PG TRB, UG TRB, POLYTECHNIC, ENG-TRB, AEEO TRB \& TNSET COACHING CENTRE FOR PHYSICS
 unit test:Quantum Mechanics

Time:1.30Hour
Marks: 80

Answer all the question:

PART-A (2 MARKS)

1. An electron is confined in a one-dimensional potential box of width 0.1 nm . The minimum momentum of electron inside the box is?
a) $0.5 \times 10^{-24} \mathrm{kgms}^{-1}$
b) $13.6 \times 10^{-24} \mathrm{kgms}^{-1}$
c) $6 \times 10^{-25} \mathrm{kgms}^{-1}$
d) $10.27 \times 10^{-25} \mathrm{kgms}^{-1}$
2. A particle is described by the wave function

$$
\begin{array}{cc}
\Psi(x)=N x e^{-\lambda x} & x>0 \\
=0 & x<0
\end{array}
$$

The normalized constant N is
a) $2 \lambda^{\frac{1}{2}}$
b) $2 \lambda^{2}$
c) $2 \lambda^{\frac{3}{2}}$
d) $\lambda^{\frac{1}{2}}$
3. Consider an electron in a one-dimensional potential box of width $1 \mu m$ within rigid boundary conditions. The ground state energy of electron is \qquad
a) $2 \times 10^{-2} \mathrm{eV}$
b) $3.7 \times 10^{-7} \mathrm{eV}$
c) $2 \times 10^{-16} \mathrm{eV}$
d) $2.2 \times 10^{-5} \mathrm{eV}$
4. Which of following is/are the eigen states of the linear momentum operator $\widehat{P_{x}}$.
i) $A e^{i k x}$
ii) $A(\sin k x+\cos k x)$
iii) $A \operatorname{coskx}$
iv) $A e^{-i k x}$

K.S ACADEMY, SALEM-QUESTION PAPER

a) i - only
b) i and ii
c) ii and iii
d) i and iv
5. The condition for operator \hat{A} and \hat{B} are Hermitian operator is
a) \hat{A} and \hat{B} both are identity operator
b) \hat{A} and \hat{B} both are unitary operator
c) \hat{A} and \hat{B} not commute
d) \hat{A} and \hat{B} commute
6. The commutator of $\left[L_{x}, r^{2}\right]$ is
a) $2 i \hbar x$
b) 0
c) $-i \hbar L_{x}$
d) $i \hbar L_{x}$
7. The value of L^{2} is measured as $12 \hbar^{2}$. if L_{Z} measured, then what possible values can result?
a) $\frac{3}{2} \hbar, \frac{1}{2} \hbar, \quad \hbar,-\frac{1}{2} \hbar,-\frac{3}{2} \hbar$
b) $6 \hbar, 3 \hbar, \hbar, 0,-\hbar,-3 \hbar,-6 \hbar$
c) $3 \hbar, 2 \hbar, ~ \hbar, 0,-\hbar,-2 \hbar,-3 \hbar$
d) $\frac{11}{2} \hbar, \frac{9}{2} \hbar, \frac{7}{2} \hbar, \frac{5}{2} \hbar, \frac{3}{2} \hbar, \frac{1}{2} \hbar$
8. For angular momentum quantum number $J=\frac{3}{2}$, allowed values of m are $\frac{3}{2}, \frac{1}{2},-\frac{1}{2},-\frac{3}{2}$.

So, there are four basis states are possible, then the matrix elements of $J_{z}{ }^{2}$ is
a) $\hbar\left[\begin{array}{cccc}\frac{3}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{-1}{2} & 0 \\ 0 & 0 & 0 & \frac{-3}{2}\end{array}\right]$
b) $\hbar^{2}\left[\begin{array}{cccc}\frac{9}{4} & 0 & 0 & 0 \\ 0 & \frac{1}{4} & 0 & 0 \\ 0 & 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 & \frac{9}{4}\end{array}\right]$
c) $\hbar^{2}\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -3\end{array}\right]$
d) $\hbar\left[\begin{array}{cccc}\frac{3}{4} & 0 & 0 & 0 \\ 0 & \frac{1}{4} & 0 & 0 \\ 0 & 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 & \frac{3}{4}\end{array}\right]$

K.S ACADEMY, SALEM-QUESTION PAPER

9. Read the following statements and choose incorrect one.
a) The degenerate perturbation theory provides the study of the $n=2$ states of a hydrogen atom inside an electric field.
b) In a hydrogen atom all four $\mathrm{n}=2$ states have the same energy.
c) The lifting of degeneracy when the atom is placed in an electric filed is called the Stark effect
d) Pattern of Stark spliting of hydrogen atom in $n=2$ state shows that fourfold degeneracy is completely lifted by the perturbation
10. The wavelength of a thermal neutron of speed v that corresponds to room temperature $T=300 \mathrm{~K}$ is.
a) $0.55 \AA$
b) $1.45 \AA$
c) $2.55 \AA$
d) $2 \AA$
11. Which of the following is/are not a properties of a valid wavefunction (ψ) ?
1) ψ must single valued
2) ψ must differentiable
a) i and iv
c) i, ii, iii, \& iv

2) ψ must continuous

4) ψ must square integrable
b) i, ii and iv
d) none of the above
12. Justify which of the following wave function defined for interval $0 \leq x<\infty$. could be a valid wavefunction or not.
$(\mathrm{P}) \Psi(x)=x \quad(\mathrm{Q}) \Psi(x)=e^{-x^{2}}$
a) P - valid wave function, Q - valid wave function
b) P - valid wave function, Q - not a valid wave function
c) P - not a valid wave function, Q - valid wave function
d) P - not a valid wave function, Q - not a valid wave function

K.S ACADEMY, SALEM-QUESTION PAPER

13. The wave function for a particle confined to a region $0 \leq x \leq a$ in the ground state was found to be $\psi(x)=\sqrt{\frac{2}{a}} \sin \frac{\pi x}{a}$ The probability that the particle is found in the interval $\frac{a}{2} \leq x \leq \frac{3 a}{4}$ is
a) $\frac{\pi+2}{4 \pi}$
b) $\frac{\pi+4}{2 \pi}$
c) $\frac{\pi+2}{3 \pi}$
d) $\frac{\pi+4}{6 \pi}$
14. The sampling property of the Dirac Delta function is represented as
a) $\int_{-\infty}^{\infty} \delta(x-a) f(x) d x=f(0)$
b) $f(x) \delta(x-a)=f(a) \delta(x-a)$
c) $\int_{-\infty}^{\infty} \delta(x) f(x) d x=f(0)$
d) $\delta(a x)=\frac{1}{|a|} \delta(x)$
15. If $|\psi>,| \varphi>$ be two vectors belonging to a complex vector space then $<\psi \mid \varphi>=0$ say that
a) the vectors satisfies Cauchy-Schwartz Inequality
b) the vectors are normal
c) they are Orthonormal Vectors
d) the vectors are orthogonal
16. The commutator $[H, a]=$
a) $-\hbar \omega a$
b) $\hbar \omega a \dagger$
c) -1
d) 1
17. The commutator $\left[J_{Z},{ }_{+}\right]^{-}=$?
a) $2 i \hbar J_{x}$
b) $2 i \hbar J_{+}$
c) $-2 i \hbar J_{+}$
d) $\hbar J_{+}$
18. The state of a hydrogen atoms is $\varphi=\frac{1}{\sqrt{2}} \Psi_{1 s}+A \Psi_{2 p}+\frac{1}{\sqrt{8}} \Psi_{3 s}$, then the value of A for which that the state is normalized is
a) $\sqrt{\frac{3}{8}}$
b) $\sqrt{\frac{1}{3}}$
c) $\sqrt{\frac{3}{2}}$
d) $\frac{\sqrt{3}}{4}$

K.S ACADEMY, SALEM-QUESTION PAPER

19. The angular momentum operator acts on a state $\psi(r, \theta, \varphi)$ as
a) $L^{2} \psi=\hbar^{2} l(l+1) \psi$
b) $L \psi=h l(l+1) \psi$
c) $L \psi=\hbar^{2} l(l+1) \psi$
d) $L \psi=\hbar^{2} l(l-1) \psi$

Choose the correct option about following statements
A) The energy levels of the one-dimensional harmonic oscillator are not equally spaced
B) The energy levels of the one-dimensional harmonic oscillator are not degenerate
a) both are correct
b) both are incorrect
c) A is correct, B is incorrect
d) A is incorrect, B is correct
20. The scattering of a black disk at high energies the ratio of Classical total cross section to the quantum total cross section is
a) $1 / 2$
b) 2
c) $3 / 2$
d) $4 / 3$

ANSWER KEY WWHH EXPLANATION ON THE LAST PAGE

2018 III- BATCH STARTS ON(DEMO CLAS) - 16.09.2018 SUNDAY

Welcome to K.S Academy, Salem

- Our vision is to provide positive learning experience so student becomes competent.
- Our mission is to maximize student career opportunities.

OUR SPECIALTIES

- Time Saving Short Tricks For problem questions \& Reasoning
- High quality lecturer
- Slip test, unit test, two unit combined test, one third test, half test, and full test
- Quality of questions has the TRB Level and also higher level than TRB level
- 2 Trial Classes Before Admission

OUR SPECIALTIES

- Best question paper for complete preparation. (no repeated questions)
- Experienced and expert faculty ($1^{\text {st }}$ rank holder in 3 different TRB exams)
- Mock tests and accuracy test for every unit
- KS Academy is committed to the development of our students
- 7 years of TRB coaching experience and many success stories (more than 50 students)

K.S Academy, Salem - way to success COACHING CENTRE FOR PHYSICS
 (PG-TRB, UG-TRB, POLY-TRB, ENG-TRB, AEEO-TRB \& TNSET)

Contact: 9047767620,9042976707 \& 8148891005

2018 Batch Schedule

- The class begins promptly at 9:45 a.m. and ends at 4:30 p.m.
- Students are expected to attend a minimum of six months.
- The results will be available immediately after the test.

Month/Week	Topics Covered	Total Hours
 3	Maxwell Boltzmann statistics - Bose-Einstein statistics - Phonon gas - Black body radiation - Thermionic emission	14
September / Week-4	Fermy-Dirac statistics - phase transition - phase space - ensembles- equipartition of energy.	7
October / Week-1	Statistical Mechanics- test \& Gauss law - Poisson's equation - Laplace equation - boundry value problem - dielectric media -	7
October / Week-2 \& 3	Vector - B and H in a magnetic material - Maxwell's equations- Poynting theorem - Relativistic Mechanics	14
October / Week-4	Electromagnetic theory \& Relativistic Mechanics test \& Vector Fields- Stokes	7

$\left.\begin{array}{|c|c|c|}\hline & \text { theorem and Gauss theorem- } & \\ \hline \text { November / Week 1 } & \begin{array}{c}\text { Matrix theory- orthogonal. Hermitian and } \\ \text { symmetric matrices. Special functions- Gamma } \\ \text { and Beta functions }\end{array} & 7 \\ \hline \text { November / Week 2 } & \begin{array}{c}\text { Unit -I test \& Semi empirical mass formula- } \\ \text { Alpha decay - B decay -Liquid drop model - } \\ \text { Shell model - Collective models. }\end{array} & 7 \\ \hline \text { November / Week 3 } & \begin{array}{c}\text { Nuclear Instrumentation - Nuclear reactors - } \\ \text { Neutron cross section - Fission product }\end{array} & 7 \\ \hline \text { November / Week 4 } & \begin{array}{c}\text { Nuclear physics test \& Digital electronics- } \\ \text { number system - Flip-flops- counters - registers }\end{array} & 7 \\ \hline \text { December / Week 1 \& } & \begin{array}{c}\text { Operational amplifier- Sample and hold circuits } \\ \text { - Oscillator- multivibrators - Clipping and } \\ \text { clamping circuits }\end{array} & 14 \\ \hline \text { December / Week 4 } & \begin{array}{c}\text { Theory of small oscillations- Rigid bodies }\end{array} & 77 \\ \hline \text { January / Week 1 } & \begin{array}{c}\text { Classical mechanics test \& Probability and } \\ \text { Theory of errors- Principle of least squares - } \\ \text { Curve fitting }\end{array} & 7 \\ \hline \text { January / Week 2 } & \begin{array}{c}\text { Electronics part-1 test \& Lagrangian } \\ \text { equation of motion - Hamiltonian equation- } \\ \text { principle of least action }\end{array} & 7 \\ \hline \text { Fanuary / Week 3 } & \begin{array}{c}\text { Unit 2 test \& Rotation spectra - Vibration } \\ \text { spectra- Raman Spectra }\end{array} & 7 \\ \hline \text { February / Week 2 } & \begin{array}{c}\text { Microwave generation - Klystron - Magnetron } \\ \text { - Travelling wave tubes- Antenna }\end{array} & 7 \\ \hline \text { February / Week 1 } & \begin{array}{c}\text { Electronics part-2 test \& density of states in } \\ \text { Spery }\end{array} & 7 \\ \hline \text { one, two and three dimensions - Electrical and } \\ \text { Thermal conductivities -Bloch theorem - } \\ \text { Krong-Penny mudel -Brillouin zones }\end{array}\right]$

February / Week 4	Thermal Properties of solids- Magnetic properties of materials- superconductivity	7
March / Week 1 \& 2	Solid state physics test \& Schrodinger's wave equation - Free particle - Particle in a potential well - Wave packet - Uncertainty principle - Linear Harmonic oscillator - angular momentum	14
March / Week 3	Peturbation theory - scattering cross section - Born approximation - Partial wave analysis- Relativistic wave equations - Klein - Gordon equations - Dirac equation	7
March / Week 4	Quantum mechanics test \& and two half test	12
April, May	Full test-1,2,3,4,5,6,7,8,9,10	48

K.S Academy, Salem

> way to success

COACHING CENTRE FOR PHYSICS

(PG, POLY, ENG, AEEO TRB \& TNSET)

Contact: 9047767620,9042976707 \& 8148891005

NEW BATCH-3 DEMO CLASS ON 16.09.2018 SUNDAY

PG TR , POLYTECHNIC, ENG- TRB, GEO TR \& INSET COACHING CENTRE FOR PHYSICS

ANSWER KEY -QUANTUM MECHANICS
TWO MARIS
Key word: minimum momentum
Q1. Key word: minimum

$$
\begin{aligned}
\Delta p_{x} & =\frac{1.05 \times 10^{-34}}{2 \times 0 x} \\
& =\frac{1.05 \times 10^{-34}}{2 \times 1 \times 10^{-10}} \\
& =0.5 \times 10^{-24} \mathrm{kgms}
\end{aligned}
$$

Q3. Keg word: width $=1 \mu \mathrm{~m}$

$$
E_{n}=\frac{n^{2} \hbar^{2} \pi^{2}}{2 m L^{2}} \text { (ks sir } \begin{aligned}
& \text { short cut) } \\
& \text { she }
\end{aligned}
$$

use
short cut we gat
ANs: $3.7 \times 10^{-7} \mathrm{eV}$.
opt: (b)
Q. 4

Elgen state of linear momentum operator-

$$
P_{x}=-i \hbar \frac{d}{d x}
$$

(i) $A e^{i k x}$

$$
=-i \hbar \frac{d}{d x}\left(A e^{i k x}\right)
$$

$$
=\hbar k \underbrace{e^{i k x}}_{i+\pi}
$$

so it is an eigen state.
opt: (c)
K.S ACADEMY, SALEM PG TRB, POLYTECHNIC TRB \& TNSET COACHING CENTRE FOR

PHYSICS CELL:9042976707,9047767620
Page

PG TRB , POLYTECHNIC, ENG- TRB, AERO TRB \& TNSET COACHING CENTRE FOR PHYSICS

ANSWER KEY -QUANTUM MECHANICS
(iv) $A e^{-i k x}$
operate by momentum operator.

$$
\begin{aligned}
& -i \hbar \frac{d}{d x}\left(A e^{-i k x}\right) \\
& =-\frac{\hbar k}{a e^{-i k x}}
\end{aligned}
$$

Ans: opt (d)
Q 5. Ans: $1 d$
ab use shot cut (Ks sir)
Ans: b
Q7 Eigen values of L^{2} is

$$
\begin{aligned}
L^{2} & =l(l+1) \hbar^{2} \\
12 \hbar^{2} & =l(l+1) \hbar^{2} \\
l & =3
\end{aligned}
$$

$L_{2} \rightarrow$ can takes values from $-l$ to $l \hbar$
so Ans: C Q. 8.
use angular momentum matrix formula.

Ans: b
Q. 9 Ans :d.
Q. 10 Ans: b

Quin Keg word: not a properties of ψ.

Ans: d
Q. 12

4-must be single valued so.
(P) $\varphi(x)=x$

If $x \rightarrow \infty \quad 4 \rightarrow \infty$
Hence not a valid wave function.
(Q) $\psi(x)=e^{-x^{2}}$
K.S ACADEMY, SALEM PG TRB, POLYTECHNIC TRB \& TNSET COACHING CENTRE FOR PHYSICS CELL:9042976707,9047767620

Page 2

PG TR , POLYTECHNIC, ENG- TRB, GEO TR \& INSET COACHING CENTRE FOR PHYSICS

ANSWER KEY -QUANTUM MECHANICS
if t

$$
\begin{aligned}
& x=\infty \\
& e^{-x^{2}}=e^{-\infty}=1
\end{aligned}
$$

If $x=-\infty$

$$
e^{-x^{2}}=e^{-\infty}=1
$$

so valid ware function.
ANS! C
Q. 13 KS Academy he get ans! $\frac{1}{4}+\frac{1}{2 \pi}$

$$
\text { (or) } \frac{\pi+2}{4 \pi}
$$

ANS: a
Q. 14 ANS:C
Q. 15 Ansi
Q. 16

Q. 17 ANS: d
Q. 18 If Q is normalised then

$$
\begin{aligned}
& \int \varphi^{*} \varphi d x=1 \\
& \frac{1}{2}+A^{2}+\frac{1}{8}=1 \\
& A^{2}=\frac{3}{8} \quad A=\sqrt{3} / 8
\end{aligned}
$$

Ans: a
Q. 19 Ans: a
Q.19(a) Ans:d

$$
\text { Q.20. } \frac{\sigma_{\text {Classical }}}{\sigma_{\text {Quantum }}}=\frac{\pi q^{2}}{2 \pi \alpha^{2}}
$$

Ans: a

$$
=\frac{1}{2}
$$

K. S ACADEMY, SALEM PG RB, POLYTECHNIC TRB \& TNSET COACHING CENTRE FOR PHYSICS CELL:9042976707,9047767620

Page 3

RSEACADEMMY BADEN
PG TR , POLYTECHNIC, ENG TR, CEO TRB \& TNSET COACHING CENTRE FOR PHYSICS

ANSWER KEY -QUANTUM MECHANICS

Q ONE MARK	
0.21	b
0.22	d
0.23	b
0.24	c

0.25 a
26. a
27. a
$28 . d$
29 C
30 a use short cut)
$31 . b$
$32 b$-vise short cut
$3 \geqslant c$
34 C
35 c
48-b
$36 \cdot d$
$37 . b$
$38 \cdot a$
$39 \cdot c$
$40 \cdot b$
$41 \cdot a$
$42 \cdot a$
$43: a$
$44 . b$
$45 \cdot c$
$46 . c$
47. Keyword
incident
current denim

Ans: b
49. use

KS Academy
Short cut get the 59. a
Ans: $\frac{\hbar^{2}-\pi^{2}}{16 \mathrm{~mL}^{2}}$ 80.d.

