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What and Why B-trees”?

D-lrees are a ramily or data structures.

B-trees implement an ordered map.
e Implement GET, PUT, NEXT, PREV.

B-trees are a wide-fanout tree.
* [t’s a tree so that we can implement NEXT and PREV.
¢ [t’s wide-fanout so to reduce the depth of the tree.
» A binary tree has depth O(log:N).

» A B-tree with fanout B has depth O(logsN).
¢ \Why does this matter?

O(logsN)
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An algorithmic performance model

How computation works:
e Data is transferred in blocks between RAM and disk.
¢ The number of block transfers dominates the running time.

Goal: Minimize # of block transfers

e Performance bounds are parameterized by
block size B, memory size M, data size N.

B

[Aggarwal+Vitter ’88]
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B-Trees Gain a Factor of O(log B)

B-tree point queries: O(logs N) 1/0s for PUT or
GET.
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Binary tree search: O(logz N) I/0s.
Slower by a factor of O(log B)
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Write-optimized B-Trees Can PUT faster

Data structures: [O'Neil,Cheng, Gawlick, O'Neil 96], [Buchsbaum, Goldwasser, Venkatasubramanian, Westbrook 00],
[Argel 03], [Graefe 03], [Brodal, Fagerberg 03], [Bender, Farach,Fineman,Fogel, Kuszmaul, Nelson’07], [Brodal,
Demaine, Fineman, lacono, Langerman, Munro 10], [Spillane, Shetty, Zadok, Archak, Dixit 11].

Systems: BigTable, Cassandra, H-Base, LevelDB, TokuDB.

Some write-optimized
structures

Insert/delete

e [f B=1024, then insert speedup is B/logB=100.
e Hardware trends mean bigger B, bigger speedup.
¢ | ess than 1 1/0O per insert.

6
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http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html

Optimal SearCh-lﬂsert TradeOﬁ [Brodal, Fagerberg 03]

insert point query
Optimal
tradeoff O (10g1+B8 N) 0 (logy. e N)
(function of €=0...1) Bl—-c
B(;i"l‘;e O (logy N) 0 (1o V)
= logg N
= O( VB ) O (logg N)

0 log N
£= B O (log N)

| Ox-100x faster inserts
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|||UStrathﬂ Of Optlmal Tl’adeOﬁ [Brodal, Fagerberg 03]
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One way to Build Write-
Optimized Structures
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A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
¢ A balanced binary tree with buffers of size B
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Inserts + deletes:

¢ Send insert/delete messages down from the root and store
them in buffers.

¢ \When a buffer fills up, flush.
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A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
¢ A balanced binary tree with buffers of size B
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Inserts + deletes:

¢ Send insert/delete messages down from the root and store
them in buffers.

¢ \When a buffer fills up, flush.
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A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
¢ A balanced binary tree with buffers of size B
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Inserts + deletes:

e Send insert/delete messages down from the root and store
them in buffers.

e \When a buffer fills up, flush.
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Analysis of writes

An insert/delete costs amortized O((log N)/B) per
Insert or delete

e A buffer flush costs O(1) & sends B elements down one
level.

e |t costs O(1/B) to send element down one level of the tree.
e There are O(log N) levels in a tree.
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Analysis of point queries

To search:

e examine each buffer along a single root-to-leaf path.
¢ This costs O(log N).
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Point queries cost O(log,s N)= O(logs N)
® This is the tree height.

Inserts cost O((logsN)/\/B)
e Each flush cost O(1) I/Os and flushes /B elements.

Monday, September 23, 2013



TokuMX runs fast because it uses less [/O

iiBench Benchmark (Average Write I0OPs)
TokuMX vs. MongoDB
(lower is better)
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|OOM inserts into a collection with 3 secondary indexes
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Applicability

Write-optimized B-Trees win big for disk-resident
data.

You can maintain many more indexes on your
data, which can speed queries.

Are there write-optimized data structures for geo
data or string searches?
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