M.M.A

PART - I

SI. No.	Answer	Sl. No.	Answer
1.	(a) $\mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$	16.	(c) sommerfeld
2.	(c) 4 m	17.	(a) (a) $6 \times 10^{18} \mathrm{~Hz}$
3.	(a) zero volt and zero V / m	18.	(b) (b) continuous spectrum
4.	(c) $\frac{\sigma}{\varepsilon_{0}}$	19.	(a) $1: 25$
5.	(c) $\mathrm{n}^{2}: 1$	20.	(d) charge
6.	(d) 0^{0}	21.	(a) $h\left(v-v_{0}\right)$
7.	(a) 1:1	22.	(d) ${ }_{8} \mathrm{O}^{16},{ }_{6} \mathrm{C}^{\mathbf{1 4}}$
8.	(b) capacitor	23.	(d) neutron number decreases by one
9.	(a) 0	24.	(b) 34
10.	(a) zero	25.	(b) 200 MeV
11.	(d) brushes	26.	(a) collition
12.	(c) diffraction pattern becomes narrower and crowded together	27.	(a) an amplifier with feedback
13.	(c) partially polarized	28.	(a) $\mathrm{A}+\mathrm{B}+\bar{C}^{+} \overline{\mathrm{D}}$
14.	(b) an odd multiple of π	29.	(a) the amplitude of carrier wave varies in accordance with the amplitude of the modulating signal
15.	(c) $6000 \AA$ and 5980 £́	30.	(a) to avoid flicker in the picture

$\underline{\underline{\text { Part - II }}}$

31.	Applications of capacitors: (i) used in the ignition system of automobile engines to eliminate sparking. (ii) used to reduce voltage fluctuations in power supplies and to increase the efficiency of power transmission. (iii) used to generate electromagnetic oscillations and in tuning the radio circuits.	------1 mark \qquad mark \qquad 1 mark
32.	$\begin{aligned} \mathbf{V} & =\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1}}{r} \\ & =9 \times 10^{9} \times \frac{4 \times 10^{-7}}{0.09} \\ \mathrm{~V} & =4 \times 10^{4} \mathrm{~V} \end{aligned}$	$\begin{aligned} & ----1 \text { mark } \\ & ----1 \text { mark } \\ & ----1 \text { mark } \end{aligned}$
33.	State Kirchoff's voltage law Kirchoff's voltage law states that, the algebraic sum of the products of resistance and current in each part of any closed circuit is equal to the algebraic sum of the emf's in that closed circuit	3 mark
34.	Distinguish between electric power and electric energy. Electric power is defined as the rate of doing electric work. Its unit is watt. Electric energy is defined as the capacity to do work. Its unit is joule.	-----1 mark ----- $1 / 2$ mark -----1 mark -----1/2 mark
35.	$\begin{aligned} & \mathbf{R}=\frac{V}{I} \\ &=\frac{240}{0.5} \\ & \mathbf{R}=\mathbf{4 8 0} \boldsymbol{\Omega} \end{aligned}$	------1 mark -----1 mark -----1 mark
36.	State Joule's law. $\mathrm{H}=\mathrm{I}^{2} \mathrm{Rt}$ (i) directly proportional to the square of the current for a given R (ii) directly proportional to resistance R for a given I (iii) directly proportional to the time of passage of current	----1 mark -----1 mark --1 mark
37.	Define rms value of alternating current. The rms value of alternating current is defined as that value of the steady current, which when passed through a resistor for a given time, will generate the same amount of heat as generated by an alternating current when passed through the same resistor for the same time.	3 mark
38.	$\begin{aligned} & \mathrm{M}=\frac{-e}{d I / d t}=\frac{-e}{\left(I_{2}-I_{1}\right) / d t} \\ & =\frac{-50 \times 10^{-3}}{(8-4) / 0.5} \\ & =6.25 \mathrm{~m} \mathrm{H} \end{aligned}$	-----1 mark -----1 mark -----1 mark
39.	Define Rayleigh scattering law. The amount of scattering is inversely proportional to the fourth power of the wave length.	3 mark
40.	Define optic axis of a crystal. Inside the crystal there is a particular direction in which both the ordinary and extra ordinary rays travel with same velocity. This direction is called optic axis of the crystal.	3 mark

41.	$\begin{aligned} & v=\frac{E}{B} \\ & =\frac{3.4 \times 10^{4}}{2 \times 10^{-3}} \\ & \mathrm{~V}=\mathbf{1 . 7} \times \mathbf{1 0}^{\mathbf{7}} \mathrm{m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & \hline----1 \text { mark } \\ & ----1 \text { mark } \\ & -----1 \text { mark } \end{aligned}$
42.	Give the principle of Millikan's oil drop experiment. It is based on the study of the motion of uncharged oil drop under free fall due to gravity and charged oil drop in a uniform electric field.By adjusting uniform electric field suitably, a charged oil drop can be made to move up or down or even kept balanced in the field of view for sufficiently long time and a series of observations can be made.	3 mark
43.	Define stopping potential. The minimum negative potential given to the anode for which the photo electric current becomes zero is called the stopping potential	3 mark
44.	What are the uses of nuclear reactors? 1. are mostly aimed at power production. 2. are useful to produce radio isotopes. 3. act as a source of neutrons, hence used in the scientific research.	$\begin{aligned} & -----1 \text { mark } \\ & -----1 \text { mark } \\ & ----1 \text { mark } \end{aligned}$
45.	Write short note on Leptons? Leptons are lighter particles having mass equal to or less than about 207 times the mass of an electron except neutrino and antineutrino. This group contains particles such as electron, positron, neutrino, antineutrino, positive and negative muons.	$\begin{aligned} & ----1 \text { ½ Marks } \\ & ----1 ½ \text { Marks } \end{aligned}$
46.	$\begin{aligned} \mathrm{A}_{\mathrm{f}} & =\frac{A}{1+A \beta} \\ & =\frac{100}{1+(100 \times 0.05)} \\ \mathrm{A}_{\mathrm{f}} & =16.66 \end{aligned}$	\qquad 1 mark \qquad -1 mark
47.	Write any three uses of CRO. (i) It is used to measure a.c and d.c voltage. (ii) It is used to study the waveforms of a.c voltages. (iii) It is used to find the frequency of a.c voltage.	-----1 mark -----1 mark -----1 mark
48.		3 mark
49.	What are universal gates? Why are they called so? NAND and NOR gates are called universal gates because they can perform all the three basic logic functions. Basic logic gates NOT, OR, and AND using NAND and NOR gates.	3 mark
50.	What is meant by skip distance? In the sky wave propagation, for a fixed frequency, the shortest distance between the point of transmission and the point of reception along the surface is known as the skip distance.	3 mark

Part - III

51.	Work done is stored as electrostatic potential energy $\begin{aligned} & \mathrm{dw}=\mathrm{V} \mathrm{dq} \\ & \mathrm{dw}=\frac{q}{C} \mathrm{dq} \\ & \mathrm{w}=\int_{0}^{q} \frac{q}{C} \mathrm{dq} \\ & \mathrm{U}=\frac{1}{2} \frac{q^{2}}{C} \text { (or) } \frac{1}{2} C V^{2} \end{aligned}$	-----1 mark -----1 mark ----1 mark ----1 mark -----1 mark
52.	Diagram $\mathrm{V}=\mathrm{IR}$ $\mathrm{V}=\mathrm{E}-\mathrm{Ir} \text { (or) } \mathrm{Ir}=\mathrm{E}-\mathrm{V}$ $\frac{I r}{I R}=\frac{E-V}{V}$ $\mathbf{r}=\left(\frac{E-V}{V}\right) R$	-----1 mark -----1 mark -----1 mark -----1 mark -----1 mark
53.	$\begin{aligned} & \mathrm{R}_{\mathrm{s}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}=5+3+2=10 \Omega \\ & \mathrm{I}=\frac{V}{R}=\frac{10}{10}=1 \mathrm{~A} \\ & \mathrm{~V}_{1}=\mathrm{IR}_{1}=1 \times 5=5 \mathrm{~V} \\ & \mathrm{~V}_{2}=\mathrm{IR}_{2}=1 \times 3=3 \mathrm{~V} \\ & \mathrm{~V}_{3}=\mathrm{IR}_{3}=1 \times 2=2 \mathrm{~V} \end{aligned}$	------1 mark ---1 mark -----1 mark -----1 mark ---1 mark
54.	Diagram By connecting low resistance in parallel with it large portion of the current passes through the low resistance $\begin{aligned} & \mathrm{S}=\frac{G \cdot I_{g}}{I-I_{g}} \\ & \mathrm{R}_{\mathrm{a}}=\frac{G S}{G+S} \end{aligned}$ Ammeter does not appreciably change the resistance and current in the circuit ideal ammeter has zero resistance	------1 mark -----1 mark -----1 mark -----1 mark -----1 mark
55.	Faraday's laws of electromagnetic induction. First law : Whenever the amount of magnetic flux linked with a closed circuit changes an emf is induced in the circuit. The induced emf lasts so long as the change in magnetic flux continues. Second law : The magnitude of emf induced in a closed circuit is directly proportional to the rate of change of magnetic flux linked with the circuit. Lenz's law in electromagnetic induction. Lenz's law states that the induced current produced in a circuit always flows in such a direction that it opposes the change or cause that produces it.	----1 1 1/2 Marks ----1 1⁄2 Marks ----3 Marks

61. Graph
-----1 mark
-----1 mark
-----1 mark
-----1 mark frequencies. $B W=f_{U}-f_{L}$

62. Advantages of digital communication

i) The transmission quality is high and almost independent of the distance between the terminals.
ii) The capacity of the transmission system can be increased.
iii) The newer types of transmission media such as Light beams in optical fibers and wave guides operating in the microwave frequency extensively use digital communication.
Disadvantages of digital communication
(i)A digital system requires larger bandwidth.
(ii) It is very difficult to gradually change over from analog to digital transmission.

Part - IV

63. Electric field due to an electric dipole at a point on its equatorial line :

Diagram
$\mathrm{E}_{1}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{\left(r^{2}+d^{2}\right)}$ along BP
$\mathrm{E}_{2}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{\left(r^{2}+d^{2}\right)}$ along PA
The vertical components $\mathrm{E}_{1} \operatorname{Sin} \theta$ and $\mathrm{E}_{2} \operatorname{Sin} \theta$ are equal and opposite, therefore they cancel each other
$E=2 E_{1} \cos \theta$
$\left(\because \mathrm{E}_{1}=\mathrm{E}_{2}\right)$
Up to $\mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{P}{\left(r^{2}+d^{2}\right)^{3 / 2}}$
$\therefore \mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{p}{r^{3}}$
-----1 mark
-----1 mark
-----1 mark
-----1 mark
-----1 mark
-----1 mark
-----2 mark
-----1 mark
-----1 mark

The direction of E is along PR, parallel to the axis of the dipole and directed opposite to the direction of dipole moment

64.	Diagram Explanation $\begin{aligned} & \vec{F}=\mathrm{q}(\vec{v} \times \vec{B}) \\ & \mathrm{F}=\mathrm{B} \mathrm{q} \mathrm{v} \\ & \mathrm{Bqv}=\frac{m v^{2}}{r} \end{aligned}$ $\mathrm{r}=\frac{m v}{B q}$ $\omega=\frac{B q}{m}$ $\mathrm{T}=\frac{2 \pi}{\omega}$ $\mathrm{T}=\frac{2 \pi m}{B q}$ ω and T not depends v and r	-----1 mark --------1 mark -----1 mark -----1 mark -----1 mark -----1 mark ----1 mark -----1 mark -----1 mark
65.	Explanation Principle - Electro magnetic induction $\frac{E_{s}}{E_{P}}=\frac{N_{s}}{N_{p}}$ For an ideal transformer, input power = output power $\mathrm{E}_{\mathrm{p}} \mathrm{I}_{\mathrm{p}}=\mathrm{E}_{\mathrm{s}} \mathrm{I}_{\mathrm{s}}$, $\text { up to } \frac{E_{s}}{E_{P}}=\frac{N_{s}}{N_{p}}=\frac{I_{P}}{I_{S}}=k$ For step up transformer $k>1$ and For step down transformer $\mathrm{k}<1$ Efficiency of transformer.	-----1 mark-----1 mark----1 mark------1 mark-----1 mark----1 mark ---2 mark
66.	Diagram Explanation $\frac{\sin i}{\sin r}=\frac{(B C / A C)}{(A D / A C)}=\frac{B C}{A D}=\frac{C_{m} t}{C_{a} t}=\frac{C_{m}}{C_{a}}$ (i) $\mathrm{AD}<\mathrm{AC}-$ Explanation (ii) $\mathrm{AD}=\mathrm{AC}-$ Explanation Critical angle definition (iii) $\mathrm{AD}>\mathrm{AC}$ - Explanation Total internal reflection definition	------3 mark --------1 mark -----1 mark -----1 mark -----1 mark -----1 mark

67. Diagram
-----1 mark
Principle
-----1 mark
Experimental arrangement
Determination $\mathrm{v}, \quad \mathrm{v}=\frac{E}{B}$
$\mathrm{y}_{1}=\frac{1}{2}\left(\frac{E e}{m}\right)\left(\frac{l}{v}\right)^{2}$
$\mathrm{Y}=\mathrm{K} \frac{1}{2}\left(\frac{e}{m}\right) \frac{l^{2} B^{2}}{E}$
Up to $\frac{e}{m}=\frac{2 y E}{K l^{2} B^{2}}$
$\frac{e}{m}=1.7592 \times 10^{11} \mathrm{C} \mathrm{kg}^{-1}$
-----1 mark
-----1 mark
-----1 mark
-----1 mark
-----1 mark
-----2 mark
-----1 mark
-----2 mark
-----2 mark
-----1 mark
-----1 mark
-----1 mark
-----2 mark
-----1 mark
-----1 mark
-----1 mark
-----5 mark
-----2 mark
-----3 mark

