
Write-Optimization in B-Trees

Bradley C. Kuszmaul
MIT & Tokutek

Monday, September 23, 2013

The Setup

Monday, September 23, 2013

Don’t Thrash: How to Cache Your Hash in Flash

B-trees are a family of data structures.
B-trees implement an ordered map.

• Implement GET, PUT, NEXT, PREV.
B-trees are a wide-fanout tree.

• It’s a tree so that we can implement NEXT and PREV.
• It’s wide-fanout so to reduce the depth of the tree.
‣A binary tree has depth O(log2N).

‣A B-tree with fanout B has depth O(logBN).
• Why does this matter?

What and Why B-trees?

3

O(logBN)

Monday, September 23, 2013

Don’t Thrash: How to Cache Your Hash in Flash

How computation works:
• Data is transferred in blocks between RAM and disk.
• The number of block transfers dominates the running time.

Goal: Minimize # of block transfers
• Performance bounds are parameterized by

block size B, memory size M, data size N.

An algorithmic performance model

DiskRAM

B

B

M

[Aggarwal+Vitter ’88]
4

Monday, September 23, 2013

Don’t Thrash: How to Cache Your Hash in Flash

B-Trees Gain a Factor of O(log B)

B-tree point queries: O(logB N) I/Os for PUT or
GET.

Binary tree search: O(log2 N) I/Os.

Slower by a factor of O(log B)

O(logBN)

5

Monday, September 23, 2013

Don’t Thrash: How to Cache Your Hash in Flash

Write-optimized B-Trees Can PUT faster

• If B=1024, then insert speedup is B/logB≈100.

• Hardware trends mean bigger B, bigger speedup.

• Less than 1 I/O per insert.

B-tree Some write-optimized
structures

Insert/delete O(logBN)=O() O()logN
logB

logN
B

Data structures: [O'Neil,Cheng, Gawlick, O'Neil 96], [Buchsbaum, Goldwasser, Venkatasubramanian, Westbrook 00],
[Argel 03], [Graefe 03], [Brodal, Fagerberg 03], [Bender, Farach,Fineman,Fogel, Kuszmaul, Nelsonʼ07], [Brodal,
Demaine, Fineman, Iacono, Langerman, Munro 10], [Spillane, Shetty, Zadok, Archak, Dixit 11].
Systems: BigTable, Cassandra, H-Base, LevelDB, TokuDB.

6

Monday, September 23, 2013

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html

Don’t Thrash: How to Cache Your Hash in Flash

Optimal Search-Insert Tradeoff [Brodal, Fagerberg 03]

insert point query

Optimal
tradeoff

(function of ɛ=0...1)

B-tree
(ɛ=1)

O

(
logB N√

B

)

O (logB N)

O (logB N)

ɛ=1/2

O

(
logN

B

)

O (logN)ɛ=0

O
(
log1+Bε N

)
O

(
log1+Bε N

B1−ε

)

O (logB N)

10
x-

10
0x

 fa
st

er
 in

se
rt

s

7

Monday, September 23, 2013

Don’t Thrash: How to Cache Your Hash in Flash

Illustration of Optimal Tradeoff

Inserts

Po
in

t
Q

ue
ri

es

FastSlow

Sl
ow

Fa
st

Logging

B-tree

Logging

Optimal Curve

8

Monday, September 23, 2013

Don’t Thrash: How to Cache Your Hash in Flash

Illustration of Optimal Tradeoff [Brodal, Fagerberg 03]

Inserts

Po
in

t
Q

ue
ri

es

FastSlow

Sl
ow

Fa
st

Logging

B-tree

Logging

Optimal Curve

Insertions improve by
10x-100x with

almost no loss of point-
query performance

Target of opportunity

9

Monday, September 23, 2013

One way to Build Write-
Optimized Structures

Monday, September 23, 2013

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.

• When a buffer fills up, flush.

11

Monday, September 23, 2013

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.

• When a buffer fills up, flush.

11

Monday, September 23, 2013

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.

• When a buffer fills up, flush.

11

Monday, September 23, 2013

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.

• When a buffer fills up, flush.

11

Monday, September 23, 2013

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.

• When a buffer fills up, flush.

11

Monday, September 23, 2013

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.

• When a buffer fills up, flush.

12

Monday, September 23, 2013

Don’t Thrash: How to Cache Your Hash in Flash

Analysis of writes

An insert/delete costs amortized O((log N)/B) per
insert or delete

• A buffer flush costs O(1) & sends B elements down one
level.

• It costs O(1/B) to send element down one level of the tree.

• There are O(log N) levels in a tree.

13

Monday, September 23, 2013

Don’t Thrash: How to Cache Your Hash in Flash

Analysis of point queries

To search:
• examine each buffer along a single root-to-leaf path.

• This costs O(log N).

14

Monday, September 23, 2013

Don’t Thrash: How to Cache Your Hash in Flash

Obtaining optimal point queries + very fast inserts

Point queries cost O(log√B N)= O(logB N)
• This is the tree height.

Inserts cost O((logBN)/√B)
• Each flush cost O(1) I/Os and flushes √B elements.

√B

B

...

fanout: √B

15

Monday, September 23, 2013

Don’t Thrash: How to Cache Your Hash in Flash

TokuMX runs fast because it uses less I/O

100M inserts into a collection with 3 secondary indexes

16

I/O
s

pe
r

se
co

nd

Monday, September 23, 2013

Don’t Thrash: How to Cache Your Hash in Flash

Applicability

Write-optimized B-Trees win big for disk-resident
data.

You can maintain many more indexes on your
data, which can speed queries.

Are there write-optimized data structures for geo
data or string searches?

17

Monday, September 23, 2013

Monday, September 23, 2013

