Write-Optimization in B-Trees

Bradley C. Kuszmaul
MIT & Tokutek

Mir Jokutek

Monday, September 23, 2013

Monday, September 23, 2013

What and Why B-trees”?

D-lrees are a ramily or data structures.

B-trees implement an ordered map.
e Implement GET, PUT, NEXT, PREV.

B-trees are a wide-fanout tree.
* [t’s a tree so that we can implement NEXT and PREV.
¢ [t’s wide-fanout so to reduce the depth of the tree.
» A binary tree has depth O(log:N).

» A B-tree with fanout B has depth O(logsN).
¢ \Why does this matter?

O(logsN)

Monday, September 23, 2013

An algorithmic performance model

How computation works:
e Data is transferred in blocks between RAM and disk.
¢ The number of block transfers dominates the running time.

Goal: Minimize # of block transfers

e Performance bounds are parameterized by
block size B, memory size M, data size N.

B

[Aggarwal+Vitter ’88]

Monday, September 23, 2013

B-Trees Gain a Factor of O(log B)

B-tree point queries: O(logs N) 1/0s for PUT or
GET.

~ \| ‘\ (" a2
RN Y =3 } B
\(,—/QC):;«»» ‘l o i o T l
) O o) > . L |
2 é" B ‘ \% B
Voo e = O(logeN)
l\ ‘|
\

l = il ma ay

\
- / N Ty
/ { \(- \
<\

Binary tree search: O(logz N) I/0s.
Slower by a factor of O(log B)

Monday, September 23, 2013

Write-optimized B-Trees Can PUT faster

Data structures: [O'Neil,Cheng, Gawlick, O'Neil 96], [Buchsbaum, Goldwasser, Venkatasubramanian, Westbrook 00],
[Argel 03], [Graefe 03], [Brodal, Fagerberg 03], [Bender, Farach,Fineman,Fogel, Kuszmaul, Nelson’07], [Brodal,
Demaine, Fineman, lacono, Langerman, Munro 10], [Spillane, Shetty, Zadok, Archak, Dixit 11].

Systems: BigTable, Cassandra, H-Base, LevelDB, TokuDB.

Some write-optimized
structures

Insert/delete

e [f B=1024, then insert speedup is B/logB=100.
e Hardware trends mean bigger B, bigger speedup.
¢ | ess than 1 1/0O per insert.

6

Monday, September 23, 2013

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html

Optimal SearCh-lﬂsert TradeOﬁ [Brodal, Fagerberg 03]

insert point query
Optimal
tradeoff O (10g1+B8 N) 0 (logy. e N)
(function of €=0...1) Bl—-c
B(;i"l‘;e O (logy N) 0 (1o V)
= logg N
= O(VB) O (logg N)

0 log N
£= B O (log N)

| Ox-100x faster inserts

Monday, September 23, 2013

llustration of Optimal Tradeoft

Fast
¥

Point Queries

Slow

\ Optimal Curve

Slow

Inserts

Monday, September 23, 2013

|||UStrathﬂ Of Optlmal Tl’adeOﬁ [Brodal, Fagerberg 03]

4 Target of opportunity
s
g B-tree w
LL 6 Optimal Curve
%) Insertions improve by 7\
2 |0x-100x with
GL) almost no loss of point-
- query performance
=
=
O
o 3
e,
%0 Logging
w
>
Slow Fast

Inserts

9

Monday, September 23, 2013

One way to Build Write-
Optimized Structures

eeeeeeeeeeeeeeeeeeeeeee

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
¢ A balanced binary tree with buffers of size B

Q

@) @

Q0 Q00) CI'ED CI'D

Inserts + deletes:

¢ Send insert/delete messages down from the root and store
them in buffers.

¢ \When a buffer fills up, flush.

Monday, September 23, 2013

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
¢ A balanced binary tree with buffers of size B

QO

@) @

Q0 Q00) CI'ED CI'D

Inserts + deletes:

¢ Send insert/delete messages down from the root and store
them in buffers.

¢ \When a buffer fills up, flush.

Monday, September 23, 2013

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
¢ A balanced binary tree with buffers of size B

Q00

@) @

Q0 Q00) CI'ED CI'D

Inserts + deletes:

¢ Send insert/delete messages down from the root and store
them in buffers.

¢ \When a buffer fills up, flush.

Monday, September 23, 2013

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
¢ A balanced binary tree with buffers of size B

QO00)

@) @

Q0 Q00) CI'ED CI'D

Inserts + deletes:

¢ Send insert/delete messages down from the root and store
them in buffers.

¢ \When a buffer fills up, flush.

Monday, September 23, 2013

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
¢ A balanced binary tree with buffers of size B

O
QO00)
@) @
Q0 Q00) CI'ED CI'D

Inserts + deletes:

¢ Send insert/delete messages down from the root and store
them in buffers.

¢ \When a buffer fills up, flush.

Monday, September 23, 2013

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
¢ A balanced binary tree with buffers of size B

)

—

(0 00)

RN

@000

Q0 Q00) CI'ED CI'D

Inserts + deletes:

e Send insert/delete messages down from the root and store
them in buffers.

e \When a buffer fills up, flush.

Monday, September 23, 2013

Analysis of writes

An insert/delete costs amortized O((log N)/B) per
Insert or delete

e A buffer flush costs O(1) & sends B elements down one
level.

e |t costs O(1/B) to send element down one level of the tree.
e There are O(log N) levels in a tree.

)

—

(0 00)

RN

@000

Q0 Q00) CI'ED CI'D

Monday, September 23, 2013

Analysis of point queries

To search:

e examine each buffer along a single root-to-leaf path.
¢ This costs O(log N).

D

(0 00) (@000

Q0 Q00 (00) CI'D

Monday, September 23, 2013

Point queries cost O(log,s N)= O(logs N)
® This is the tree height.

Inserts cost O((logsN)/\/B)
e Each flush cost O(1) I/Os and flushes /B elements.

Monday, September 23, 2013

TokuMX runs fast because it uses less [/O

iiBench Benchmark (Average Write I0OPs)
TokuMX vs. MongoDB
(lower is better)

TokuMX ———

3000
MongoDB —
2500 : -
}g 2000
o /
V) /
a
O 1500 f e gy
() / B
o f
(7, J
1000 /-
2 |
—
500 |/
/
0 i—— | | ! 1 1 |
0 20000 40000 60000 80000 100000 120000
Seconds

|OOM inserts into a collection with 3 secondary indexes

16

Monday, September 23, 2013

Applicability

Write-optimized B-Trees win big for disk-resident
data.

You can maintain many more indexes on your
data, which can speed queries.

Are there write-optimized data structures for geo
data or string searches?

Monday, September 23, 2013

Monday, September 23, 2013

