial
- Venous
- Pressure related

<u>Chronic Wounds</u>

- >3 mos. to heal
- repeated trauma/ poor perfusion/ ongoing inflammation
- Potential for malignant degeneration (i.e. Marjolin's ulcer)

<u>Chronic Wounds/ Diabetic</u>

- Etio: Ischemia, neuropathy (motor/sensory), deformity (e.g. Charcot's foot)
- Tx: blood Glucose control, R/O osteo, off load deformities, adequate debridement

Chronic Wounds/ Arterial

- Etio: inadequate perfusion
- S/S: Painful, dry, punctate vs. venous stasis
- Tx: Restablishment of adequate flow + wound care

<u>Chronic Wounds/ Venous</u>

- Etio: Hydrostatic pressure / transudation / fibrin polymerization / "perivascular cuffing"
- S/S: Medial ankle, moist, superficial, diffuse vs arterial
- Tx: Elevation/ compression/ pain control (catecholamine response)

<u>Chronic Wounds/ Pressure sores</u>

- Etio: capillary compression
- Classification NatnL. Pressure Ulcer Advisory Panel
 - Stage I: skin intact
 - Stage II: epidermal/dermal skin breakdown
 - Stage III: ST loss down to but not through fascia
 - Stage IV: extensive destruction through fascial plane
- Tx: debridement, wound care, offloading pressure, grafting/flaps

Fibroblasts

Migration by 3rd day/ dominant cell by 5th day
GAG synthesis
Collgaen synthesis
Elucidate MMPs

Angiogenesis

- -Low O₂tension/ elevated lactic acid concentration
- -VGEF, aFGF & bFGF as per macrophages/endothelial cells/ fibroblasts
- -Endothelial migration in accord w/ chemotactic gradient by collagenases
- -Organization / Type IV collagen / basement membrane est./ granulation tissue formation/ ground substance & high HA content

Phases of Healing/ Proliferation (3 days-3 weeks)

- Fibroblast migration

- Via PDGF/TGF-B direction
- ECM interplay facilitated by fibronectin
- Heralds transition from inflammatory to reconstructive phase

– Collagen Synthesis

- Properties
- Process
- Regulation

 Collagen Properties -Most abundant protein in body -19 variants w/ Type I predominant -Types II, III, IV, V -High glycine content (q3) -Unique AA's 4-hydroxyproline 5-hydroxylysine

Collagen Synthesis/ Regulation

- -Intracellular synthesis
 - •Triple ą helix w/ H bond linking
- -Post trans oxidation proline lysine
 - •Vit C crucial for prolyl/lysyl hydroxylase
- –Propeptide prevention of aggregation
- -EC secretion of procollagen
- -Terminal propeptides cleaved→tropocollagen
- -Tropocollagen limking→ collagen
 - •Via Cu-dependent lysine oxidase

Collagen Synthesis Regulation -Max accumulation by 2-3 wks - total content = after 3 wks -Pro: Acidemia •TGF-B Hypoxia -Inhibitory: •NAD+/ ADP ribose

<u>Phases of Healing/ Maturation (3 weeks-6</u> <u>months)</u>

- Tensile strength:
 - Per fibril cross-linking
 - 50% @ 6 wks
 - eventually ~70-80% @ ≥ 6 months
- Contraction:
 - myofibroblast /actin fibers w/in \rightarrow 30-90% reduction in CSA
 - Max rate 0.75 mm/ day
- Reepithelialization:
 - facilitated by contraction
 - from peripheral basal margins inward
 - Type IV collagen/basement membrane per keratinocytes
 - Max rate 1-2mm/day

TABLE 5.1. GROWTH FACTORS IN WOUND HEALING

Growth Factor	Cell Source	Function
PDGF	Macrophages Platelets Endothelial cells Epithelial cells Fibroblasts Others	Stimulates fibroblast and smooth muscle cell chemotaxis and proliferation, neutrophil and macrophage chemotaxis, collagen synthesis, proteoglycan synthe- sis, collagenase activity, fibronectin synthesis
TGF-β	Platelets Macrophages Lymphocytes Fibroblasts Keratinocytes Others	Stimulates fibroblast chemotaxis and proliferation (dose dependent), collagen synthesis, proteoglycan synthe- sis, fibronectin synthesis, angiogenesis, wound con- traction
EGF	Macrophages Platelets Epithelial cells Others	Stimulates epithelial cell chemotaxis and proliferation, fibroblast chemotaxis and proliferation, endothelial cell proliferation
FGF-2	Macrophages Endothelial cells Fibroblasts	Stimulates fibroblast proliferation, epithelial cell prolif- eration, endothelial cell proliferation and migration, collagen synthesis, proteoglycan synthesis, fibronec- tin synthesis, angiogenesis, wound contraction
TGF-α	Macrophages Platelets Keratinocytes	Same as EGF
IL-1	Macrophages	Stimulates inflammatory cell chemotaxis, epithelial cell chemotaxis, fibroblast proliferation, collagen synthe- sis, collagenase activity
VEGF	Fibroblasts Macrophages Endothelial cells Epithelial cells	Stimulates endothelial cell proliferation and migration, angiogenesis
KGF (FGF-7)	Fibroblasts	Stimulates epithelial cell proliferation and migration
IGF	Fibroblasts Macrophages	Stimulates fibroblast proliferation, collagen synthesis, proteoglycan synthesis

EGF, epidermal growth factor; FGF, fibroblast growth factor; IGF, insulin-like growth factor; KGF, keratinocyte growth factor; PDGF, platelet-derived growth factor; VEGF, vascular endothelium growth factor; TGF, transforming growth factor.

-Modified from Peacock JL, Lawrence WT, Peacock EE Jr. Wound healing. In: O'Leary JP, ed. The physiologic basis of surgery. 1st ed. Baltimore: Williams & Wilkins, 1993.

