
Class Note: Chapter 5

Writing Database Access Program with PL/SQL
(Updated on June 23, 2017)

[The “class note” is the typical material I would prepare for my face-to-face class. Since

this is an Internet based class, I am sharing the notes with everyone assuming you are in

the class.]

SQL is nothing more than a data access language that allows applications

(computer programs) to put data into and get data out of an Oracle database. In other

words, SQL by itself is not a full-featured programming language that you can use to

develop powerful database applications. To build a database application, you must use a

procedural language that encompasses SQL to interact with an Oracle database. This

chapter explains Oracle's very own procedural language, PL/SQL, which you can use to

program an Oracle database server and associated applications. The following topics will

be covered:

• PL/SQL coding basics

• Anonymous PL/SQL blocks

• Stored procedures, functions, and packages

• Database triggers

NOTE
By no means is this chapter a complete guide to PL/SQL. However, this chapter

does provide an intermediate- level tutorial of PL/SQL’s capabilities, so that you

can get started programming an Oracle database server.

Chapter Prerequisites

To practice the hands-on exercises in this chapter, you need to start SQL*Plus and

run the following command script

location\Sql\chap05.sql

where location is the file directory where you expanded the support file downloaded from

the course site. For example, after starting SQL*Plus and connecting as SCOTT, you can

run this chapter's SQL command script using the SQL*Plus command @, as in the

following example (assuming that your chap05.sql file is in C:\temp\Sql).

 SQL > @C:\temp\Sql\chapO5.sql;

 Once the script completes successfully, leave the current SQL*Plus session open

and use it to perform this chapter's exercises in the order that they appear. Refer to

chapter 4 for more details for downloading the script files.

5.1 What Is PL/SQL?

PL/SQL is a procedural programming language that's built into most Oracle

products. With PL/SQL, you can build programs to process information by combining

PL/SQL procedural statements that control program flow with SQL statements that

access an Oracle database. For example, the following is a very simple PL/SQL program

that updates a part's UNITPRICE, given the part's ID number.

CREATE OR REPLACE PROCEDURE updatePartPrice (
 partId IN INTEGER,

 newPrice IN NUMBER)
IS

 invalidPart EXCEPTION;
BEGIN
--HERE'S AN UPDATE STATEMENT TO UPDATE A DATABASE RECORD

 UPDATE parts
 SET unitprice = newPrice

 WHERE id = partId;
--HERE'S AN ERROR-CHECKING STATEMENT
 IF SQL%NOTFOUND THEN

 RAISE invalidPart;
 END IF;

EXCEPTION
--HERE'S AM ERROR-HANDLING ROUTINE

 WHEN invalidPart THEN

 raise_application_error(-20000,'Invalid Part ID');
END updatePartPrice;

/

 This example program is a procedure that is stored as a program unit in a database.

Using PL/SQL, you can build many types of database access program units, including

anonymous PL/SQL blocks, procedures, functions, and packages. All of the sections in

this chapter include examples of PL/SQL programs. But before learning about full-blown

PL/SQL programs, you need to understand the basic programmatic constructs and

commands that the PL/SQL language offers. If you run this script at this point, procedure

will be created but compiler may complain about the warnings.

NOTE
PL/SQL is a procedural language that's very similar to Ada. PL/SQL has

statements that allow you to declare variables and constants, control program

flow, assign and manipulate data, and more.

5.2 PL/SQL Blocks

A PL/SQL program is structured using distinct blocks that group related

declarations and statements. Each block in a PL/SQL program has a specific task and

solves a particular problem. Consequently, you can organize a PL/SQL program so that it

is easy to understand.

A PL/SQL block can include three sections as the following pseudo-code

illustrates: program declarations, the main program body, and exception handlers.

DECLARE
 -- program declarations are optional

 BEGIN
 -- program body is required
 EXCEPTION

 -- exception handlers are optional
END;

Most of the examples in this class/chapter ask you to use SQL*Plus and

interactively type and execute anonymous PL/SQL blocks while learning the

fundamentals of PL/SQL. An anonymous PL/SQL block has no name and is not stored

permanently as a file or in an Oracle database. An application, such as SQL*Plus, simply

sends the PL/SQL block to the database server for processing at run time. Once Oracle

executes an anonymous PL/SQL block, the block ceases to exist.

5.2.1 Program Declarations

The declaration section of a PL/SQL block is where the block declares all

variables, constants, exceptions, and so on, that are then accessible to all other parts

of the same block. The declarative section of a PL/SQL block starts with the

DECLARE keyword and implicitly ends with the BEGIN keyword of the program

body. If the program does not need to make any declarations, the declaration section

is not necessary.

5.2.2 The Program Body

The main program body of a PL/SQL block contains the executable statements for

the block. In other words, the body is where the PL/SQL block defines its

functionality. The body of a PL/SQL block begins with the BEGIN keyword and ends

with the EXCEPTION keyword that starts the exception handling section of the

block; if the block does not include any exception handlers, the program body ends

with the END keyword that ends the block altogether.

5.2.3 Exception Handlers

The optional exception handling section of a PL/SQL block contains the

exception handlers (error handling routines) for the block. When a statement in the

block's body raises an exception (detects an error), it transfers program control to a

corresponding exception handler in the exception section for further processing. The

exception handling section of a PL/SQL block begins with the EXCEPTION keyword

and ends with the END keyword. If a program does not need to define any exception

handlers, the exception handling section of the block is not necessary.

5.2.4 Program Comments

All blocks of a PL/SQL program should include comments that document

program declarations and functionality. Comments clarify the purpose of specific

programs and code segments.

PL/SQL supports two different styles for comments, as the following code

segment shows.

-- PRECEDE A SINGLE-LINE COMMENT WITH A DOUBLE-HYPHEN.

/* DELIMIT A MULTI-LINE COMMENT WITH /*" AS A PREFIX AND " * /" AS
A SUFFIX. A MULTI-LINE COMMENT CAN CONTAIN ANY NUMBER OF LINES. */

The examples in the remainder of this chapter often use comments to help explain

the functionality of code listings.

5.3 The Fundamentals of PL/SQL Coding

All procedural languages, such as PL/SQL, have fundamental language elements and

functionality that you need to learn about before you can build programs using the

language. The following sections introduce the basic elements of PL/SQL, including the

following:

• How to declare program variables and assign them values?

• How to control program flow with loops and conditional logic?

• How to embed SQL statements and interact with Oracle databases?

• How to declare and use subprograms (procedures and functions) within

 PL/SQL blocks?

• How to declare user-defined types, such as records and nested tables?

• How to declare and use cursors to process queries that return multiple rows?

• How to use exception handlers to handle error conditions?

5.3.1 Working with Program Variables

All procedural programs typically declare one or more program variables and use

them to hold temporary information for program processing. The next two exercises

teach you how to declare program variables (and constants), initialize them, and

assign them values in the body of a PL/SQL program.

EXERCISE 5.1: Declaring Variables and Constants with Basic Data types

The declaration section of a PL/SQL program can include variable and constant

declarations. The general syntax that you use to declare a scalar variable or

constant is as follows:

Variable [CONSTANT] datatype [[NOT NULL] {DEFAULT/:=} expression];

NOTE
To declare a constant rather than a variable, include the CONSTANT keyword in

the declaration. You must initialize a constant, after which the constant's value

cannot change.

When you declare a variable, you can choose to initialize it immediately or wait

until later in the body of the program; however, if you include the NOT NULL

constraint, you must initialize the variable as part of its declaration. By default,

PL/SQL initializes a variable as null unless the program explicitly initializes the

variable.

A program can declare a variable or constant using any Oracle or ANSI/ISO

datatype or subtype listed in Table 5-1.

NOTE
A subtype is a constrained version of its base type

Data type Subtype Description
BINARY_INTEGER NATURAL, NATURALN,

POSITOIVE, POSITIVEN,

SIGNTYPE

Stores signed integers in the range -2,147,483,647 and

2,147,483,647, Store only nonnegative integers; the

latter disallows nulls. POSITIVE and POSITIVEN

store only positive integers; the latter disallows

nulls. SIGNTYPE stores only -1, 0, and 1
CHAR (size) CHARACTER (size) Fixed-length character data of length size bytes.

Fixed for every row in the table (with trailing blanks);

maximum size is 2000 bytes per row, default size is 1

byte per row. Consider the character set (one-byte or

multibyte) before setting size.

VARCHAR2 (size) VARCHAR (size), STRING Variable-length character data. A maximum size must

be specified. Variable for each row, up to 4000 bytes

per row. Consider the character set (one-byte or

multibyte) before setting size.

NCHAR(size) Fixed-length character data of length size characters or

bytes, depending on the national character set. Fixed

for every row in the table (with trailing blanks).

Column size is the number of characters for a fixed-

width national character set or the number of bytes for

a varying-width national character set. Maximum size

is determined by the number of bytes required to store

one character, with an upper limit of 2000 bytes per

row. Default is 1 character or 1 byte, depending on the

character set.

NVARCHAR2 (size) Variable-length character data of length size

characters or bytes, depending on national character

set. A maximum size must be specified.

Variable for each row. Column size is the number of

characters for a fixed-width national character set or

the number of bytes for a varying-width national

character set. Maximum size is determined by the

number of bytes required to store one character, with

an upper limit of 4000 bytes per row. Default is 1

character or 1 byte, depending on the character set.

LONG Variable-length character data. Variable for each row

in the table, up to 2^31 - 1 bytes, or 2 gigabytes, per

row.

NUMBER (p, s) DEC, DECIMAL, DOUBLE

PRECISION, FLOAT

(precision), INTEGER, INT,

NUMERIC, REAL, SMALLINT

Variable-length numeric data. Maximum precision p

and/or scale s is 38. Variable for each row. The

maximum space required for a given column is 21

bytes per row.

DATE Fixed-length date and time data, ranging from January

1, 4712 B.C. to December 31, 4712 A.D. Fixed at 7

bytes for each row in the table. Default format is a

string (such as DD-MON-YY) specified by

NLS_DATE_FORMAT parameter.

RAW (size) Variable-length raw binary data. A maximum size

must be specified. Variable for each row in the table,

up to 2000 bytes per row.

LONG RAW Variable-length raw binary data. Variable for each

row in the table, up to 2^31 - 1 bytes, or 2 gigabytes,

per row.

BLOB Binary data. Up to 2^32 - 1 bytes, or 4 gigabytes.

CLOB Single-byte character data. Up to 2^32 - 1 bytes, or 4

gigabytes.

NCLOB Single-byte or fixed-length multibyte national

character set (NCHAR) data. Up to 2^32 - 1 bytes, or

4 gigabytes.

BFILE Binary data stored in an external file. Up to 2^32 - 1

bytes, or 4 gigabytes.

ROWID Binary data representing row addresses. Fixed at 10

bytes (extended ROWID) or 6 bytes (restricted

ROWID) for each row in the table.

TABLE 5-1. PL/SQL Scalar Datatypes and Related Subtypes

For the first hands-on exercise in this chapter, use SQL*Plus to enter the

following anonymous PL/SQL block that declares and initializes several variables

of different datatypes and then outputs their current values to standard output.

DECLARE

 outputstring VARCHAR2(20) := 'Hello World';
 todaysDate DATE := SYSDATE;

 pi CONSTANT NUMBER := 3.14159265359;

BEGIN
 DBMS_OUTPUT.PUT_LINE(outputstring);

 DBMS_OUTPUT.PUT_LINE(todaysDate);
 DBMS_OUTPUT.PUT_LINE (pi);

END;
/

NOTE
To end a PL/SQL program in SQL*Plus, you must terminate the code with a line

that includes only the backslash (/) character.

The output of the program should be similar to the following:

Hello World

16-AUG-99
3.14159265359

PL/SQL procedure successfully completed.

There are a couple of subtle points to understand about this first example PL/SQL

program.

 When a program declares a variable using a datatype that requires a

constraint specification (such as VARCHAR2), the declaration must specify the

constraint.

 The body of the example program uses the DBMS_OUTPUT.PUT_LINE

procedure to direct output to the standard output. The DBMS_OUTPUT.

PUT_LINE procedure is analogous in functionality to the println procedure in C,

and the System.outprintln method of Java. However, you will not see the output

of a call to DBMS_OUTPUT.PUT_LINE when using SQL*Plus unless you

enable the SQL*Plus environment setting SERVEROUTPUT. The prerequisite

command script for this chapter executes a SET SERVEROUTPUT ON statement

for you.

EXERCISE 5.2: Assigning Values to Variables

Value assignment is one of the most common operations within any type of

procedural program. The general syntax that you use to assign a value to a

variable is as follows:

 variable:= expression

An assignment statement in a PL/SQL program assigns the value that results from

an expression to a PL/SQL construct, such as a variable, using the assignment

operator (: =). For example, enter the following PL/SQL block, which declares

some variables, assigns them values in the program body, and then uses the

DBMS_ OUTPUT.PUT_LINE procedure to output their current values to

standard output.

DECLARE
 outputString VARCHAR2(20) ;

 todaysDate DATE;
 tomorrowsDate DATE;

 lastDayOfTheMonth DATE;
BEGIN
 outputString := ‘Hello’ ||‘World’;

 todaysDate := SYSDATE;
 tomorrowsDate := SYSDATE + 1;

 lastDayOfTheMonth := LAST_DAY(SYSDATE);
 DBMS_OUTPUT.PUT_LINE(outputString);
 DBMS_OUTPUT.PUT_LINE(todaysDate);

 DBMS_OUTPUT.PUT_LINE(tomorrowsDate);
 DBMS_OUTPuT.PUT_LINE(lastDayOfTheMonth);

END;
/

The program output should be similar to the following:

Hello World
16-MAY-16

17-MAY-16
31-MAY-16
PL/SQL procedure successfully completed.

Notice that the assignment statements in the body of the program use different

types of expressions that build values to assign to variables. Several sections in

the previous chapter teach you how to build expressions for a query's SELECT

clause using literals, operators, and SQL functions. Similarly, you can build

expressions for the right side of an assignment statement in a PL/SQL program.

For example, the expressions in the example program use literals, the

concatenation and addition operators (||and +), and the LAST_DAY and

SYSDATE functions.

NOTE
Most SQL functions are also built-in and supported in PL/SQL statements.

5.3.2 Controlling Program Flow

Typical procedural programs have flow. That is, a program uses some sort of

logic to control whether and when the program executes given statements. PL/SQL

programs can control program flow using iterative logic (loops), conditional logic (if-

then-else), and sequential logic (goto). The following exercises teach you how to use

the different program flow control statements that PL/SQL offers.

EXERCISE 5.3: Using PL/SQL Loops

A PL/SQL program can use a loop to iterate the execution of a series of

statements a certain number of times. Enter the following anonymous PL/SQL

block, which teaches you how to use a basic loop. The beginning of a basic loop

starts with a LOOP statement and ends with an END LOOP statement.

DECLARE
 loopCounter INTEGER := 0;
BEGIN

LOOP
 DBMS_OUTPUT.PUT(loopCounter ||‘ ‘);

 loopCounter := loopCounter + 1;
 EXIT WHEN loopCounter = 10;
 END LOOP;

 DBMS_OUTPUT.PUT_LINE(‘Loop Exited.’);
END;

/

 The program output should look like the following:

 0 1 2 3 4 5 6 7 8 9 Loop Exited.

PL/SQL procedure successfully completed.

It is important to understand that every basic loop definition should use either an

EXIT WHEN or EXIT statement to terminate the loop—otherwise the loop

executes infinitely!

NOTE
The preceding example uses the DBMS_OUTPUT.PUT procedure to

place display output in a temporary buffer. The subsequent call to

DBMS_OUTPUT.PUT_LINE prints the entire contents of the session's

display buffer.

Next, enter the following anonymous PL/SQL block, which teaches you how to

use a different type of loop, a WHILE loop. The LOOP statement of a WHILE

loop begins with a WHILE condition and ends with an END LOOP statement.

DECLARE

 loopCounter INTEGER := 0;

BEGIN

 WHILE loopCounter < 10 LOOP

 DBMS_OUTPUT.PUT(loopCounter || ‘ ’);

 loopCounter := loopCounter + 1;

 END LOOP;

DBMS_OUTPUT.PUT_LINE('Loop Exited.');

END;

/

The program output should look like the following:

0 1 2 3 4 5 6 7 8 9 Loop Exited.

PL/SQL procedure successfully completed.

Notice that the definition of a WHILE loop requires that you specify a condition

to describe how the loop terminates.

Finally, enter the following anonymous PL/SQL block, which teaches you how to

use a third type of loop, a FOR loop. The LOOP statement of a FOR loop begins

with a FOR clause, and ends with an END LOOP statement.

BEGIN

 «outer_loop»
 FOR outerLoopCounter IN 0 .. 25 LOOP
 DBMS_OUTPUT.PUT_LINE(‘Outer Loop: ’||outerLoopCounter);

 DBMS_OUTPUT.PUT(‘ Inner Loop: ’);
 «inner_loop»

 FOR innerLoopCounter IN REVERSE 1 .. 3 LOOP
 DBMS_OUTPUT.PUT(innerLoopCounter ||‘ ‘);
 EXIT inner_loop

 WHEN ((outerLOopCounter = 2) AND(innerLoopCounter =3));
 EXIT outer_loop

 WHEN ((outerLoopCounter = 5) AND(innerLoopCounter = 2));
 END LOOP inner_loop;
 DBMS_OUTPUT.PUT_LINE(‘Inner Loop Exited.’);

 DBMS_OUTPUT.PUT_LINE(‘------------——--—');
 END LOOP outer_loop;

DBMS_OUTPUT.PUT_LINE(‘Outer Loop Exited.’);
END;

/

The program output should look like the following: (Be careful if you copy

and paste this code in SQL*Plus, sometimes << >> are printed as quotes and it

might lead you to compiler giving errors on your code. Make sure that the code in

SQL*Plus is exactly as shown here)

Outer Loop: 0

Inner Loop: 321 inner Loop Exited.

Outer Loop: 1

Inner Loop: 321 Inner Loop Exited.

Outer Loop: 2
Inner Loop: 3 Inner Loop Exited.

Outer Loop: 3
Inner Loop: 321 inner Loop Exited.

Outer Loop: 4
Inner Loop: 321 inner Loop Exited.

Outer Loop: 5

Inner Loop: 3 2 Outer Loop Exited.

PL/SQL procedure successfully completed.

The preceding example includes several important points that you should

understand about FOR loops and loops in general:

 You can nest loops within loops.

 You can use loop labels to name loops, and then reference specific loops

by name in EXIT and END LOOP statements.

 A FOR loop can declare its integer counter variable as part of the FOR ...

LOOP statement.

 A FOR loop automatically increments or decrements its counter variable

so that you do not have to explicitly do so in the body of the loop.

EXERCISE 5.4: Using the PL/SQL Command IF ... ELSIF ... ELSE

An IF statement in a PL/SQL program evaluates a Boolean condition, and if the

condition is TRUE executes one or more statements. You can also use the

optional ELSIF and ELSE clauses to enter subsequent conditions to be evaluated

if the first condition is not TRUE. Enter the following anonymous PL/SQL block,

which teaches you how to use the PL/SQL command IF ... ELSIF ... ELSE for

conditions.

BEGIN
FOR i IN 1 .. 20 LOOP

IF ((i mod 3 = 0) AND (i mod 5 = 0))THEN
 DBMS_OUTPUT.PUT(‘multipleOfBoth’);
 ELSIF i mod 3 = 0 THEN

 DBMS_OUTPUT.PUT(‘multipleOf3’);
 ELSIF i mod 5 = 0 THEN

DBMS_OUTPUT.PUT(‘multipleOf5’);
 ELSE
DBMS_OUTPUT.PUT(i);

END IF;
DBMS_OUTPUT.PUT(‘ ‘);

END LOOP;

DBMS_OUTPUT.PUT_LINE(‘ ‘);

END;

/

The program output should look like the following:

1 2 multipleOf3 4 multipleOf5 multipleOf3 7 8

multipleOf3

multipleOf5 11 multipleOf3 13 14 multipleOfBoth 16 17

multipleOf3 19 multipleOf5

PL/SQL procedure successfully completed.

EXERCISE 5.5: Using the PL/SQL Command GOTO

Unlike conditional and iterative flow control, sequential control or branching is

rarely necessary in PL/SQL programs; however, PL/SQL provides the GOTO

command should the need arise. For example, enter the following anonymous

PL/SQL block, which teaches you how to use a GOTO statement to branch to a

program label that precedes an executable statement in a PL/SQL program.

BEGIN
 --set the loop to iterate 10 times
 FOR i IN 1 .. 10 LOOP

 DBMS_OUTPUT.PUT (i ||‘ ‘);
 IF i = 5 THEN

 GOTO message1;
 END IF;
 END LOOP;

DBMS_OUTPUT.PUT_LINE (‘All loop iterations printed.');
 «message1»

 DBMS_OUTPUT.PUT_LINE (‘Only 5 loop iterations printed.’);
END;
/

The program output is as follows:

1 2 3 4 5 Only 5 loop iterations printed.

PL/SQL procedure successfully completed.

5.3.3 Interacting with Databases

The previous example exercises are PL/SQL programs that generate simple output

to demonstrate some basics of PL/SQL. However, the primary reason for using

PL/SQL is to create database access programs. A PL/SQL program can interact with

an Oracle database only through the use of SQL. The following exercises show you

how a PL/SQL program can manipulate database information using standard SQL

DML (data modification language) statements and cursors.

EXERCISE 5.6: Manipulating Table Data with DML Statements

PL/SQL programs can include any valid INSERT, UPDATE, or DELETE

statement to modify the rows in a database table. For example, enter the following

anonymous PL/SQL block, which inserts a new record into the PARTS table.

DECLARE

 newId INTEGER := 6;
 newDesc VARCHAR2(250) := ‘Mouse’;
 BEGIN

 INSERT INTO parts
 VALUES(newId, newDesc, 49, 1200, 500);

END;

/

The output produced by this program is simply the following line:

PL/SQL procedure successfully completed.

A variable or constant in a PL/SQL block can satisfy the requirement for an

expression in a DML statement. For example, the previous example program uses

program variables to supply the first two values in the VALUES clause of the

INSERT statement.

Now query the PARTS table to see the new record.

SELECT * FROM parts

WHERE id = 6;

The result set is as follows:

 ID DESCRIPTION UNITPRICE ONHAND REORDER

 --- ----------- --------- ------ -------

 6 Mouse 49 1200 500

All data modifications made by INSERT, UPDATE, and DELETE statements

inside of a PL/SQL block are part of your session's current transaction. Although

you can include COMMIT and ROLLBACK statements inside many types of

PL/SQL blocks, transaction control is typically controlled outside of PL/SQL

blocks, so that transaction boundaries are clearly visible to those using your

PL/SQL programs.

EXERCISE 5.7: Assigning a Value to a Variable with a Query

PL/SQL programs often use the INTO clause of the SQL command SELECT to

assign a specific database value to a program variable. Oracle supports the use of

a SELECT... INTO statement only inside PL/SQL programs. Try out this type of

assignment statement by entering the following anonymous PL/SQL block, which

uses a SELECT ... INTO statement to assign a value to a program variable.

DECLARE
 partDesc VARCHAR2(250);
 BEGIN

 SELECT description INTO partDesc
 FROM parts

 WHERE id = 3;
DBMS_OUTPUT.PUT_LINE(‘Part 3 is a ' ||partDesc);
END;

/

The program output is as follows:

 Part3 is a Laptop PC

PL/SL procedure successfully completed.

A SELECT ... INTO command must have a result set with only one row—if the

result set of a SELECT ... INTO statement contains more than one row, Oracle raises

the TOO_MANY_ROWS exception. To process a query that returns more than one

row, a PL/SQL program must use a cursor. You'll learn more about cursors later in

this chapter.

5.3.4 Declaring and Using Subprograms: Procedures and Functions

The declarative section of a PL/SQL block can declare a common subtask as a

named subprogram (or subroutine). Subsequent statements in the main program body

can then call (execute) the subprogram to perform work whenever necessary.

PL/SQL supports two types of subprograms: procedures and functions. A

procedure is a subprogram that performs an operation. A function is a subprogram

that computes a value and returns it to the program that called the function.

EXERCISE 5.8: Declaring and Using a Procedure

The general syntax for declaring a procedure is as follows:

PROCEDURE procedure
 [(parameter[IN|OUT|IN OUT]datatype[{DEFAULTl:=expression]

 [,...])]
 declarations ..
 (IS|AS)

 BEGIN
 statements...

END [procedure];

When you declare a subprogram, such as a procedure, you can pass values into

and out of the subprogram using parameters. Typically, a calling program passes

one or more variables as parameters to a subprogram.

For each parameter, you must specify a datatype in an unconstrained form.

Furthermore, you should indicate the mode of each parameter as IN, OUT, or IN

OUT:

 An IN parameter passes a value into a subprogram, but a subprogram

cannot change the value of the external variable that corresponds to an IN

parameter.

 An OUT parameter cannot pass a value into a subprogram, but a

subprogram can manipulate an OUT parameter to change the value of the

corresponding variable in the outside calling environment.

 An IN OUT parameter combines the capabilities of IN and OUT

parameters.

Enter the following anonymous PL/SQL block, which declares a procedure to

print horizontal lines of a specified width.

DECLARE
 PROCEDURE printLine(width IN INTEGER, chr IN CHAR DEFAULT ‘-‘) IS

 BEGIN
 FOR i IN 1 .. width LOOP

 DBMS_OUTPUT.PUT(chr);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE(‘’);

END printLine;
 BEGIN

 printLine(40, ‘*’); -- print a line of 40 *s
 printLine(width => 20, chr => '='); -- print a line of 20 =s
 printLine(10); -- print a line of 10 -s

END;
/

The program output is as follows:

====================

PL/SQL procedure successfully completed.

The body of the example in this exercise calls the printLine procedure three

times.

 The first procedure call provides values for both parameters of the procedure

using positional notation—each parameter value that you specify in a procedure

call corresponds to the procedure parameter declared in the same position.

 The second procedure call provides values for both parameters of the

procedure using named notation—the name of a parameter and the association

operator (=>) precedes a parameter value.

 The third procedure call demonstrates that you must provide values for all

procedure parameters without default values, but can optionally omit values for

parameters with a default value.

EXERCISE 5.9: Declaring and Using a Function

The general syntax for declaring a function is as follows:

FUNCTION function
 [(parameter[IN|OUT|IN OUT]datatype[(DEFAULTl:=}

expression]

 [,...])]
 RETURN datatype

 declarations ...
{IS|AS} BEGIN
statements .. .

END[function];

Notice that a function differs from a procedure in that it returns a value to its calling

environment. The specification of a function declares the type of the return value.

Furthermore, the body of a function must include one or more RETURN statements to

return a value to the calling environment.

Enter the following anonymous PL/SQL block, which declares and uses a

function.

DECLARE

 tempTotal NUMBER;
 FUNCTION orderTotal(orderId IN INTEGER)
 RETURN NUMBER

 IS
 orderTotal NUMBER;

 tempTotal NUMBER;

 BEGIN

 SELECT SUM(i.quantity * p.unitprice) INTO orderTotal
 FROM items i, parts p
 WHERE i.o_id = orderid

 AND i.p_id = p.id
 GROUP BY i.o_id;

 RETURN orderTotal;
 END orderTotal;
BEGIN

 DBMS_OUTPUT.PUT_LINE(‘Order 1 Total:’|| orderTotal(1));
 tempTotal := orderTotal(2) ;

 DBMS_OUTPUT.PUT_LINE('Order2Total:’|| tempTotal);
END;
/

The program output is as follows:

Order 1 Total: 7094
Order 2 Total: 3196

PL/SQL procedure successfully completed.

The main program body of the PL/SQL block calls the orderTotal function twice.

A program can call a function anywhere an expression is valid—for example, as a

parameter for a procedure call or on the right side of an assignment statement. A SQL

statement can also reference a user-defined function in the condition of a WHERE

clause.

5.3.5 Working with Record Types

So far in this chapter, you've seen how to declare simple, scalar variables and

constants based on Oracle datatypes (for example, NUMBER) and subtypes of the base

datatypes (for example, INTEGER]. A block in a PL/SQL program can also declare user-

defined types and then use the user-defined types to declare corresponding program

variables. This section teaches you how to declare and use an elementary user-defined

type, a record type. A record type consists of a group of one or more related fields, each

of which has its own name and datatype. Typically, PL/SQL programs use a record type

to create variables that match the structure of a record in a table. For example, you might

declare a record type called partRecord and then use the type to create a record variable

that holds a part's ID, DESCRIPTION, UNITPRICE, ONHAND, and REORDER fields.

After you declare a record variable, you can manipulate the individual fields of

the record or pass the entire record to subprograms as a unit.

The general syntax for declaring a record type is as follows:

TYPE recordType IS RECORD
[field datatype [NOT NULL]{DEFAULT|:=}expression]

[,field.. .]
)

The specification of an individual field in a record type is similar to declaring a

scalar variable—you must specify the field's datatype, and you can specify an optional

not null constraint, as well as initialize the field.

EXERCISE 5.10: Declaring and Using Record Types

Enter the following anonymous PL/SQL block, which demonstrates how to

declare and use a record type. The declaration section of the block declares a user-defined

record type to match the attributes of the PARTS table, and then declares two record

variables using the new type. The body of the program demonstrates how to do the

following:

 Reference individual fields of record variables using dot notation

 Assign values to the fields of a record variable

 Pass a record variable as a parameter to a procedure call

 Copy the field values of one record variable to the fields of another

variable of the same record type

 Use the fields of a record variable as expressions in an INSERT

statement

DECLARE
 TYPE partRecord IS RECORD (
 id INTEGER,

 description VARCHAR2(250),
 unitprice NUMBER(10,2),

 onhand INTEGER,
 reorder INTEGER
) ;

 SelectedPart partRecord;
 CopiedPart partRecord;

 PROCEDURE printPart (title IN VARCHAR2, thisPart IN partRecord)
 IS
 BEGIN

 FOR i IN 1 .. 50 LOOP
 DBMS_OUTPUT.PUT(‘-‘);

 END LOOP;
 DBMS_OUTPUT.PUT_LINE(‘’);

 DBMS_OUTPUT.PUT_LINE(title||‘: ID: ’||thisPart.id ||
 ‘DESCRIPTION: ‘ ||thisPart.description);

 END printPart;
 BEGIN

 /* Assign values to the fields of a record variable
 || using a SELECT .. INTO statement.
 */

 SELECT id, description,unitprice,onhand, reorder INTO
 selectedPart

 FROM parts WHERE id = 3;
 printPart(‘ selectedPart Info',selectedPart);

 /* Assign the field values of one record variable to
 || the corresponding fields in another record

 || variable of the same type. Then assign new
 || values to the fields of original record variable

 || I to demonstrate that record copies are not by reference.
 */
 copiedPart := selectedPart;

 selectedPart.id := 7;
 selectedPart.description := ‘Laser Printer’;
 selectedPart.unitprice := 399;

 selectedPart.onhand := 730;
 selectedPart.reorder := 500;

 printPart(‘newPart Info’, selectedPart);

 printPart(‘copiedPart Info’, copiedPart);

 /* Use the fields of a record variable as expressions
 ||in the VALUES clause of an INSERT statement.
 */

 INSERT INTO parts
 VALUES (selectedPart.id,selectedPart.description,

 selectedPart.unitprice,selectedPart.onhand,
 selectedPart.reorder);

 END;
 /

The program output is as follows:
--
selectedPart Info: ID: 3 DESCRIPTION: Laptop PC

--
newPart Info: ID: 7 DESCRIPTION: Laser Printer

--
CopiedPart Info: ID: 3 DESCRIPTION: Laptop PC

PL/SQL procedure successfully completed.

NOTE
As an additional exercise, build a query of the PARTS table to view the new pan

inserted by the example program.

5.4 Using the %TYPE and %ROWTYPE Attributes

A PL/SQL program can use the %TYPE and %ROWTYPE attributes to declare

variables, constants, individual fields in records, and record variables that match the

properties of database columns and tables or other program constructs. Not only do

attributes simplify the declaration of program constructs, but their use also makes

programs flexible for database modifications. For example, after an administrator

modifies the PARTS table to add a new column, a record variable declared using the

%ROWTYPE attribute automatically adjusts to account for the new column at run time,

without any modification of the program.

EXERCISE 5.11: Using the %TYPE Attribute

The declaration of a PL/SQL variable, constant, or field in a record variable can

use the %TYPE attribute to capture the datatype of another program construct or column

in a database table at run time. For example, enter the following anonymous PL/SQL

block, which uses the %TYPE attribute to reference the columns in the PARTS table

when declaring the partRecord type.

DECLARE
 TYPE partRecord IS RECORD(

 id parts.id%TYPE,
 description parts.description%TYPE,
 unitprice parts.unitprice%TYPE,

 onhand parts.onhand%TYPE,
 reorder parts.reorder%TYPE

) ;
 selectedPart partRecord;
 BEGIN

 SELECT id, description,unitprice,onhand,reorder INTO selectedPart
 FROM parts WHERE id = 3;

 DBMS_OUTPUT.PUT_LINE(‘ID:’ || selectedPart.id);
 DBMS_OUTPUT.PUT_LINE(‘DESCRIPTION:’|| SelectedPart.description);
 DBMS_OUTPUT.PUT_LINE(‘UNIT PRICE;’||selectedPart.unitprice);

 DBMS_OUTPUT.PUT_LINE(‘CURRENTLY ONHAND:’|| selectedpart.onhand);

 DBMS_OUTPUT.PUT_LINE(‘REORDER AT:’||selectedPart.reorder);

 END;
/

The program output is as follows:

ID: 3
DESCRIPTION: Laptop PC

UNIT PRICE: 2100
CURRENTLY ONHAND: 7631
REORDER AT: 1000

PL/SQL procedure successfully completed.

EXERCISE 5.12: Using the %ROWTYPE Attribute

A PL/SQL program can use the %ROWTYPE attribute to easily declare record

variables and other constructs at run time. For example, enter the following anonymous

PL/SQL block, which shows how to use the %ROWTYPE attribute to simplify the

declaration of a record variable that corresponds to the fields in the PARTS table.

DECLARE
 selectedPart parts%ROWTYPE;
 BEGIN

 SELECT id,description,unitprice,onhand,reorder INTO selectedPart
 FROM parts WHERE id = 3;

 DBMS_OUTPUT.PUT_LINE(‘ID:’|| selectedPart.id);
 DBMS_OUTPUT.PUT_LINE(‘DESCRIPTION:’||selectedPart.description);
 DBMS_OUTPUT.PUT_LINE(‘UNIT PRICE:’||SelectedPart.unitprice);

 DBMS_OUTPUT.PUT_LINE(‘CURRENTLY ONHAND:’||selectedPart.onhand);
 DBMS_OUTPUT.PUT_LINE(‘REORDER AT:’||SelectedPart.reorder);

 END;
/

The program output is as follows:

ID : 3
DESCRIPTION: Laptop PC

UNIT PRICE: 2100
CURRENTLY ONHAND: 7631
REORDER AT: 1000

PL/SQL procedure successfully completed.

Notice that a record variable that you declare using the %ROWTYPE attribute

automatically has field names that correspond to the fields in the referenced table.

5.4.1 Working with Cursors

Whenever an application submits a SQL statement to Oracle, the server opens at

least one cursor to process the statement. A cursor is essentially a work area for a

SQL statement. When a PL/SQL program (or any other application) submits an

INSERT, UPDATE, or DELETE statement, Oracle automatically opens a cursor to

process the statement. Oracle also can automatically process SELECT statements that

return just one row. However, database access programs frequently must process a

query that returns a set of database records, rather than just one row. To process the

rows of a query that correspond to a multirow result set, a PL/SQL program must

explicitly declare a cursor with a name, and then reference the cursor by its name to

process rows one at a time. The steps for using cursors inside PL/SQL programs

include the following:

 Declare the cursor. You use a query to define the columns and

rows of a cursor.

 Open the cursor. You use the PL/SQL command OPEN to open a

declared cursor.

 Fetch rows from the cursor. You use the PL/SQL command

FETCH to fetch rows, one-by-one, from an open cursor.

 Close the cursor. You use the PL/SQL command CLOSE to close

an open cursor.

EXERCISE 5.13: Declaring and Using a Simple Cursor

To familiarize yourself with the steps necessary to declare and use a cursor, enter

the following anonymous PL/SQL block, which declares and uses a very simple

cursor to print out selected columns in all the rows of the PARTS table.

DECLARE

 -- Step 1: Declare the cursor.
 CURSOR nextPartsRow IS
 SELECT * FROM parts

 ORDER BY id;
 currentPart parts%ROWTYPE; --record variable that matches the cursor

 BEGIN
 -- Step 2. Open the cursor.
 OPEN nextPartsRow;

 FETCH nextPartsRow INTO currentPart;
 -- Step 3. Using a WHILE loop, fetch individual rows from the cursor.

 WHILE nextPartsRow%FOUND LOOP
 DBMS_OUTPUT.PUT_LINE(currentPart.id ||''||CurrentPart.description);
 FETCH nextPartsRow INTO CurrentPart;

 END LOOP;
 -- Step 4. Close the cursor.

 CLOSE nextPartsRow;
END;
/

The program output is as follows:

1 Fax Machine
2 Copy Machine

3 Laptop PC
4 Desktop PC

5 Scanner
6 Mouse
7 Laser Printer

PL/SQL procedure successfully completed.

Notice that after fetching the first row from the cursor, the program uses a

WHILE loop to fetch subsequent rows from the open cursor, one-by-one. A

PL/SQL program can use a cursor attribute to make decisions when processing

cursors. The condition of the WHILE loop in the example program uses the

%FOUND cursor attribute to detect when the last row of the cursor has been

fetched. Table 5-2 lists the cursor attributes available with PL/SQL.

EXERCISE 5.14: Using Cursor FOR Loops

Because cursors are designed to process queries with multiple-row result sets,

programs almost always process cursors using loops. To simplify the steps

necessary to set up and process a cursor, a PL/SQL program can use a cursor FOR

loop. A cursor FOR loop automatically declares a variable or record capable of

receiving the rows in the cursor, opens the cursor, fetches rows from the cursor,

and closes the cursor when the last row is fetched from the cursor. Enter the

following anonymous PL/SQL block,

Explicit Cursor Attribute Description

cursor%FOUND The %FOUND attribute evaluates to TRUE

when the preceding FETCH statement

corresponds to at least one row in a

database; otherwise, %FOUND evaluates

to FALSE.

cursor%NOTFOUND The %NOTFOUND attribute evaluates to

TRUE when the preceding FETCH

statement does not correspond to at least

one row in a database; otherwise,

%NOTFOUND evaluates to FALSE

cursor%ISOPEN The %ISOPEN attribute evaluates to

TRUE when the target cursor is open;

otherwise, %ISOPEN evaluates to FALSE.

cursor %ROWCOUNT The %ROWCOUNT attribute reveals the

number of rows fetched so far for an

explicitly declared cursor.

TABLE 5-2. Attributes of Explicitly Declared Cursors

which is a revision of the block in the previous exercise, and notice how a cursor

FOR loop can simplify the steps necessary to process a cursor?

DECLARE

 CURSOR partsRows IS
 SELECT * FROM parts

 ORDER BY id;
 BEGIN
 FOR currentPart IN partsRows LOOP

 DBMS_OUTPUT.PUT_LINE(currentPart.id ||’’ ||currentPart.description);
 END LOOP;

END;
/

The program output is as follows:

1 Fax machine
2 Copy Machine

3 Laptop PC
4 Desktop PC

5 Scanner
6 Mouse

7 Laser Printer

PL/SQL procedure successfully completed.

If you do not see the above output, chances are you exited the SQL*Plus and

login as practice05/password. You may issue the following SQL command to

enable the server output.

SQL>set serveroutput on;

EXERCISE 5.15: Declaring Cursors with Parameters

When you declare a cursor, you can also declare one or more cursor parameters

that the PL/SQL program uses to define the cursor's record selection criteria at run

time. When a program opens a cursor that has a cursor parameter, the program

can indicate a value for each cursor parameter. To learn how to declare and use a

cursor that has a cursor parameter, enter the following anonymous PL/SQL block.

DECLARE
 CURSOR customersRows (salesRepId INTEGER) IS

 SELECT id, firstname ||’’ ||lastname AS name
 FROM customers
 WHERE s_id = salesRepId;

BEGIN
 DBMS_OUTPUT.PUT_LINE(‘Sales Rep #1’’s Customers');

 FOR currentCustomer IN customersRows (1) LOOP
 DBMS_OUTPUT.PUT_LINE(‘ID: ‘||currentCustomer.id ||
 ‘, NAME: ‘ ||currentCustomer.name);

END LOOP;
END;

/

The program output is as follows:

Sales Rep #1's Customers

ID: 2, NAME: Bill Musial
ID: 3, NAME: Danielle Sams
ID: 7, NAME: Joseph Wiersbicki

ID: 9, NAME: Dorothy Clay
ID: 10, NAME: Dave Haagensen

PL/SQL procedure successfully completed.

EXERCISE 5.16: Manipulating a Cursor's Current Row

As a program fetches individual rows from a cursor's result set, it is accessing the

cursor's current row. A PL/SQL program can take advantage of the special

CURRENT OF clause in the WHERE condition of an UPDATE or DELETE

statement that must process the current row of a cursor. Enter the following

anonymous PL/SQL block, which teaches you how to use the CURRENT OF

clause in the WHERE condition of a DELETE statement. This block deletes the

two new records inserted into the PARTS table by previous example programs in

this chapter.

DECLARE
 CURSOR partsRows (partId INTEGER) IS
 SELECT * FROM parts

 WHERE id >= partId
 FOR UPDATE;

 BEGIN
 FOR currentPart IN partsRows(6)LOOP--selects
 --parts 6 and 7

 DELETE FROM parts
 WHERE CURRENT OF partsRows;

 DBMS_OUTPUT.PUT_LINE(‘Deleted part’ ||currentPart.id
||’,’ || currentPart.description);
END LOOP;

END;
/

Assuming that your PARTS table has rows for parts 6 and 7 (a Mouse and

a Laser Printer, respectively), which were inserted by earlier exercises in this

chapter, the program output should be as follows:

Deleted part 5, Mouse
Deleted part 7, Laser Printer

PL/SQL procedure successfully completed.

Notice in the declaration of the cursor in the example program that when you

declare a cursor with the intention of updating or deleting rows fetched by the cursor,

you must declare the cursor's defining query with the FOR UPDATE keywords. This

requirement forces Oracle to lock the rows in the cursor's result set, which prevents

other transactions from updating or deleting the same rows until your transaction

commits or rolls back.

5.4.2 Working with Collections

PL/SQL blocks can also declare and use collections. A collection in a PL/SQL

program is a variable that is made up of an ordered set of like elements. To create a

collection, you must first declare either a nested table type or a varray (varying array)

type, and then declare a variable of the collection type. The next few sections explain

more about nested tables and varrays.

NOTE
Oracle's PL/SQL also supports a third collection type, PL/SQL tables (index-by

tables), for backward compatibility with previous versions of Oracle. However,

you should use nested tables rather than PL/SQL tables when developing new

applications, to gain additional functionality. This chapter does not explain

PL/SQL table types further.

5.4.3 Nested Tables

A PL/SQL program can use a nested table type to create variables that have one

or more columns and an unlimited number of rows, just like tables in a database. The

general syntax for declaring a nested table type is as follows:

TYPE tableType IS TABLE OF
(datatype |{variable|table.column}%TYPE | table%ROWTYPE)

[NOT NULL];

The following exercises teach you how to declare, use, and manipulate nested

tables.

EXERCISE 5.17: Declaring and Initializing a Nested Table

Enter the following anonymous PL/SQL block, which demonstrates how to

declare a nested table type and then use the type to declare a new collection

variable. The following example also demonstrates how to initialize a collection

with its constructor method and then reference specific elements in the nested

table collection by subscript.

DECLARE
 --declare a nested table type of INTEGERs

 TYPE integerTable IS TABLE OF INTEGER;
 -- declare and initialize a collection with its
constructor

 tempIntegers integerTable := integerTable(1, 202, 451) ;
 BEGIN

 FOR i IN 1 .. 3 LOOP
 DBMS_OUTPUT.PUT_LINE(‘Element # ‘||i ||’ is ‘ ||
tempIntegers(i));

 END LOOP;
END;

/

The program output is as follows:

Element #1 is 1

Element #2 is 202
Element #3 is 451

PL/SQL procedure successfully completed.

This very simple example demonstrates a few fundamental points you will need to

understand about nested tables.

 Before you can use a collection, such as a nested table, you must initialize

it using the type's corresponding constructor. PL/SQL automatically

provides a constructor with the same name as the collection type. When

you call a constructor to initialize a collection variable, you can specify a

comma-separated list of initial elements for the collection, or a set of

empty parentheses to initialize the collection as NULL.

 A nested table collection can have any number of rows. The size of a table

can increase or decrease dynamically, as necessary. The next practice

exercise will show how to add and delete elements in a nested table.

 Nested tables are initially dense—initially, all elements have consecutive

subscripts.

EXERCISE 5.18: Using Collection Methods with a Nested Table

PL/SQL supports several different collection methods that you can use to

manipulate collections. To use a collection method, an expression in a PL/SQL

program names the collection with the collection method as a suffix, using

dot notation. Table 5-3 lists the collection methods that are available in PL/SQL.

Collection Method Description

COUNT Returns the number of elements currently

in the collection

DELETE[(x[,y] ...)] Deletes some or all of the collection's

elements without deallocating the space

used by the elements.

EXISTS(x) Returns TRUE if the xth element in the

collection exists. Otherwise, the method

returns FALSE.

EXTEND[(x[,y])] Appends x copies of the yth element to the

tail end of the collection. If y is omitted,

appends x null elements to the collection. If

both x and y are omitted, appends a single

null element to the collection

FIRST Returns the index number of the first

element in the collection.

LAST Returns the index number of the last

element in the collection.

LIMIT Returns the maximum number of elements

that a varray's collection can contain.

NEXT(x) Returns the index number of the element

after the xth element of the collection.

PRIOR(x) Returns the index number of the element

before the xth element of the collection.

TRIM(x) Trims x elements from the end of the

collection.

TABLE 5-3. Collection Methods

Enter the following anonymous PL/SQL block, which demonstrates how to use

several collection methods with a nested table of records.

DECLARE

 -- declare a nested table type of PARTS
 TYPE partsTable IS TABLE OF parts%ROWTYPE;

 -- declare and initialize a collection with its constructor
 tempParts partsTable := partsTable();
 -- cursor to fetch rows from PARTS table

 CURSOR nextPartsRow IS
 SELECT * FROM parts ORDER BY id;

 currentElement INTEGER;

BEGIN
 /* ADD ELEMENTS TO COLLECTION
 -- Create 10 new elements (rows) in the collection

 -- using the collection's EXTEND method.
 */

 tempParts.EXTEND(10);

 /* POPULATE COLLECTION
 -- Use a cursor to populate every even numbered element
 -- in the tempParts nested table collection with the

 -- five rows in the PARTS table.
 */

 FOR currentPart IN nextPartsRow LOOP
 tempParts(nextPartsRow%ROWCOUNT * 2) := currentPart;
END LOOP;

/* OUTPUT COLLECTION ELEMENT FIELDS

 -- Output the ID and DESCRIPTION fields of all elements

 -- in the tempParts nested table collection; if the

 -- element is NULL, indicate this.

*/

 DBMS_OUTPUT.PUT_LINE(‘Densely populated tempParts

elements:’||tempParts.COUNT);
 currentElement := tempParts.FIRST;

 FOR i IN 1 .. tempParts.COUNT LOOP
 DBMS_OUTPUT.PUT('Element #' || currentElement || 'is');

 IF tempParts(currentElement).id IS NULL THEN
 DBMS_OUTPUT.PUT_LINE('an empty element.');
 ELSE

 DBMS_OUTPUT.PUT_LINE(‘ID:‘||tempParts(currentElement).id ||
‘,’ ||‘DESCRIPTION:’ ||tempParts(currentElement).description);

 END IF;
 currentElement := tempParts .NEXT (currentElement);
 END LOOP;

 /* DELETE EMPTY COLLECTION ELEMENTS
 -- Use the collection's DELETE method to delete the

 -- empty elements (rows) from the nested table.
 */
 FOR i IN 1 .. tempParts.COUNT LOOP

 IF tempParts(i).id IS NULL THEN

 tempParts.DELETE(i);
 END IF;

END LOOP;

 /* OUTPUT SPARSE VERSION OF THE COLLECTION
 -- Print out ID and DESCRIPTIONS of the elements in

 -- the sparse version of the nested table.
 */
 DBMS_OUTPUT.PUT_LINE(‘Sparsely populated tempParts elements: ‘||

tempParts.COUNT); currentElement := tempParts.FIRST;
 FOR i IN 1 .. tempParts.COUNT LOOP

 DBMS_OUTPUT.PUT(‘Element # ‘||currentElement || ‘ is ‘);
 IF tempParts(currentElement).id IS NULL THEN
 DBMS_OUTPUT.PUT_LINE(‘an empty element.’);

 ELSE
 DBMS_OUTPUT.PUT_LINE(‘ID:’||tempParts(currentElement).id ||

‘,’ ||‘ DESCRIPTION: ‘||tempParts(currentElement).description);

 END IF;
 currentElement := tempPartS.NEXT(currentElement);

 END LOOP;
END;

/

The program output is as follows:

Densely populated tempParts elements: 10

Element #1 is an empty element.
Element #2 is ID: 1, DESCRIPTION: Fax Machine

Element #3 is an empty element.
Element #4 is ID: 2, DESCRIPTION: Copy Machine
Element #5 is an empty element.

Element #6 is ID: 3, DESCRIPTION: Laptop PC
Element #7 is an empty element.

Element #8 is ID: 4, DESCRIPTION: Desktop PC
Element #9 is an empty element.
Element #10 is ID: 5, DESCRIPTION; Scanner

Sparsely populated tempParts elements: 5
Element #2 is ID: 1, DESCRIPTION: Fax Machine

Element #4 is ID: 2, DESCRIPTION: Copy Machine
Element #6 is ID: 3, DESCRIPTION: Laptop PC
Element #8 is ID; 4, DESCRIPTION: Desktop PC

Element 110 is ID: 5, DESCRIPTION: Scanner

PL/SQL procedure successfully completed.

Besides demonstrating how to use the EXTEND, COUNT, FIRST, NEXT, and

DELETE collection methods, this example shows that while nested tables are initially

dense (elements have consecutive subscripts), they can later become sparse (elements

can have nonconsecutive subscripts) if the program deletes elements from the

collection. With this possibility in mind, the loops that output elements in the

example program do not rely on the loop's counter variable to reference collection

elements.

5.4.4 Varying Arrays

A program can also declare a varying array (varray) type to create table-like

variables that have one or more columns and a limited number of rows. The general

syntax for declaring a varray type is as follows:

TYPE varrayType IS(VARRAY | VARYING ARRAY)(size)OF

(datatype | {variableltable.colujnn}%TYPE | table%ROWTYPE)
[NOT NULL];

For the most part, varray collections are similar to nested table collections, with

the following important differences.

 When you declare a varray type, you must declare the number of elements

in the varray, which remains constant.

 Varrays must remain dense. A program must insert members into a varray

using consecutive subscripts, and cannot delete elements from a varray.

5.4.5 Handling Program Exceptions

A program is not complete unless it contains routines to process the errors that

can occur during program execution. Rather than embed error-handling routines into

the body of a program, a PL/SQL program addresses error-handling requirements

using exceptions and associated exception handlers. An exception is a named error

condition. A PL/SQL program raises a named exception when it detects an error, and

then it passes control to an associated exception handler routine that is separate from

the main program body. The next two exercises teach you more about exceptions and

exception handling, including predefined and user-defined exceptions.

EXERCISE 5.19: Handling Predefined Exceptions

PL/SQL includes many predefined exceptions that correspond to several common

Oracle errors. When a program encounters a predefined exception, it

automatically transfers program control to the associated exception handler—a

program does not have to explicitly perform checks for predefined exceptions.

PL/SQL identifies almost 20 predefined exceptions. For example, enter the

following anonymous PL/SQL block, which includes exception handlers to handle

the NO_DATA_FOUND and TOO_MANY_ROWS predefined PL/SQL exceptions:

 A PL/SQL program automatically raises the NO_DATA_FOUND

exception when a SELECT INTO statement has a result set with no rows.

 A PL/SQL program automatically raises the TOO_MANY_ROWS

exception when a SELECT INTO statement has a result set with more

than one row.

NOTE
For a complete list of predefined exceptions, see your Oracle documentation.

DECLARE
 PROCEDURE printOrder(thisOrderDate IN DATE)IS
 thisId INTEGER;

 BEGIN
 SELECT id INTO thisId FROM orders

 WHERE orderdate = thisOrderDate;
 DBMS_OUTPUT.PUT_LINE(‘Order ID’ ||thisId
 ||' on ' ||thisOrderDate);

 EXCEPTION
 WHEN no_data_found THEN

 DBMS_OUTPUT.PUT_LINE('No data found for SELECT.. INTO’);
 END printOrder;
 BEGIN

 printOrder('23-JUN-99');
 printOrder('24-JUN-99');

 printOrder(‘18-JUN-99');
 printOrder(‘19-JUN-99');
 EXCEPTION

 WHEN too_many_rows THEN
 DBMS_OUTPUT.PUT_LINE('Too many rows found for SELECT ..

INTO');
END;
/

The program output is as follows:

Order ID 14 on 23-JUN-99

No data found for SELECT .. INTO
Too many rows found for SELECT .. INTO

PL/SQL procedure successfully completed.

There are several important points that this example demonstrates about exception

handling in general:

 You can include an exception-handling section in any PL/SQL block—

both the anonymous PL/SQL block and its subprogram (the printOrder

procedure) have their own exception-handling sections.

 The first call to the printOrder procedure does not raise any exceptions and

prints the ID of the only order placed on 23-Jun-99.

 The second call to the printOrder procedure raises the predefined

exception NO_DATA_FOUND, because the SELECT ... INTO statement

in the procedure does not retrieve any rows. The NO_DATA_FOUND

exception handler local to the procedure handles the exception by printing

a message, and then returns control to the calling program, the anonymous

PL/SQL block, which then calls the printOrder procedure a third time.

 The third call to the printOrder procedure raises the predefined exception

TOO_MANY_ROWS, because the SELECT ... INTO statement in the

procedure returns more than one row. The procedure's exception-handling

section does not handle the TOO_MANY_ROWS exception locally, so

the exception propagates to the calling program, the anonymous PL/SQL

block, which does have an exception handler for TOO_MANY_ROWS.

The exception handler prints a message, and then passes control to the

calling program, which in this case, is SQL*Plus. Execution of the

anonymous PL/SQL block stops, and the fourth call to the printOrder

procedure never executes.

NOTE
If a statement in a PL/SQL block raises an exception and the block does not

have an associated exception handler, the program stops execution and

returns the error number and message that correspond to the exception to the

calling program.

EXERCISE 5.20: Declaring and Handling User-Defined Exceptions

A program can also declare user-defined exceptions in the declarative section of a

block. However, a program must perform explicit checks for a user-defined

exception that then raise the exception. Enter the following anonymous PL/SQL

block, which demonstrates the use of user-defined exceptions and corresponding

exception handlers.

DECLARE

 partNum INTEGER := 10;
 errNum INTEGER;

 errMsg VARCHAR2 (2000);
 invalidPart EXCEPTION;

BEGIN

 UPDATE parts
 SET description = 'Test'

 WHERE id = partNum;
--Explicitly check for the user-defined exception
IF SQL%NOTFOUND THEN
 RAISE invalidPart;

 END IF;

 DBMS_OUTPUT.PUT_LINE(‘Part updated.’);
EXCEPTION
 WHEN invalidPart THEN

 raise_application_error(-20003,'Invalid Part ID#' ||partNum);
WHEN OTHERS THEN

 errNum := SQLCODE;
 errMsg := SUBSTR(SQLERRM, 1, 100);

 raise_application_error (-20000, errNum ||‘’ ||errMsg);
END;
/

The program output is as follows:

DECLARE
*

ERROR at line 1:
ORA-20003: Invalid Part ID #10

ORA-06512: at 1ine 17

The example in this section introduces several interesting points about exception

handling:

 You declare a user-defined exception in the declarative section of a PL/SQL block

with the EXCEPTION keyword.

 You raise a user-defined exception with the PL/SQL command RAISE.

 A PL/SQL program can use the RAISE__APPLICATION_ERROR procedure to

return a user-defined error number and message to the calling environment. All

user-defined error messages must be in the range -20000 to -20999.

 A PL/SQL program can use the WHEN OTHERS exception handler to handle all

exceptions that do not have a specific handler.

 A PL/SQL program can use the special SQLCODE and SQLERRM functions to

return the most recent Oracle error number and message.

5.5 Types of PL/SQL Programs

Now that you understand the basics of the PL/SQL language, it's time to learn

more about the different types of programs you can create with PL/SQL, including

anonymous PL/SQL blocks, procedures, functions, packages, and database triggers.

5.5.1 Anonymous PL/SQL Blocks

The previous examples in this chapter are all anonymous PL/SQL blocks. An

anonymous block is a PL/SQL block that appears within your application. An

anonymous PL/SQL block has no name and is not stored for subsequent reuse. The

application simply sends the block of code to the database server for processing at run

time. Once the server executes an anonymous block, the block ceases to exist.

5.5.2 Stored Procedures and Functions

Several exercises in this chapter taught you how to declare and use PL/SQL

subprograms (procedures and functions) within PL/SQL blocks to encapsulate

frequently used tasks. A subprogram is a named PL/SQL program that can take

parameters and be called again and again to perform work. You can also store

procedures and functions as compiled bits of application logic inside an Oracle

database as named schema objects. By centralizing common procedures and functions

in the database, any application can make use of them to perform work. Judicious use

of stored procedures and functions can increase developer productivity and simplify

application development. The next two practice exercises demonstrate how to create

stored procedures and functions in an Oracle database.

EXERCISE 5.21: Creating and Using Stored Procedures

To create a stored procedure in an Oracle database, use the SQL command

CREATE PROCEDURE. Specification of a stored PL/SQL subprogram is basically

the same as when you declare a subprogram in the declarative section of a PL/SQL

block. However, when you declare a stored procedure, you can use the AUTHID

CURRENT_USER or AUTHID DEFINER options to indicate the privilege domain

that Oracle uses when executing the procedure.

 If you create the procedure with the AUTHID CURRENT_USER option, Oracle

executes the procedure (when called) using the privilege domain of the user

calling the procedure. To execute the procedure successfully, the caller must have

the privileges necessary to access all database objects referenced in the body of

the stored procedure.

 If you create the procedure with the default AUTHID DEFINER option, Oracle

executes the procedure using the privilege domain of the owner of the procedure.

To execute the procedure successfully, the procedure owner must have the

privileges necessary to access all database objects referenced in the body of the

stored procedure. To simplify privilege management for application users, the

default AUTHID DEFINER option should be your typical choice when creating a

stored procedure—this way, you do not have to grant privileges to all the users

that need to call the procedure.

NOTE
For more information about database access privileges, see chapter 9.

Enter the following example, which demonstrates how to create and store the

familiar printLine procedure in an Oracle database.

CREATE OR REPLACE PROCEDURE printLine(
width IN INTEGER,

Chr IN CHAR DEFAULT ‘-‘)
AUTHID DEFINER
IS

BEGIN
FOR i IN 1 .. width LOOP

DBMS_OUTPUT.PUT(chr);
 END LOOP;
DBMS_OUTPUT.PUT_LINE(‘’);

END printLine;
/

Now, you can use the printLine procedure in any other PL/SQL program just by

calling the stored procedure in the database. For example, try entering the following

anonymous PL/SQL blocks, which use the printLine stored procedure.

BEGIN
Printline (40, ‘*’); --print a line of 40*s

END;
/

BEGIN

printLine (width => 20, chr => ' =') ; -- print a line of 20 =s

END;

/
BEGIN

printLine(10); -- print a line of 10 -s
END;
/

The program outputs are as follows:

PL/SQL procedure successfully completed.
====================
PL/SQL procedure successfully completed.

PL/SQL procedure successfully completed.

EXERCISE 5.22: Creating and Using Stored Functions

To create a stored function in an Oracle database, use the SQL command

CREATE FUNCTION. Specify a function just as you would in the declarative

section of a PL/SQL block—do not forget to declare the function's return type,

and to use one or more RETURN statements in the body of the function to return

the function's return value. Enter the following example, which demonstrates how

to create and store the orderTotal function in an Oracle database.

CREATE OR REPLACE FUNCTION orderTotal(orderId IN INTEGER)

RETURN NUMBER
IS

 orderTotal NUMBER;
 tempTotal NUMBER;

BEGIN

 SELECT SUM(i.quantity * p.unitprice) INTO orderTotal
 FROM items i, parts p

 WHERE i.o_id = orderId
 AND i.p_id = p.id
 GROUP BY i.o_id;

 RETURN orderTotal;
END orderTotal;

/

Now, enter the following query, which uses the orderTotal function to return the

IDs and order dates of all orders that total more than $5,000.

SELECT id, orderdate

FROM orders
WHERE orderTotal(id) > 5000;

The results are as follows:

ID ORDERDATE
----- -----------

1 18-JUN-99
5 19-JUN-99

10 21-JUN-99
11 22-JUN-99

5.6 Packages

A package is a group of procedures, functions, and other PL/SQL constructs, all

stored together in a database as a unit. Packages are especially useful for organizing a

number of PL/SQL procedures and functions that relate to a particular database

application.

A package has two parts: a specification and a body,

 A package specification defines the interface to the package. In a package

specification, you declare all package variables, constants, cursors, procedures,

functions, and other constructs that you want to make available to programs

outside the package. In other words, everything that you declare in a package's

specification is public. You declare a package specification with the SQL

command CREATE PACKAGE.

 A package body defines all public procedures and functions declared in the

package specification. Additionally, a package body can include other construct

definitions not in the specification; such package constructs are private (available

only to programs within the package). You declare a package body with the SQL

command CREATE PACKAGE BODY.

All variables, constants, and cursors declared in either a package specification or

body outside of a subprogram are considered global. Unlike private variables, constants,

and cursors declared within specific procedures and functions, global constructs are

available to all package procedures and functions and have a state that persists

independent of any particular package subprogram on a per-session basis.

EXERCISE 5.23: Declaring and Using a Package

Enter the following example to create a very simple package called partMgmt,

which demonstrates some of the functionality available with PL/SQL packages.

CREATE OR REPLACE PACKAGE partMgmt IS

 -- Public subprograms
 PROCEDURE insertPart (partRecord IN parts%ROWTYPE);
 PROCEDURE updatePart (partRecord IN parts%ROWTYPE);

 PROCEDURE deletePart (partId IN INTEGER);
 PROCEDURE printPartsProcessed;

END partMgmt;
/

CREATE OR REPLACE PACKAGE BODY partMgmt AS
 -- Private global variable

 rowsProcessed INTEGER := 0;

 -- Public subprograms
 PROCEDURE insertPart (partRecOrd IN parts%ROWTYPE) IS

 BEGIN
 INSERT INTO parts

 VALUES (partRecord.id, partRecord.description,
partRecord.unitprice, parCRecord.onhand, partRecord.reorder);
 rowsProcessed := rowsProcessed + 1;

 END insertPart;

 PROCEDURE updatePart (partRecord IN parts%ROWTYPE) IS
 BEGIN

 UPDATE parts
 SET description = partRecord.description,
 unitprice = partRecord.unitprice,

 onhand = partRecord.onhand,
 reorder = partRecord.reorder

 WHERE id = partRecord.id;
 rowsProcessed := rowsProcessed + 1;
 END updatePart;

 PROCEDURE deletePart (partId IN INTEGER) IS
 BEGIN
 DELETE FROM parts

 WHERE id = partId;
 rowsProcessed := rowsProcessed + 1;

 END deletePart;

PROCEDURE printPartsProcessed IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(‘Parts processed this session: ‘||rowsProcessed);

 END printPartsProcessed;
END partMgmt;

/

Now, enter the following anonymous PL/SQL block, which uses the insertPart

procedure of the partMgmt package to insert a new part in the PARTS table.

DECLARE

newPart parts%ROWTYPE;
BEGIN

newPart.id := 6;
newPart.description := 'Mouse';
newPart.unitprice := 49; newPart.onhand := 1200;

newPart.reorder := 500;

partMgmt.insertPart(newPart);
END;

/

Notice that when you reference a package object (for example, a global variable

or subprogram), you must use dot notation to qualify the package object with its

package name. Now, enter the following anonymous PL/SQL block to update the

new part's ONHAND quantity using the updatePart procedure in the partMgmt

package.

DECLARE
aPart parts%ROWTYPE;

BEGIN
SELECT * INTO aPart FROM parts

WHERE id = 6; aPart.onhand := 1123;

partMgmt.updatePart(aPart);
END;
/

Now use the SQL*Plus command EXECUTE to execute the deletePart procedure

of the partMgmt package to delete the newest part. The EXECUTE command is

equivalent to surrounding a procedure call with the BEGIN and END keywords

that delimit the start and end of an anonymous PL/SQL block.

EXECUTE partMgmt.deletePart(6);

Finally, enter the following EXECUTE command to output the number of rows in

the PARTS table processed by the current session using the partMgmt package.

EXECUTE partMgmt.printPartsProcessed;

The program output is as follows:

 Parts processed this session: 3

PL/SQL procedure successfully completed.

The printPartsProcessed procedure demonstrates that the rowsProcessed global

variable retains its state, independent of calls to individual package subprograms.

5.6.1 Prebuilt Utility Packages

Oracle includes several prebuilt utility packages that provide additional

functionality not available with SQL or PL/SQL. Table 5-4 lists several of the

prebuilt packages available with Oracle.

Package Name Description

DBMS_ALERT Procedures and functions that allow applications to

name and signal alert conditions without polling

DBMS_AQ

DBMS_AQADM

Procedures and functions to queue the

execution of transactions and administer queuing

mechanisms

DBMS_DDL

DBMS_UTILITY

Procedures that provide access to a

limited number of DDL statements inside PL/SQL

programs

DBMS_DESCRIBE Procedures that describe the API for stored

procedures and functions

DBMS_JOB Procedures and functions to manage a database's job

queuing mechanisms

DBMS_LOB Procedures and functions to manipulate BLOBs,

CLOBs, NCLOBs, and BFILEs

DBMS_LOCK Procedures and functions that allow applications to

coordinate access to shared resources

DBMS_OUTPUT Procedures and functions that allow a PL/SQL

program to generate terminal output

DBMS_PIPE Procedures and functions that allow database sessions

to communicate using pipes (communication

channels)

DBM5_ROWID Procedures and functions that allow applications to

easily interpret a base-64 character external ROWID

DBMS_SESSION Procedures and functions to control an application

user's session

DBMS_SQL Procedures and functions to perform dynamic SQL

from within a PL/SQL program

DBM5_TRANSACTION Procedures to perform a limited amount of

transaction control

UTL_FILE Procedures and functions that allow a PL/SQL

program to read and write text files to the server's file

system

TABLE 5-4. Some of the Many Prebuilt Packages Available with Oracle

(continued)

NOTE
See your Oracle documentation for complete information about the APIs for all

prebuilt packages and examples of their use.

5.7 Database Triggers

A database trigger is a stored procedure that you associate with a specific table.

When applications target the table with a SQL DML (data modification language)

statement that meets the trigger's execution conditions, Oracle automatically fires

(executes) the trigger to perform work. Therefore, you can use triggers to customize an

Oracle database server's reaction to application events.

To create a database trigger, you use the SQL command CREATE TRIGGER.

The simplified syntax (not complete) for the CREATE TRIGGER command is as

follows:

CREATE[OR REPLACE]TRIGGER trigger

(BEFORE |AFTER)

(DELETE/|INSERT|UPDATE [OF Column[,column]...])

[OR{DELETE|INSERT|UPDATE[OF column[,column]...]}] ...

ON table}

FOR EACH ROW[WHEN condition]]

...PL/SQL block...

END[trigger]

A trigger definition includes the following unique parts:

 A trigger's definition includes a list of trigger statements, including INSERT,

UPDATE, and/or DELETE, that fire the trigger. A trigger is associated with one,

and only one, table.

 A trigger can be set to fire before or after the trigger statement to provide specific

application logic.

 A trigger's definition indicates whether the trigger is a statement trigger or a row

trigger.

 A statement trigger fires only once, no matter how many rows the trigger

statement affects.

EXERCISE 5.24: Creating and Using Database Triggers

Enter the following CREATE TRIGGER statement to create a trigger that

automatically logs some basic information about the DML changes made to the

PARTS table. The logPartChanges trigger is an after-statement trigger that fires

once after the triggering statement, no matter how many rows the trigger

statement affects.

CREATE OR REPLACE TRIGGER logPartChanges

AFTER INSERT OR UPDATE OR DELETE ON Parts
DECLARE

statementType CHAR(l);
BEGIN
IF INSERTING THEN

statementType := ‘I’;
ELSIF UPDATING THEN

statementType := ‘U’;
ELSE

statementType := ‘D’
END IF;
INSERT INTO partsLog

VALUES (SYSDATE, statementType, USER);
END logPartChanges;

/

Notice in the logPartChanges trigger that when a trigger allows different types of

statements to fire the trigger, the INSERTING, UPDATING, and DELETING

predicates allow conditional statements to identify the type of statement that

actually fired the trigger.

Now create the logDetailedPartChanges trigger, which is a before-row trigger that

logs more detailed information about DML modifications that target the PARTS

table.

CREATE OR REPLACE TRIGGER logDetailedPartChanges
BEFORE INSERT OR UPDATE OR DELETE ON parts
FOR EACH ROW

BEGIN
INSERT INTO detailedpartslog

VALUES (SYSDATE, USER,
:new.id, :new.description, :new.unitprice,
:new.onhand, :new.reorder,

:old.id, :old.description, :old.unitprice.
:old.onhand, :old.reorder

) ;
END logDetailedPartChanges;
/

NOTE
Optionally, a row trigger can include a trigger restriction—a Boolean condition

that determines when to fire the trigger.

Notice in the logDetailedPartChanges trigger that :new and :old correlation values

allow a row trigger to access new and old field values of the current row. When a

trigger statement is an INSERT statement, all old field values are null. Similarly,

when a trigger statement is a DELETE statement, all new field values are null.

Finally, let's test out our new triggers and see what they actually do. Enter the

following SQL statements that insert, update, and delete rows in the PARTS table,

and then query the PARTSLOG and DETAILEDPARTSLOG tables.

INSERT INTO parts

VALUES(6, ’Mouse’, 49, 1200, 500);

UPDATE parts
SET onhand= onhand-1O;

DELETE FROM parts
WHERE id=6;

SELECT * FROM partsLog;

SELECT newid, newonhand, oldid, oldonhand FROM detailedpartslog;

The result sets for the queries should be similar to the following:

CHANGEDATE C USERID
---------- -- ----------
16-AUG-99 I PRACTICE05

16-AUG-99 U PRACTICE05

16-AUG-99 D PRACTICE05

NEWID NEWONHAND OLDID OLDONHAND
----- --------- ----- ----------

6 1200
1 267 1 277
2 133 2 143

3 7521 3 7631
4 5893 4 5903

5 480 5 490
6 1190 6 1200

 6 1190

An important point to understand about database triggers is that triggers execute

within the context of the current transaction. Therefore, if you were to roll back

the current transaction, you would get the "no rows selected" message when you

subsequently queried the PARTSLOG and DETAILEDPARTSLOG tables.

Chapter Summary

This class/chapter has provided you with a broad overview of the extended

capabilities that PL/SQL offers for creating powerful database access programs. You've

learned about the basics of the language itself, as well as how to create PL/SQL programs

using stored procedures, functions, packages, and database triggers.

