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Don’t Thrash: How to Cache Your Hash in Flash

B-trees are a family of data structures.
B-trees implement an ordered map.

• Implement GET, PUT, NEXT, PREV. 
B-trees are a wide-fanout tree.

• It’s a tree so that we can implement NEXT and PREV.
• It’s wide-fanout so to reduce the depth of the tree.
‣A binary tree has depth O(log2N).

‣A B-tree with fanout B has depth O(logBN).
• Why does this matter?

What and Why B-trees?
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Don’t Thrash: How to Cache Your Hash in Flash

How computation works: 
• Data is transferred in blocks between RAM and disk. 
• The number of block transfers dominates the running time. 

Goal: Minimize # of block transfers
• Performance bounds are parameterized by 

block size B, memory size M, data size N.

An algorithmic performance model

DiskRAM

B

B

M

[Aggarwal+Vitter ’88]
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Don’t Thrash: How to Cache Your Hash in Flash

B-Trees Gain a Factor of O(log B)

B-tree point queries: O(logB N) I/Os for PUT or 
GET.

Binary tree search: O(log2 N) I/Os.

Slower by a factor of O(log B)

O(logBN)
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Don’t Thrash: How to Cache Your Hash in Flash

Write-optimized B-Trees Can PUT faster

• If B=1024, then insert speedup is B/logB≈100.

• Hardware trends mean bigger B, bigger speedup.

• Less than 1 I/O per insert.

B-tree Some write-optimized 
structures

Insert/delete O(logBN)=O(       ) O(       )logN
logB

logN
B

Data structures: [O'Neil,Cheng, Gawlick, O'Neil 96], [Buchsbaum, Goldwasser, Venkatasubramanian, Westbrook 00], 
[Argel 03], [Graefe 03], [Brodal, Fagerberg 03], [Bender, Farach,Fineman,Fogel, Kuszmaul, Nelsonʼ07], [Brodal, 
Demaine, Fineman, Iacono, Langerman, Munro 10], [Spillane, Shetty, Zadok, Archak, Dixit 11]. 
Systems: BigTable, Cassandra, H-Base, LevelDB, TokuDB. 
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Don’t Thrash: How to Cache Your Hash in Flash

Optimal Search-Insert Tradeoff  [Brodal, Fagerberg 03]

insert point query
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Don’t Thrash: How to Cache Your Hash in Flash

Illustration of Optimal Tradeoff 
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Illustration of Optimal Tradeoff [Brodal, Fagerberg 03]
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Insertions improve by 
10x-100x with 

almost no loss of point-
query performance

Target of opportunity
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One way to Build Write-
Optimized Structures
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Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
• A balanced binary tree with buffers of size B 

Inserts + deletes:
• Send insert/delete messages down from the root and store 

them in buffers. 

• When a buffer fills up, flush. 

11

Monday, September 23, 2013



Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
• A balanced binary tree with buffers of size B 

Inserts + deletes:
• Send insert/delete messages down from the root and store 

them in buffers. 

• When a buffer fills up, flush. 

11

Monday, September 23, 2013



Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
• A balanced binary tree with buffers of size B 

Inserts + deletes:
• Send insert/delete messages down from the root and store 

them in buffers. 

• When a buffer fills up, flush. 

11

Monday, September 23, 2013



Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
• A balanced binary tree with buffers of size B 

Inserts + deletes:
• Send insert/delete messages down from the root and store 

them in buffers. 

• When a buffer fills up, flush. 

11

Monday, September 23, 2013



Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
• A balanced binary tree with buffers of size B 

Inserts + deletes:
• Send insert/delete messages down from the root and store 

them in buffers. 

• When a buffer fills up, flush. 

11

Monday, September 23, 2013



Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
• A balanced binary tree with buffers of size B 

Inserts + deletes:
• Send insert/delete messages down from the root and store 

them in buffers. 

• When a buffer fills up, flush. 

12

Monday, September 23, 2013



Don’t Thrash: How to Cache Your Hash in Flash

Analysis of writes

An insert/delete costs amortized O((log N)/B) per 
insert or delete

• A buffer flush costs O(1) & sends B elements down one 
level.

• It costs O(1/B) to send element down one level of the tree.

• There are O(log N) levels in a tree.
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Analysis of point queries

To search: 
• examine each buffer along a single root-to-leaf path. 

• This costs O(log N). 
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Don’t Thrash: How to Cache Your Hash in Flash

Obtaining optimal point queries + very fast inserts

Point queries cost O(log√B N)= O(logB N) 
• This is the tree height.

Inserts cost O((logBN)/√B) 
• Each flush cost O(1) I/Os and flushes √B elements.

√B

B

...

fanout: √B
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TokuMX runs fast because it uses less I/O

100M inserts into a collection with 3 secondary indexes
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Don’t Thrash: How to Cache Your Hash in Flash

Applicability

Write-optimized B-Trees win big for disk-resident 
data.

You can maintain many more indexes on your 
data, which can speed queries.

Are there write-optimized data structures for geo 
data or string searches?
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