

KELLY W. HAYES

Senior Environmental Consultant Midstream Operations

PHILLIPS 66

520 East D Street Tacoma, WA 98421 Office: (253) 207-5569 Kelly.W.Hayes@p66.com

January 27, 2020

UPS 1Z E53 32W 02 9282 0444

Mr. David Kauth Northwest Region, Portland Office Oregon Department of Environmental Quality 2020 SW Fourth Ave., Suite 400 Portland, Oregon 97201

RE:

2019 Reporting Year Annual Emissions Report Portland Products Terminal Permit 26-2026 Phillips 66

Dear Mr. Kauth:

Phillips 66 (P66) owns and operates the Portland Products Terminal, a bulk storage and loading terminal, for finished gasoline and distillate products, located at 5528 NW Doane Ave., Portland, Oregon. Per the requirement of permit section 7.2, please find two copies of the emissions calculations.

Volatile organic compound (VOC) emissions during 2019 totaled approximately 62.3 tons. Emissions of hazardous air pollutants (HAPs) totaled 1.72 and 0.28 tons, combined and single, respectively. As shown in Table 1, the emissions did not exceed the PSELs values.

Total greenhouse gas (GHG) emissions for 2019 totaled 2,163 tons. This information is only required to enter into the EZ filer system if the emissions are equal to or above 2,500 tons.

The facility emissions were calculated using an in-house system called TankESPd+. This system utilizes AP-42 emission calculation methodologies, equations and emission factors.

The following documents are attached:

Table 1 – PSEL Limits and Emissions Summary Table 2 – Annual Reporting Detailed emissions and sample calculations

If you have any questions about this report or require any additional information, please call at (253) 207-5569.

Sincerely,

Kelly W Hayes

Table 1
PSEL Limits and Emissions Summary

Pollutant	PSEL Limit (tons/yr)	2019 Actuals (tons/yr)	Percent of PSEL
VOC	99	49.3	64.86
PM/PM ₁₀	14	0.035	0.26
SO _x	75	0.011	0.02
NO_x	39	1.83	5.04
CO	99	1.53	1.67
Single HAP	10	0.31	4.00
Total HAP	25	1.38	6.02

DEPT OF ENVIRONMENTAL QUALITY
RECEIVED

JAN 29 2020

NORTHWEST REGION

Table 2 Annual Reporting

Permit	Parameter/Requirement	Resp	onse
26-2026			
Section			
7.2(a)(i)	A letter stating the facility's compliance with permit	See cover letter	
	conditions for the previous year.		
7.2(a)(ii)	Total amount of natural gas combusted in boilers	36.53	MMft3
7.2(a)(iii)	Total amount and type of dual fuel oil combusted in	5,984 gal of diese	el in March due to
	boilers	NG Curt	ailment.
7.2(a)(iv)	Total amount of gasoline received into storage tanks	10,134,093	Barrels
7.2(a)(v)	Total amount of gasoline loaded into tank trucks	268,318,344	Gallons
7.2(a)(vi)	Total amount of gasoline loaded into marine vessels	0	Gallons
7.2(a)(vii)	The calculated PM/PM ₁₀ , SO _x , NO _x , CO and VOC, 12-	Emissions of each	oollutant did not
	month rolling emission rates for each month of the	exceed the PSELs d	uring any rolling
	previous calendar year.	12-month period.	
7.2(b)	An evaluation of the permittee's HAP potential to	Total and single HA	AP emissions did
	emit (PTE) (as limited by the overall VOC PSEL)	not exceed the PSE	Ls during any
		rolling 12-month p	eriod.
7.2(c)	Records of all planned and unplanned excess	No Excess emission	ıs.
	emissions events.		
7.2(d)	Summary of complaints relating to air quality by	No Complaints rece	eived
	permittee during the year.		
7.2(e)	List permanent changes made in plant process,	Installed new diese	
	production levels and pollution control equipment	with associated add	
	which affected air contaminant emissions.	Started test loading	g on Dec 20.
7.2(f)	List major maintenance performed on pollution	None	
	control equipment.		WIGHT THE STATE OF

		***************************************	***************************************

Site: Portland Terminal a, OR

2019

First day of current year: Number of days in current year: 1/1/2019 365

POINT NAME	ANNUAL PROCESS RATE	PROCESS RATE UNITS	EMISSION FACTOR	EMISSION FACTOR UNITS	POUNDS	TONS	Pollutant
BULK TERMINALS- LOADING							Site
Loading Rack		1000 gallons		lbs/1000 gallons	2,597.0626	1.2985	VOC
Marine Loading Loading Not Captured (if controlled)		1000 gallons 1000 gallons		lbs/1000 gallons lbs/1000 gallons	428.6211 34,206.4985	0.2143 17.1032	VOC
Fugitive Components	257,808	1000 gallons	0.0041	lbs/1000 gallons	1,054.3162	0.5272	VOC
Miscellaneous Emissions	257,808	1000 gallons	0.0740	lbs/1000 gallons	19,080.7850	9.5404	VOC
Tank 36	0	1000 gallons	0.0000	lbs/1000 gallons	553.1815	0.2766	voc
Tank 2561	0	1000 gallons	0.0000	lbs/1000 gallons	0.0000	0.0000	voc
Tank 2669	0	1000 gallons	0.0000	lbs/1000 gallons	0.0000	0.0000	voc
Tank 2783	0	1000 gallons	0.0000	lbs/1000 gallons	239.2030	0.1196	VOC
Tank 2784	803,560	1000 gallons	0.0003	lbs/1000 gallons	239.2030	0.1196	VOC
Tank 2915	123,511	1000 gallons	0.1083	lbs/1000 gallons	13,375.5663	6.6878	voc
Tank 2916	9,015	1000 gallons	0.0552	lbs/1000 gallons	498.0518	0.2490	VOC
Tank 2982	0	1000 gallons	0.0000	lbs/1000 gallons	0.0000	0.0000	VOC
Tank 3407	210,761	1000 gallons	0.0607	lbs/1000 gallons	12,785.2657	6.3926	VOC
Tank 3408	38,544	1000 gallons	0.2706	b lbs/1000 gallons	10,431.4783	5.2157	VOC
Tank 3409	18,156	1000 gallons	0.3077	/ lbs/1000 gallons	5,586.1075	2.7931	VOC
Tank 3410	26,535	1000 gallons	0.0279	lbs/1000 gallons	739.6892	0.3698	VOC
Tank 3411	3,093	1000 gallons	1.2985	ibs/1000 gallons	4,016.8092	2.0084	VOC
Tank 3412	26,374	1000 gallons	0.0243	3 lbs/1000 gallons	640.7261	0.3204	VOC
Tank 3413	308,607	1000 gallons	0.0099	B lbs/1000 gallons	3,057.1256	1.5286	VOC
Tank 3579	117,185	1000 gallons	0.0235	5 lbs/1000 gallons	2,748.2302	1.3741	VOC
Tank 3623	52	1000 gallons	1.0985	5 lbs/1000 gallons	56.9412	0.0285	VOC
Tank 3761	64,870	1000 gallons	0.0275	5 lbs/1000 gallons	1,784.5986	0.8923	voc
Tank 4252		1000 gallons	0.0000) lbs/1000 gallons	0.0000	0.0000	VOC
Tank 4253	0	1000 gallons	0.0000) lbs/1000 gallons	0.0000	0.0000	VOC
Tank 4254		1000 gallons	0.0000) lbs/1000 gallons	0.0000	0.0000	VOC
Tank 4255	4,532	1000 gallons	0.1800) lbs/1000 gallons	815.6410	0.4078	voc
Tank 4259	22	1000 gallons	43.8581	l lbs/1000 galfons	967.3292	0.4837	voc
Tank 4260		1000 gallons		l lbs/1000 gallons	2.6234	0.0013	VOC
Tank 4318	10,055	1000 gallons	0.0655	5 lbs/1000 gallons	658.4745	0.3292	VOC
Tank 4441	17	1000 gallons	1.8011	l lbs/1000 gallons	31.0239	0.0155	voc

2019

Site: Portland Terminal a, OR

First day of current year: Number of days in current year:

1/1/2019 365

POINT NAME	ANNUAL PROCESS PROCESS RATE RATE UNITS	EMISSION EMISSION FACTOR UNITS	POUNDS	TONS	Pollutant
Tank 4442	0 1000 gallons	0.0000 lbs/1000 gallons	0.0000	0.0000	VOC
Dock Red Dye Tank	0 1000 gallons	0.0000 lbs/1000 gallons	0.0000	0.0000	VOC
L4 Dodiflow Tote	0 1000 gallons	0.0259 lbs/1000 gallons	0.0065	0.0000	VOC
L4 Red Dye Tote	0 1000 gallons	0 lbs/1000 gallons	0.0000	0.0000	VOC
Rack Red Dye Tank	0.011 1000 gallons	3.5427 lbs/1000 gallons	0.0390	0.0000	VOC
Temporary BioDiesel Tank	0 1000 gallons	0.0000 lbs/1000 gallons	0.0000	0.0000	VOC
Cleaver-Brooks	36.5 MMscf	5.5000 lbs/MMscf	200.9150	0.1005	VOC
Natural Gas Boiler		100.0000 lbs/MMscf	3,653.0000	1.8265	NOx
		84.0000 lbs/MMscf	3,068.5200	1.5343	CO
		0.6001 lbs/MMscf	21.9223	0.0110	SOx
		1.9000 lbs/MMscf	69.4070	0.0347	PM
		120161.8431 lbs/MMscf	4,389,512.1273	2,194.7561	CO2
		2.2663 lbs/MMscf	82.7898	0.0414	CH4
		0.2266 lbs/MMscf	8.2790	0.0041	N2O
		120286.0389 lbs/MMscf	4,394,049.0013	2,197.0245	CO2e

	58.3978	VOC
	1.8265	NOx
	1.5343	co
	0.0110	SOx
Site Wide Emissions Totals, TPY	0.0347	PM
	2,262.0803	CO2
	0.0441	CH4
	0.0047	N2O
	2,264.5797	CO2e

				SECTION 4.	PERMIT CO	ONDITION 4.		Emission Li ve 12-month pe					2
Emission Unit ID No.	Jan 19	Feb 19	Mar 19	Apr 19	May 19	VOC Emissio Jun 19	ons (tons) Jul 19	Aug 19	Sep 19	Oct 19	Nov 19	Dec 19 C	alendar YTD
	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	
Storage Tanks						0.0044	0.0400	0.0404	0.0040	0.0000	0.0400	0.0070	
36	0.0086	0.0116	0.0178	0.0224	0.0290	0.0341	0.0422	0.0401	0.0313	0.0209	0.0108	0.0078	0.0000
2561	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2669	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2783	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2784	0.0324	0.0030	0.0049	0.0065	0.0092	0.0116	0.0151	0.0143	0.0115	0.0063	0.0028	0.0020	0.1196
2915	0.5485	0.5623	0.5794	0.6322	0.4261	0.4077	0.4713	0.4760	0.6807	0.7054	0.6342	0.5640	6.6878
2916	0.0023	0.0097	0.0056	0.0160	0.0105	0.0280	0.0584	0.0457	0.0325	0.0160	0.0148	0.0094	0.2490
2982	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3407	0.5305	0.5332	0.5515	0.6003	0.4064	0.3939	0.4600	0.4556	0.6449	0.6696	0.6077	0.5391	6.3926
3408	0.4330	0.4350	0.4553	0.4928	0.3343	0.3170	0.3682	0.3682	0.5301	0.5472	0.4949	0.4398	5.2157
3409	0.2317	0.2324	0.2440	0.2645	0.1800	0.1692	0.1962	0.1977	0.2818	0.2935	0.2665	0.2356	2.7931
3410	0.0229	0.0229	0.0197	0.0290	0.0262	0.0390	0.0438	0.0446	0.0377	0.0325 0.2107	0.0265	0.0250	0.3698
3411	0.1664	0.1683	0.1764	0.1899	0.1298 0.0284	0.1217 0.0320	0.1414 0.0359	0.1408 0.0366	0.2041 0.0309	0.2107	0.1902 0.0225	0.1688 0.0212	2.0084 0.3204
3412 3413	0.0195	0.0192 0.1275	0.0230 0.1344	0.0241 0.1452	0.0284	0.0320	0.0359	0.1080	0.0309	0.0271	0.0225	0.0212	1,5286
3579	0.1264 0.0395	0.0652	0.0470	0.1432	0.0303	0.1920	0.2058	0.2119	0.1267	0.1127	0.0780	0.0633	1.3741
3623	0.0010	0.0002	0.0018	0.0023	0.0022	0.0040	0.0037	0.0049	0.0037	0.0024	0.0013	0.0004	0.0285
3761	0.0440	0.0562	0.0269	0.0020	0.0277	0.1123	0.1543	0.1751	0.0971	0.0706	0.0727	0.0555	0.8923
4252	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4253	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4254	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0,0000	0.0000
4255	0.0201	0.0197	0.0119	0.0315	0.0222	0.0460	0.0639	0.0576	0.0337	0.0332	0.0380	0.0302	0.4078
4259	0.0278	0.0279	0.0342	0.0365	0.0440	0.0497	0.0574	0.0575	0.0486	0.0403	0.0316	0.0282	0.4837
4260	0.0000	0.0000	0.0001	0.0001	0.0001	0.0002	0.0002	0.0002	0.0002	0.0001	0.0000	0.0000	0.0013
4318	0.0221	0.0104	0.0129	0.0190	0.0284	0.0408	0.0530	0.0480	0.0341	0.0309	0.0161	0.0136	0.3292
4441	0.0003	0.0005	0.0008	0.0011	0.0015	0.0020	0.0026	0.0026	0.0020	0.0012	0.0006	0.0003	0.0155
4442	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0,0000	0.0000	0.0001	0.0001
Dock Red Dye Tank	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0,0000	0.0000	0.0000	0.0000	0.0000
L4 Dodoflow Tote	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0,0000	0.0000	0.0000	0.0000	0.0000
L4 Red Dye Tote	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Rack Red Dye Tank Temporary BioDiesel Tank	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Temporary BioDieser Tank	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000
Loading Racks													
Gontrolled	0,1042	0.1024	0,1085	0.1133	0.0829	0.0830	0.0932	0.0986	0.1213	0.1367	0.1334	0.1210	1.2985
Marine Loading	0.0160	0.0245	0.0089	0.0077	0.0189	0.0365	0.0081	0.0369	0.0145	0.0139	0.0222	0.0063	0.2143
Loading Not Captured (if controlled)	1.3723	1.3491	1.4295	1.4916	1.0913	1.0933	1.2280	1.2992	1.5977	1.8006	1.7571	1.5936	17.1032
<u>Fugitives</u>													
Equipment Leaks	0.0916	0.0916	0.0916	0.0916	0.0916	0.0916	0.0916	0.0916	0.0916	0.0916	0.0916	0.0916	1.0991
Combustion Units													
Cleaver-Brooks	0.0096	0.0090	0.0075	0.0081	0.0065	0.0053	0,0060	0.0061	0.0062	0.0101	0.0118	0.0143	0.1005
Erie	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Generator	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Oil Water Separators													
OWS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total Emissions													
Monthly	3.8709	3,8823	3.9934	4.3395	3.2143	3.4032	3.9076	4.0177	4.8172	5.0334	4.6698	4.1602 -	
12-Month Rolling	2018.8665	1839.5674	1660,3795	1481.5375	1301.5704	1121.7922	942.5184	763,3547	584.9905	406.8425	228.3309	49.3098 In Compliance	0.0000

		Emissio	ns (lbs)	
	NOx	CO	SO2	PM
Combustion Units				
Cleaver-Brooks	3,653.0000	3,068.5200	21.9223	69.4070
Erie	0.0000	0.0000	0.0000	0.0000
Generator	0.0000	0.0000	0.0000	0.0000
Total Emissions				
Annual, Ibs	3,653.0000	3,068.5200	21.9223	69.4070
nnual, tons	1.8265	1.5343	0.0110	0.0347

den den den	Largest Single HAP Toluene	HAP		ACILITY-WID	FACILITY-WIDE Single HAP EMISSIONS Limit:	EMISSIONS s Single HAP in	any consecutive	12-month period				
	Jan 19 31	Feb 19 28	Mar 19 31	Apr 19 30	<u>6</u> May 19 31	Combined HAP Emissions (Ibs) Jun 19 Jul 19 30 31	Jul 18	Aug 19 31	Sep 19 30	Oct 19 31	Nov 10 30	Dec 19 31
Storage Tanks	0.19	76.0	0.43	0.56	0.78	26:0	1.26	1.20	0.89	0.54	0.25	10
2561	0.00	0.00	0.00	00:0	0.00	0.00	000	00'0	00'0	0.00	0.00	0.00
2669	0.00	0.00	0.00	0.00	0.00	0.00	00:00	0.00	0.00	0.00	0.00	0.00
2783	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2784	1.59	0.14	0.24	0.31	0.44	0.54	0.70	99.0	0.54	0.30	0.14	0.10
2915 2916	2.62	3.87	3.35	4.81	4.49	6.20	7.35	7.81	6.94	5.91	4.06	3.49
2982	00'0	0.00	00.0	00:0	0.00	0.00	00:00	0.00	0.00	0.00	0.00	0.00
3407	4.02	4.13	3.86	5.15	4.83	6.95	8.69	8.20	7.05	6.24	5.02	4.21
3408	2.30	2.36	2.66	3.40	3.50	4.55	5.58	5.55	4.99	3.94	2.86	2.41
3410	1.32	1.31	1.56	2.00	2.05	2.44	2.97	3.11	2.58	0.10	1.81	1.42
3411	0.78	0.92	1.06	1.25	1.41	1.66	2.06	1.98	1.84	1.43	0.98	0.80
3412	0.07	0.07	0.08	0.08	0.09	0.10	0.11	0.12	0.10	0.09	0.08	0.08
37.0	0.57	0.64	0.82	1.02	1.09	1.26	1.54	1.60	F. 3	1.05	0.73	0.69
3623	000	0.00	0.20	24.0	000	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3761	2.15	2.73	1.30	4.02	1.31	5.25	7.13	8.10	4.54	3.36	3.52	2.71
4252	0.00	0.00	0.00	00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
4253	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0
4254 4055	0.00	0.00	0.00	0.00	0.00	8 6	000	0.00	0.00	00.00	0.0	0.00
2.5.5.0 8.5.0 8.0.0	0.00	0.00	0.00	0.92	1.18	0.00	1.72	1.72	1.38	9.1	0.00	0.00
4260	00:0	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	00'0	0.0
4318	1.08	0.50	0.62	0.91	1.34	1.89	2.43	2.20	1.58	1.47	0.78	0.66
Add 1	0.00	0.00	00.0	00.0	00.0	9.0	8.6	000	8 6	8.0	0.00	8 6
Rack Red Dye Tank	00:0	0.00	0.00	00.0	0.00	0.00	0.00	0.00	00.0	00:0	0.00	0.00
Temporary BioDiesel Tank	00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8.0
	00.00	0 00	000	8 6	0.00	000	00.00	0.00	0.00	0.00	00.00	0.00
Tank Cleaning Operations Place Holder						Not calculated in ESPdolus	ESPdolus					
DECOMPOSITION OF THE PROPERTY												
<u>Loading Racks</u>	277	9	6	890	Š	107	26	5	101	8	990	Ċ
Uncontrolled	0.78	1.19	0.43	0.37	0.90	1.71	0.37	17.	0.68	99:0	1.07	0.31
Fugitives												
Loading Not Captured (if controlled)		6.45	8.13	8.91	11.11	14.03	16.56	17.60	13.32	11.26	8.71	7.27
Equipment Leaks	627	5.66	6.27	6.07	6.27	6.07	6.27	6.27	6.07	6.27	6.07	6.2
Control Devices	900	90	5	50	80	8	8	900	000	000	000	900
	}											- - -
Cleaver-Brooks	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02
Erie	00:00	0.00	0.00	0.00	0.00	0.00	0.00	0000	0.00	0.00	00.00	0.0
Generator Place Holder	0.00	000	8 6	0.00	000	0.00	0.00	0.00	00.0	0.00	0.00	0.00
Total Emissions			3	ţ	ţ	5		ž	i c	į	5	
#Olluny 12-Month Rolling	33.17	68.28	103.09	149.81	197.55	263.98	342.25	423,39	485.74	538.69	580.75	616.17
12-Month Rolling (tons)	0.02			1	1	- 1	0.17	0.21	0.24	0.27	0.29	0.31
	In Compliance	In Compliance	In Complance	іл Сотрўалсе	In Complance	in Complance	In Complance	п Сопр≨аке	In Compsance	In Complance	Іп Сопрівлов	Іп Сотрбало

December 2019

	Combined I	<u>IAP</u>		FACILITY-W		ed HAP EM		live 12-month p	period				
	Jan 19	Feb 19	Mar 19	Apr 19		ambined HAP Jun 19			Sep 19	Oct 19	Nov 19	Dec 19	Calendar YTD
Storage Tanks													
36	0.8085	1.1307	1.8005	2.3401	3.2034	3.9600	5.0848	4.8284	3.6043	2.2400	1.0698	0.7333	30.8039
2561	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2669	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2783	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2784	5.5717	0.5151	0.8495	1.1364	1.6216	2.0457	2,6767	2.5451	2.0391	1.1018	0.4865	0.3394	20.9287
2915	13.6372	18.1423	17.3183	22.9604	22.5586	29.3321	34.7084	36.3243	32.6282	27.5732	19.4843	16.7268	291.3940
2916	0.4031	1.6846	0.9721	2.7942	1.8406	4.9597	10.3630	8.1095	5.7479	2.8100	2.5632	1.6225	43.8703
2982	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3407	18.2423	18.7506	18.7847	23.7789	23.3239	31.4657	38.8262	37.1125	32.4925	28.3068	22.5093	18.9644	312.5577
3408	11,5630	11.8737	13.7139	16.7179	17.6267	21.9145	26.5916	26.4980	24.0126	19.2257	14.1639	11.9974	215.8988
3409	6.4848	6.5253	7.7879	9.5637	10.0351	11.7569	14.1480	14.6479	12.5413	10.9332	8.5484	6.8460	119.8183
3410	0.2134	0.2116	0.0955	0.2550	0.1336	0.3323	0.3559	0.3721	0.3157	0.2898	0.2508	0.2511	3.0768
3411	4.0978	4.6125	5.4201	6.2290	7.0032	8.1431	9.9298	9.6742	8.9666	7.1140	5.0392	4.1716	80,4009
3412	0.2005	0.1941	0.2246	0.2303	0.2631	0.2931	0.3162	0.3289	0.2788	0.2622	0.2341	0.2312	3.0572
3413	3.0431	3.3168	4,1776	4.9815	5.3838	6.1794	7.4596	7.6706	6.5228	5.2806	3.7709	3.4454	61.2321
3579	6.8074	11.3005	8,1940	19.9561	20.8434	34.0423	36.6016	37.6824	22.4496	19.8000	13.5594	10.9006	242.1373
3623	0.3749	0.2751	0.7148	0.9125	0.8800	1.5950	1.4833	1.9585	1,4698	0.9255	0.5015	0.1684	11.2591
3761	7.5651	9.7185	4.6756	14.6684	4.8816	19.8668	27.3754	31.0648	17.1561	12,3719	12.6043	9.5434	171.4918
4252	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4253	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4254	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4255	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4259	2.6140	2.7196	3.4531	3.8251	4.8502	5.7642	6.9143	6.9218	5.6078	4,3123	3.1453	2.6750	52.8027
4260	0.0038	0.0057	0.0102	0.0130	0.0190	0.0249	0.0332	0.0315	0.0224	0.0127	0.0054	0.0035	0.1853
4318	3.8132	1.8005	2.2514	3.3360	5.0191	7.2269	9.4232	8.5289	6.0316	5.4251	2.7953	2.3427	57.9937
4441	0.2392	0.3511	0.5811	0.7796	1.1085	1.4133	1.8507	1.8699	1.4264	0.8779	0.4377	0.2158	11.1511
4442	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0441	0.0441
Dock Red Dye Tank	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
L4 Dodiflow Tote	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0007	0.0007
L4 Red Dye Tote	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0161	0.0161
Rack Red Dye Tank	0.0022	0.0033	0.0054	0.0073	0.0104	0.0133	0.0174	0.0165	0.0120	0.0070	0.0031	0.0020	0.1000
Temporary BioDiesel Tank	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Loading													
Controlled	2.4948	2.5676	3.2048	3.4764	4.2728	5.3111	6.2030	6.5864	5.0453	4.3566	3.4416	2.9200	49.8805
Marine Loading	2.7385	4.2256	1.5455	1.3485	3.3260	6.4468	1.4269	6.5323	2.5631	2.4300	3.8426	1.0851	37.5108
Loading Not Captured (if controlled)	32.8600	33.8190	42.2113	45.7885	56.2785	69.9535	81.7014	86,7509	66.4526	57.3822	45.3300	38.4593	656,9871
Fugitives													
Equipment Leaks	20.7008	18.6975	20.7008	20.0331	20.7008	20.0331	20.7008	20.7008	20.0331	20.7008	20.0331	20.7008	243.7358
Combustion Units													
Cleaver-Brooks	4.1400	3.0616	3.1000	2.8100	2.5900	2.2791	4.1196	4.1573	4.2325	6.8849	8.0512	9.7630	EE 4004
Erie	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	55.1891 0.0000
Generator	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total Emissions													
Monthly	148.6193	155.5026	161.7927	207.9418	217,7740	294.3522	348,3111	360.9133	281 6520	240.6242	191.8706	154 1007	
12-Month Rolling	371.6543	508.4594	649.5513	837,4600	1,034.5332	1,308.8523	1.636.4625	1,976.6750	2,238.2939	2,458,2173	2,630.0549	154.4065 _ 2,763.7605	
12-Month Rolling (tons)	0.1858	0.2542	0,3248	0.4187	0.5173	0.6544	0.8182	0.9883	1,1191	1.2291	1.3150	1.3819	2,763.7605
	In Compliance												1.3819

Phillips 66 Pipe Company - Portland T	erminal											Firs Number of	t day of curr days in curr		1/1/2019 365										
	Speciated V	ж	ſ	ACLITY-W	DE Speciale	d VOC EM	SSIONS																		
	ı										Section 70	C Exchanges (I	38 1												
							Current		Etherel	EUn@acreo	Hease (a-)	bo-ortare	Mathemat		PAC+					Totra etkyl		irimethy/be			
	Asthracens		entri(g.k.i) parylana	Elphoyl	-	Cresol I	ار ورست	elohezene	eproper)	•	, regimen	ricrethylpen tane)	stockel) **	aplalaten (Chrysene) '			,,4,,44		144	,,,,,,,,,	(1,24)	,,	Formakialy da	Photosi
Storage Tanks			100	1000	Carrier Co.																			11	
34	0.000	6 8062	0.0000	0 0000	\$ 0000	0.0000	0 0783	0 9387	0.0000	0 4729	€ :675	7 7078 0 0000	0.0000	0 0033	0.0000	0.0000	0.0000	00000	0.0000	0.0000	7 5087	0 1678	2 0603	0 0000	0.0000
2501 2509	0.0000	0,0000	0.0000	0 0000	0,000	00000	0 0000	0.0000	0,0000	0.0000	0.0000	0.0000	0.0000	00000	0,0000	0.000	0 0000	0.0000	0 0000	0 0000	0 0000	0.0000	0.0000	0 0000	0 0000
27783	0,000	0.0000	0.000	0.0000	0.0000	0.0000	0,000	0 0000	0 0000	0 0000	0 0000	0.0000	0 0000	0 0000	0 0000	0.0000	0 0000	0.0000	0,000	0 0000	0.0000	0 0000	0.0000	0,000	0 0000
2764	0 0000	0.5109	0 0000	0 0000	0 0000	0.0000	0,0000	0 0000	0.0000	0 7120	0 1063	0 0000	0 0000	0.0926	0,000	5 0000	0 0000	0 0000	0 0000	0.0000	5 6876	10 5913	13.8204	0 0000	0.0000
2916	0.0020	46 6841	0.0006	0.0000	0.0000	0.000	0 5057	84848	0 0000	4 6 1 6 6	77 6822	77 4716	0.0000	0.6251	0.0060	0 0040	0.0000	0.0000	0 3030	0.0000	60 6957	6 4700	22 5962	0 0000	0 0000
2918	0.0000	1 0284	0.0000	0 0000	0 0000	0.0000	0.0000	0.0000	0 0000	1 5026	0 2094	0.0000	0.0000	0.2080	0.0000	0.0000	0.0000	0.0000	0 0000	0 0000	11 7066	23 0873	29 2164	0 0000	0 0000
298.2	0 0000	0.0000	0.0000	0.0000	9 0000	0 0000	0.0000	0.0000	0.0000	0 0000	0 0000	0.0000	0 0000	0.0000	0 0000	0.0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0,0000	0 0000
3407 3408	0.0040	46 6159 35 7436	0 0012 0 0002	0.0000	0.0000	0,0000	0.7929	8 9642 6 8850	00000	6 3021	75 8569 60 0466	61 2944 58 0022	0 0000	1 2291 0 2767	0 0120	0 0080	0.0000	0.0000	0.4500 0.1628	0 0000	68 3543 44 1054	9 6279 2 7976	31 6369 14 2709	0 0000	0 0000
2409	0.0007	19 3870	9 0002	0.0000	0 0000	0 0000	0 1941	3.7322	0,0000	1 8247	32 3543	31 6651	0 0000	0 2262	0 0022	0.0014	0 0000	0 0000	0 1177	0 0000	24 8721	2.0416	8 8824	0 0000	0 0000
3410	0 0000	0 3979	0 5000	6,0000	0.0000	0.0000	0.0792	0 6637	403 7408	0 1699	0.5150	0 1928	0 0000	0 0373	0 0002	0.0000	0 0000	0 0000	0 0000	0,000	1 0656	0 1956	0 6188	0,0000	0 0000
3411	0 0002	13 6036	0.0001	0.0000	0 0000	0 0000	0.0872	2.6218	0.0000	0 9928	22 9938	21 7527	0 0000	0.0558	0 0006	0 0003	0 0000	0 0000	0 0575	0,0000	16 1660	0 7237	4 6584	0 0000	0 0000
3412	. 00000	0.3508	0 0000	0.0000	0.0000	0 0000	01200	0 5744	378 2222	0 1884	0.4368	0 1821	0.0000	0.0444	0 0002	0.0000	0 0000	0 0000	0 0000	0.0000	1 0725	0 2294	0 6918	0 0000	0 0000
3413 3579	0,0001	10 3658	0 0000	0,0000	0,0000	0 0000	0.0000	1 9958	0 0000	0 7578 8 2981	17 5021	16 5642	0.0000	1 1565	0 0004	0.0003	0.0000	0.0000	0.000	0.0000	12.3173	0 6560 128 0298	3 5802 161 3929	0.0000	0 0000
3073	0.000	0.0000	0 0000	0.0000	0,0000	0 0000	3 6042	0 0000	0 0000	0 0000	0,0000	0 5000	0.0000	0 0000	0.0000	0 0000	0 0000	0.0000	0 0000	0.0000	0 0000	16 7211	7 3649	0 0000	0 0000
3761	0 0000	4 0930	0 0000	0.0000	0 0000	0.0000	0 0000	0.0000	0 0000	5 8562	0 8:377	0 0000	0.0000	0.7686	0.0000	0.0000	0 0000	0,000	0 0000	0 0000	45 1311	88 7053	113 7652	0.0000	0.0000
A252	0,000	0,0000	0.0000	0.0000	0 0000	0 0000	0 0000	0.0000	0.000	0 0000	0,0000	0 0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0,000	0 0000
4253 4254	0 0000	0.0000	0.0000	00000	0.0000	0 0000	0.0000	0.0000	0.0000	0 0000	0.0000	0 0000	0.0000	0.0000	0.0000	0.0000	00000	0.0000	0 0000	0.0000	0 0000	0 0000	0.0000	0 0000	c cccc
4255	0.0000	0 0000	0.0000	0.0000	0 0000	0.0000	0 0000	0.0000	0.0000	0.0000	0 0000	0 0000	5 0000	0 0000	0 0000	0 0000	0,0000	0 0000	0 0000	0,0000	0 0000	0 0000	0.0000	0,000	0 0000
4.259	0 0000	11 7006	0 0000	0.0000	0.0000	0 0000	0 1319	1 8166	0 0000	0 8004	10 6495	13 2166	0.0000	0.0069	0.0000	0 0000	0.0000	0.0000	0.0000	0.0000	12 8097	0 2831	3.4661	0 0000	0 0000
4250	0 0000	0 0000	0 0000	0.0000	0 0000	0.0000	0 1834	0.0000	0 0000	0 0000	0 0000	0 0000	5 0000	0.0019	0.0000	0.0000	0.0000	0.0000	0.0000	0 0000	0.0000	0 6558	0 0000	0 0000	0.0000
4318 4441	0.0000	1 3669	0 0000	0 0000	0.0000	0 0000	0 0000	0 0000	0 0000	1 9868 1 6378	0 2762	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	00000	0.0000	0.0000	15 4582 0 0031	30 6094 0 0000	38 6387	0.0000	0 0000
4442	0 0000 0 0000	0 0003	0 0000	0.0000	0 0000	0 0000	0 0000	0 0000	0.0000	0.0065	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0375	0 0000	0 0000
Dock Red Dye Tank	0 0000	0 0000	0 0000	0 0000	0 0000	0.000	0 0000	0 0000	0.0000	0 0000	0.0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0.0000	0 0000	6 0000	0 0000	0 0000	0 0000	0 0000	0 0000
L4 Dodiflow Tota	0 0000	0 0000	0 0000	0.0000	0.000	0 0000	0 0007	0.0000	0 0000	2 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 5000	0.0000	0 0000	0 0000	0 0000	0 0022	0 0000	0 0000	0 0000
L4 Red Dye Tota	0,0000	0 0004	0 0000	0.0000	0 0000	0 0000	0 0000	0 0000	0 0000	0.0026	5 0011	0.0000	0 0000	0 0000	0 0000	0 0000	0.0000	0.0000	0.0000	0.0000	0.0005	0 0000	0 0115	0 0000	0 0000
Rack Red Dye Tenk Temporary BioDiesel Tank	0 0000	0 0024	0.0000	0 0000	0.0000	0 0000	0 0001	0 0000	0 0000	0.0166	0.0056	0.0000	0.0000	0.0001	0.0000	0 0000	0 0000	0.0000	0,0000	0 0000	0 0029	0 0000	0 0723	0 0000	0 0000
(11),000,000,000,000		******	00300			0000	*****			*****		*****	*****	*****	• • • • • • • • • • • • • • • • • • • •	*****	•••••				••••	*****	*****	*****	
<u>Loading</u>																									
Controlled	0 0000	6 6100 0 9173	0.000	0 0000	0,0000	0.0000	0.0397	0 0000	0 0000	0 5400 1 2758	14 6938 0 1890	13.6502	0 0000	0.0046	00000	0,000	0 0000	0.0000	0 0264	00000	9 8364	0 3132 18 9209	2 5574 24 7599	0 0000	0 0000
Marine Loading Loading Not Captured (if controlled)	00000	113 5358	0.000	0 0000	0 0000	0.0000	0 6226	21 9075	0 0000	7.1124	193 5357	178 4730	0 0000	0.0603	0 0000	0 0000	0 0000	0.0000	0 3740	0.0000	129 6542	4 1256	33 8150	0 0000	0 0000
																									:
Fugitives Equipment Leaks		16 9777	0.0032	0.0000	0.0000	0.0000	5 27 16	2 5304	0,0000	14.7604	10 5432	42 1727	0 0000	4 3754	0 0274	0 0000	0 0000	0 0000	0 0000	0 0000	73 8021	26.3679	73 8021	6 0000	0 0000
Editions read		10 2777	0 0032	0000	0000	0000	32710	2000	*****	141004	100-00		0000	13754	50274	••••	*****	*****	*****	*****	700027	10.337	734021		
Miscellaneous																									
Macellaneous Emissions	0 0000	113 1109	0 0000	0 0000	0 0000	0 0000	0 0000	14 8260	0 0000	5 2E23	129 1300	0,0000	0 0000	0.0440	0 0000	0 0000	0 0000	0.0000	0 0000	0 0000	92 0765	2 5019	26 2355	0 0000	0.0000
Combustion Units																									I
Clawer-Brooks	0.0000	0 0767	0 0000	0 0000	0 0000	0,000	0 0000	0 0000	0 0000	0 0000	65 75.40	0 0000	0 0000	0 0223	0 0000	0.0000	0 0000	0 0000	0 0000	0 0000	0 1242	0 0000	0 0000	0 0000	0 0000
Erle	0.0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0.0000	0 0000	0 0000	0,000	0 0000	0 0000	0 0000	0.0000	0,000	0 0000	0 0000	0,0000	0 0000
Generator	0 0000	0.0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0.0000	0 0000	0 0000	0.0000	0.0000	0 0000	0 0000	0 0000	0.0000	0 0000	0.0000	0 0000	0 0000	0 0000	0 0000	0 0000
Total Emissions																									- 1
Armusi, the	0 0079	459 5759	0 0065	0 0000	0 0000	0.0000	12 2403	77 8863	781 6630	68 0897	720 6368	542 5374	0.0000	9 7457	0 (514	0.0157	0.0000	0 0000	1 5574	0,000	708 2465	372 7142	627 5308	0 0000	0 0000
Annual, tons	0.0000	0 2258	0.000	0 0000	0 0000	0.0000	0.0061	0.0389	6.39:0	0 0340	0.3603	0.2713	0.0000	0.0049	0.0000	0 0000	0.0000	0 0000	0.0008	0.0000	0.3641	0.1864	0.3138	0 0000	0 0000
	1																								

Emission Unit ID No. Cleaver-Brooks				
	CO2	CH4	N2O	CO2e
Annual Emission, lbs	4,389,512.1273	82.7898	8.2790	4,394,049.0013
Annual Emission, TPY	2,194.7561	0.0414	0.0041	2,197.0245
Annual Emission, tonnes/yr	1,995.2328	0.0376	0.0038	1,997,2950

Emission Unit ID No. Erie				
	CO2	CH4	N2O	CO2e
Annual Emission, lbs	134,648.4371	5.4617	1.0923	135,110.49
Annual Emission, TPY	67.3242	0.0027	0.0005	67.5552
Annual Emission, tonnes/yr	61.2038	0.0025	0.0005	61.4139

Emission Unit ID No. Generator				
	CO2	CH4	N2O	CO2e
Annual Emission, Ibs	0.0000	0.0000	0.0000	0.0000
Annual Emission, TPY	0.0000	0.0000	0.0000	0.0000
Annual Emission, tonnes/yr	0.0000	0.0000	0.0000	0.0000

Phillips 66 Company Products Terminal Portland, OR RY2019

Emissions types:

MISCELLANEOUS EMISSIONS - Other emissions from ordinary facility operations

Miscellaneous Emissions

Component type	Number	Emission Factor (VOC-lbs/compyr)	Emissions (lb VOC/yr)		
Separator Losses			17,088.8		
Aggregated Insignificant Emissions			1,992.0		
Gasoline Tank Roof landing			0.0		
Gasoline Tank Cleaning			0.0		
Place Holder					
Place Holder					
	ı	Misc Emissions, lb/yr	19,081	9.5	ton/yr
	Misc I	Emissions, lb VOC/yr	19,081	9.5	ton/yr

Phillips 66 Portland Terminal, WA Background on TankESPd+

ESPd+ is a software tool that applies EPA's AP-42 methodology to estimate emissions from various types of emission sources that are commonly found at petroleum terminal and pipeline facilities. The current version is used to estimate emissions for:

- Storage Tanks.
- Loading Racks.
- Control Devices.
- Combustion Units.
- Equipment Leaks.

All calculations for these source types are based on AP-42 except as noted in the sample calculations. For evaporative emissions, speciation of the contribution of individual chemicals to the total VOC emissions is determined by applying Raoult's Law at the given temperature to determine vapor-phase concentrations from the given concentrations of the chemicals of interest in the liquid phase. For equipment leak emissions, the liquid-phase concentration is used to determine the speciated emissions. For speciated products of combustion, AP-42 factors are applied.

Information on the presence and configuration of emissions sources is referred to as "source information," whereas routine information on operating parameters for these emissions sources is referred to as "service information." Thus there is a one-time entry of Source Information to describe each emissions source, and on-going entry of Service Information to describe the usage of these emissions sources during a given period of time.

Phillips 66

Portland Terminal, WA

Sample Calculations for Loading Operations

Loading Operations

page 1 of 2

General notes:

This sample calculation presents the method by which ESPd+ calculates emissions for the loading of a particular stock through a given loading rack. ESPd+ repeats this calculation for each type of stock loaded and for each loading rack. The Source Information identifies whether the loading operations are controlled and, if so, the type of cargo tank that is loaded and the applicable annual leak test. From this information, a capture efficiency is determined from factors published by EPA - or, in the case of marine loading, by TCEQ. The Service Information then gives the throughput for this stock through this loading rack during this time period, and the emissions are then calculated from AP-42 Section 5.2 Equation 1.

Emissions associated with the vapor load to the control device are shown with the control device calculations.

Uncontrolled scenario:

Emissions (lbs) = [12.46*(S*P*M)/T]*[throughput(gal)/1000]

AP-42 Section 5.2 Equation 1

- where: S is the saturation factor (assumed equal to 1.0)
 - P is the true vapor pressure of the stock being loaded (psia)
 - M is the vapor molecular weight of the stock being loaded
 - is the temperature of the compartment being loaded (degrees R) (assumed equal to average ambient temperature)

Controlled scenario:

Emissions not captured (lbs) = $(1-X)^{12.46}(S^{2}M)^{11}(throughput(gal)/1000)$ Vapor load to control device (lbs) = $(X)^{12.46*(S^P^M)/T}[throughput(gal)/1000]$

where: X is the capture efficiency, determined by the type of cargo tank

and the applicable annual leak test.

Source In	formation data:	
	Loading Rack/Berth ID:	P <u>ortland Terminal a, O</u> R
	Loading configuration:	controlled (vapors routed to a control device)
	Type of cargo tank:	tank truck
If control	Annual leak test: lled:	XX / GACT (3-inch)
	Primary control device:	VRU
Service D	Secondary control device:	
	Loading Rack/Berth ID:	Portland Terminal a, OR
	Time period:	Monthly T
	Time Period (mm/yyyy):	08/01/2019
	Stock:	Gasoline
	Stock RVP:	7.8
If control	Throughput (gallons):	655,211
<u>II CONTROL</u>	Control device:	primary
		lepending upon which control device was used for this throughput.
		e capture efficiency is from AP-42 5.2.2.1.1.
		e efficiency is from TCEQ guidance.

Phillips 66

Portland Terminal, WA

Sample Calculations for Loading Operations

		<u>Annual</u>	The Jelholl
	X	98.7%	capture efficiency
	s	1.0	assume saturation is 100%
	P	4.66	from selected stock and temperature
	М	66	from selected stock
	т 🗆	68.6	assume equal to average ambient (deg F)
Estimated Emissions = (1-X)*[1		e cargo tanks (l P*M)/T]*[through	1. Sept.
		60.97	For a controlled scenario, these are the
			emissions that are not captured (e.g., tank
			truck leakage).
Vapor Load to Contro = (X)*[12.		(lb): M)/T]*[throughpo	ut(gal)/1000]
	-	4 629	For a controlled scenario, these are the

captured emissions, routed to the control device.

Phillips 66 Portland Terminal, WA Sample Calculations for Loading Operations

Equipment Leaks

Notes:

Time Period: Aug-2019

If the service is a fluid in the vapor phase, select the 'gas' service. If the service is crude oil, select whether 'light' or 'heavy'.

If the service is any other fluid in the liquid phase, select 'light liquid'.

Source Information:

Component Type	Service	Subject to M21 LDAR?	Speciation Stock	N1 Component Count	Estimated Emissions (pounds)
Valves	gas	No	Gasoline	15	0.32
Valves	light liquid	No	Gasoline	1,017	71.73
Pumps	gas	No	Gasoline	0	
Pumps	light liquid	No	Gasoline	18	15.94
Fittings	gas	No	Gasoline	68	4.68
Fittings	light liquid	No	Gasoline	2,708	35.53
Others	gas	No	Gasoline	5	0.98
Others	light liquid	No	Gasoline	234	49 90

When not subject to Method 21 LDAR inspections, the equipment leak emissions are simply the component count multiplied by the applicable emission factor, and there is no associated entry of service data.

If not subject to M21 LDAR: Emissions (lb/hr) = F1*N1

Emission factors:

Gas & Liquid Products EPA 453/R-95-017 Table 2-3

Crude Oil

API 4653 Table ES-2

Component type	nponent type Service	
valves	gas	2.87E-05
valves	light liquid	9.48E-05
pump seals	gas	1.43E-04
pump seals	light liquid	1.19E-03
fittings (1)	gas	9.26E-05
fittings (1)	light liquid	1.76E-05
others (2)	gas	2.65E-04
others (2)	light liquid	2.87E-04

- (1) connectors and flanges
- (2) compressors and any components other than fittings, pumps, or valves

Phillips 66 Portland Terminal, WA Sample Calculations for Control Devices

Control Devices

page 1 of 3

General notes:

The vapor load to the control device is summed from the emission sources that are routed to the given control device, and then the control device efficiency is applied. The load of Total VOCs and of the speciated VOC components (Benzene et al) are compiled separately from each of the contributing emissions sources. That is, a speciation calculation is not performed on the Total VOC vapor load to the control device, but rather the speciation calculations are done at each emissions source. This is because speciation is performed differently for different types of emissions sources. Separate emission factors are given for speciation of the products of combustion, as noted below. Load Factor

The load factor (LF) is a variable multiplied by the total VOC load to the control device from emissions sources (Vapor Load) to calculate emissions. The load factor (LF) is dimensionless; it calculates the (lbs) of a pollutant as a decimal fraction of the Vapor Load.

Calculation of the Total VOC and speciated VOC components from the vapor load are calculated using:

LF = (1 - X) for Total VOCs, where X is the control efficiency of the given control device.

LF = (1 - X) * Zi for speciated VOC components, where Zi is the vapor phase fraction of speciated component (i) in the total load. Emission factors are given in various sets of units, and thus the calculation of LF needs to convert emission factors to a basis of: (pounds of pollutant) per (pound of VOC load)

Flares and Vapor Combustion Units (Flares/VCUs)

In addition to emissions of Total VOCs and speciated VOC components that pass through the control device from the vapor load, flares and VCUs emit products of combustion. The vapor load must be characterized as one of the types of combustion fuel for which emission factors are available, and the emission factors for that type of combustion fuel are then applied. When there is vapor load from more than one type of combustion fuel (e.g. some gasoline throughput and some diesel throughput), the emissions associated with each are calculated separately. Separate combustion calculations are required for:

- combustion of vapor load (with a separate calculation for each type of combustion fuel)
- combustion at the pilot flame (assumed to be natural gas)
- combustion of auxiliary fuel (assumed to be natural gas)

Emission factors for products of combustion are from AP-42 for the pilot flame and the auxiliary fuel, and from TCEQ document RG-109 for the vapor load, except for greenhouse gases, for which the emission factors are from EPA's GHG MRR -- 40 CFR Part 98 Subpart C, Tables C-1 & C-2. High heat values (HHV) used to calculate LF are from EPA's GHG MRR Subpart C, Table C-1.

General equation:

Emissions (lbs) = (LF) * [total VOC load to control device from emissions sources]

+ (EF1*S1 + EF2*C2*S2 + EF3) * K * (U*H)

for the pilot flame

+ (EF1*S1 + EF2*C2*S2 + EF3) * K * (U*H)

for the auxiliary fuel (assist gas)

where:

total VOC load (vapor load) is summed from the emissions sources routed to the given control device, and is compiled in (pounds).

LF is the load factor for a given pollutant.

	LF is determin	ned as follows:	
	Pollutant I	_F	variables for the 'vapor load' LF
	CO2 =	= (EF3) * K * H	H = X * HHV / density
	N2O =	= (EF3) * K * H	H = X * HHV / density
	CH4 =	= (EF3) * K * H	H = X * HHV / density
	NOx =	= (EF3) * K * H	H = X * HHV / density
	CO =	= (EF3) * K * H	H = X * HHV / density
Total VOCs:	VOC =	= (1-X)	X = control device efficiency
	PM =	= (EF3) * K * H	H = X *[HHV(fuel) / HHV(ng)] / density
	SOx =	= (EF1) * S	S is the sulfur content (%)
Speciated VOCs:	Benzene =	= (1-X) * Zi	X = control device efficiency
· ·	Ethylbenzene =	= (1-X) * Zi	X = control device efficiency
	Toluene =	= (1-X) * Zi	X = control device efficiency
	Xylenes =	= (1-X) * Zi	X = control device efficiency
	n-Hexane	= (1-X) * Zi	X = control device efficiency
	Naphthalene =	= (1-X) * Zi	X = control device efficiency
	Formaldehyde =	= (EF3) * K * H	H = X *[HHV(fuel) / HHV(ng)] / density

X is the control efficiency

Zi is the weight fraction of chemical "i" in the total VOC load, as determined from the emissions sources routed to the given control device.

For Vapor Recovery Units (VRUs):

EF1 EF2 EF3 are all set to 0 for VRUs (no products of combustion)

The emissions from a VRU are simply the vapor load factored by the control efficiency of the VRU.

For flares and enclosed vapor combus	tion units (Flares/VCU	s): page 2 of 3				
		on sulfur content in the gasoline/diesel				
		rating the vapors (gasoline/diesel) (wt%)				
EF2 is a natural	gas Emission Factor de	ependent on the sulfur content				
is a conversion from a (2,000 grains/MMscf) basis to a (1wt%) basis; use:						
1435 where the Emission Factor is based on (2,000 grains/MMscf)						
		Factor is based on (1wt%)				
	r content in natural gas					
	sion Factor that is not re					
	o convert from kilogram	and the state of t				
	2 if the Emission Factor 1 if the Emission Factor	r is in units of kilograms				
		al, hours, or pounds (of VOC load))				
The variable H is evaluated s						
		ssion Factor is per MMBtu, then:				
	MBtu/volume)	soloti i actor is per ivilvibita, trien.				
		ssion Factor is per volume of fuel, then:				
H = 1		The second secon				
If usage is given in hours (HR) and the Emission Fact	tor is per hp-hr, then:				
H = horsepor						
		tor is per volume of fuel, then:				
	pical fuel feed rate)					
If usage is given in hours (HR						
H = (HR)*(typ	pical fuel feed rate)*HH\	V				
if usage is given in VOC load	(pounds) and the emiss	sion factor is per MMBtu, then:				
H = X * HHV		Continues and the second of th				
Where HHV	and dencity are for the					
WHERETHIV	and density are for the	fuel representing the vapor load				
Source Information:	and density are for the	ruel representing the vapor load				
	VRU	rue representing the vapor load				
Source Information: Control Device ID:		ruel representing the vapor load				
Source Information:		Tuel representing the vapor load				
Source Information: Control Device ID: Type of unit:	VRU ▼					
Source Information: Control Device ID: Type of unit: Control efficiency:	VRU	percent reduction of emissions				
Source Information: Control Device ID: Type of unit: Control efficiency: for Flares/VCUs:	VRU ▼ 0.999	percent reduction of emissions				
Source Information: Control Device ID: Type of unit: Control efficiency:	VRU ▼ 0.999					
Source Information: Control Device ID: Type of unit: Control efficiency: for Flares/VCUs:	VRU ▼ 0.999	percent reduction of emissions weight fraction of vapor load, from stack test				
Source Information: Control Device ID: Type of unit: Control efficiency: for Flares/VCUs: NOx Load Factor override:	VRU ▼ 0.999	percent reduction of emissions				
Source Information: Control Device ID: Type of unit: Control efficiency: for Flares/VCUs: NOx Load Factor override:	VRU ▼ 0.999	percent reduction of emissions weight fraction of vapor load, from stack test				
Source Information: Control Device ID: Type of unit: Control efficiency: for Flares/VCUs: NOx Load Factor override: CO Load Factor override: Pilot flame feed rate:	VRU ▼ 0.999 #N/A	percent reduction of emissions weight fraction of vapor load, from stack test weight fraction of vapor load, from stack test				
Source Information: Control Device ID: Type of unit: Control efficiency: for Flares/VCUs: NOx Load Factor override: CO Load Factor override:	VRU ▼ 0.999 #N/A	percent reduction of emissions weight fraction of vapor load, from stack test weight fraction of vapor load, from stack test MMscf per hour				
Source Information: Control Device ID: Type of unit: Control efficiency: for Flares/VCUs: NOx Load Factor override: CO Load Factor override: Pilot flame feed rate: Auxiliary fuel feed rate:	VRU ▼ 0.999 #N/A #N/A	percent reduction of emissions weight fraction of vapor load, from stack test weight fraction of vapor load, from stack test MMscf per hour Feed rate is required only if the usage is given in hours, rather than in MMscf.				
Source Information: Control Device ID: Type of unit: Control efficiency: for Flares/VCUs: NOx Load Factor override: CO Load Factor override: Pilot flame feed rate: Auxiliary fuel feed rate: Sulfur Content (default values):	VRU ▼ 0.999 #N/A #N/A ppm	percent reduction of emissions weight fraction of vapor load, from stack test weight fraction of vapor load, from stack test MMscf per hour Feed rate is required only if the usage is given in hours, rather than in MMscf. MMscf per hour				
Source Information: Control Device ID: Type of unit: Control efficiency: for Flares/VCUs: NOx Load Factor override: CO Load Factor override: Pilot flame feed rate: Auxiliary fuel feed rate: Sulfur Content (default values): Natural Gas	VRU VRU 0.999 #N/A #N/A ppm 6.97	percent reduction of emissions weight fraction of vapor load, from stack test weight fraction of vapor load, from stack test MMscf per hour Feed rate is required only if the usage is given in hours, rather than in MMscf. MMscf per hour These are default values that				
Source Information: Control Device ID: Type of unit: Control efficiency: for Flares/VCUs: NOx Load Factor override: CO Load Factor override: Pilot flame feed rate: Auxiliary fuel feed rate: Sulfur Content (default values): Natural Gas	VRU VRU 0.999 #N/A #N/A ppm 6.97 0	percent reduction of emissions weight fraction of vapor load, from stack test weight fraction of vapor load, from stack test MMscf per hour Feed rate is required only if the usage is given in hours, rather than in MMscf. MMscf per hour These are default values that are used in the absence of				
Source Information: Control Device ID: Type of unit: Control efficiency: for Flares/VCUs: NOx Load Factor override: CO Load Factor override: Pilot flame feed rate: Auxiliary fuel feed rate: Sulfur Content (default values): Natural Gas LNG Propane Gas	VRU VRU 0.999 #N/A #N/A ppm 6.97 0 0	percent reduction of emissions weight fraction of vapor load, from stack test weight fraction of vapor load, from stack test MMscf per hour Feed rate is required only if the usage is given in hours, rather than in MMscf. MMscf per hour These are default values that				
Source Information: Control Device ID: Type of unit: Control efficiency: for Flares/VCUs: NOx Load Factor override: CO Load Factor override: Pilot flame feed rate: Auxiliary fuel feed rate: Sulfur Content (default values): Natural Gas LNG Propane Gas LPG	VRU VRU 0.999 #N/A #N/A ppm 6.97 0 0 0	percent reduction of emissions weight fraction of vapor load, from stack test weight fraction of vapor load, from stack test MMscf per hour Feed rate is required only if the usage is given in hours, rather than in MMscf. MMscf per hour These are default values that are used in the absence of				
Source Information: Control Device ID: Type of unit: Control efficiency: for Flares/VCUs: NOx Load Factor override: CO Load Factor override: Pilot flame feed rate: Auxiliary fuel feed rate: Sulfur Content (default values): Natural Gas LNG Propane Gas LPG Butane Gas	VRU VRU 0.999 #N/A #N/A #N/A ppm 6.97 0 0 0 0	percent reduction of emissions weight fraction of vapor load, from stack test weight fraction of vapor load, from stack test MMscf per hour Feed rate is required only if the usage is given in hours, rather than in MMscf. MMscf per hour These are default values that are used in the absence of				
Source Information: Control Device ID: Type of unit: Control efficiency: for Flares/VCUs: NOx Load Factor override: CO Load Factor override: Pilot flame feed rate: Auxiliary fuel feed rate: Sulfur Content (default values): Natural Gas LNG Propane Gas LPG	VRU VRU 0.999 #N/A #N/A ppm 6.97 0 0 0 0 0	percent reduction of emissions weight fraction of vapor load, from stack test weight fraction of vapor load, from stack test MMscf per hour Feed rate is required only if the usage is given in hours, rather than in MMscf. MMscf per hour These are default values that are used in the absence of				
Source Information: Control Device ID: Type of unit: Control efficiency: for Flares/VCUs: NOx Load Factor override: CO Load Factor override: Pilot flame feed rate: Auxiliary fuel feed rate: Sulfur Content (default values): Natural Gas LNG Propane Gas LPG Butane Gas Liquified Butane	VRU VRU 0.999 #N/A #N/A ppm 6.97 0 0 0 0 15	percent reduction of emissions weight fraction of vapor load, from stack test weight fraction of vapor load, from stack test MMscf per hour Feed rate is required only if the usage is given in hours, rather than in MMscf. MMscf per hour These are default values that are used in the absence of				
Source Information: Control Device ID: Type of unit: Control efficiency: for Flares/VCUs: NOx Load Factor override: CO Load Factor override: Pilot flame feed rate: Auxiliary fuel feed rate: Sulfur Content (default values): Natural Gas LNG Propane Gas LPG Butane Gas Liquified Butane Diese	VRU VRU 0.999 #N/A #N/A ppm 6.97 0 0 0 0 15 15	percent reduction of emissions weight fraction of vapor load, from stack test weight fraction of vapor load, from stack test MMscf per hour Feed rate is required only if the usage is given in hours, rather than in MMscf. MMscf per hour These are default values that are used in the absence of				

Service Information: Control Device	ID:	VRU		page 3 of 3
Time Period (m	nm/yyyy):	8/1/1/2017		
Combustion fu	el type:	Gasoline 🔻		racterized as this type of combustion fuel, for fapplying combustion emission factors
Vapor load (lbs	s): [196,990		nissions sources routed to this control device
Pilot flame usa	ge (U):	#N/A	default is total hours	in period
Pilot flame usa	ge units:	7		
Auxiliary fuel u	sage (U):	#N/A	no default usage - red	quires user entry
Auxiliary fuel u	sage units:	-		
Sulfur content	S1:		ppm, override for vap	or load
Sulfur content	S2:		ppm, override for natu	ural gas
Sulfur Content:				
	el (vapor load): S1 (wt%):	Gasoline 1.50E-03	wt%, for given fuel	vapor load
Sulfur content	S2 (wt%):	6.97E-04	wt%, for natural gas	pilot flame & aux fuel
Conversion of Usage Value		of variable H):	MMBtu/gal	And Andrew Control of the Control of
Vapor Load H	٦V:		www.du/gai	
Vapor Load de	nsity:	6.2	lb/gai	
Pilot flame usa	ige:	#N/A	MMscf	
Auxiliary fuel u	sage:	#N/A	MMscf	
	tal VOC load to EF1*S1 + EF2*C	control device from em 2*S2 + EF3) * K * (U*h 2*S2 + EF3) * K * (U*h	 for the pilot 	t flame iliary fuel (assist gas)

K factor to convert kilograms to pounds

<u>K</u>
2.20462
2.20462
2.20462

Pounds this period from: Vapor Load to Control Device: Natural Gas:

Vapor Load to Control Dovico.		Hatarat Gaoi				
		Pilot	Auxiliary	TOTAL		
	Gasoline	Flame	Fuel	(lbs)		
CO2	0	#N/A	#N/A	#N/A		
N2O	0	#N/A	#N/A	#N/A		
CH4	0	#N/A	#N/A	#N/A		
NOx	0	unit?	unit?	0		
co	0	unit?	unit?	0		
voc	197	unit?	unit?	197		
PM	0	unit?	unit?	0		
SOx	0	unit?	unit?	0		
Benzene	VOC*Zi	unit?	unit?	*		
Ethylbenzene	VOC*Zi	unit?	unit?	*		
Toluene	VOC*Zi	unit?	unit?	*		
Xylenes	VOC*Zi	unit?	unit?	*		
n-Hexane	VOC*Zi	unit?	unit?	*		
Naphthalene	VOC*Zi	unit?	unit?	*		
Formaldehyde	0.00	unit?	unit?	0.00		

^{*} need to compute the VOC*Zi values and then sum across the row

```
Company: Phillips 66
                      Location: Portland Terminal a, OR
     Calculations for Tank No.:
                                         3761
          Emission estimates per EPA's AP-42 Chapter 7.1 (Nov 2006), for: August
 Meteorological Data:
           Avg Atmos Pressure, Pa:
                                            14.7465 psia
           Avg Ambient Temp, Taa:
                                              68.6
                                                       degrees F
          Avg Daily Temp Range, \Delta Ta:
                                              23.4
                                                       degrees F
          Avg Daily Solar Insolation, I:
                                           1718.334 Btu / ft2 day
 Tank Data:
          Tank Type:
                                FixedRoof
                                                                          shell color: white paint
           Average alpha:
                                  0.17
                                                                      shell condition: good
           Tank Diameter:
                                   120
                                                                          shell alpha: 0.17
           Tank Height:
                                   40
                                                                           roof color: white paint
            Maximum Fill Height:
                                                                       roof condition: good
                                              38.6
                                                       ft
            Minimum Liquid Level:
                                                       ft
                                                                          roof alpha: 0.17
            Net Working Height:
                                              37.6
                                                       ft
          Fixed Roof Type:
                               Column-supported (cone)
                                                                effective roof height:
                                                                                         0 ft
          Average outage, Hvo:
                                              20.2
                                                       ft
          Max Vent Setting:
                                              0.03
          Min Vent Setting:
                                             -0.03
                                                       psig
 Service Data:
          Service (stored liquid):
                                          Diesel
          Product Factor, Kp:
                                               1
                                                                                      Vapor Pressure Constants:
          Reid VaporPressure:
                                                                                                     A: 12.101
                                                       psi
                                                                  (if specified)
          ASTM Distillation Slope:
                                                                  (if specified)
                                                                                                     B: 8907
          Molecular Weight, Mv:
                                                      lb/lb-mol
                                              130
          Liquid Bulk Temp, Tb:
                                              71
                                                       degrees F
          Constant Temp Tank?
                                              NO
          Liquid Bulk Temp Basis?
                                         given by user
          Liquid Surface Temp, T:
                                             72.2
                                                       degrees F
                                                                            per AP-42 equation 1-26
          True Vapor Pressure, P:
                                                                            per AP-42 equation 1-24
                                            0.0092
                                                       psia
            Stock Vapor Density, Wv:
                                                      lb/ft3
                                           0.00021
                                                                            per AP-42 equation 1-21
Operational Data:
          Throughput:
                                       274,088
                                                        bbl per month
          Days this Period:
                                              31
                                                       days
          Turnover Rate:
                                             42.6
                                                      turnovers per year
          Turnover Factor, K<sub>N</sub>:
                                             0.871
Calculated Values:
         Vapor Space Expansion Factor, K_E = \{\Delta T_V / (T + 459.57)\} + \{(\Delta P_V - \Delta P_B) / (P_A - P)\}
                                                                                                         AP-42 ean 1-7
            where:
            \Delta T_V = 25.02727 deg F (deg R); daily temperature range in the vapor space
                                                                                                         AP-42 eqn 1-8
                         Tlx = 78.46 deg F
                                                          Pvx = 0.014 psia
                        Tln = 65.95 deg F
                                                          Pvn = 0.008 psia
            \Delta P_V = 0.0060 psia
            \Delta P_B = 0.06
                              psi; vent setting range
             K_F = 0.0433
         Vented Vapor Saturation Factor, K<sub>S</sub> = 1 / (1+ 0.053 P H<sub>VO</sub>)
                                                                                                        AP-42 eqn 1-20
             K_S = 0.9902
         Vent Setting Correction Factor, KB:
             K<sub>B</sub> = 1; except when:
                   K_N [(P_{BP} + P_A) / (P_I + P_A)] > 1
                                                                                                        AP-42 eqn 1-36
             K_B = [(P_I + P_A)/K_N - P] / [P_{BP} + P_A - P]
                                                                                                        AP-42 eqn 1-37
                       where:
                                0.03 psig; vent pressure setting
                          P<sub>I</sub> = 21.45 psig; initial gauge pressure (nominal operating pressure)
             K<sub>B</sub> =
Emissions Estimate for:
                                             August 2019
           Standing Storage Loss:
                                               67.94
                                                       lb per
                                                                 month
                                                                                                        AP-42 eqn 1-4
           Working Loss:
                                              281.50
                                                        lb per
                                                                 month
                                                                                                        AP-42 egn 1-35
         Total Emissions:
                                              349.44 lb per
                                                                month
                                                                                                        AP-42 eqn 1-1
                                              0.1747 tons per
                                                                month
```

Company: Phillips 66 Location: Portland Terminal a, OR Calculations for Tank No.: Rack Red Dye Tank Emission estimates per EPA's AP-42 Chapter 7.1 (Nov 2006), for: August 2019 Meteorological Data: Avg Atmos Pressure, Pa: 14.7465 psia Avg Ambient Temp, Taa: 68.6 degrees F Avg Daily Temp Range, ∆Ta: 23.4 degrees F Avg Daily Solar Insolation, I: 1718.334 Btu / ft2 day Tank Data: Tank Type: Horizontal shell color: white paint shell condition: good Average alpha: 0.17 Tank Diameter: 4.4 shell alpha: 0.17 roof color: white paint Tank Height: 2.4 ft roof condition: good Maximum Fill Height: ft roof alpha: 0.17 Minimum Liquid Level: ft 1 Net Working Height: 0.36 ft effective roof height: Fixed Roof Type: **Horizontal Tank** Average outage, H_{VO}: 1.18 ft Max Vent Setting: 0.03 psig Min Vent Setting: -0.03 psig Service Data: Unisol Liquid Red BK-50 Service (stored liquid): Vapor Pressure Constants: Product Factor, Kp: A: 12.39 Reid VaporPressure: (if specified) psi B: 8933 ASTM Distillation Slope: (if specified) lb/lb-mol Molecular Weight, My: 130 Liquid Bulk Temp, Tb: 70.9 degrees F Constant Temp Tank? NO given by user Liquid Bulk Temp Basis? Liquid Surface Temp, T: 72.2 degrees F per AP-42 equation 1-26 0.0117 per AP-42 equation 1-24 True Vapor Pressure, P: psia lb/ft3 per AP-42 equation 1-21 Stock Vapor Density, Wv: 0.0003 Operational Data: Throughput: bbl per month Days this Period: 31 days Turnover Rate: 0.0 turnovers per year 1.000 Turnover Factor, K_N: Calculated Values: Vapor Space Expansion Factor, $K_E = \{\Delta T_V / (T + 459.57)\} + \{(\Delta P_V - \Delta P_B) / (P_A - P)\}$ AP-42 egn 1-7 where: AP-42 eqn 1-8 $\Delta T_V = 25.02727$ deg F (deg R); daily temperature range in the vapor space Tlx = 78.46 deg F Pvx = 0.014 psia Tln = 65.95 deg F Pvn = 0.010 psia $\Delta P_V = 0.0040$ psia $\Delta P_B =$ 0.06 psi; vent setting range 0.0434 $K_E =$ AP-42 eqn 1-20 Vented Vapor Saturation Factor, K_S = 1 / (1+ 0.053 P H_{VO}) $K_S = 0.9993$ Vent Setting Correction Factor, K_B: K_B = 1; except when: AP-42 eqn 1-36 $K_N [(P_{BP} + P_A) / (P_I + P_A)] > 1$ AP-42 eqn 1-37 $K_B = [(P_I + P_A)/K_N - P] / [P_{BP} + P_A - P]$ 0.03 psig; vent pressure setting P_I = 1.1781 psig; initial gauge pressure (nominal operating pressure) K_B = August 2019 Emissions Estimate for: AP-42 eqn 1-4 Standing Storage Loss: 0.01 lb per month AP-42 eqn 1-35 0.00 Working Loss: lb per month lb per AP-42 eqn 1-1 **Total Emissions:** 0.01 month 0.0000 tons per month

```
Company: Phillips 66
                    Location: Portland Terminal a, OR
   Calculations for Tank No.:
                                      3407
        Emission estimates per EPA's AP-42 Chapter 7.1 (Nov 2006), for: August
                                                                            2019
 Meteorological Data:
          Avg Atmos Pressure, Pa:
                                          14.7465 psia
          Avg Ambient Temp, Taa:
                                            68.6
                                                     degrees F
          Avg Daily Solar Insolation, I:
                                         1718.334 Btu / ft2 day
                                                                        shell color: white paint
          Avg Wind Speed, V:
                                            7.1 mph
                                                                    shell condition: good
 Tank Data:
                                                                       shell alpha: 0.17
          Tank Type:
                              IFRT
                                                                        roof color: white paint
          Average alpha:
                                0.17
                                                                    roof condition: good
          Tank Diameter, D:
                                120 ft
                                                                        roof alpha: 0.17
          Rim Seal Type:
                              Mechanical-Shoe Primary with NO Secondary
               Lr = [(Kra + Krb V^n) D] \times [P^* Mv Kc]
                                                                          per AP-42 equation 2-2
               Lr =
                            [Fr]
                                      × [P* Mv Kc]
                                                                          defining a Rim Seal Emission Factor, Fr
               Fr = [(Kra + Krb V^n) D]
          Rim Seal Emission Factor (Fr):
                                                         696 lb-mol/yr
               Ld = [(Kd Sd) D^2] \times [P^* Mv Kc]
                                                                          per AP-42 equation 2-9
               Ld =
                        [Fd]
                                × [P* Mv Kc]
                                                                          defining a Deck Seam Emission Factor, Fd
               Fd = [(Kd Sd) D^2]
           Deck Seam Emission Factor (Fd):
                                                         403 lb-mol/yr
               Lfi = [Ffi] \times [P^* Mv Kc]
                                                                          per AP-42 equation 2-5
               Ffi = Nfi [Kfi]
                                                                         per AP-42 equation 2-6
               Kfi = [Kfai + Kfbi (Kv V)<sup>mi</sup>]
                                                                          per AP-42 equation 2-7
           Guidepole Emission Factor (Ffgp):
                                                          21 lb-mol/yr
           Deck Fittings Emission Factor (Ffi-n):
                                                         432 lb-mol/yr
                                                                          (all deck fittings other than the guidepole)
          Total Emission Factors (Fr + Fd + Ff):
                                                       1,552 lb-mol/yr
         Number of columns, Nc:
                                                          16
         Effective column diameter, Fc:
                                                            1 feet
Service Data:
         Service (stored liquid):
                                       Gasoline RVP X.XX
         Product Factor, K<sub>C</sub>:
                                             1
         Reid VaporPressure:
                                            7.8
                                                             (if specified)
                                                    psi
         ASTM Distillation Slope:
                                             3
                                                             (if specified)
         Molecular Weight, M<sub>V</sub>:
                                            66
                                                    lb/lb-mol
         Liquid Bulk Temp, Tb:
                                           68.6
                                                    degrees F
         Constant Temp Tank?
                                           NO
         Liquid Bulk Temp Basis?
                                       calculated from ambient, per AP-42 equation 1-28
         Liquid Surface Temp, Tla:
                                           70.9
                                                    degrees F
                                                                         per AP-42 equation 1-26
         True Vapor Pressure, Pva:
                                          4.873
                                                    psia
                                                                         per AP-42 equation 1-25
              P^* = [Pva/Pa] / [1 + (1 - Pva/Pa)^{0.5}]^2
         Vapor Pressure Function, P*:
                                        0.09994
                                                   dimensionless
                                                                         per AP-42 equation 2-3
         Liquid density, WI:
                                           5.6
                                                    lb/gal
         Clingage factor, Cs:
                                                   bbl per 1000 sq.ft.
                                         0.0015
Operational Data:
         Throughput, Q:
                                    555,775
                                                     bbl per month
Emissions Estimate for:
                                           August 2019
         Days This Period:
                                31
           Standing Storage Loss (Lr + Ld + Lf) = [Fr + Fd + Ff] \times [P^* Mv Kc]
                                                                                  per AP-42 equations 2-2, 2-5, 2-9
           Standing Storage Loss:
                                            869.55 lb per month
           Withdrawal Loss (Lwd) = [(0.943 \text{ Q Cs WI})/D] \times [1 + (\text{Nc Fc})/D]
                                                                                  per AP-42 equation 2-4
           Withdrawal Loss:
                                             41.58 Ib per month
         Total Emissions:
                                            911.13 lb per month
                                                                                  per AP-42 equation 2-1
                                             0.456 tons per month
```

Phillips 66 Portland Terminal, WA **Sample Calculations for Furnaces**

Combustion Units - Boilers

page 1

General notes:

Combustion units generate emissions as by-products of combustion. These emissions are estimated from emission factors that may depend on the type of combustion unit, the size of the unit, the type of fuel, and the usage (i.e., the volume of fuel combusted in the given time period). The emission factors vary in terms of the units of measurement used, and thus the estimation of emissions requires conversion of the emission factor values to the units of measurement used in the equations.

Furthermore, usage may be given gallons for liquid fuels, million standard cubic feet (MMscf) for gaseous fuel, or in hours of usage. The usage units must then be reconciled with the units of measurement in the equations.

Emission factors for products of combustion are from AP-42, except for greenhouse gases, for which the emission factors are from EPA's GHG MRR -- 40 CFR Part 98 Subpart C, Tables C-1 & C-2.

High heat values (HHV) used to convert fuel volume to MMBtu are from EPA's GHG MRR Subpart C, Table C-1.

General equation:

Emissions (lbs) = (EF1*S1 + EF2*C2*S2 + EF3) * K * (U*H) is a fuel oil Emission Factor dependent on the sulfur content where: EF1 is the sulfur content in fuel oil (wt%) EF2 is a natural gas Emission Factor dependent on the sulfur content is a conversion from a (2,000 grains/MMscf) basis to a (1wt%) basis; use: C2 1,435 where the Emission Factor is based on (2,000 grains/MMscf) 1 where the Emission Factor is based on (1wt%) S2 is the sulfur content in natural gas (wt%) EF3 is an Emission Factor that is not related to sulfur content is a factor to convert from kilograms to pounds; use: K 2.20462 if the Emission Factor is in units of kilograms 1 if the Emission Factor is in units of pounds u is the Usage (in units of MMscf, gal, or hours) H is evaluated specifically for the given scenario: If usage is given as volume of fuel used and the Emission Factor is per MMBtu, then:

= HHV (MMBtu/volume)

If usage is given as volume of fuel used and the Emission Factor is per volume of fuel, then:

н

If usage is given in hours (HR) and the Emission Factor is per hp-hr, then:

= horsepower (hp) H

If usage is given in hours (HR) and the Emission Factor is per volume of fuel, then:

= (HR)*(typical fuel feed rate) H

If usage is given in hours (HR) and the Emission Factor is per MMBtu, then:

= (HR)*(typical fuel feed rate)*HHV

Source Information:	108		1-28	-	W - 56 Y	* 45	e Transparence
Source ID:		Portland Terminal a	a, OR	2			
Type of unit:		Boiler	•				
MMBtu/hr		<100 MMBtu/hr	•	for boilers	s/heaters/furnace	es	
Type of Fuel:		natural gas	-	000			
Typical fuel fe	eed rate:	0.004166		MMsc	f per hour		
Sulfur Content (default	values):						
Sulfur conten	t S1:	15		ppm, for	diesel / #2 fuel	oil	These are defaults values that
Sulfur content Convert ppm to weight		6.96864		ppm, for r	atural gas		are used in the absence of user entry of sulfur content.
Sulfur conten	ref traction	1.50E-03		wt%, for	diesel / #2 fuel	oil	
Sulfur conten		6.97E-04		wt%, for n	atural gas		

Service	Information:				page 2		
	Source ID:	Portland Terminal a, Ol	R				
	Time Period (mm/yyyy):	Aug-2019					
	Usage input value:	2.21					
	Usage units:	MMscf					
	Sulfur content S1:		ppm, for fuel oil	not applicable for gas-fired units			
	Sulfur content S2:		ppm, for natural gas				
Sulfur Co							
	Sulfur content S1:	0.0015	wt%, for fuel oil	not applicable for gas-fired units			
	Sulfur content S2:	0.0007	wt%, for natural gas				
Conversi	on of Usage Values (applicati	on of the variable H):					
	Usage input value:	2.21	MMscf				
	Fuel feed rate:	0.004166	MMscf per hour				
	Fuel usage:	2.21	MMscf				
	HHV:	1028	MMBtu/MMscf				
	Energy usage (U*H):	2,272	MMBtu				
Calculate	ed Emissions (pounds):						
	s (lbs) = (EF1*S1 + EF2*C2*S2	+ EF3) * K * (U*H)					
	Emission						

<u></u>		Emission			
code for EF lookup:	1111	Factor			Emissions
EF1 EF2 C2	EF3	<u>Units</u>	<u>K</u>		This Period (lb)
\sim	53.02	kg/MMBtu	2.20462	CO2	265,557.67
>>>>	1.00E-04	kg/MMBtu	2.20462	N2O	0.50
>>>>	1.00E-03	kg/MMBtu	2.20462	CH4	5.01
8	100.000	lb/MMscf	1	NOx	221.00
9	84	lb/MMscf	1	co	185.64
11	5.50E+00	lb/MMscf	1	voc	12.16
12 0.00E+00	1.90E+00	lb/MMscf	1	PM	4.20
14 0.00E+00 6.00E-01 1435	0.00E+00	lb/MMscf	1	SOx	1.33
19	2.10E-03	lb/MMscf	1	Benzene	0.00
20	No Data	lb/MMscf	1	Ethylbenzene	No Data
21	3.40E-03	lb/MMscf	1	Toluene	0.01
22	No Data	lb/MMscf	1	Xylenes	No Data
23	1.80E+00	lb/MMscf	1	n-Hexane	3.98
24	6.10E-04	lb/MMscf	1	Naphthalene	0.00
25	7.50E-02	lb/MMscf	1	Formaldehyde	0.17

DK

KELLY W. HAYES
Senior Environmental Consultant
Midstream Operations

PHILLIPS 66 520 East D Street Tacoma, WA 98421

Tacoma, WA 98421 Office: (253) 207-5569 Kelly.W.Hayes@p66.com DEPT OF ENVIRONMENTAL QUALITY
RECEIVED

JAN 29 2020

NORTHWEST REGION

January 22, 2020

Mr. Dave Kauth Oregon DEQ NW Region 700 NE Multnomah St., Suite 600 Portland, OR 97232 UPS 1Z E53 32W 02 9388 8362

RE:

40 CFR 63, Subpart BBBBBB GD-GACT Semi-Annual Report Portland Products Terminal Permit 26-2026 Phillips 66

Dear Mr. Kauth:

Phillips 66 (P66) owns and operates the Portland Products Terminal, a bulk storage and loading terminal, for finished gasoline and distillate products. The terminal is subject to the Gasoline Distribution Generally Available Control Technology (40 CFR 63, Subpart BBBBBB GD-GACT) because it is a minor source under Title III of the 1990 Clean Air Act Amendments.

The attached report summary and certification meets the semi-annual reporting requirements of §63.11095(a) and (b) as well as §63.10(e)(3).

If you have any questions about this report or require any additional information, please call at (253) 207-5569.

Sincerely,

Kelly W Hayes

Cc:

Regional Administrator United States Environmental Protection Agency, Region 10 1200 Sixth Ave, Suite 900, AWT-107 Seattle, WA 98101

UPS 1Z E53 32W 02 9444 8157

Phillips 66 Portland Products Terminal GD-GACT Semi-Annual Report Bulk Gasoline Terminal

DEPT OF ENVIRONMENTAL QUALITY
RECEIVED

JAN 29 2020

NORTHWEST REGION

Reporting Period: July 01 through December 31, 2019

Regulatory Section	Report Type	Status
40 CFR 63.11095(a)(1)	Semi-Annual Compliance	The following gasoline storage tank seal inspections were conducted during this reporting period.
	H	Through Hatch Visual Inspections – 8/8 10yr up-close Visual – T-3408 9/18
40 CFR 63.11095(a)(2) 40 CFR 63.11095(b)(1&2)	Semi-Annual Compliance and Excess Emission	All gasoline cargo tanks vapor tightness documentation was received by the facility prior to granting the authorization to load. The facility computer system will not allow loading of a cargo tank unless vapor tightness documentation is on file for the specific trailer.
40 CFR 63.11095(a)(3) 40 CFR 63.11095(b)(5)	Semi-Annual Compliance	The first attempt at repair occurred within 5 days and all leaks were repaired within fifteen days of detection.
40 CFR 63.11095(b)(3)	Semi-Annual Excess Emission	All VRU monitored operating parameters were within normal ranges, with no excess emissions during this period based on 80 mg/L limit for GD GACT.
40 CFR 63.10(e)(3)(i-viii) 40 CFR 63.11095(b)	Excess Emission	There were no excess emissions during this period.
40 CFR 63.10(e)(3)(vi)(K)	Changes to CMS process or controls	None

I, Gabe Munoz, certify that to the best of my knowledge, that the statements and information submitted in this report are true, accurate and complete and they demonstrate compliance with the relevant standards of the Gasoline Distribution GACT (40 CFR 63, Subpart BBBBBB).

Signature: OWY DYMES	Date: _	01/24/2020	_
Name and Title: Gabe Munoz, Manager Western Region			

Phillips 66 Company Portland Products Terminal 40 CFR 63 A and BBBBBB

Summary Report Gaseous and Opacity Excess Emissions and Continuous Monitoring System Performance

Reporting Period:	July 01 to December 31, 2019
Facility Name:	Phillips 66 Portland Terminal
Address:	5528 NW Doane Ave
	Portland, OR 97201
Description of Proce	
	Gasoline truck loading rack with a 2-bed carbon adsorption Vapor Recovery Unit (VRU)
Hazardous Air Polls	
	Gasoline Vapors containing one or more of the following HAPs: Benzene, Cumene, Ethylbenzene, Hexane, Naphthalene, Toluene, Total Xylenes, 2,2,4-trimethylpentane
Emission Limitation	
40	CFR 63 BBBBBB: 80 mg VOC / Liter of gasoline loaded Facility Permit: 26-2026
Operational Limits:	
Fa	cility Permit Limit: 80 mg VOC / Liter of gasoline loaded
Monitoring Equipm	
	Type: CEMS
	Manufacturer: Infrared Industries
	Model Number: IR8400 D
Latest CMS Certific	eations and/or Audits:
	Certification Date: 6/20/2018
	Description: Performance Evaluation
	Audit Date: NA
	Description: Cylinder Gas Audit
	VRU System total operating time during reporting period: 4,416.00 hours
_	o the CMS, processes or controls were made since the last reporting period:None

Emission Data Summary

(§63.10(e)(3)(vi)((I))

Basis for Excess Emission	Total Hours	Percentage of Total
Total operating time during reporting period:	4,416	
Total duration of excess emissions:	0.00	0.00
Total duration of excess emissions due to:		
Startup / Shutdown:	0.00	0.00
Control equipment problems:	0.00	0.00
Process Problems:	0.00	0.00
Other known causes:	0.00	0.00
Other unknown causes:	0.00	0.00
TOTAL:	0.00	0.00

CMS Performance Summary (§63.10(e)(3)(vi)((J))

Basis for CMS Downtime	Total Hours	Percentage of Total
Total operating time during reporting periods:	4,416	
Total CMS downtime:	2.31	0.05
Summary CMS downtime causes:		
Monitoring equipment malfunctions:	0.00	0.00
Non-monitoring equipment malfunctions:	1.70	73.49
Quality assurance/control calibrations:	0.61	26.51
Other known causes:	0.00	0.00
Other unknown causes:	0.00	0.00
TOTAL:	2.31	100.00

Total duration of excess emissions and/or exceedances of control system parameter greater than 1% of the total operating time during reporting period?		
	_	No
Total CMS downtime greater than 5% of the total operating time during re-	eporting period?	No
If NO to both of the above, only the summary report must be submitted fo	or the reporting period.	
If <u>YES to either</u> of the above, a full report must be submitted for the report	ting period. This report must include:	
Summary Report		
Full Excess Emissions Data	Attachment - CEMS/CMS Output R	Reports
CMS Performance Report	Attachment - CEMS/CMS Output R	Reports