Wrap of Number Theory \& Midterm Review

\uparrow Primes, GCD, and LCM (Section 3.5 in text)

- Midterm Review
\Rightarrow Sections 1.1-1.7
- Propositional logic
- Predicate logic
- Rules of inference and proofs
\Rightarrow Sections 2.1-2.3
- Sets and Set operations
- Functions
\Rightarrow Sections 3.4-3.5
- Integers, div, mod, congruence, applications
- Primes and their properties

Recall: Fundamental Theorem of Arithmetic

Fundamental Theorem of Arithmetic

\downarrow FTA Theorem. $\forall \mathrm{n} \in \mathrm{Z}^{+}$where $\mathrm{n}>1, \mathrm{n}$ is a prime or a product of primes in nondecreasing order. (Proof in a later section)

- In other words, primes are the "building blocks" of integers
\rightarrow FTA examples:
$\Rightarrow 50=2 \times 5 \times 5=2^{1 .} \cdot 5^{2}$
$\Rightarrow 72=2 \times 2 \times 2 \times 3 \times 3=2^{3} 3^{2}$
$\Rightarrow 5=5^{1}$

Testing whether a number is prime

\checkmark Naïve algorithm for primality testing:
\Rightarrow Input n :
For $\mathrm{a}=2, \ldots, \mathrm{n}-1$:Test whether $\mathrm{a} \mid \mathrm{n}$. If no a divides n, then n prime.
\uparrow Is there a better (faster) algorithm?
\Rightarrow Do we need to test all the numbers from 2 to $\mathrm{n}-1$?

Testing whether a number is prime

\uparrow Thm: n composite $\rightarrow n$ has a prime factor $\leq \sqrt{n}$
\Rightarrow Proof: n composite $\rightarrow \exists \mathrm{a}(1<\mathrm{a}<\mathrm{n}) \mathrm{n}=\mathrm{ab}$ for some integer $\mathrm{b}>1$. Suppose $\mathrm{a}>\sqrt{n}$ and $\mathrm{b}>\sqrt{n}$. Then $\mathrm{ab}>\sqrt{n} \cdot \sqrt{n}$ i.e., $a b>n$.
This contradicts $\mathrm{ab}=\mathrm{n}$. Therefore, $\mathrm{a} \leq \sqrt{n}$ or $\mathrm{b} \leq \sqrt{n}$.
If a or b is prime, we are done. Otherwise, by FTA, a is product of prime factors < a and b is product of prime factors < b . Therefore, n has a prime factor $\leq \sqrt{n}$. QED.
\downarrow Corollary: If n does not have a prime factor $\leq \sqrt{n}$, then n is prime

Algorithm for Primality

Algorithms for Primality and Prime Factorization

\checkmark Algorithm for Primality: Given n, test whether any prime from 2 to \sqrt{n} divides n. If none does, then n is prime.
\Rightarrow Example: Is 311 a prime? Test $2,3,5,7,11,13,17 \leq \sqrt{311}$
None divides 311 , therefore 311 is a prime. (Note: only tested 7 numbers instead of the 309 numbers in the naïve algorithm!)
\rightarrow Algorithm for prime factorization of n : Find prime factors $p_{1} \leq \sqrt{n}, p_{2} \leq \sqrt{n / p_{1}}, p_{3} \leq \sqrt{n /\left(p_{1} p_{2}\right)} \ldots$
\rightarrow Example: Find prime factorization of 819
$819 \rightarrow$ Test $2,3, . . \rightarrow 3 \mid 819$, so $p_{1}=3$; Next, $819 / 3=273$
$273 \rightarrow$ Test $2,3, \ldots \rightarrow 3 \mid 273$, so $p_{2}=3$; Next, $273 / 3=91$
$91 \rightarrow$ Test $2,3,5,7 \ldots \rightarrow 7 \mid 91$, so $p_{3}=7$; Next, $91 / 7=13$ (a prime)
Therefore, $819=3 \cdot 3 \cdot 7 \cdot 13$

How many primes are there?

- Euclid's theorem (circa 300 BC): There are infinitely many primes.
\Rightarrow Proof by contradiction: See text.
\Rightarrow Corollary: For any positive integer n, there is always a prime greater than n.
\checkmark How many primes $\leq n$?
\Rightarrow Let $\mathrm{P}(n)=$ number of primes $\leq n$.
\Rightarrow Prime Number Theorem: $\mathrm{P}(n)$ is approximately $n / \ln n$ as n grows without bound.
\Rightarrow Cor.: Probability that a random positive int. $\leq n$ is prime $=$ $(n / \ln n) / n=1 / \ln n$

Greatest Common Divisor (GCD)

- Example:
\Rightarrow Positive divisors of $16=1,2,4,8,16$
\Rightarrow Positive divisors of $24=1,2,3,4,6,8,12$
\Rightarrow Greatest Common Divisor $\operatorname{gcd}(16,24)=8$
- For any nonzero $a, b \in Z, \operatorname{gcd}(a, b)=$ largest integer d such that $\mathrm{d} \mid \mathrm{a}$ and $\mathrm{d} \mid \mathrm{b}$ $\Rightarrow \operatorname{gcd}(10,15)=5, \operatorname{gcd}(7,15)=1$
$\Rightarrow \mathrm{a}, \mathrm{b}$ are relatively prime $\mathrm{iff} \operatorname{gcd}(\mathrm{a}, \mathrm{b})=1$. E.g., 7 and 15 .
\uparrow Computing $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$: Use prime factorization of a, b
$a=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{n}^{a_{n}}, b=p_{1}^{b_{1}} p_{2}^{b_{2}} \ldots p_{n}^{b_{n}}\left(a_{i}, b_{i}\right.$ can be 0$)$
$\operatorname{gcd}(a, b)=p_{1}^{\min \left(a_{1}, b_{1}\right)} p_{2}^{\min \left(a_{2}, b_{2}\right)} \ldots p_{n}^{\min \left(a_{n}, b_{n}\right)}$
E.g. $60=2^{2} 3 \cdot 5,72=2^{3} 3^{2}, \operatorname{gcd}(60,72)=2^{2} 3 \cdot 5^{0}=12$

Least Common Multiple (LCM)

- Example:
\Rightarrow Multiples of $6=6,12,18,24,30, \ldots$
\Rightarrow Multiples of $8=8,16,24,32, \ldots$
\Rightarrow Least Common Multiple lcm $(6,8)=24$
\uparrow For any $a, b \in Z^{+}, \operatorname{lcm}(a, b)=$ smallest $c \in Z^{+}$such that $a \mid c$ and $\mathrm{b} \mid \mathrm{c}$.
$\Rightarrow \operatorname{lcm}(4,6)=12, \operatorname{lcm}(5,10)=10, \operatorname{lcm}(5,11)=55$
\uparrow Computing $\operatorname{lcm}(\mathrm{a}, \mathrm{b})$: Use prime factorization of a, b
$a=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{n}^{a_{n}}, b=p_{1}^{b_{1}} p_{2}^{b_{2}} \ldots p_{n}^{b_{n}}\left(a_{i}, b_{i}\right.$ can be 0$)$
$\operatorname{lcm}(a, b)=p_{1}^{\max \left(a_{1}, b_{1}\right)} p_{2}^{\max \left(a_{2}, b_{2}\right)} \ldots p_{n}^{\max \left(a_{n}, b_{n}\right)}$
E.g. $6=2 \cdot 3,8=2^{3}, \operatorname{lcm}(6,8)=2^{3} \cdot 3=24$
- Theorem: $\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a b$
R. Rao, CSE 311 Midterm review

Midterm Review: Chapter 1 (Sections 1.1-1.7)

- Propositional Logic
\Rightarrow Propositions, logical operators $\neg, \wedge, \vee, \oplus, \rightarrow, \leftrightarrow$, truth tables for operators, precedence of logical operators
\Rightarrow Compound propositions, truth tables for compound propositions
\Rightarrow Converse, contrapositive, and inverse of $\mathrm{p} \rightarrow \mathrm{q}$
\Rightarrow Converting from/to English and propositional logic
- Propositional Equivalences
\Rightarrow Tautology versus contradiction
\Rightarrow Logical equivalence $\mathrm{p} \equiv \mathrm{q}$
\Rightarrow Tables of logical equivalences (tables 6, 7, 8 in text)
\Rightarrow De Morgan's laws
\Rightarrow Showing two compound propositions are logically equivalent via (a) truth table method and (b) via equivalences in tables 6, 7, 8.

Predicate Logic

- Predicates and Quantifiers
\Rightarrow Predicates, variables, and domain of each variable
\Rightarrow Universal and existential quantifiers \forall and \exists (uniqueness \exists !)
\Rightarrow Truth value of a quantifier statement
\Rightarrow Logical equivalence of two quantified statements
\Rightarrow Negation and De Morgan's laws for quantifiers
\Rightarrow Translating to/from English
- Nested Quantifiers
\Rightarrow Translating to/from English, negating nested quantifiers

Rules of Inference

Rules of Inference

\star Rule of inference $=$ valid argument form. Table 1 (p. 66).
\Rightarrow Modus ponens: $[\mathrm{p} \wedge(\mathrm{p} \rightarrow \mathrm{q})] \rightarrow \mathrm{q}$
\Rightarrow Modus tollens: $[(\mathrm{p} \rightarrow \mathrm{q}) \wedge \neg \mathrm{q}] \rightarrow \neg \mathrm{p}$
\Rightarrow Hypothetical Syllogism: $[(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r})] \rightarrow(\mathrm{p} \rightarrow \mathrm{r})$
\Rightarrow Disjunctive Syllogism: : $[(p \vee q) \wedge \neg p] \rightarrow q$
\Rightarrow Addition, Simplification, Conjunction
\Rightarrow Resolution: $[(\mathrm{p} \vee \mathrm{q}) \wedge(\neg \mathrm{p} \vee \mathrm{r})] \rightarrow(\mathrm{q} \vee \mathrm{r})$

- Using rules of inference to prove statements from premises
- Rules of inference for quantified statements: instantiation and generalization

Proofs and Proof Methods

- Direct proof of $p \rightarrow q$: Assume p is true; show q is true.
- Proof of $\mathrm{p} \rightarrow \mathrm{q}$ by contraposition: Assume $\neg \mathrm{q}$ and show $\neg \mathrm{p}$.
- Vacuous and Trivial Proofs of $\mathrm{p} \rightarrow \mathrm{q}$
- Proof by contradiction of a statement p: Assume p is not true and show this leads to a contradiction ($\mathrm{r} \wedge \neg \mathrm{r}$).
- Proofs of equivalence for $\mathrm{p} \leftrightarrow \mathrm{q}$: Show $\mathrm{p} \rightarrow \mathrm{q}$ and $\mathrm{q} \rightarrow \mathrm{p}$
- Proof by cases and Existence proofs

Chapter 2: Sets and Operations (Sections 2.1-2.2)

\rightarrow Sets
\Rightarrow Set builder notation, set equality, Venn diagrams
\Rightarrow Sets $\mathrm{Z}, \mathrm{Z}^{+}, \mathrm{R}, \mathrm{Q}, \mathrm{N}, \varnothing$, singleton sets
\Rightarrow Subset and proper subset
\Rightarrow Cardinality, finite and infinite sets, Power set
\Rightarrow Tuples, Cartesian product, truth set of a predicate
\rightarrow Set operations
$\Rightarrow \cup, \cap$, difference, complement
\Rightarrow Set identities (similar to logical equivalences)
\Rightarrow Proving two sets are equal: Two methods

- Show each set is a subset of the other, OR
- Use logical equivalences

Bit string representation of sets and bitwise operations
R. Rao, CSE 311 Midterm review

Chapter 2: Functions (Section 2.3)

\checkmark Definition of a function
\Rightarrow Domain, co-domain, range, image, preimage
$\Rightarrow 1-1$ and onto functions, bijections

- Know definitions and how to show 1-1, onto, or bijection
\Rightarrow Inverse of a function and composition of functions
\Rightarrow floor and ceiling functions
- Know definitions and how to compute

Chapter 3: Integers and Division (Section 3.4)

- Division
\Rightarrow Know definitions of $\mathrm{a} \mid \mathrm{b}$, factor, multiple
\Rightarrow Prove identities involve
\Rightarrow Division algorithm
- Know the statement, div, mod
- Modular arithmetic
\Rightarrow Know definition and theorems
$\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$ iff $\mathrm{m} \mid(\mathrm{a}-\mathrm{b})$ iff $\mathrm{a} \bmod \mathrm{m}=\mathrm{b} \bmod \mathrm{m}$ iff $\mathrm{a}=\mathrm{b}+\mathrm{km}$

Applications of Modular Arithmetic

\rightarrow Hashing
\Rightarrow Hashing
function
\Rightarrow Collision

Applications of Modular Arithmetic

Pseudorandom numbers using linear congruential generator
$X_{n+1}=\left(a X_{n}+b\right) \bmod m$

Applications of Modular Arithmetic

Cryptology

- Caeser's cipher
- Shift cipher
- Encryption
- Decryption

Chapter 3: Primes and GCD (Section 3.5)

- Primes
\Leftrightarrow Definition, Fundamental Theorem of Arithmetic (FTA)
\Rightarrow Algorithms for testing primality and prime factorization
\Rightarrow Euclid's infinitude of primes theorem
\Rightarrow Prime number theorem: Number of primes not exceeding n is approximately $\mathrm{n} / \ln \mathrm{n}$ as n grows without bound
- GCD and LCM
\Rightarrow Definition of gcd and lcm, definition of relatively prime
\Rightarrow Finding gcd and lcm through prime factorizations (using min/max of exponents)

Good luck on the midterm

- You can bring one 8 1/2" x 11" review sheet (double-sided ok, handwritten or typed but no magnifying aids please!).
- Calculators okay to use but won't really need it.

- Go through the homeworks, lecture notes, and examples in the text
- Do the practice midterm on the website and avoid being surprised!

