
WSN PLATFORMS,
HARDWARE &

SOFTWARE
Murat Demirbas
SUNY Buffalo

1

Last lecture: Why use WSNs

Ease of deployment: Wireless communication means
no need for a communication infrastructure setup

Low-cost of deployment: Nodes are built using off-the-
shelf cheap components

Fine grain monitoring: Feasible to deploy nodes densely
for fine grain monitoring

2

HARDWARE
PLATFORMS

3

3 broad types of nodes

Grain sized: RFID, smart dust

Matchbox sized: Berkeley motes and derivatives

Brick sized: Stargates (potentially using wall power)

4

5

GRAIN-SIZED

6

Grain-sized nodes

RFIDs are powered by inductive coupling to a
transmission from a reader device to transmit a
message back, and are available commercially at very
low prices

Computation power is severely limited, usually they
only transmit stored unique id and variable

7

Spec mote (2003)

size 2x2.5mm, AVR RISC core, 3KB memory, FSK
radio (CC1000), encrypted communication hardware
support, memory-mapped active messages

8

MATCHBOX-SIZED

9

Matchbox-sized nodes

Examples are, Mica, Mica2, Telos motes, XSM node

8-bit microprocessor, 4MHz CPU ATMEGA 128,
ATMEL 8535, or Motorola HCS08

~8Kb RAM, holds run-time state (values of the
variables) of the program

10

Flash memory in motes

~128Kb programmable Flash memory, holds the
application program which is downloaded via a
programmer-board or wirelessly

additional Flash memory storage space up to 512Kb for
logging sensor data

11

Mica2 and MicaDot

ATmega128 CPU

Self-programming

Chipcon CC1000

FSK, Tunable frequency

2 AA battery = 3V

12

Basic sensor board

Light (Photo)

Temperature

Prototyping space for new
hardware designs

13

Mica sensor board

Light

Temperature

Acceleration 2 axis
Resolution: ±2mg

Magnetometer
Resolution: 134μG

Microphone

Sounder 4.5kHz

14

Magnetometer/compass

 Resolution: 400 μ Gauss

 Three axis, under $15 in large quantities

15

Ultrasonic transceiver

Used for ranging

Up to 2.5m range

6cm accuracy

Dedicated
microprocessor

16

Mica weather board

Photosynthetically
Active Radiation

Humidity
Temperature

Barometric Pressure

Acceleration 2 axis

UCB, Crossbow,
UCLA

17

MicaDot sensorboards
“Dot” sensorboards (1”diameter)

HoneyDot: Magnetometer

Ultrasonic Transceiver

Weather Station

18

XSM node
Derived from Mica2

Better sensor range
4 Passive Infrared: ~ 25m for SUV

Sounder:
 ~10m

Microphone: ~ 50m for ATV

Magnetometer: ~ 7m for SUV

Better radio range ~30m

Grenade timer

Wakeup circuits (Mic, PIR)
19

Telos mote

Low Power

Integrated antenna
(50m-125m)

USB

IEEE 802.15.4

(CC2420 radio)

10kB RAM, 16-bit core

DMA transfers while CPU off
20

Telos is low power

21

BRICK-SIZED

22

Stargate

Mini Linux computers communicating via 802.11 radios

Computationally powerful

High bandwidth

Requires more energy (AA infeasible)

Used as a gateway between the Internet and WSN

23

24

Manifacturers

Crossbow (www.xbow.com) : Mica2, Dot, Micaz, Dot

Intel Research: Stargate, iMote, iMote2

Moteiv: Telos Mote

Dust Inc: Smart Dust

Sensoria Corporation (www.sensoria.com) : WINS NG

Millenial Net (www.millenial.com) : iBean sensor nodes

Ember (www.ember.com): IEEE 802.15.4 (zigbee) nodes

25

http://www.xbow.com
http://www.xbow.com
http://www.sensoria.com
http://www.sensoria.com
http://www.millenial.com
http://www.millenial.com
http://www.ember.com
http://www.ember.com

RECAP

26

Challenges in WSNs
Energy constraint :

Unreliable commn. :

Unreliable sensors :

Ad hoc deployment :

Large scale networks :

Limited computation :

Distributed execution :

battery powered

limited bursty bandwidth

false positives

no pre-configuration

inscalable algorithms

no centralized algorithms

difficult to debug & get it
right

27

Opportunities in WSNs
Redundancy :

Precise clock at nodes :

Atomic broadcast
primitive :

Geometry :

New applications:

many nodes in same area

synchronized clocks

all recipients hear same
message at same time

Dense nodes over 2D

Tracking, querying,
localization, network
reprogramming, etc.

28

SOFTWARE
PLATFORMS

29

TinyOS

Most popular OS for WSN developed by UC Berkeley

Features a component-based architecture
software is written in modular components

each component denotes the interfaces that it provides

an interface declares a set of functions called commands that the interface provider
implements and another set of functions called events that the interface user
should be ready to handle

Easy to link components together by “wiring” their
interfaces to form larger components similar to using
Lego blocks

30

TinyOS ...

Provides a component library that includes network
protocols, services, and sensor drivers

An application consists of
1) a component written by the application developer and

2) the library components that are used by the components in (1)

An application developer writes only the application
component that describes the sensors used, and
configures the middleware services with parameters

31

Benefits of using TinyOS

1) Separation of concerns

TinyOS provides a proper networking stack for wireless
communication that abstracts away the underlying
problems and complexity of message transfer from the
application developer

E.g., MAC layer

32

Benefits of using TinyOS...

2) Concurrency control

TinyOS provides a scheduler that achieves efficient
concurrency control (at the node level)
An interrupt-driven execution model is needed to achieve a quick response time for
the events and capture the data

For example, a message transmission may take up to 100msec, and without an
interrupt-driven approach the node would miss sensing and processing of
interesting data in this period

TinyOS scheduler takes care of the intricacies of interrupt-driven execution and
provides concurrency in a safe manner by scheduling the execution in small threads

33

Benefits of using TinyOS...

3) Modularity

TinyOS’s component model facilitates reuse and
reconfigurability since software is written in small
functional modules. Several middleware services are
available as well-documented components
Over 500 research groups and companies are using TinyOS and numerous groups
are actively contributing code to the public domain

34

TinyOS concepts

Microthreaded OS (lightweight thread support) and
efficient network interfaces

Two level scheduling structure

Long running tasks that can be interrupted by
hardware events

Small, tightly integrated design allows crossover of
software components into hardware

35

TinyOS concepts...

Scheduler + Graph of Components

Component includes :

Commands

Event Handlers

Tasks (concurrency)

Frame (storage) per component, shared stack, no heap

Messaging Component

in
it

P
o
w

e
r(

m
o
d
e
)

T
X

_
p
a
c
k
e
t(

b
u
f)

T
X

_
p
a
c
k
e
t_

d
o
n
e
 (

s
u
c
c
e
s
s
)

R
X

_
p
a
c
k
e
t_

d
o
n
e
 (

b
u
ff
e
r)

Internal

State

in
it

p
o
w

e
r(

m
o
d
e
)

s
e
n
d
_
m

s
g

(a
d
d
r,

ty
p
e
,
d
a
ta

)

m
s
g
_
re

c
(t

y
p
e
,
d
a
ta

)

m
s
g
_
s
e
n
d
_
d
o
n
e
)

internal thread

Commands Events

36

Application is a graph of
components

RFM

Radio byte

Radio Packet

UART

Serial Packet

ADC

Temp Photo

Active Messages

clock

b
it

b

y
te

p

a
c

k
e

t

Route map Router Sensor Appln

a
p

p
li

c
a

ti
o

n

HW

SW

37

TinyOS execution model

Commands request action
ack/nack at every boundary

call command or post task

Events notify occurrence
hardware interrupt at lowest level

signal event, call command, or post task

Split-phase operations
command-acked quickly, work done by task, event signals completion

RFM

Radio byte

Radio Packet

b
it

b

y
te

p

a
c

k
e

t

event-driven bit-pump

event-driven byte-pump

event-driven packet-pump

message-event driven

active message

application comp

encode/decode

crc

data processing

38

Event-driven sensing app.

SENSE

Timer Photo LED

command result_t StdControl.start() {

 return call Timer.start(TIMER_REPEAT, 200);

 }

event result_t Timer.fired() {

 return call sensor.getData();

 }

event result_t sensor.dataReady(uint16_t data) {

 display(data)

 return SUCCESS;

 }

clock event handler initiates data collection
sensor signals data ready event
data event handler calls output command
device sleeps or handles other activity while waiting
conservative send/ack at component boundary

39

TinyOS commands &
events

{

...

 status = call CmdName(args)
...

}

command CmdName(args) {

...

return status;
}

{

...

 status = signal EvtName(args)
...

}

event EvtName(args) {

...

return status;
}

40

TinyOS execution contexts

Events generated by interrupts preempt tasks

Tasks do not preempt tasks

Hardware

Interrupts

e
v
e
n

ts

commands

Tasks

41

Tasks

Provide concurrency internal to a component, and
longer running operations

Tasks are preempted by events, able to perform
operations beyond event context, may call commands,
may signal events, not preempted by tasks

42

Typical use of tasks

 event driven data acquisition

 schedule task to do computational portion

event result_t sensor.dataReady(uint16_t data) {

 putdata(data);

 post processData();

 return SUCCESS;

 }

task void processData() {

 int16_t i, sum=0;

 for (i=0; i ‹ maxdata; i++)

 sum += (rdata[i] ›› 7);

 display(sum ›› shiftdata);

 }

43

Task scheduling

Currently simple fifo scheduler

Bounded number of pending tasks

When idle, shuts down node except clock

Uses non-blocking task queue data structure

Simple event-driven structure + control over complete
application/system graph instead of complex task
priorities

44

Maintaining schedule agility

Need logical concurrency at many levels of the graph

While meeting hard timing constraints, sample the
radio in every bit window

Retain event-driven structure throughout application

Tasks extend processing outside event window

All operations are non-blocking

45

The complete application

RadioTiming SecDedEncode

RadioCRCPacket

UART

UARTnoCRCPacket

ADC

phototemp

AMStandard

ClockC

b
it

b

y
te

p

a
c

k
e

t

SenseToRfm

HW

SW

IntToRfm

MicaHighSpeedRadioM

RandomLFSR SPIByteFIFO

SlavePin

noCRCPacket

Timer photo

ChannelMon

generic comm

CRCfilter

46

TINYOS SYNTAX

47

TinyOS

TinyOS 2.0 is written in an extension of C, called
nesC, applications are also in nesC

NesC provides syntax for TinyOS concurrency and
storage model: commands, events, tasks, local frame
variable

Compositional support: separation of definition and
linkage, robustness through narrow interfaces and reus

 Whole system analysis and optimization

48

Components

A component specifies a set of interfaces by which it is
connected to other components:
provides a set of interfaces to others, and

uses a set of interfaces provided by others

Interfaces are bidirectional: includes commands and

provides!

 !interface StdControl;!

 interface Timer:!

uses!

!interface Clock!

Timer Component

StdControl Timer

Clock

provides

uses

49

Component Interface

logically related set of commands and events

StdControl.nc !

interface StdControl {!

 command result_t init();!

 command result_t start();!

 command result_t stop();!

}!

Clock.nc !

interface Clock {!

 command result_t setRate(char interval, char scale);!

 event result_t fire();!

}!

50

Component types

Configurations:
link together components to compose new component

configurations can be nested

complete “main” application is always a configuration

Modules:
provides code that implements one or more interfaces and internal behavior

51

Blink example

configuration Blink {

}

implementation {

 components Main, BlinkM, TimerC, LedsC;

 Main.StdControl -> TimerC.StdControl;

 Main.StdControl -> BlinkM.StdControl;

 BlinkM.Timer -> TimerC.Timer[unique("Timer")];

 BlinkM.Leds -> LedsC;

}

TimerC LedsC

Main

Blink

BlinkM

52

BlinkM module

module BlinkM {
 provides interface StdControl;
 uses interface Timer;

 uses interface Leds;
}

implementation {

 command result_t StdControl.init() {
 call Leds.init();

 return SUCCESS;
 }

 command result_t StdControl.start() {
 return call Timer.start(TIMER_REPEAT, 1000);

 }

 command result_t StdControl.stop() {
 return call Timer.stop();
 }

 event result_t Clock.fire() {
 call Leds.redToggle();
 return SUCCESS;
 }
}

53

SenseToRFM example
configuration SenseToRfm {
}

implementation
{
 components Main, SenseToInt, IntToRfm,
TimerC, Photo as Sensor;

 Main.StdControl -> SenseToInt;
 Main.StdControl -> IntToRfm;

 SenseToInt.Timer ->
TimerC.Timer[unique”Timer”];
 SenseToInt.ADC -> Sensor;
 SenseToInt.ADCControl -> Sensor;
 SenseToInt.IntOutput -> IntToRfm;
}

SenseToInt

TimerC Photo

Main

StdControl

ADCControl IntOutput Timer ADC

IntToRfm

54

Nested configuration
includes IntMsg;

configuration IntToRfm

{

 provides {

 interface IntOutput;

 interface StdControl;

 }

}

implementation

{

 components IntToRfmM, GenericComm as Comm;

 IntOutput = IntToRfmM;

 StdControl = IntToRfmM;

 IntToRfmM.Send -> Comm.SendMsg[AM_INTMSG];

 IntToRfmM.SubControl -> Comm;

}

IntToRfmM

GenericComm

StdControl IntOutput

SubControl

55

IntToRFM module
includes IntMsg;

module IntToRfmM

{

 uses {

 interface StdControl as SubControl;

 interface SendMsg as Send;

 }

 provides {

 interface IntOutput;

 interface StdControl;

 }

}

implementation

{

 bool pending;

 struct TOS_Msg data;

 command result_t StdControl.init() {

 pending = FALSE;

 return call SubControl.init();

 }

command result_t StdControl.start()

 { return call SubControl.start(); }

command result_t StdControl.stop()

 { return call SubControl.stop(); }

command result_t IntOutput.output(uint16_t value)

 {

 ...

 if (call Send.send(TOS_BCAST_ADDR, sizeof(IntMsg), &data)

 return SUCCESS;

 ...

 }

event result_t Send.sendDone(TOS_MsgPtr msg, result_t success)

{

 ...

}

}

56

Atomicity support in nesC

Split phase operations require care to deal with
pending operations
Race conditions may occur when shared state is accessed by premptible
executions, e.g. when an event accesses a shared state, or when a task updates state
(premptible by an event which then uses that state)

nesC supports atomic block
implemented by turning of interrupts

for efficiency, no calls are allowed in block

access to shared variable outside atomic block is not allowed

57

Supporting hw evolution

Component design so HW and SW look the same
example: temp component

may abstract particular channel of ADC on the microcontroller

may be a SW I2C protocol to a sensor board with digital sensor or ADC

HW/SW boundary can move up and down with
minimal changes

58

Sending a message
bool pending;!

struct TOS_Msg data;!

command result_t IntOutput.output(uint16_t value) {!

!IntMsg *message = (IntMsg *)data.data;!

!if (!pending) {!

! !pending = TRUE;!

! !message->val = value;!

! !message->src = TOS_LOCAL_ADDRESS;!

! !if (call Send.send(TOS_BCAST_ADDR, sizeof(IntMsg), &data))!

 ! ! !return SUCCESS;!

 pending = FALSE;!

!}!

 return FAIL;!

}!

 Refuses to accept command if buffer is still full or
network refuses to accept send command

59

Send done event

 event result_t IntOutput.sendDone(TOS_MsgPtr msg, result_t success)

 {

 if (pending && msg == &data) {

 pending = FALSE;

 signal IntOutput.outputComplete(success);

 }

 return SUCCESS;

 }

}

60

TinyOS limitations

Static allocation allows for compile-time analysis, but
can make programming harder

No support for heterogeneity

Limited visibility, Debugging, Intra-node ft-tolerance

61

TinyOS tools...

TOSSIM: a simulator for tinyos programs

ListenRaw, SerialForwarder: java tools to receive raw
packets on PC from base node

Oscilloscope: java tool to visualize sense data real time

Memory usage: breaks down memory usage per
component (in contrib)

62

TinyOS tools

Peacekeeper: detect RAM corruption due to stack
overflows (in lib)

Stopwatch: tool to measure execution time of code
block by timestamping at entry and exit (in osu CVS
server)

Makedoc and graphviz: generate and visualize
component hierarchy

Surge, Deluge, SNMS, TinyDB

63

