

SHRI VIDHYABHARATHI MATRIC HR.SEC.SCHOOL

SAKKARAMPALAYAM, AGARAM (PO) ELACHIPALAYAM TIRUCHENGODE(TK), NAMAKKAL (DT) PIN-637202

Cell: 99655-31727, 94432-31727

COMMON QUARTERLY EXAMINATION 2018 (17.09.2018)

STD: XI

SUBJECT: CHEMISTRY CHEMISTRY ANSWER KEY MARKS: 70

Q.NO	ai Net			SECTIO	N-I Jai Net	10	MARKS
121581	c) CO + H ₂	2	~49°	5310	adasala	andasar	1
2	b) 2 1 4	3.1.	0.0	· Min	Para	NW.Pac	1
3	a) Sum of	molai	r heat	of fusion and vapo	orisation	14.	1///
4	a)4,6			. Net	igh.		. Net1
5_2	b)NH ₃		10	ealai.i	iasalai.i	1058/3	1
6	b)+6	P	300		pada	Pada	1
7	d)-9E W	W.44.		MMA		MM.	1ww,
8	c)+3 KJ						1
9	a)iv < ii <	iii <i< td=""><td></td><td>alai.No</td><td>i'Ve,</td><td>0/2</td><td>1</td></i<>		alai.No	i'Ve,	0/2	1
10	_	sertio			ct, but reason is no	t the correct	1,,,,,,,,
11	a)Sodium						1
12	c) Argon			i Net	: Net		: Ne ^t 1
A13	b) Li and	Mg (o	r) d)F	Be and Al	495	425216	1
14	b)negativ		7 471	100	PSO	NN Paula	1
15	c)kerosen	~~~		Maria		Way In	1/1/4/1
Q.NO	· VOT			SECTIO	N-II		MARKS
16 dasali	hydrogen or 8 parts of oxygen or 35.5 parts of chlorine. Gram equivalent mass = $\frac{\text{Molar mass (g mol}^{-1})}{\text{Equivalence factor (eq mol}^{-1})}$					2M M	
17	Orbital	n	1	Radial node n-l-1	Angular node l	Total Nodes	WW
1000	3d	3	2	alal. 0	221.	2	2M
gas	4f	40	230	0	3	3000	
18	MgCl ₂ + Ca(OH) ₂ → Mg(OH) ₂ + CaCl ₂ Removal of permanent hardness means (Mg & Ca) chlorides and sulphates are converted to insoluble carbonates but we can use Ca(OH) ₂ means formed calcium chlorides only does not form insoluble carbonates					2M	
19	$\begin{array}{l} Z_{eff} = Z\text{-S} \\ Z_{eff} = 2\text{-}0.30 (\text{for 1s e}^{\text{-}} = 0.30) \\ Z_{eff} = 1.70 \end{array}$				1M 1M		
20	Hydrogen molecule in which protons in the nuclei of both H-atoms are known to spin in same direction is termed as ortho hydrogen. Hydrogen molecule in which protons in the nuclei of both H-atoms spin in opposite direction is termed as para hydrogen					1M	
	· KIEL			salai.Nes www.	· VIE		· VIE

	ai.Net Opposiai.Net Net Net Net Net Net Net Net Net Net	ii.Net			
	Baking soda - Sodium bicarbonate (NaHCO ₃) (Any one use)	1M			
	(i) Sodium hydrogen carbonate is used as an ingredient in baking	· Net			
21	(ii) It is a mild antiseptic for skin infections	1M			
		1111			
	(iii) It is also used in fire extinguishers.	11/4/1/			
22	Plaster of paris is obtained when gypsum, CaSO ₄ .2H ₂ O, is heated to 393K	2M			
	$2(CaSO4.2H2O) \rightarrow 2CaSO4. H2O + 3H2O$. Net			
	At room temperature, vapour pressure of liquid ammonia is very high and	77 - 1			
	so will evaporate. If the bottle is opened, the sudden decrease in pressure				
	will lead to increase in volume of the gas and cause breakage of the bottle.	MMA			
23	Cooling decreases the vapour pressure and maintains the liquid in the	2M			
		" Net			
	same state. Hence, the bottle is cooled before opening.	0.4 -			
NO.		. 17			
	(i) The third law of thermodynamics states that the entropy of pure	WW.			
	crystalline substance at absolute zero is zero.	tora			
24	(ii) It can also be stated as it is impossible to lower the temperature of an	2M			
dasa	object to absolute zero in a finite number of steps.				
	(iii) Mathematically $\lim_{T\to 0} S = 0$ for a perfectly ordered crystalline	Varia			
		All a.			
Q.NO	SECTION-III	MARKS			
		WEIGHT			
iosal	The electro-negativity generally increases across a period from left to right.	11:100			
dasal	As discussed earlier, the atomic radius decreases in a period, as the attraction	1 ½ M			
idasal	As discussed earlier, the atomic radius decreases in a period, as the attraction between the valence electron and the nucleus increases. Hence the tendency to	11:100			
_{adasal}	As discussed earlier, the atomic radius decreases in a period, as the attraction between the valence electron and the nucleus increases. Hence the tendency to attract shared pair of electrons increases. Therefore, electro-negativity also	11:100			
25	As discussed earlier, the atomic radius decreases in a period, as the attraction between the valence electron and the nucleus increases. Hence the tendency to attract shared pair of electrons increases. Therefore, electro-negativity also increases in a period	11.1300			
adasal	As discussed earlier, the atomic radius decreases in a period, as the attraction between the valence electron and the nucleus increases. Hence the tendency to attract shared pair of electrons increases. Therefore, electro-negativity also	11:100			
adasal	As discussed earlier, the atomic radius decreases in a period, as the attraction between the valence electron and the nucleus increases. Hence the tendency to attract shared pair of electrons increases. Therefore, electro-negativity also increases in a period	11.1300			
adasal	As discussed earlier, the atomic radius decreases in a period, as the attraction between the valence electron and the nucleus increases. Hence the tendency to attract shared pair of electrons increases. Therefore, electro-negativity also increases in a period The electro-negativity generally decreases down a group. As we move down	1 ½ M			
adasal	As discussed earlier, the atomic radius decreases in a period, as the attraction between the valence electron and the nucleus increases. Hence the tendency to attract shared pair of electrons increases. Therefore, electro-negativity also increases in a period The electro-negativity generally decreases down a group. As we move down a group the atomic radius increases and the nuclear attractive force on the	1 ½ M			
25 adasal	As discussed earlier, the atomic radius decreases in a period, as the attraction between the valence electron and the nucleus increases. Hence the tendency to attract shared pair of electrons increases. Therefore, electro-negativity also increases in a period The electro-negativity generally decreases down a group. As we move down a group the atomic radius increases and the nuclear attractive force on the valence electron decreases. Hence, the electro-negativity decreases. Ions No. of electrons Electronic configuration	1 ½ M			
idasal	As discussed earlier, the atomic radius decreases in a period, as the attraction between the valence electron and the nucleus increases. Hence the tendency to attract shared pair of electrons increases. Therefore, electro-negativity also increases in a period The electro-negativity generally decreases down a group. As we move down a group the atomic radius increases and the nuclear attractive force on the valence electron decreases. Hence, the electro-negativity decreases. Ions	1 ½ M 1 ½ M			
25 adasal	As discussed earlier, the atomic radius decreases in a period, as the attraction between the valence electron and the nucleus increases. Hence the tendency to attract shared pair of electrons increases. Therefore, electro-negativity also increases in a period The electro-negativity generally decreases down a group. As we move down a group the atomic radius increases and the nuclear attractive force on the valence electron decreases. Hence, the electro-negativity decreases. Ions No. of electrons Electronic configuration	1 ½ M 1 ½ M			
25 adasal	As discussed earlier, the atomic radius decreases in a period, as the attraction between the valence electron and the nucleus increases. Hence the tendency to attract shared pair of electrons increases. Therefore, electro-negativity also increases in a period The electro-negativity generally decreases down a group. As we move down a group the atomic radius increases and the nuclear attractive force on the valence electron decreases. Hence, the electro-negativity decreases. Ions	1 ½ M 1 ½ M			
25 adasal	As discussed earlier, the atomic radius decreases in a period, as the attraction between the valence electron and the nucleus increases. Hence the tendency to attract shared pair of electrons increases. Therefore, electro-negativity also increases in a period The electro-negativity generally decreases down a group. As we move down a group the atomic radius increases and the nuclear attractive force on the valence electron decreases. Hence, the electro-negativity decreases. Ions No. of electrons Electronic configuration Mn^{2+} 23 $1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^5$ Cr^{3+} 21 $1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^3$	1 ½ M 1 ½ M			
25 Idasal	As discussed earlier, the atomic radius decreases in a period, as the attraction between the valence electron and the nucleus increases. Hence the tendency to attract shared pair of electrons increases. Therefore, electro-negativity also increases in a period The electro-negativity generally decreases down a group. As we move down a group the atomic radius increases and the nuclear attractive force on the valence electron decreases. Hence, the electro-negativity decreases.	1 ½ M 1 ½ M 1½ M 1½ M			
25 dasal	As discussed earlier, the atomic radius decreases in a period, as the attraction between the valence electron and the nucleus increases. Hence the tendency to attract shared pair of electrons increases. Therefore, electro-negativity also increases in a period The electro-negativity generally decreases down a group. As we move down a group the atomic radius increases and the nuclear attractive force on the valence electron decreases. Hence, the electro-negativity decreases.	1 ½ M 1 ½ M 1½ M 1½ M			
25 Idasal	As discussed earlier, the atomic radius decreases in a period, as the attraction between the valence electron and the nucleus increases. Hence the tendency to attract shared pair of electrons increases. Therefore, electro-negativity also increases in a period. The electro-negativity generally decreases down a group. As we move down a group the atomic radius increases and the nuclear attractive force on the valence electron decreases. Hence, the electro-negativity decreases.	1 ½ M 1 ½ M 1½ M 1½ M			
25 dasal	As discussed earlier, the atomic radius decreases in a period, as the attraction between the valence electron and the nucleus increases. Hence the tendency to attract shared pair of electrons increases. Therefore, electro-negativity also increases in a period The electro-negativity generally decreases down a group. As we move down a group the atomic radius increases and the nuclear attractive force on the valence electron decreases. Hence, the electro-negativity decreases.	1 ½ M 1 ½ M 1½ M 1½ M			
25 Idasal	As discussed earlier, the atomic radius decreases in a period, as the attraction between the valence electron and the nucleus increases. Hence the tendency to attract shared pair of electrons increases. Therefore, electro-negativity also increases in a period The electro-negativity generally decreases down a group. As we move down a group the atomic radius increases and the nuclear attractive force on the valence electron decreases. Hence, the electro-negativity decreases.	1 ½ M 1 ½ M 1½ M 1½ M			
25 dasal	As discussed earlier, the atomic radius decreases in a period, as the attraction between the valence electron and the nucleus increases. Hence the tendency to attract shared pair of electrons increases. Therefore, electro-negativity also increases in a period The electro-negativity generally decreases down a group. As we move down a group the atomic radius increases and the nuclear attractive force on the valence electron decreases. Hence, the electro-negativity decreases.	1 ½ M 1 ½ M 1½ M 1½ M			
25 ndasal	As discussed earlier, the atomic radius decreases in a period, as the attraction between the valence electron and the nucleus increases. Hence the tendency to attract shared pair of electrons increases. Therefore, electro-negativity also increases in a period The electro-negativity generally decreases down a group. As we move down a group the atomic radius increases and the nuclear attractive force on the valence electron decreases. Hence, the electro-negativity decreases.	1 ½ M 1 ½ M 1½ M 1½ M			
25 ndasal	As discussed earlier, the atomic radius decreases in a period, as the attraction between the valence electron and the nucleus increases. Hence the tendency to attract shared pair of electrons increases. Therefore, electro-negativity also increases in a period The electro-negativity generally decreases down a group. As we move down a group the atomic radius increases and the nuclear attractive force on the valence electron decreases. Hence, the electro-negativity decreases.	1 ½ M 1 ½ M 1½ M 1½ M			
25 dasal	As discussed earlier, the atomic radius decreases in a period, as the attraction between the valence electron and the nucleus increases. Hence the tendency to attract shared pair of electrons increases. Therefore, electro-negativity also increases in a period The electro-negativity generally decreases down a group. As we move down a group the atomic radius increases and the nuclear attractive force on the valence electron decreases. Hence, the electro-negativity decreases.	1 ½ M 1 ½ M 1½ M 1½ M 1M			
25 adasal	As discussed earlier, the atomic radius decreases in a period, as the attraction between the valence electron and the nucleus increases. Hence the tendency to attract shared pair of electrons increases. Therefore, electro-negativity also increases in a period The electro-negativity generally decreases down a group. As we move down a group the atomic radius increases and the nuclear attractive force on the valence electron decreases. Hence, the electro-negativity decreases.	1 ½ M 1½ M 1½ M 1½ M 1½ M			
25 adasal	As discussed earlier, the atomic radius decreases in a period, as the attraction between the valence electron and the nucleus increases. Hence the tendency to attract shared pair of electrons increases. Therefore, electro-negativity also increases in a period The electro-negativity generally decreases down a group. As we move down a group the atomic radius increases and the nuclear attractive force on the valence electron decreases. Hence, the electro-negativity decreases.	1 ½ M 1 ½ M 1½ M 1½ M 1M			
25 ndasal	As discussed earlier, the atomic radius decreases in a period, as the attraction between the valence electron and the nucleus increases. Hence the tendency to attract shared pair of electrons increases. Therefore, electro-negativity also increases in a period The electro-negativity generally decreases down a group. As we move down a group the atomic radius increases and the nuclear attractive force on the valence electron decreases. Hence, the electro-negativity decreases.	1 ½ M 1½ M 1½ M 1½ M 1½ M			
25 ndasal adasal 27 ndasal	As discussed earlier, the atomic radius decreases in a period, as the attraction between the valence electron and the nucleus increases. Hence the tendency to attract shared pair of electrons increases. Therefore, electro-negativity also increases in a period The electronegativity generally decreases down a group. As we move down a group the atomic radius increases and the nuclear attractive force on the valence electron decreases. Hence, the electronegativity decreases.	1 ½ M 1½ M 1½ M 1½ M 1½ M			
25 adasal	As discussed earlier, the atomic radius decreases in a period, as the attraction between the valence electron and the nucleus increases. Hence the tendency to attract shared pair of electrons increases. Therefore, electro-negativity also increases in a period The electronegativity generally decreases down a group. As we move down a group the atomic radius increases and the nuclear attractive force on the valence electron decreases. Hence, the electro-negativity decreases.	1 ½ M 1½ M 1½ M 1½ M 1½ M			
25 adasal 26 al 27 adasal	As discussed earlier, the atomic radius decreases in a period, as the attraction between the valence electron and the nucleus increases. Hence the tendency to attract shared pair of electrons increases. Therefore, electro-negativity also increases in a period The electronegativity generally decreases down a group. As we move down a group the atomic radius increases and the nuclear attractive force on the valence electron decreases. Hence, the electronegativity decreases.	1 ½ M 1½ M 1½ M 1½ M 1½ M			

adasal'	example, intermolec	cular hydrogen bonds	en two separate molecules. For can occur between ammonia lecules themselves or between	I.Net IM
29	The elements belong called s-block elements	_ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	n the modern periodic table are ng to these two groups are	1M 2M
ada.sal	Charles law For a fixed mass of a to its temperature (K and n) or V = kT	at constant pressure, the	volume is directly proportional e represented as (at constant P	1 ½ M
30	$\frac{r}{T} = Cons \tan t$			i Nei
	inversely proportional Mathematially, the I	are the volume occupied be all to its pressure. Boyle's law can be written	7,1	1½ M
	$V\alpha \frac{1}{P}$ (1)	add.	aso padasan	
		the same whether it takes	2M	
31	steps provided the fr	nitial and final states are s $ \Delta H_r $ $ \Delta H_3$	ame.	i.Net
adasal 31 adasal	$\begin{array}{c} A \\ \\ \Delta H_1 \\ X \\ \end{array}$	bac	ame. Isalai.Net WWW.Padasala WWW.Padasala	1MIM
31 3dasali adasali	$A = A = A = A$ ΔH_1 X $\Delta H_r = A$	ΔH_r ΔH_3 ΔH_2 $\Delta H_1 + \Delta H_2 + \Delta H_3$	isalai.Net www.Padasala	MINN MAN
_{adasah}	$\begin{array}{c} A \\ \Delta H_1 \\ X \\ \Delta H_r = 1 \end{array}$ Compound	ΔH_r ΔH_3 ΔH_2 $\Delta H_1 + \Delta H_2 + \Delta H_3$ Molecular formula	Empirical formula	i Vet
31 adasal	$A = A = A = A$ ΔH_1 X $\Delta H_r = A$	ΔH_r ΔH_3 ΔH_2 $\Delta H_1 + \Delta H_2 + \Delta H_3$	isalai.Net www.Padasala	MINN MAN
_{idasal}	$\begin{array}{c} A \\ & \searrow \Delta H_1 \\ & X \\ & \Delta H_r = 1 \\ \hline \\ Compound \\ Fructose \\ \end{array}$	$\begin{array}{c c} \Delta H_r & B \\ \hline \Delta H_3 & \\ \hline \Delta H_2 & Y \\ \hline \Delta H_1 + \Delta H_2 + \Delta H_3 \\ \hline & Molecular formula \\ \hline C_6 H_{12} O_6 & \\ \hline \end{array}$	Empirical formula CH ₂ O	1M
_{adasah}	$\begin{array}{c} A \\ \Delta H_1 \\ X \\ \Delta H_r = \\ \hline \\ Compound \\ Fructose \\ Caffeine \\ \end{array}$	$\begin{array}{c c} \Delta H_r & B \\ \hline \Delta H_3 & Y \\ \hline \Delta H_1 + \Delta H_2 + \Delta H_3 \\ \hline & Molecular formula \\ \hline & C_6 H_{12} O_6 \\ \hline & C_8 H_{10} N_4 O_2 \\ \hline \end{array}$	Empirical formula CH ₂ O	1M 1 ½ M 1 ½ M
adasah 32	$\begin{array}{c} A \\ \Delta H_1 \\ X \\ \Delta H_r = \\ \hline \\ Compound \\ Fructose \\ Caffeine \\ \hline \\ Atomic Number \\ \end{array}$	ΔH_r ΔH_3 ΔH_2 Y $\Delta H_1 + \Delta H_2 + \Delta H_3$ Molecular formula $C_6H_{12}O_6$ $C_8H_{10}N_4O_2$ IUPAC Name	Empirical formula CH ₂ O	1M 1 ½ M 1 ½ M
_{adasah}	$\begin{array}{c} A \\ \Delta H_1 \\ X \\ \Delta H_r = \\ \hline \\ Compound \\ Fructose \\ Caffeine \\ \end{array}$	$\begin{array}{c c} \Delta H_r & B \\ \hline \Delta H_3 & Y \\ \hline \Delta H_1 + \Delta H_2 + \Delta H_3 \\ \hline & Molecular formula \\ \hline & C_6 H_{12} O_6 \\ \hline & C_8 H_{10} N_4 O_2 \\ \hline \hline & IUPAC Name \\ \hline & Unnilbium \\ \hline \end{array}$	Empirical formula CH ₂ O	1M 1 ½ M 1 ½ M 1 ½ M
adasah 32	$\begin{array}{c} A \\ \Delta H_1 \\ X \\ \Delta H_r = \\ \hline \\ Compound \\ Fructose \\ Caffeine \\ \hline \\ Atomic Number \\ \hline \\ 102 \\ \end{array}$	ΔH_r ΔH_3 ΔH_2 Y $\Delta H_1 + \Delta H_2 + \Delta H_3$ Molecular formula $C_6H_{12}O_6$ $C_8H_{10}N_4O_2$ IUPAC Name	Empirical formula CH ₂ O	1M 1 ½ M 1 ½ M
adasah 32 33 adasah	$\begin{array}{c} A \\ \Delta H_1 \\ X \\ \Delta H_r = \\ \hline \\ Compound \\ Fructose \\ Caffeine \\ \hline \\ Atomic Number \\ 102 \\ 108 \\ \hline \end{array}$	$\begin{array}{c c} \Delta H_r & B \\ \hline \Delta H_3 \\ \hline \Delta H_2 & Y \\ \hline \Delta H_1 + \Delta H_2 + \Delta H_3 \\ \hline & Molecular formula \\ \hline C_6 H_{12} O_6 \\ \hline C_8 H_{10} N_4 O_2 \\ \hline \hline & IUPAC Name \\ \hline Unnilbium \\ \hline Unniloctium \\ \hline Unununium \\ \hline \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1M 1 ½ M 1 ½ M 1 ½ M
adasah 32	$\begin{array}{c} A \\ \Delta H_1 \\ X \\ \Delta H_r = \\ \hline \\ Compound \\ Fructose \\ Caffeine \\ \hline \\ Atomic Number \\ 102 \\ 108 \\ \hline \\ 111 \\ \hline \end{array}$	$\begin{array}{c c} \Delta H_r & B \\ \hline \Delta H_3 \\ \hline \Delta H_2 & Y \\ \hline \Delta H_1 + \Delta H_2 + \Delta H_3 \\ \hline & Molecular formula \\ \hline C_6 H_{12} O_6 \\ \hline C_8 H_{10} N_4 O_2 \\ \hline \hline & IUPAC Name \\ \hline Unnilbium \\ Unniloctium \\ \hline Unununium \\ \hline \\ \hline & SECTION-IV \\ \hline \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1M 1 ½ M 1 ½ M 1 ½ M
32 33 30 Q.NO	$\begin{array}{c} A \\ \Delta H_1 \\ X \\ \Delta H_r = 1 \\ \hline \\ Compound \\ Fructose \\ Caffeine \\ \hline \\ Atomic Number \\ 102 \\ 108 \\ 111 \\ \hline \\ i) \text{when a react the reactants, the procompletely consumed } \\ \\ \end{array}$	ΔH_{r} ΔH_{3} ΔH_{2} $\Delta H_{1} + \Delta H_{2} + \Delta H_{3}$ Molecular formula $C_{6}H_{12}O_{6}$ $C_{8}H_{10}N_{4}O_{2}$ IUPAC Name Unnilbium Unniloctium Unununium SECTION-IV tion is carried out using not duct yield will be determined. It limits the further reactions	$\begin{array}{ c c c c c }\hline Empirical formula \\ CH_2O \\\hline C_4H_5N_2O \\\hline \end{array}$	1M 1 ½ M 1 ½ M 1 ½ M
adasal 32 33 adasal	A AH ₁ X AH ₁ X AH _r = Compound Fructose Caffeine Atomic Number 102 108 111 i) when a react the reactants, the procompletely consumed called as the limiting ii) The process The reaction involving	ΔH_{r} ΔH_{3} ΔH_{2} $\Delta H_{1} + \Delta H_{2} + \Delta H_{3}$ Molecular formula $C_{6}H_{12}O_{6}$ $C_{8}H_{10}N_{4}O_{2}$ IUPAC Name Unnilbium Unniloctium Unununium SECTION-IV tion is carried out using not duct yield will be determined. It limits the further reactions		1M 1 ½ M 1 ½ M 1 ½ M MARKS

	41/11/44 A1/11/44	41000
	suct (OP)	101
-2/	(OR)	i.Ne.
padasa	Planck's quantum hypothesis: E = hv (1)	1M
.\	(ii) Einsteins mass-energy relationship	MMN',
	$\mathbf{E} = \mathbf{mc}^2 (2)$	1M
	From (1) and (2)	! Net
padasai	$hv = mc^2$ here $v = c/\lambda$	
Paci	$hc/\lambda = mc^2$	NWW.F
	$\lambda = h / mc(3)$	1M
	The equation 3 represents the wavelength of photons whose momentum is	; Net
- dasal	given by mc (Photons have zero rest mass)	7/1.
Pacie	For a particle of matter with mass m and moving with a velocity v, the	1Many P
	equation 3 can be written as	1 M
	$\lambda = h / mv$. Net
12521	This is valid only when the particle travels at speeds much less than the speed of Light. For a microscopic particle such as an electron and it becomes	1 M
Pagas	significant.	- N.P
	i) An orbital is the region of space around the nucleus within which the	14/1/1/4
	probability of finding an electron of given energy is maximum.	2M
1000	ii) Ni ²⁺ [Ar] 3d ⁸	(1.1)
Padase	$Fe^{3+}[Ar] 3d^5$	1M
* *	Half filled and completely filled orbitals are more stable compared to	1 M
	partially filled orbitals.	1 M
35	therefore Fe ³⁺ is more stable compared to Ni ²⁺	i.Ne.
padasa	$(\mathbf{OR})_{adas}$. 0
. 1	i) The modern periodic law states that, "the physical and chemical	2M (N)
	properties of the element are periodic functions of their atomic numbers".	
	ii) The total number of electrons are less in the cation than the neutral atom	· VIEL
padasa	while the nuclear charge remains the same. Therefore the effective nuclear	0
	charge of the cation is higher than the corresponding neutral atom. Thus the	3M (N)
	successive ionization energies, always increase in the following order	
_\.	$IE_1 < IE_2 < IE_3 < \dots$	i Nei
padasai	i) Beryllium - $1s^2$, $2s^2$	
.Par	Nitrogen $(1s^2, 2s^2, 2p^3)$	1M
	The addition of extra electron will disturb their stable electronic	17.5
	configuration(Half filled & completely filled) and they have almost zero	1M
andasal	electron affinity.ii) Beryllium hydroxide is amphoteric in nature as it reacts with both acid	
Pac	and alkali.	Y.WW.P
	$Be(OH)_2 + 2 NaOH \rightarrow Na_2BeO_2 + 2H_2O$	3M
	$Be(OH)_2 + 2HCI \rightarrow BeCl_2 + 2H_2O$, Net
dasal	(OR) ASSIGNATION A	
36	Covalent (Molecular) hydrides: They are compounds in which hydrogen is	1M
	attached to another element by sharing of electrons.	Man.
	The most common examples of covalent hydrides of non-metals are methane,	1M
12521	ammonia, water and hydrogen chloride.	11.1
Pagas	Covalent hydrides are further divided into three categories, viz.,	ONE AND
	• electron precise (CH ₄ , C ₂ H ₆ , SiH ₄ , GeH ₄),	2M
	• electron-deficient (B ₂ H ₆) and	Net
cal	• electron-rich hydrides (NH ₃ , H ₂ O).	11.140
Padasa	Since most of the covalent hydrides consist of discrete, small molecules that	1M
* *	have relatively weak intermolecular forces, they are generally gases or volatile liquids.	MNN,
	voiaine nquius.	

		- 14 -
Padasal	 i) Deuterium can replace reversibly hydrogen in compounds either partially or completely depending upon the reaction conditions. CH₄ + 2D₂ →CD₄ + 2H₂ 2NH₃ + 3D₂ → 2ND₃ + 3H₂ ii) 1.Heavy water is widely used as moderator in nuclear reactors as it can lower the energies of fast neutrons 	1M 1M
37 37	 2. It is commonly used as a tracer to study organic reaction mechanisms and mechanism of metabolic reactions 3. It is also used as a coolant in nuclear reactors as it absorbs the heat generated. 	1M 1M
Padasal	i) $H=U+PV$ $\Delta H=\Delta U+P\Delta V$ $\Delta H=\Delta U+\Delta n(g)$ RT	2M
padasal	ii) Lattice energy is defined as the amount of energy required to completely remove the constituent ions from its crystal lattice to an infinite distance. It is also referred as lattice enthalpy. NaCl(s) \rightarrow Na ⁺ (g) + Cl ⁻ (g) Δ H _{lattice} = + 788 kJ mol ⁻¹	3M
Padasal	 Beryllium chloride forms a dimeric structure like aluminium chloride with chloride bridges. Beryllium chloride also forms polymeric chain structure in addition to dimer. Both are soluble in organic solvents and are strong Lewis acids. Beryllium hydroxide dissolves in excess of alkali and gives beryllate ion 	i Net
Padasal	 2 Beryllium hydroxide dissolves in excess of alkali and gives beryllate ion and [Be(OH)₄]²⁻ and hydrogen as aluminium hydroxide which gives aluminate ion, [Al(OH)₄]⁻. 3 Beryllium and aluminum ions have strong tendency to form complexes, BeF₄²⁻, AlF₆³⁻. 	5M
38	 4 Both beryllium and aluminium hydroxides are amphoteric in nature. 5 Carbides of beryllium (Be₂C) like aluminum carbide (Al₄C₃) give methane on hydrolysis. 6 Both beryllium and aluminium are rendered passive by nitric acid. 	i.Net
Padasal	 i)The deviation of real gases from ideal behaviour is measured in terms of a ratio of PV to nRT. This is termed as compressibility factor. Mathematically, Z= PV/nRT For ideal gases PV = nRT, hence the compressibility factor, Z = 1 at all temperatures and pressures. 	2M
Padasal	ii)This phenomenon of lowering of temperature when a gas is made to expand adiabatically from a region of high pressure into a region of low pressure is known as Joule- Thomson effect.	3M

R. PRAKASH M.Sc., B.Ed.,

DEPARTMENT OF CHEMISTRY

SHRI VIDHYABHARATHI MATRIC HR.SEC.SCHOOL SAKKARAMPALAYAM, AGARAM (PO) ELACHIPALAYAM TIRUCHENGODE(TK), NAMAKKAL (DT) PIN-637202 Cell: 8883130833, 9486263513
