

DEJAN RISTIĆ¹ A TOOL FOR RISK ASSESSMENT

¹Faculty of Occupational Safety University of Niš, Serbia

¹dejan.ristic@znrfak.ni.ac.rs

Abstract: A lot of companies need to carry out a risk assessment, but most of them do not have the experience to determine the risk in a qualitative way. Therefore, these organizations use the tools for qualitative or qualitative - quantitative risk assessment. A useful tool for risk assessment is risk matrices (risk assessment scoring matrices/ risk ranking matrices).

The aim of this paper is to present various risk matrices. Typical risk assessment matrices with different levels recommended by the American standards and other standards have also been presented in this paper.

Key words: reliability, severity, risk, matrix, probavility.

INTRODUCTION

Risk can be the subject of discussion if there are at least two outcomes of an event (occurrence) or in case if there is at least one outcome that is not desirable. The fact that there are more outcomes of an event causes indeterminedness while the fact that the outcome of an observed event may be different from the desired, creates the possibility of loss [12].

The term anticipated value at risk is used to link the probability and the loss. Value at risk is a widely used risk measure of the risk of loss (consequences of the risk occurrence). In practice, the term risk is often used to denote the value at risk [12].

Risk is a concept that denotes a potential negative impact on some of the characteristics of values that can arise from a future event, or in other words, risks are events or conditions that may occur, and their occurrence can have dangerous or negative effects. Risk is incurred by the exposure to the consequences of uncertainty.

Qualitatively, risk is proportional to the expected losses that can be induced by a certain accident and to the likelihood of an occurrence. Greater loss and greater likelihood result in an increased overall risk.

In engineering, the definition of risk is:

RISK = (Probability of Accident) x (Losses per Accident).

Risk management can be defined as a general management function with the aim to identify risks, assess risks and prepare the organization (company) how to best handle the effects (consequences) of the risks. [1]

The purpose of risk management is to enable organizations to realize their goals in the most direct, effective and efficient way. Risk management applies to all risks. The aim of risk management is to reduce the existing risks to the levels acceptable by the society.

Risk assessment is the first general step in risk management. Risk assessment is determination of quantitative or qualitative value of risk related to a concrete situation and a recognized threat. Quantitative risk assessment requires calculations of two components of risk R, magnitude of the potential loss L, and the probability p that the loss will occur.

RISK MATRICES

Risk ranking is based on a matrix whose axes are the ranks of consequences and probability. The combination of ranks of consequence and likelihood creates risk rank. Although many risk matrices have already been developed and implemented, the development of new risk assessment matrices is a special challenge.

Characteristics of Risk Matrices

Although risk matrices are easy to use, they can create liability issues and give a false sense of security.

An effective risk ranking matrix should have the following features [11]:

- Be simple to use and understand
- Not require extensive knowledge of the use of quantitative risk analysis
- Have clear orientation to applicability
- Have consistent likelihood ranges that cover the full spectrum of potential scenarios
- Have detailed descriptions of the consequences that relate to each consequences range
- Have clearly defined tolerable and intolerable risk level
- Show how a scenarios that are at an intolerable risk level can be mitigated to a tolerance level on the matrix
- Provide a clear guidance on what action is necessary in order to mitigate the scenarios with intolerable risk levels.

Typical risk assessment matrices

There are two ways to evaluate the matrices of consequences and likelihood: qualitative and quantitative. Therefore, there are two types of matrices: qualitative and quantitative- qualitative. The first type is used for qualitative assessment of likelihood and consequences, while the second type is used for quantitative assessment of likelihood and qualitative assessment of consequences.

Both matrices classify the consequences by using the following terms: death, major permanent disability, minor permanent disability, temporary disability.

In qualitative matrix, likelihood is represented through the following categories: frequent, likely (probable), accidental, unlikely, improbable.

Likelihood in quantitative-qualitative matrix is expressed quantitatively, as follows: 100-999/10000, 10-99/10000, 0.10-0.99/10000, 0.010-0.099/10000.

Typical risk assessment matrices are the following: the matrix derived from the U.S. Military Standard MIL-STD-882c which has 6 categories of likelihood and 4 categories of consequences; a 5x4 matrix derived from the U.S. Military Standard MIL-STD-882B; a 3x3 matrix with 3 levels of risk according to OHSAS standard, recommended by the European Agency for Occupational Safety and Health; a matrix according to Australian standard AS/NZS 4360: 2004.; a 5x5 matrix with 4 levels of risk: law, medium, increased, extreme; a 4x4 risk assessment matrix by NCPS (U.S. Department of Veterans Affairs National Center for Patient Safety); a 5x3 matrix designed according to the Regulation on Chemical Risk and Environment Pollution Assessment, Preparation. Measures and Remediation Measures (Official Gazette of RS No. 60/94.63/94).

Qualitative matrix is presented in Table 1, whereas qualitative-quantitative matrix is presented in Table 2.

Table 1.	Qualitative	matrix for	risk	assessment	[3]	
rabic r.	Quantanve	mains joi	lish	ussessment	ניו	

	Consequences					
Likelihood	Death	Major permanent disability	Minor permanent disability	Temporary disability		
Frequent	1	3	7	13		
Likely	2	5	9	16		
Accidental	4	6	11	18		
Unlikely	8	10	14	19		
Improbable	12	15	17	20		

 Table 2. Quantitative- qualitative matrix for risk assessment [3]

	Consequences				
Likelihood	Death	Major permanent disability	Minor permanent disability	Temporary disability	
100-999/10000	1	3	7	13	
10-99/10000	2	5	9	16	
1.0-9.9/10000	4	6	11	18	
0.10-0.99/10000	8	10	14	19	
0.010-0.099/10000	12	15	17	20	

Risk ranking: 1-5: unacceptable risk - must be reduced, 6-9: undesirable risk - all feasible measures must be applied, 10-17: acceptable risk, 18.20: acceptable risk

The simplest matrix is $2x^2$ matrix presented in the figure 1.

ity		Consequences				
obability		Major	Minor			
rob	High	1	2			
Ρ	Low	2	3			

Figure 1. Risk assessment matrix [6]

Probability: high - expected to occur in the following 12 months; low - is not expected to occur in the following 12 months

Risk:

1 - high risk; 2 - medium risk; 3 - low risk.

Typical risk assessment matrix recommended by The U.S. Department of Defense Standard Practice for System Safety (MIL–STD–882) is shown in figure 2.

	_		Proba	ability		
Severity	F Impossible	E Improbable	D Remote	C Occasional	B Probable	A Frequent
I Catastrophic						
II Critical						
III Marginal						
IV Negligible						

Figure 2. Risk assessment matrix according to MIL-STD-882C[5]

	High risk	Increased risk	
	Medium risk	Severe risk	
	Small risk	Medium risk	
-	rtment of Defense uses 5x4 risk matrix	Low risk	

(MIL-STD-882B) shown in Figure 3.

	SEVERITY					
PROBABILITY	I Catastrophic	II Critical	III Marginal	IV Negligible		
A) Frequent	1	3	7	13		
B) Probable	2	5	9	16		
C) Occasional	4	6	11	18		
D) Remote	8	10	14	19		
E) Improbable	12	15	17	20		

Figure 3. Risk assessment matrix according to MIL STD 882B [2]

Severity	Category	Definition		
Catastrophic	Ι	Death or system loss		
Critical	П	Severe injury, occupational illness, major system damage		
Marginal	III	Minor injury, minor occupational illness, minor system damage		
Negligible	IV	Less then minor injury, occupational illness, or systemm loss		
Probability	Level	Definition		
Frequent	А	Likely to occur frequently		
Probable	В	Will occur several times in the life of an item		
Occasional	С	Likely to occur sometime in the life of an item		
2	5	Unlikely, but possible to occur		
Remote	D	Unlikely, but possible to occur		

Figure 4 shows the risk matrix according to the Australian standard AS/NZS 4360: 2004. A 5x5 risk matrix with 4 risk levels: extreme risk, high risk, medium risk and low risk, whereas

	Death or multiple injuries that pose threat to life	Publicity	Critical system failure, bad policy advisory	> 25 % of budget	Catastrophic	5	Е	Е	ш	Н	Н
- U	Life-threatening injuries or multiple injuries that require hospitalization	Intense public or political significance	Strategies are not in accordance with the national plan	> 10 % of budget	Major	4	E	Н	Н	Н	Н
Potential consequence	Severe injuries that require hospitalization or multiple medical treatment	Observing that require external executors or investigation	The requirements for one or more responsibilities are not met	> 5 % of budget	Moderate	3	Н	Н	М	М	М
P P	Minor injuries that require first-aid only	Observation by internal controls to prevent escalation	Failure to procedures in the process	2.5 % of budget	Minor	2	Н	М	М	М	L
	Injuries and diseases that do not require medical treatment	Internal control	Minor errors within the systems or processes that require corrective action	1 % of budget	Insignificant	1	М	М	L	L	L
	People	Reputation	Business process and systems	Finance			Almost certain	Likely	Possible	Unlikely	Rare
	tion	an					5	4	3	2	1
Î	 E – Extreme risk – detalled action plan required H – High risk – needs senior management attention M– Medium risk – specify management responsibility L – Low risk – manage by routine procedures 	Extreme and high risk demand more detailed plan to reduce risk to medium or law risk.				Historical	Is expected to occur in most circumstances	Will probably occur	Might occur at some time in the future	Colg occur but doybtful	May occur but only in exceptional circumstances
	 E – Extreme risk – detalled action plan 1 H – High risk – needs senior management M – Medium risk – specify management responsibility L – Low risk – manage by routine proce 	Extreme and high risk demand more to reduce risk to medium or law risk	-			Probability	>1in 10	1 in 10 – 100	1 in 100 – 1000 –	1 in 1000 – 10000 –	1 in 10000 - 100000
	ч. Ч.Н.Ч. Ц.	Ex to 1	•		_			1	1:1	-1:1	

Figure 4. Risk assessment matrix according to Australian and New Zealand risk management standard AS/NZS 4360: 2004[23]

Recommendations for OHSAS standard by the European Occupational Health and Safety Agency

recommned a 3x3 matrix with 3 risk levels (low, medium and high), as shown in Figure 5.

	Consequences					
Likelihood	Slightly harmful	Harmful	Extremely harmful			
Highly unlikely	Low	Low	Medium			
Unlikely	Low	Medium	High			
Likely	Medium	High	High			

Figure 5. Risk matrix [4]

Likelihood:

Highly unlikely - will not occur during the whole professional career of an employee

Unlikely - may occur more than once during the whole professional career of an employee

Likely - could occur several times during the whole professional career of an employee

Consequences:

Slightly harmful - accidents and illnesses that do not cause long-term effects (minor injuries, eye irritation, headaches, etc.).

Harmful - accidents and illnesses caused by secondary, but no long-term consequences (fractures, seconddegree burns on a limited body surface, allergies, etc.). Extremely harmful - accidents and illnesses that cause serious and permanent consequences and/or death (amputations, complex fractures leading to disability, cancer, second and third-degree burns, burns over a large body area, etc.).

High risk is	Low and medium risks
unnacceptable	are acceptable

4x4 Risk assessment matrix by NCPS (US Department of Veterans Affairs National Centre for Patient Safety) is shown on figure 6.

		Severity						
		Catastrophic	Major	Moderate	Minor			
ty	Frequent	3	3	2	1			
ability	Occasional	3	2	1	1			
oba	Uncommon	3	2	1	1			
$\mathbf{Pr}_{\mathbf{r}}$	Remote	3	2	1	1			

Figure 6. Risk assessment matrix [21]

Probability: in order to rank probability, it is important to know how often a concrete event happens.

- Frequent can occur several times in a year,
- Occasional can occur several times in 1 or 2 years,
- Uncommon can occur several times in 2 or 5 years,
- Remote can occur once in 5 or 30 years.

- Catastrophic death or serious bodily injuries,
- Major permanent loss of body functions,
- Moderate minor bodily injuries

Risk:

- 1 Low risk,
- 2 Medium risk,
- 3 High risk.

Figure 7 shows 8x6 risk matrix.

Likelihood		Consequences				
		Very serious	Serious	Moderate	Minor	
Almost certain	> 50 %	S	S	S	М	
Very likely	> 1/10	S	S	S	L	
Rare but likely	> 1/100	S	S	S	L	
Slightly	> 1/1000	S	S	Μ	Α	
Likely	> 1/10000	S	Μ	L	Α	
Almost unlikely	> 1/100000	М	L	Α	Α	
Unlikely if not intentional	> 1/1000000	L	A	A	Α	
Unlikely	< 1/1000000	A	A	A	A	

Figure 7. Risk assessment matrix [17]

125 | Safety Engineering

Severity:

Figure 8 shows 5x3 matrix according to Rules on the methodology for assessing the risk of chemical accidents and environmental pollution, preparatory

measures and measures for the elimination of consequences ("Official Gazette of RS", no. 60/94 and 63/94)

		Consequences					
_		Negligible	Minor	Serious	Major	Catastrophic	
Likelihood of accident	Low	Negligible risk	Minor risk	Serious risk	Major risk	Catastrophic risk	
	Medium	Minor risk	Serious risk	Major risk	Catastrophic risk	Catastrophic risk	
	High	Serious risk	Major risk	Catastrophic risk	Catastrophic risk	Catastrophic risk	

Figure 8. Risk assessment matrix [8]

Risk assessment of consequences can be done on the basis of the indicators in the following table:

		Consequences					
		Negligible	Minor	Serious	Major	Catastrophic	
Indicators that determine the consequences	Number of dead	-	-	1-5	6-20	>20	
	Number of injured - intoxicated	-	1-10	11-50	51-200	>200	
	Dead wild animals	< 0,1t	0,1-1t	1-2t	2-10t	>10t	
	Dead domestic animals	< 0,5t	0,5-10t	10-50t	50-500t	>500t	
	Dead fish	< 0,5t	0,5-5t	5-20t	20-100t	>100t	
	Contaminated area	-	1-10ha	10-100ha	1-5km ²	>5km ²	
	Damage of shares	< 0,02 million dinars	0,002-0,2 million dinars	0,2-2 million dinars	2-10 million dinars	>10 million dinars	

Advantages and disadvantages of risk assessment matrix

Risk assessment matrix has the following advantages:

- 1. It is a useful guide for engineering practice.
- 2. It is a standard tool for establishing the connection between consequences and probabilities in risk assessment of a given exposure to risk.
- 3. It disables the acceptance of unnaceptable risk and enables making operating decisions, improving the distribution of resources to mitigate the loss.

Limitations of the risk assessment matrix are:

- 1. The possibility of applying only identified hazards (not a tool for the identification of hazards).
- 2. Subjectivity.
- 3. The possibility of a comparative risk analysis only.

RISK ASSESSMENT METHODS

The EU Directive stipulates that each country can adapt a risk assessment methodology suitable to its legislation. Some EU member states have specific regulations on the manner and methodology for risk assessment.

Risk assessment matrices are used in various methods for risk assessment. Depending on the data and the matrix used, the methods can be: qualitative, quantitative and qualitative -quantitative.

Some of the typical methods for occupational risk assessment are: the AUVA method-the method of Austrian group of paper and pulp producers (Allgemeine Unfallversicherungsanstalt) and WKO method (Wirtschaftskammern Österreichs)-the Austrian Federal Economic Chamber; BG (Die genjerblichen Berufsgenossenschaften)- method of German professional associations; SME - Safety and Health method for Small and Medium sized Enterprises recommended by the EU. A special method defined by the Regulation on risk assessment is used in Croatia [7].

CONCLUSION

After defining a risk assessment matrix, diagrams of risk and the process and rules of transformation of a risk diagram into a risk matrix, and presentation of the matrix for risk assessment according to various standards (U.S. Military Standard MIL STD 882, Australian Standard AS / NZS 4360: 200, OHSAS standards and others) it can be concluded that it is best to choose matrices with fewer categories of likelihood and consequences, and smaller number of risk ranks. Accordingly, the most common types of matrices are 3x3, 4x4, 5x5, 5x4 and 6x4.

In the case of matrices with fewer categories of likelihood and consequences, it is easier to choose the level of consequences and likelihood that corresponds to the factual situation.

REFERENCES

- [1] Crockford, Neil An Introduction to Risk Management (2nd ed.). Woodhead-Faulkner, 1986
- [2] Department of Defence (US), Military Standard: System Safety Program Requirements MIL-STD-882B. Washingron, DC: US Department of Defense, 1993.
- [3] Donoghue A.M., The design of hayard risk assessment matrices for ranking occupational health risks and their application in mining and minerals processing, 2000.
- [4] European Agency for Safety and Health at Work, Safety and health at work is everyone's concern, Numberg, Germany, 2007.
- [5] Goldberg B.E., System Engineering "Toolbox" for Design-Oriented Engineers, 1994.
- [6] HSE, Reducing Risks, Protecting People, HSE Books, 2001.
- [7] Pravilnik o izradi procjene opasnosti, "Narodne novine Republike Hrvatske", br. 48/97, 114/02, 126/03
- [8] Правилник о методологији за процену опасности од хемијског удеса и од загађивања животне средине, мерама припреме и мерама за отклањање последица ("Сл. гласник РС", бр. 60/94 и 63/94)

- [9] Pravilnik o načinu izdelave izjave o varnosti z oceno tveganja, "Uradni list RS.", št. 56-99
- [10] Reber A., The Penguin Dictionary of Psychology, Penguin Books, First Published 1985.
- [11] Ristic D., Stankovic M., Savic S., Risk assessment matrices, Dependability and quality management, Research center of dependability and quality management, Prijevor, Srbija, 2008.
- [12] Станковић, М., Савић, С., Анђелковић, Б., Системска анализа и теорија ризика, Заштита Прес, Београд. 2002.
- [13] Vaughan, E., Risk Management, John Willey&Sons, New York, 1997.
- [14] Вујаклија М., Лексикон страних речи и израза, Просвета, Београд, 1972.
- [15] www.asstsas.gc.ca
- [16] www.auva.sozvers.at
- [17] www.economie.fgov.be
- [18] www.gvbf.de
- [19] www.intersafe.co.uk
- [20] www.osha.europa.eu
- [21] www.patientsafetz.gov
- [22] www.sme.osha.eu
- [23] www.ssa.vic.gov.au
- [24] www.wko.at

BIOGRAPHY

Dejan Ristić was born in Zemun, Serbia, in 1975. He received the diploma in fire protection and master degree in safety at work from the University of Nis, Faculty of occupational safety in Nis. Currently he is PhD student at Faculty

of occupational safety in Nis.

He is working at Faculty of occupational safety in Nis.

ALAT ZA PROCENU RIZIKA Dejan Ristić

Apstrakt: Mnoge organizacije imaju potrebu za procenom rizika, ali većina ne poseduje iskustvo i resurse da rizik kvantitativno odredi. Zbog toga, ove organizacije koriste alate za kvalitativnu ili kvalitativno-kvantitativnu procenu rizika. Koristan alat za procenu rizika su i matrice rizika (matrice za rangiranje rizika). Cilj rada je da se prikažu različiti tipovi matrica za procenu rizika. Tipične matrice za procenu rizika sa različitim nivoima koje proporučuju američki standardi, kao i drugi standardi, prikazane su u ovom radu.

Ključne reči: pouzdanost, ozbiljnost, rizik, matrice, verovatnoća.