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Wrap of Number Theory & Midterm Review

F Primes, GCD, and LCM (Section 3.5 in text)

F Midterm Review
Sections 1.1-1.7

Propositional logic

Predicate logic

Rules of inference and proofs

Sections 2.1-2.3

Sets and Set operations

Functions

Sections 3.4-3.5

Integers, div, mod, congruence, applications

Primes and their properties
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Recall: Fundamental Theorem of Arithmetic
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Fundamental Theorem of Arithmetic

F FTA Theorem. nZ+ where n > 1, n is a prime or a product 

of primes in nondecreasing order. (Proof  in a later section)

F In other words, primes are the “building blocks” of integers

F FTA examples:
50 = 2 x 5 x 5 = 2152

72 = 2 x 2 x 2 x 3 x 3 = 2332

5 = 51
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Testing whether a number is prime

F Naïve algorithm for primality testing:
Input n: 

For a = 2,…, n-1:Test whether a | n. 

If no a divides n, then n prime.

F Is there a better (faster) algorithm?
Do we need to test all the numbers from 2 to n-1?
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Testing whether a number is prime

F Thm: n composite  n has a prime factor
Proof: n composite  a (1<a<n) n = ab for some integer b > 1.

Suppose a >        and b >      . 

Then ab > i.e., ab > n.

This contradicts ab = n. Therefore, a           or b         .

If a or b is prime, we are done. Otherwise, by FTA, a is product of 

prime factors < a and b is product of prime factors < b. Therefore, n

has a prime factor          . QED.

F Corollary: If n does not have a prime factor         , then n is 

prime 
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Algorithm for Primality
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Algorithms for Primality and Prime Factorization

F Algorithm for Primality: Given n, test whether any prime 

from 2 to      divides n. If none does, then n is prime.
Example: Is 311 a prime? Test 2, 3, 5, 7, 11, 13, 17 

None divides 311, therefore 311 is a prime. (Note: only tested 7 

numbers instead of the 309 numbers in the naïve algorithm!)

F Algorithm for prime factorization of n: Find prime factors

F Example: Find prime factorization of 819
819 Test 2, 3,..3 | 819, so p1 = 3; Next, 819/3 = 273

273Test 2, 3,… 3 | 273, so p2 = 3; Next, 273/3 = 91

91 Test 2, 3, 5, 7… 7 | 91, so p3 = 7; Next, 91/7 = 13 (a prime)

Therefore, 819 = 33 713

n
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Ain’t primal 

enuff for me, 

mate!
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How many primes are there?

F Euclid’s theorem (circa 300 BC): There are infinitely many 

primes. 
Proof by contradiction: See text.

Corollary: For any positive integer n, there is always a prime 

greater than n.

F How many primes  n?
Let P(n) = number of primes  n.

Prime Number Theorem: 

P(n) is approximately n/ ln n

as n grows without bound.

Cor.: Probability that a random 

positive int.  n is prime = 

(n/ ln n)/n = 1/ ln n

P(n)

n/ ln n

n
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Greatest Common Divisor (GCD)

F Example:
Positive divisors of 16 = 1, 2, 4, 8, 16

Positive divisors of 24 = 1, 2, 3, 4, 6, 8, 12

Greatest Common Divisor gcd(16,24) = 8

F For any nonzero a,b  Z, gcd(a,b) = largest integer d such 

that d | a and d | b
gcd(10,15) = 5, gcd(7,15) = 1

a, b are relatively prime iff gcd(a,b) = 1. E.g., 7 and 15.

F Computing gcd(a,b): Use prime factorization of a, b

12532gcd(60,72),3272  ,53260  E.g.
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Least Common Multiple (LCM)

F Example:
Multiples of 6 = 6, 12, 18, 24, 30, …

Multiples of 8 = 8, 16, 24, 32, …

Least Common Multiple lcm(6,8) = 24

F For any a,b  Z+, lcm(a,b) = smallest c  Z+ such that a | c 

and b | c.
lcm(4,6) = 12, lcm(5,10) = 10, lcm(5,11) = 55

F Computing lcm(a,b): Use prime factorization of a, b

F Theorem: gcd(a,b)lcm(a,b)=ab

2432lcm(6,8),28  ,326  E.g.
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Midterm Review: Chapter 1 (Sections 1.1-1.7)

F Propositional Logic
Propositions, logical operators , , , , , , truth tables for 

operators, precedence of logical operators

Compound propositions, truth tables for compound propositions

Converse, contrapositive, and inverse of p  q

Converting from/to English and propositional logic

F Propositional Equivalences
Tautology versus contradiction

Logical equivalence p  q

Tables of logical equivalences (tables 6, 7, 8 in text)

De Morgan’s laws

Showing two compound propositions are logically equivalent via (a) 

truth table method and (b) via equivalences in tables 6, 7, 8.
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F Predicates and Quantifiers
Predicates, variables, and domain of each variable

Universal and existential quantifiers  and  (uniqueness !)

Truth value of a quantifier statement

Logical equivalence of two quantified statements

Negation and De Morgan’s laws for quantifiers

Translating to/from English

F Nested Quantifiers
Translating to/from English, negating nested quantifiers

Predicate Logic
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Rules of Inference

Modus borus

Modus ponens

Modus tollens
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Rules of Inference

F Rule of inference = valid argument form. Table 1 (p. 66).
Modus ponens: [p  (p  q)]  q

Modus tollens: [(p  q)  q] p

Hypothetical Syllogism: [(p  q)  (q  r)]  (p  r)

Disjunctive Syllogism: : [(p  q)  p]  q

Addition, Simplification, Conjunction 

Resolution: [(p  q)  (p  r)]  (q  r)

F Using rules of inference to prove statements from premises

F Rules of inference for quantified statements: instantiation 

and generalization
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Proofs and Proof Methods

F Direct proof of p  q: Assume p is true; show q is true.

F Proof of p  q by contraposition: Assume q and show p.

F Vacuous and Trivial Proofs of p  q

F Proof by contradiction of a statement p: Assume p is not true 

and show this leads to a contradiction (r  r).

F Proofs of equivalence for p  q: Show p  q and q  p

F Proof by cases and Existence proofs
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Chapter 2: Sets and Operations (Sections 2.1-2.2)

F Sets
Set builder notation, set equality, Venn diagrams

Sets Z, Z+, R, Q, N, , singleton sets

Subset and proper subset

Cardinality, finite and infinite sets, Power set

Tuples, Cartesian product, truth set of a predicate

F Set operations
, , difference, complement

Set identities (similar to logical equivalences)

Proving two sets are equal: Two methods

Show each set is a subset of the other, OR

Use logical equivalences

F Bit string representation of sets and bitwise operations
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Chapter 2: Functions (Section 2.3)

F Definition of a function
Domain, co-domain, range, image, preimage

1-1 and onto functions, bijections

Know definitions and how to show 1-1, onto, or bijection

Inverse of a function and composition of functions

floor and ceiling functions

Know definitions and how to compute
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Chapter 3: Integers and Division (Section 3.4)

F Division
Know definitions of a | b, factor, multiple

Prove identities involve |

Division algorithm

Know the statement, div, mod

F Modular arithmetic
Know definition and theorems

a  b (mod m) iff m | (a-b) iff a mod m = b mod m iff a = b + km
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Applications of Modular Arithmetic

F Hashing
Hashing 

function

Collision
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Pseudorandom numbers using linear congruential generator

Applications of Modular Arithmetic
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Applications of Modular Arithmetic

Cryptology

F Caeser’s cipher

F Shift cipher

F Encryption

F Decryption
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Chapter 3: Primes and GCD (Section 3.5)

F Primes
Definition, Fundamental Theorem of Arithmetic (FTA)

Algorithms for testing primality and prime factorization 

Euclid’s infinitude of primes theorem

Prime number theorem: Number of primes not exceeding n is 

approximately n / ln n as n grows without bound

F GCD and LCM
Definition of gcd and lcm, definition of relatively prime

Finding gcd and lcm through prime factorizations (using min/max of 

exponents)
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Good luck on the midterm!

F You can bring one 8 1/2'' x 11'' review sheet (double-sided ok, 

handwritten or typed but no magnifying aids please!). 

F Calculators okay to use but won’t really need it.

Don’t sweat it!

• Go through the homeworks, lecture notes, and examples  

in the text 

• Do the practice midterm on the website 

and avoid being surprised!


