
Writing a Compiler using Perl,
Pegex and Moo

By
Vikas Kumar

vikas@cpan.org
(vicash in #pegex, #vic on freenode)

June 9, 2015 YAPC::NA 2015, Salt Lake City

mailto:vikas@cpan.org

Compiler Writing Is Difficult !

June 9, 2015 YAPC::NA 2015, Salt Lake City

Terminology

• Frontend
– Takes text as input
– Parses it into lexical tokens

• Backend
– Takes intermediate code or lexical

tokens as input
– Generates target code as output

• Intermediate Code
– Necessary for compilers with

multiple backends and frontends
– Allows abstraction of backends and

frontends

• Abstract Syntax Tree (AST)
– Allows syntax management
– Operator precedence management

June 9, 2015 YAPC::NA 2015, Salt Lake City

FRONTEND

INTERMEDIATE
CODE

BACKEND

INPUT

OUTPUT

Compiler Writing Can be Made Easy !

• Use Perl instead of C/C++ to do it

– Object Oriented Design required for sanity

• Use Pegex to build the Frontend instead of
using bison/yacc and flex/lex.

• Use Moo and Moo::Role to handle multiple
Backends

• Use an internal Perl object do handle AST and
Intermediate Code (or not…)

June 9, 2015 YAPC::NA 2015, Salt Lake City

What remains difficult …

• Optimization of the generated code
– Avoid if not needed for your case such as for Domain Specific

Languages (DSL)
– Your custom backend may be designed to generate pre-

optimized code

• Data flow analysis
– Can be skipped if not needed, esp. for generating non-assembly

language targets like generating Perl/SQL/C++ from a high level
DSL

• Verification of Output
– Absolutely necessary, your stuff should work !
– Tests can only get you so far, you cannot predict your compiler’s

users.

June 9, 2015 YAPC::NA 2015, Salt Lake City

Overview

• Writing a frontend using Pegex

• Targeting a single backend using Pegex::Base

• Targeting multiple backends using Moo and
Moo::Role

• Example: VIC™ – a DSL compiler for
Microchip® PIC® microcontrollers

June 9, 2015 YAPC::NA 2015, Salt Lake City

Writing a Frontend

• Tokenization of input text

– Traditionally done using a lexer like flex/lex

• Parsing the tokens using a grammar

– Traditionally done using a grammar generator like
bison/yacc

• Create Abstract Syntax Tree (AST)

• Generate intermediate code for the backend

June 9, 2015 YAPC::NA 2015, Salt Lake City

Writing a Frontend

• Tokenization of input text

– Use Pegex

• Parsing the tokens using a grammar

– Use Pegex

• Create Abstract Syntax Tree (AST)

– Use Perl objects or Use Pegex

• Generate intermediate code for the backend

– Optional: depends on your situation

June 9, 2015 YAPC::NA 2015, Salt Lake City

Pegex Terminology

• Parser: The top level class that is given:
– The input text to be compiled/parsed
– The user’s Grammar class
– The user’s Receiver class

• Grammar: User provided grammar
• Receiver: A class that has optional functions that:

– Allow user to handle and modify each token that’s parsed
– Allow user to create AST
– Allow user to invoke the Backend and generate target code

or final output
– Allow user to create intermediate code, and then call

Backend to generate final output

June 9, 2015 YAPC::NA 2015, Salt Lake City

Using Pegex

1. Write a Pegex grammar

i. Handles both tokenization & parsing at once

ii. Grammar is similar to writing a Regex

iii. Greedy parsing will be used

2. Compile the Pegex grammar into a class

i. Runtime or pre-compiled

ii. Tree of small regexes used to manage grammar

3. Write a Receiver

June 9, 2015 YAPC::NA 2015, Salt Lake City

Sample Example - VIC™
PIC P16F690;

light up an LED on pin RA0

Main {

 digital_output RA0;

 write RA0, 1;

}

%grammar vic

program: comment* mcu-select statement* EOS

mcu-select: /’PIC’ BLANK+ (mcu-types | ‘Any’) line-ending/

mcu-types: / ALPHA+ DIGIT+ ALPHA DIGIT+ ALPHA? /

line-ending: /- SEMI – EOL?/

comment: /- HASH ANY* EOL/ | blank-line

blank-line: /- EOL/

statement: comment | instruction | expression | block

… and so on …

June 9, 2015 YAPC::NA 2015, Salt Lake City

Grammar Syntax

• %grammar <name>
• %version <version>
• # write comments
• <rule>: <combine other rules>
• The class Pegex::Atoms has a collection of pre-

defined rules called atoms you can use:
– SEMI (qr/;/)
– EOL (qr/\r\n|\n/),
– ALPHA (qr/[A-Za-z]/),
– DIGIT(qr/[0-9]/) and many others.

June 9, 2015 YAPC::NA 2015, Salt Lake City

Using Pegex Grammars

• Save as a .pgx file to be compiled using the
commandline into a Module
– Useful for versioned grammars and for release

handling
– Useful for large grammars

• Or use as string constant and give to
Pegex::Parser for runtime compilation of
grammar
– Useful for small grammars
– Useful for dynamic grammar class generation if you

are into that

June 9, 2015 YAPC::NA 2015, Salt Lake City

Creating Your Grammar Class

package VIC::Grammar;

use Pegex::Base;

extends ‘Pegex::Grammar’;

use constant file => ‘./vic.pgx’;

that’s it ###

1;

$ perl –Ilib -MVIC::Grammar=compile

June 9, 2015 YAPC::NA 2015, Salt Lake City

package VIC::Grammar;
use Pegex::Base;
extends ‘Pegex::Grammar’;
use constant file => ‘./vic.pgx’;
autogenerated code ###
sub make_tree {
 {
 ‘+grammar’ => ‘vic’,
 ‘+toprule’ => ‘program’,
 ‘+version’ => ‘0.2.6’,
 ‘comment’ => {
 ‘.any’ => [
 {
 ‘.rgx’ =>
 qr/\G[\ \t]*\r?\n?\#.*\r?\n/
 },
 {
 ‘.ref’ => ‘blank_line’
 }
]
 },
 #... And so on for other rules ...
 }
}
1;

Using Pegex

1. Write a Pegex grammar

i. Handles both tokenization & parsing at once

ii. Grammar is similar to writing a Regex

iii. Greedy parsing will be used

2. Compile the Pegex grammar into a class

i. Runtime or pre-compiled

ii. Tree of small regexes used to manage grammar

3. Write a Receiver

June 9, 2015 YAPC::NA 2015, Salt Lake City

Creating Your Receiver Class

• Inherit Pegex::Tree

• For each grammar rule, you may write a
got_<rule> handler function

• The got_<rule> function:

– receives the parsed token or arrays of
arrays of tokens

– Allows you to modify/ignore the token
received

– Allows you to invoke Backend code if
desired

– Convert the tokens into a custom AST

– Generate Intermediate Code as needed for
the received tokens

• The got_<toprule> or final function can receive
complete set of tokens created as array-of-array
by Pegex

– Can be used as an AST as well

– Return the generated target output from
the Backend

package VIC::Receiver;
use Pegex::Base;
extends ‘Pegex::Tree’;

has ast => {}; # custom AST object

single Backend handling
has backend => sub { return VIC::Backend->new; }

multiple Backend handling.
Requires got_mcu_type() for the mcu-type rule
has backend => undef;

sub got_mcu_type {
 my $self = shift;
 my $type = shift;
 $self->backend(
 VIC::Backend->new(type => $type));
}

remove comments from AST
sub got_comment { return; }

top-rule receiver function
sub got_program {
 my $self = shift;
 my $ast = shift; # use the Pegex generated AST

 print Dumper($ast); # dump the AST if you want

 # … create $output using $self->backend …#
 my $output = $self->backend->generate_code($ast);
 return $output;
}
1;

June 9, 2015 YAPC::NA 2015, Salt Lake City

Creating Your Compiler Class

• Create a Pegex::Parser
object

• Invoke it using your Grammar
class and Receiver class

• Provide it input text using the
parse() function

• Return value is compiled output

• Debugging of the parsing is
configurable at runtime

package VIC;
use Pegex::Parser;
use VIC::Grammar;
use VIC::Receiver;

sub compile {
 my $input = shift;

 my $parser =
 Pegex::Parser->new(
 ‘grammar’ =>
 VIC::Grammar->new,
 ‘receiver’ =>
 VIC::Receiver->new,
 ‘debug’ => 0
);
 return $parser->parse($input);
}
1;

June 9, 2015 YAPC::NA 2015, Salt Lake City

Advantages of Pegex

• Writing Grammars is easy

– Speed

– Rapid Prototyping

• No explicit debugging of Regexes required

• Implementing got_<rule> functions will tell
you which rule was invoked

• Pegex::Parser with debug set to 1 shows you
how the regex matching is done

June 9, 2015 YAPC::NA 2015, Salt Lake City

Writing a Backend

• Needed for code generation for your target

• Example targets:

– Chips: code generated will be assembly code or
binary code

– Bytecode: JVM/LLVM

• Write your own Scala/Clojure variant in Perl

– Code: C/C++/Perl/Lisp/SQL/Lua/Javascript

• Write high-level logic translators or DSLs

June 9, 2015 YAPC::NA 2015, Salt Lake City

Depending on your Requirements…

Single Backend

• Simpler design

• Target code generation can
be done with specialized
functions in a single class

• Use Mo/Pegex::Base to
keep it light weight, or

• Your Receiver class can have
all the code generation
functions in it.

Multiple Backends

• Extendable design

• Each target may have some
common and some different
features

• Compiler should handle all
the features seamlessly

• Use Moo and Moo::Role for
simplicity and extendability

June 9, 2015 YAPC::NA 2015, Salt Lake City

Using Moo::Role with VIC™

• Each chip feature is defined
as a Role using requires

• Examples:
– UART

– USB

– Timers

• Each feature
implementation is also
defined as a Role !

package VIC::Backend::Roles::Timer

{

 use Moo::Role;

 requires qw(timer_enable
timer_disable timer_pins);

}

package VIC::Backend::Funcs::Timer

{

 use Moo::Role;

 ## default implementations

 sub timer_enable {

 # … Generate target code …

 }

 sub timer_disable {

 # … Generate target code …

 }

}

June 9, 2015 YAPC::NA 2015, Salt Lake City

Using Moo::Role with VIC™

package VIC::Backend::P16F690;

use Moo;

use Moo::Role;

provide custom implementation

sub timer_pins {

 return { TMR0 => [12, ‘TMR’] };

}

inherit the roles and default
implementations

my @roles = qw(

 VIC::Backend::Roles::Timer

 VIC::Backend::Funcs::Timer

);

with @roles;

package VIC::Backend::Roles::Timer

{

 use Moo::Role;

 requires qw(timer_enable
timer_disable timer_pins);

}

package VIC::Backend::Funcs::Timer

{

 use Moo::Role;

 ## default implementations

 sub timer_enable {

 # … Generate target code …

 }

 sub timer_disable {

 # … Generate target code …

 }

}

June 9, 2015 YAPC::NA 2015, Salt Lake City

Checking for a feature
package VIC::Backend::Roles::USB
{
 use Moo::Role;
 requires qw(usb_send usb_recv usb_pins);
}
package VIC::Backend::Funcs::USB
{
 use Moo::Role;
 ## default implementations
 sub usb_send {
 my $self = shift;
 # … Give a nice error message here …

 return unless $self->does(‘VIC::Backend::Roles::USB’);
 # … Generate Target Code here …
 }
 sub usb_recv {
 # … Generate Target Code here …
 }
}

June 9, 2015 YAPC::NA 2015, Salt Lake City

Using Moo::Role

• Each chip feature is defined
as a Role using requires

• Examples:
– UART
– USB
– Timers

• Each feature
implementation is also
defined as a Role with
functions

• Functions check if Role is
supported for target using
does

• Allows:
– Separation of chip details into

separate classes
– Separation of code

generation of feature into
separate classes

– Special implementations
based on chip internals

– Compiler can inform user that
chip doesn’t support a
feature in the input code

– Compiler can list chip
features on the commandline

June 9, 2015 YAPC::NA 2015, Salt Lake City

Summary

• Use Pegex to create compiler frontend
– Writing grammars is like writing a Regex

– Receiver class contains the main compiler logic

– Single backend can be in the Receiver class itself

– Debugging the Grammar is easy

• Use Moo::Role to create multiple backends
– Allows target feature handling in a clean Object

Oriented manner

– Extendable design

– Get informative error messages from compiler

June 9, 2015 YAPC::NA 2015, Salt Lake City

Questions ?

https://selectiveintellect.github.io/vic/
Join #pegex on freenode IRC

Join #vic on freenode IRC
Follow us on twitter @selectintellect or @_vicash_

June 9, 2015 YAPC::NA 2015, Salt Lake City

https://selectiveintellect.github.io/vic/

