<u>Alkanes and</u> Halogenoalkanes Answers

Qu	Part	Sub Part	Marking Guidance	Mark	Comments
4	а		$\begin{array}{l} O = 74.1\% \\ \\ \underline{25.9} & \underline{74.1} \\ 14 & 16 \\ \\ 1.85 & 4.63 \\ 1 & 2.5 \\ N_2O_5 \end{array}$	1 1 1	If atomic numbers or molecular masses are used lose M2 This ratio alone will not score the final mark. (It would get 2) Allow 3 marks for N_2O_5
4	b		Toxic/ poisonous/ <u>forms</u> an acidic gas / forms NO ₂ which is acidic/ respiratory irritant/ forms HNO ₃ when NO reacts with <u>water and oxygen</u> / triggers asthma attacks/ greenhouse gas/ photochemical smog/ contributes to global warming /formation of acid rain	1	ignore NO is an acidic gas or NO is acidic in water Not references to ozone layer
4	С		$2NO + O_2 \rightarrow 2NO_2$	1	Accept multiples or fractions of equation Ignore wrong state symbols
4	d		Nitrogen / N ₂ and oxygen / O ₂ combine/react spark / high temperature / 2500-4000 °C	1	QWC (not N and O combine) Not nitrogen in fuel Allow N ₂ + $0_2 \rightarrow 2NO$ for M1 only
4	e		$2NO + 2CO \rightarrow N_2 + 2CO_2$ OR $2NO \rightarrow N_2 + O_2$	1	Accept multiples or fractions of equation Ignore wrong state symbols Allow C_8H_{18} + 25NO \rightarrow 8CO ₂ + 12.5 N ₂ + 9H ₂ O

Q	Part	Sub Part	Marking Guidance	Mark	Comments
7	a	i	M1Initiation $Cl_2 \longrightarrow 2Cl^{\bullet}$ M2First propagation $Cl^{\bullet} + CH_3CH_3 \longrightarrow CH_2CH_3 + HCl$ C_2H_6 M3Second propagation $Cl_2 + \cdot CH_2CH_3 \longrightarrow CH_3CH_2Cl + Cl^{\bullet}$ C_2H_5Cl M4Termination (must make C_4H_{10}) $2 \cdot CH_2CH_3 \longrightarrow C_4H_{10}$ or $CH_3CH_2CH_2CH_3$	4	 Penalise absence of dot once only. Penalise + or – charges <u>every time</u> Penalise incorrect position of dot on ethyl radical once only. Penalise C₂H₅• once only Accept CH₃CH₂• with the radical dot above / below / to the side of the CH₂ Mark independently
7	a	ii	 M1 ultra-violet / uv / sun light OR (very) high temperature OR 500 °C ≥ T ≤1000 °C M2 (free-)radical substitution 	2	Ignore "heat" for M1 Both words needed for M2 For M2, ignore the word "mechanism"
7	b	i	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	Accept HOCI or CIOH Accept other ionic or mixed representations Ignore state symbols

Question	Part	Sub Part	Marking Guidance	Mark	Comments
4	(a)	(i)	single (C-C) bonds <u>only</u> / no double (C=C) bonds C and H (atoms) <u>only/purely/solely/entirely</u>	1	Allow all carbon atoms bonded to four other atoms Single C-H bonds only =0 C=H CE Not consists or comprises Not completely filled with hydrogen CH molecules = CE Element containing C and H = CE
4	(a)	(ii)	C _n H _{2n+2}	1	Formula only C _x H _{2x+2}
4	(b)	(i)	$C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O$	1	Accept multiples Ignore state symbols
4	(b)	(ii)	gases produced are greenhouse gases/contribute to Global warming/effect of global warming/climate change	1	Allow CO ₂ or water is greenhouse gas/causes global warming Acid rain/ozone CE = 0
4	(C)		carbon	1	Allow C Allow soot
4	(d)	(i)	$C_{9}H_{20} \rightarrow C_{5}H_{12} + C_{4}H_{8}$ OR $C_{9}H_{20} \rightarrow C_{5}H_{12} + 2C_{2}H_{4}$	1	Accept multiples
4	(d)	(ii)	Plastics, polymers	1	Accept any polyalkene / haloalkanes / alcohols
4	(d)	(iii)	so the <u>bonds</u> break OR because the <u>bonds</u> are strong	1	IMF mentioned = 0
4	(e)	(i)	1,4-dibromo-1-chloropentane / 1-chloro-1,4-dibromopentane	1	Ignore punctuation
4	(e)	(ii)	Chain/position/positional	1	Not structural or branched alone

Q	Part	Sub Part	Marking Guidance	Mark	Comments
7	a	i	Nucleophilic substitution H_3C <t< td=""><td>2</td><td> Penalise M1 if covalent KOH is used Penalise M2 for formal charge on C or incorrect partial charges Penalise once only for a line and two dots to show a bond. Max 1 mark <u>for the mechanism</u> for the wrong reactant and/or "sticks" Ignore product </td></t<>	2	 Penalise M1 if covalent KOH is used Penalise M2 for formal charge on C or incorrect partial charges Penalise once only for a line and two dots to show a bond. Max 1 mark <u>for the mechanism</u> for the wrong reactant and/or "sticks" Ignore product
7	а	ii	2-bromopropane ONLY	1	
7	а	iii	Polar C-BrORpolar carbon-bromine bondORdipole on C-BrOR δ + (δ -) δ + (δ -)C atom of carbon-bromine bond is δ + / electron deficientORC-Br(Credit carbon-halogen bond as an alternative to carbon-bromine bond)	1	It must be clear that the discussion is about the carbon atom of the C–Br bond. NOT just reference to a polar molecule. Ignore X for halogen

7	b		Elimination H H H H H H H H H H	3	Credit "base elimination" but NOT "nucleophilic elimination" No other prefix. <u>Mechanism</u> Penalise M1 if covalent KOH Penalise M3 for formal charge on C or incorrect partial charges Penalise once only for a line and two dots to show a bond. Max 2 marks <u>for the mechanism</u> for wrong reactant and/or "sticks"
7	C		 Any one condition from this list to favour elimination; <u>alcohol(ic) / ethanol(ic)</u> (solvent) <u>high concentration</u> of KOH / alkali / hydroxide OR <u>concentrated</u> KOH / hydroxide high temperature or hot or heat under reflux or T = 78 to 100°C 	1	Apply the list principle Ignore "aqueous" Ignore "excess"
7	d	i	Addition (polymerisation) ONLY	1	Penalise "additional"
7	d	ii	But-2-ene ONLY (hyphens not essential)	1	Ignore references to cis and trans or E/Z Ignore butene

10	С	$M1 2Cl_2 + 2H_2O \longrightarrow 4HCl + O_2$	3	Or multiples
		M2 <u>silver chloride</u> ONLY		<u>M2 requires a name</u>
		M3 The solid / precipitate would dissolve <i>OR</i> is soluble		Mark M3 independently
		OR (It) forms a (colourless) solution		Ignore "disappears"
10	d	Electrophilic addition	1	M2 Penalise partial charges if wrong way around, otherwise ignore
		Minimum Miconanism. M3 structure H $\stackrel{H}{\longrightarrow} \stackrel{H}{\longleftarrow} \stackrel{H}{\longleftarrow} \stackrel{H}{\longrightarrow} \stackrel{H}{\longrightarrow} \stackrel{H}{\longrightarrow} \stackrel{H}{\longrightarrow} \stackrel{H}{\longleftarrow} \stackrel{H}{\to} \stackrel{H}{\to$	4	Max 3 marks <u>for the mechanism</u> for wrong reactant and/or "sticks" (wrong reactant could be HBr or Br ₂ or incorrect alkene)
		CI–CI molecule.		
		M2 must show the breaking of the CI–CI bond.		
		M3 is for the structure of the carbocation with CI substituent.		
		M4 must show an arrow from the lone pair of electrons on a negatively charged chloride ion towards the positively charged carbon atom.		

Question	Marking Guidance	Mark	Comments
6(a)	$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$	1	Accept multiples
			Ignore state symbols even if incorrect
	Not enough oxygen / air	1	
	CMM / methane is a greenhouse gas / contributes to global	1	Do not allow formation of CO_2 / CO_2 is a greenhouse gas
	warming		Apply list principle, eg CH ₄ is a greenhouse gas and toxic = 0 CH ₄ is a greenhouse gas and damages ozone = 0
			Allow CH_4 and CO_2 are greenhouses gases
			Allow collect to use as a fuel so fossil fuels do not run out (as quickly)
6(b)	$CH_3SH + 3O_2 \rightarrow CO_2 + 2H_2O + SO_2$	1	Accept multiples
			Ignore state symbols even if incorrect
	Calcium oxide is basic (and SO_2 is acidic) /	1	M2 and M3 can only be scored if SO ₂ seen somewhere in
	CaO neutralises SO ₂ /		the answer
	CaO reacts with SO ₂ to form gypsum / salt / solid / CaSO ₄ / CaSO ₃		
	Allow CaO + SO ₂ \rightarrow CaSO ₃		
	Acid rain	1	Allow consequence of acid rain eg increased rusting of iron / fish in lakes die / problems for asthmatics
			Apply list principle
			Ignore air pollution

Question	Marking Guidance	Mark	Comments
7(a)	$C_n H_{2n+2}$	1	Allow x in place of n
7(b)		1	Must show every bond
	<u>Chain</u>	1	Allow branched chain
7(c)	C ₉ H ₂₀ To break the (C-C and/or C-H) bonds To make products which are in greater demand / higher value / make alkenes	1 1 1	Only M2=0 if break C=C Not more useful products Allow specific answers relating to question
7(d)	$C_5H_{12} + 3O_2 \rightarrow 5C + 6H_2O$ Causes global dimming / exacerbates asthma / causes breathing problems / makes visibility poor / smog	1 1	Allow other balanced equations which give C and CO/CO ₂ Apply list principle Ignore causes cancer / toxic

7(e)	<u>106.5</u> (x 100) 143 74.48% 3	1 1 1	Allow 74.5% Only
7(f)	$\frac{2,3-\text{dichloro-}3-\text{methylpentane}}{C_3H_6Cl}$	1	Ignore punctuation Only

Question	Marking Guidance	Mark	Comments
7(a)(i)	$CH_4 + 3F_2 \longrightarrow CHF_3 + 3HF$	1	
7(a)(ii)	M1 Initiation $F_2 \longrightarrow 2F_1$ M2 First proposition	4	Penalise absence of dot once only.
	F• + $CHF_3 \longrightarrow CF_3 + HF$		structure is drawn out, the dot must be on the carbon atom. Penalise this error once only.
	M3 Second propagation $F_2 + \cdot CF_3 \longrightarrow CF_4 + F_{\cdot}$		Penalise once only for a line and two dots to show a bond.
	M4 Termination (must make C_2F_6) 2 • $CF_3 \longrightarrow C_2F_6$ or CF_3CF_3		in this clip
7(b)(i)	Displayed formula	1	All bonds must be drawn out.
	e.g. $CI \rightarrow CI \rightarrow CI \rightarrow F$ $CI \rightarrow CI \rightarrow F$ $CI \rightarrow F$		Ignore bond angles. Penalise "sticks"

7(b)(ii)	M1 C-CI bond OR carbon-chlorine bond	3	M1 NOT carbon-halogen
	M2 chlorine atom OR chlorine (free) radical		Penalise incorrect spelling of chlorine <u>once only</u> in this clip
			M2 ignore formulae
	M3 $2O_3 \longrightarrow 3O_2$		Ignore Cl_2 or Cl • or ClO • balanced on <u>both</u> sides of the equation
			Ignore other equations leading to the overall equation

Question	Marking Guidance	Mark	Comments
9(a)(i)	M1 <u>Elimination</u> $HOI \longrightarrow HOI $	4	For M1, accept "Base elimination" but <u>no other</u> prefix.
	 M2 must show an arrow from the <u>lone pair on the oxygen</u> of a negatively charged hydroxide ion <u>to a correct</u> H atom M3 must show an arrow from a C-H bond adjacent to the C-Br bond towards the appropriate C-C bond. Only award if a reasonable attempt has been made at the attack on the H atom of the appropriate adjacent C-H M4 is independent provided it is from their <u>original molecule</u> Award full marks for an E1 mechanism in which M3 is on the correct carbocation. N.B. These are double-headed arrows 		Penalise M2 if covalent KOH Penalise M4 for formal charge on C of C-Br or incorrect partial charges on C-Br Ignore other partial charges Penalise once only in any part of the mechanism for a line and two dots to show a bond. <u>Max any 2 of 3 marks</u> <u>for the mechanism</u> for wrong reactant (or wrong product if shown). Accept the correct use of "sticks" for the molecule except for the C-H being attacked
9(a)(ii)	Structure for pent-1-ene	1	Penalise C ₃ H ₇
			Accept correct slicks

Question	Marking Guidance	Mark	Comments
4(a)	$C_{16}H_{34} + 24.5O_2 \rightarrow 16CO_2 + 17H_2O$	1	Allow multiples Ignore state symbols in equation
4(b)	Solidifies/freezes/goes viscous/waxing occurs	1	Allow does not vapourise/ less volatile Lack of Oxygen = 0 Apply list principle
4(c)(i)	N ₂ + O ₂ → 2NO Spark/ (very) high temp/ 2500 $^{\circ}$ C – 4000 $^{\circ}$ C	1	Allow multiples/ Ignore state symbols in equation Ignore pressure/catalyst/low % of oxygen Not just heat/hot Apply list principle eg if high temp 150°C = 0
4(c)(ii)	$2CO + 2NO \rightarrow 2CO_2 + N_2$ OR $C_8H_{18} + 25NO \rightarrow 8CO_2 + 12.5 N_2 + 9H_2O$ OR $C + 2NO \rightarrow CO_2 + N_2$ OR $2NO \rightarrow N_2 + O_2$ Pt/ Pd/ Rh/ Ir	1	Allow multiples/ Ignore state symbols in equation Allow other alkane reacting with NO in correctly balanced equation Penalise contradiction of name and symbol
4(c)(iii)	$4NO_2 + 2H_2O + O_2 \rightarrow 4HNO_3$	1	Allow multiples/ Ignore state symbols in equation

4(d)(i)	High temp/ anywhere in range 400 ° C – 900 ° C/ anywhere in range 670-1200K / high pressure/ anywhere in range 5000 kPa up to 8000 kPa/	1	Not catalyst/heat
4(d)(ii)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1	Do not allow multiples Ignore state symbols in equation
4(d)(iii)	Polymers/plastics/ named polymer	1	Allow polyesters or polyamides Ignore object made from polymer

Question	Marking Guidance	Mark	Comments
1(a)(i)	chlorotrifluoromethane	1	Spelling must be correct but do not penalise "flouro" Ignore use of 1-
1(a)(ii)	CF₃•	1	May be drawn out with dot on C OR if as shown dot may be anywhere
1(a)(iii)	An unpaired / non-bonded / unbonded / free / a single / one / lone <u>electron</u>	1	NOT "bonded electron" and NOT "paired electron" NOT "pair of electrons" NOT "electron <u>s</u> " Ignore "(free) radical"
1(b)	M1 $Cl \cdot + O_3 \longrightarrow ClO \cdot + O_2$ M2 $ClO \cdot + O_3 \longrightarrow 2O_2 + Cl \cdot$	2	Mark independently Equations could gain credit in either position The dot can be anywhere on either radical Penalise the absence of a dot on the first occasion that it is seen and then mark on. Do <u>not</u> make the same penalty in the next equation, but penalise the absence of a dot on the other radical. Apply the list principle for additional equations

Question	Marking Guidance	Mark	Comments
7(a)(i)	(Free-) radical substitution	1	Both words needed
7(a)(ii)	UV light / Ultra-violet light / sunlight OR <u>high</u> temperature / $150^{\circ}C \le T \le 500^{\circ}C$	1	
7(a)(iii)	Propagation (Step)	1	Ignore "first" or "second" Accept phonetic spelling
7(a)(iv)	M1 Termination (Step) M2 $2CH_3CH_2CH_2 \rightarrow C_6H_{14}$	2	In M2 C_6H_{14} may be drawn out as $CH_3CH_2CH_2CH_2CH_2CH_3$ The dot may be anywhere around the terminal CH_2 on the radical Accept C_3H_7 • with dot anywhere Penalise the absence of any radical dot
7(a)(v)	C_3H_8 + 8 Br_2 \longrightarrow C_3Br_8 + 8 HBr	1	Or multiples

7(b)(i)	M1Double bonds are electron-richORelecton pair donorsOR centres of electron density.M2Bromine becomes polarised / becomes polarOR forms an induced dipole OR becomes $\delta + / \delta$ -	2	 M1 QoL – require <u>one</u> of these terms Ignore "(very) negative" and "nucleophile" as applied to the double bond. Penalise M2 for ion formation from bromine For M2, do not credit dipole formation <u>solely</u> as a consequence of electronegativity
7(b)(ii)	Electrophilic addition	1	Both words needed Accept phonetic spelling
7(b)(iii)	Structure for 1,2,4,5-tetrabromopentane, for example BrCH ₂ CHBrCH ₂ CHBrCH ₂ Br OR $\begin{array}{c} H & H & H & H \\ H & -C & -C & -C & -C \\ H & Br & Br & H & Br & Br \end{array}$	1	Must be clear that they have drawn 1,2,4,5- tetrabromopentane and does NOT need to be displayed Credit use of "sticks" for each C-H bond

7(c)	+	2	Mark independently
	 M1 Structure of CH₃CHCH₃ M2 (Secondary) Carbocation OR (secondary) carbonium ions 		For M1 the positive charge must be on the central carbon atom
			Penalise answers which show more than the correct carbocation e.g. the mechanism, unless the intermediate is clearly identified
			Credit use of "sticks" for each C-H bond For M2, penalise "primary" or "tertiary"

Question	Marking Guidance	Mark	Comments
8(a)(i)	Electron pair donor OR Species which uses a <u>pair of electrons</u> to <u>form a co-ordinate / covalent</u> <u>bond</u> .	1	Credit "lone pair" as alternative wording Credit "electron pair donator"
8(a)(ii)	Replacement of the halogen (atom) (by the nucleophile) OR The <u>carbon-halogen bond / C-X</u> breaks and a bond forms with the nucleophile or between the carbon and the nucleophile	1	They must describe the idea of substitution in a haloalkane. Accept the idea that a nucleophile replaces the halogen which becomes a halide ion Penalise reference to "halogen molecule" and penalise the idea that the haloalkane contains a halide
8(a)(iii)	Splitting molecules using / by water OR breaking / splitting / dissociating (C–X) bond(s) / using / by water	1	NOT simply the reaction with water or simply the addition of water. Ignore "compound"
8(a)(iv)	(Heat) <u>energy / enthalpy required / needed / absorbed (at constant</u> pressure) <u>to break / split it / the</u> (carbon-halogen) <u>bond</u> OR (Heat) <u>energy / enthalpy required / needed / absorbed (at constant</u> pressure) for <u>homolysis</u> of <u>the (</u> C—X / the carbon-halogen) <u>bond</u>	1	Ignore bond formation Ignore "average"

8(b)	$H_{3}C \xrightarrow{CH_{3}} H_{3}C \xrightarrow{CH_{3}} H_{3$	2	Penalise M1 if covalent KOH is used Penalise M2 for formal charge on C or incorrect partial charges Penalise once only for a line and two dots to show a bond. Max 1 mark for the wrong reactant Accept the correct use of "sticks"
8(c)(i)	HO :	3	Penalise M1 if covalent KOH Penalise M3 for formal charge on C or incorrect partial charges Penalise once only for a line and two dots to show a bond. Max 2 marks for wrong reactant Accept the correct use of "sticks" for the molecule except for the C-H being attacked

8(c)(ii)	M1 <u>Stated</u> that the spectrum has an <u>absorption / absorbance / peak in</u> <u>the range 1620 cm⁻¹ to 1680 (cm⁻¹) or specified correctly in this range</u> from the spectrum	2	QoL for correct M1 statement which includes both the word absorption (or alternative) <u>and the</u> correct range or wavenumber
	M2 depends on correct <u>range or wavenumber being specified</u> M2 (Infrared absorption) <u>due to C=C OR carbon-carbon double bond</u>		Allow "peak" OR "dip" OR "spike" OR "trough" OR "low transmittance" as alternatives for absorption. For M2 it is not sufficient simply to state that an alkene
			has C=C M2 could be on the spectrum
			Ignore reference to other absorptions

Question	Marking Guidance	Mark	Comments
2(a)(i)	C_nH_{2n} / C_xH_{2x}	1	
2(a)(ii)	Fractional distillation / GLC / gas liquid chromatography / fractionation	1	Do not allow cracking / distillation
2(b)(i)	But-1-ene / but1ene	1	Ignore hyphens and commas Do not allow butene-1 / but-2-ene / butane / butane / alkene / C ₄ H ₈ / propene / straight-chain alkene
2(b)(ii)	A structure of cyclobutane or methyl-cyclopropane	1	Allow skeletal formula.
2(c)(i)	$C_{15}H_{32} \to \ 2C_4H_8 \ + \ C_7H_{16}$	1	Do not accept multiples.
2(c)(ii)	Thermal cracking	1	Not catalytic cracking or cracking.
	To produce products that are in greater demand / more valuable / more expensive / more profitable	1	The (unsaturated) alkene or the (unsaturated) molecule or X produced can be polymerised or can be made into plastics. Ignore more useful products.
2(c)(iii)	Break (C-C or C-H) bonds	1	Allow to overcome the activation energy. Allow to break the carbon chain. Penalise breaking wrong bonds.
2(d)(i)	<u>H</u> ₂	1	Only.

2(d)(ii)	Fuel / LPG	1	Allow camping gas, lighter fuel, propellant, refrigerant, cordless appliances. Do not allow petrol or motor fuel. Ignore natural gas.
2(d)(iii)	$C_4H_{10}+2.5O_2\rightarrow 4C + 5H_2O$	1	Accept multiples.
2(d)(iv)	SO ₂ / sulfur dioxide	1	If other sulfur oxides, mark on.
	Calcium oxide / CaO / lime / quicklime	1	Allow CaCO ₃ / allow Ca(OH) ₂ or names. Allow any solid base. M2 dependent on M1. Do not allow limewater.
2(d)(v)	Neutralisation	1	Allow acid-base reaction. Allow flue gas desulfurisation / FGD
2(e)	(Molecules) are similar sizes / have similar <i>M</i> _r / have similar number of electrons	1	Chemical error CE = 0/2 if breaking bonds. Allow similar number of carbon and hydrogen atoms / similar surface area / similar chain length. Can accept same number of carbon atoms. Do not accept same number of H atoms / same number of bonds. Ignore similar amount of bonds.
	Similar van der Waals forces <u>between molecules</u> / similar intermolecular forces (IMF)	1	Not similar incorrect IMF eg dipole-dipole

2(c)	 M1 Yield increases / goes up M2 The (forward) reaction / to the right is <u>endothermic</u> OR <u>takes</u> in / absorbs heat OR The reverse reaction / to the left is <u>exothermic</u> OR <u>gives out</u> / releases heat Can only score M3 <u>if M2 is correct</u> M3 The (position of) <u>equilibrium shifts / moves</u> (from left to right) to oppose the increase in temperature (QoL) 	3	If M1 is given as "decrease" / "no effect" / "no change" then CE= 0 for clip, but mark on only M2 and M3 from a blank M1 For M3, <u>not</u> simply "to oppose the change" For M3, credit the (position of) <u>equilibrium shifts</u> / <u>moves (QoL)</u> to <u>absorb the heat</u> <i>OR</i> to <u>cool the reaction</u> <i>OR</i> to <u>lower the temperature</u> (There must be a <u>specific</u> reference to the change that is opposed)
2(d)(i)	An activity which has no <u>net / overall</u> (annual) carbon emissions <u>to the atmosphere</u> OR An activity which has no <u>net / overall</u> (annual) greenhouse gas emissions <u>to the atmosphere</u> . OR There is no change in the <u>total amount / level</u> of carbon dioxide / CO ₂ carbon /greenhouse gas present <u>in the atmosphere</u> .	1	The idea that the carbon / CO_2 given out equals the carbon / CO_2 that was taken in from the atmosphere
2(d)(ii)	$CH_3OH + 1\frac{1}{2}O_2 \longrightarrow CO_2 + 2H_2O$	1	Ignore state symbols Accept multiples

2(d)(iii)	$\begin{array}{rcccccccccccccccccccccccccccccccccccc$	1	Ignore state symbols Accept multiples Extra species must be crossed through
2(e)	M1 q = m c ΔT OR q =140 x 4.18 x 7.5 M2 = 4389 (J) OR 4.389 (kJ) OR 4.39 (kJ) OR 4.4 (kJ) (also scores M1) M3 Using 0.0110 mol therefore $\Delta H = -399$ (kJmol ⁻¹) OR -400	3	Award full marks for <u>correct answer</u> Ignore the case for each letter Penalise M3 ONLY if correct numerical answer but sign is incorrect; +399 gains 2 marks Penalise M2 for arithmetic error and mark on In M1 , do not penalise incorrect cases in the formula If $\Delta T = 280.5$; score q = m c ΔT only If c = 4.81 (leads to 5050.5) penalise M2 ONLY and mark on for M3 = - 459
	+399 or +400 gains 2 marks		Ignore incorrect units

Question	Marking Guidance	Mark	Comments
6(a)(i)	M1 Initiation $Cl_2 \longrightarrow 2Cl_{\bullet}$ M2 First propagation $Cl_{\bullet} + CH_2Cl_2 \longrightarrow \bullet CHCl_2 + HCl$ M3 Second propagation $Cl_2 + \bullet CHCl_2 \longrightarrow CHCl_3 + Cl_{\bullet}$	3	Penalise absence of dot once only. Penalise + or – charges every time Accept dot anywhere on CHCl ₂ radical but if the structure is drawn out, the dot must be on the carbon atom. Penalise this error once only Penalise once only for a line and two dots to show a bond. Penalise once only for double headed curly arrows Mark independently
6(a)(ii)	M1Condition ultra-violet / uv / sun lightORhigh temperatureOR400°C $\leq T \leq 900$ °CM2Type of mechanism (free-) radical substitution (mechanism)	2	
6(b)(i)	$CHCI_3 + CI_2 \longrightarrow CCI_4 + HCI$	1	Allow X as alternative to CCI_4 only if X is clearly identified as CCI_4

M2 $CI + O_3 \longrightarrow CIO + O_2$ M3 $CIO + O_3 \longrightarrow CI + 2O_2$ M4 $CHCIF_2$ / chlorine-containing compounds/ CFCs damage / react with / decrease the ozone layerORthis overall decomposition occurs; $2O_3 \longrightarrow 3O_2$ ORwithout an ozone layer or with a decreased ozone layer, uv radiation is not being "filtered" / prevented from passing through the atmosphere or there is a concern about an increase in skin cancer etc.ORImage: Drew of the atmosphere or there is a concern about an increase in skin cancer etc.ORImage: Drew of the atmosphere or there is a concern about an increase in skin cancer etc.ORImage: Drew of the atmosphere or there is a concern about an increase in skin cancer etc.ORImage: Drew of the atmosphere or there is a concern about an increase in skin cancer etc.OR	6(c)	M1 a statement about bond breakage / formation of Cl• <u>C-Cl</u> / <u>carbon-chlorine bond breakage</u> occurs <i>OR</i> Cl• / chlorine (free) radical <u>forms</u> <i>OR</i> correct equation CHCIF ₂ → Cl• + •CHF ₂	4	Penalise M1 , if CI• is formed from Cl ₂ as the only reaction or an additional reaction Do not penalise an incorrect equation using CHCIF ₂ if correct reference is made to CI• formation or C-CI / carbon-chlorine bond breakage
Cl• catalyses the decomposition of ozone / a single Cl• causes (chain) reaction / decomposition of many ozone molecules / ozone layer		M2 $CI \bullet + O_3 \longrightarrow CIO \bullet + O_2$ M3 $CIO \bullet + O_3 \longrightarrow CI \bullet + 2O_2$ M4CHCIF2 / chlorine-containing compounds/ CFCs damage / react with / decrease the ozone layerORthis overall decomposition occurs; $2O_3 \longrightarrow 3O_2$ ORwithout an ozone layer or with a decreased ozone layer, uv radiation is not being "filtered" / prevented from passing through the atmosphere or there is a concern about an increase in skin cancer etc.ORCl• catalyses the decomposition of ozone / a single Cl• causes (chain) reaction / decomposition of many ozone molecules / ozone layer		 M2 and M3 either order Penalise absence of dot once only. Accept dot anywhere on CIO radical Award M4 for the general idea behind the EU justification for banning the use of CFCs as refrigerants Penalise M4 if overall ozone decomposition equation is incorrect Ignore "greenhouse effect", "global warming" etc.

6(d)(i)	H F C C===C C H F F	1	All bonds must be drawn out
6(d)(ii)	2,3,3,3-tetrafluoropropene / it does not contain chlorine (atoms) / C-CI (bonds)	1	Ignore "chlorine molecules"
	OR		
	It does not produce CI• / does not produce chlorine (free) radical(s)		
	OR		
	chlorodifluoromethane does contain chlorine / does produce Cl• / does produce chlorine (free) radical(s)		
	OR		
	C-F is too strong and does not break / create radicals		
	OR		
	C–F is stronger than C–CI		

8(b)(i)	M1 <u>nucleophilic substitution</u>	3	For M1 , both words required
	$Br - CH_2CH_2CH_2CH_2 - CH - Br - H = Br - CH_2CH_2CH_2CH_2-CH - OH + Br = Br - CH_2CH_2CH_2-CH - OH + Br = Br = Br - CH_2CH_2CH_2-CH - OH + Br = Br = Br - CH_2CH_2CH_2-CH - OH + Br = Br = Br = CH_2CH_2CH_2-CH - OH + Br = Br = Br = CH_2CH_2CH_2-CH - OH + Br = Br = Br = CH_2CH_2CH_2-CH - OH + Br = Br = Br = CH_2CH_2CH_2-CH - OH + Br = Br = Br = CH_2CH_2CH_2-CH - OH + Br = Br = Br = CH_2CH_2CH_2-CH - OH + Br = Br = Br = CH_2CH_2CH_2-CH - OH + Br = Br = Br = CH_2CH_2CH_2-CH - OH + Br = Br = Br = CH_2CH_2CH_2-CH - OH + Br = Br = Br = CH_2CH_2CH_2-CH - OH + Br = Br = Br = CH_2CH_2CH_2-CH - OH + Br = Br = Br = CH_2CH_2CH_2-CH - OH + Br = Br = Br = CH_2CH_2-CH - OH + Br = Br = Br = CH_2CH_2-CH - OH + Br = Br = Br = CH_2CH_2-CH - OH + Br = Br = Br = CH_2CH_2-CH - OH + Br = Br = Br = CH_2CH_2-CH_2-CH - OH + Br = Br = Br = CH_2CH_2-CH_2-CH - OH + Br = Br = Br = CH_2CH_2-CH_2-CH - OH + Br = Br = Br = CH_2CH_2-CH_2-CH - OH + Br = Br = Br = CH_2CH_2-CH_2-CH - OH + Br = Br = Br = CH_2CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-C$		Penalise M2 if covalent NaOH / KOH is used Penalise one mark from M2 or M3 if half-headed arrows are used Penalise M3 for formal charge on C of the C-Br or incorrect partial charges on C-Br Penalise once only for a line and two dots to show a bond.
	is from the <u>original molecule</u> For M2 and M3 award full marks for an S _N 1 mechanism NB The arrows here are double-headed		For M2 and M3 , maximum 1 of 2 marks for the mechanism if wrong reactant is used. Penalise M3 if an extra arrow is drawn from the Br of the C-Br bond to, for example, K ⁺ Accept the correct use of "sticks
8(b)(ii)	М1 В	3	

	M3 A		
	M2 C		
0(0)(1)		0	

Question	Marking Guidance	Mark	Comments
3(a)(i)	Crude oil / oil / petroleum	1	Do not allow 'petrol'
3(a)(ii)	Fractional distillation / fractionation / fractionating	1	Not distillation alone
3(b)(i)	5	1	Allow five / V
3(b)(ii)	Chain (isomerism)	1	Allow branched chain / chain branched / side chain (isomerism)
			Ignore position (isomerism)
			Do not allow straight chain / geometric / branched / function
3(c)(i)	C ₁₂ H ₂₆ /H ₂₆ C ₁₂	1	Only
3(c)(ii)	Thermal cracking	1	If not thermal cracking, $CE = 0/2$
			If blank mark on
	High temperature	1	Allow 'high heat' for 'high temperature'
	(400°C ≤ T ≤ 900°C) or (650 K ≤ T ≤ 1200 K)		Not 'heat' alone
	and		If no T, units must be 650 - 900
	High pressure (≥ 10 atm, ≥ 1 MPa, ≥1000 kPa)		
3(c)(iii)	To produce substances which are (more) in demand / produce products with a high value / products worth more	1	Ignore 'to make more useful substances'

3(d)(i)	Corrosive or diagram to show this hazard symbol	1	Ignore irritant, acidic, toxic, harmful
3(d)(ii)	(<u>120.5</u> × 100) (86 + 71) =76.75(%) or 76.8(%)	1	Allow answers > 3 sig figs
3(e)	2,2-dichloro-3-methylpentane C_3H_6CI	1	Ignore punctuation Any order

Question	Marking Guidance	Mark	Comments
4(a)(i)	C_8H_{18} + $8\frac{1}{2}$ $O_2 \rightarrow 8CO$ + $9H_2O$	1	Accept multiples
4(a)(ii)	Not enough oxygen or air (available for complete combustion) /lack of oxygen or air / too much octane	1	Ignore poor ventilation, low temp, poor mixing, incomplete combustion
4(b)(i)	$2CO + 2NO \rightarrow 2CO_2 + N_2$	1	Allow multiples
4(b)(ii)	Pt / Pd / Rh / Ir or names Big(ger) surface area / increased reaction rate / removes more of the gases / ensures complete reaction	1 1	Apply list principle Allow (ceramic) withstands high temperatures
4(c)(i)	Acid rain	1	Allow consequence of acid rain Ignore greenhouse gas / global warming / ozone
4(c)(ii)	CaO/ lime / CaCO $_3$ /limestone Neutralises the gas or words to that effect/it is basic/ SO $_2$ is acidic	1	Allow chemical names Allow 'reacts with it' or 'it is alkaline' Ignore 'absorb'

Question	Marking Guidance	Mark	Comments
2(a)(i)	(Compounds with the) same molecular formula	1	Allow same number and type of atom for M1 Ignore same general formula.
	But different structural formula / different displayed formula/different structures / different skeletal formula	1	M2 dependent on M1 Not different positions of atoms/bonds in space.
2(a)(ii)	But-2-ene	1	Allow but-2-ene. Allow but 2 ene. Ignore punctuation.
2(a)(iii)	(2)-methylprop-(1)-ene	1	Do not allow 2-methyleprop-1-ene.
2(a)(iv)	Н Н H—С—С—Н H—С—С—Н H H	1	Do not allow skeletal formulae. Penalise missing H and missing C
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
2(b)(i)	$C_4H_8 + 2O_2 \rightarrow 4C + 4H_2O$	1	Accept multiples.

2(b)(ii)	Exacerbates asthma / breathing problems / damages lungs / smog / smoke / global dimming	1	Ignore toxic / pollutant / soot / carcinogen. Do not allow greenhouse effect / global warming / acid rain / ozone.
2(c)(i)	C ₁₆ H ₃₄	1	Allow $H_{34}C_{16}$ C and H must be upper case.
2(c)(ii)	Jet fuel / diesel / (motor) fuel / lubricant / petrochemicals / kerosene / paraffin / central heating fuel / fuel oil	1	Ignore oil alone. Not petrol / bitumen / wax / LPG / camping fuel.
2(d)(i)	$C_8H_{18} + 25NO \rightarrow 8CO_2 + 12.5 N_2 + 9H_2O$	1	Accept multiples.
2(d)(ii)	Ir / iridium <i>OR</i> Pt / platinum <i>OR</i> Pd / palladium <i>OR</i> Rh / rhodium	1	

Question	Marking Guidance	Mark	Comments
5(a)(i)	M1 Elimination M2 H0: H0: H3: H3: H3: H3: H3: H3: H3: H3	4	 M1 Credit "base elimination" but no other prefix. Penalise M2 if covalent KOH Penalise M4 for formal charge on C or Br of C–Br or incorrect partial charges on C–Br Ignore other partial charges. Penalise once only in any part of the mechanism for a line and two dots to show a bond. Maximum any 2 of 3 marks for the mechanism for wrong organic reactant or wrong organic product (if shown). Credit the correct use of "sticks" for the molecule except for the C–H being attacked. Penalise M4, if an additional arrow is drawn from Br eg to K+

5(a)(ii)	Displayed formula for 3-methylbut-1-ene	1	All bonds and atoms must be drawn out, but ignore bond angles.
5(a)(iii)	Position(al) (isomerism or isomer)	1	Penalise any other words that are written in addition to these.
5(b)(i)	Displayed formula for 3-methylbutan-2-ol $H \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} H$	1	All bonds and atoms must be drawn out, but ignore bond angles.
5(b)(ii)	 Any one from Lower / decreased temperature OR cold Less concentrated (comparative) OR dilute KOH Water (as a solvent) / (aqueous conditions) 	1	Ignore "pressure".
5(b)(iii)	Nucleophilic substitution	1	Both words needed – credit phonetic spelling.

5(b)(iv)	(Strong / broad) absorption / peak in the range <u>3230 to 3550</u> cm ⁻¹ or specified value in this range or marked correctly on spectrum	1	Allow the words "dip" OR "spike" OR "trough" OR "low transmittance" as alternatives for absorption.
----------	---	---	--

Question	Marking Guidance	Mark	Comments
7(a)	Initiation $Cl_2 \longrightarrow 2Cl^{\bullet}$	4	Penalise absence of dot once only.
	First propagation CI• + CH ₃ CI → •CH ₂ CI + HCI		Credit the dot anywhere on the radical.
	Second propagation $Cl_2 + \bullet CH_2CI \longrightarrow CH_2Cl_2 + Cl \bullet$ Termination (must make 1,2-dichloroethane) $2 \bullet CH_2CI \longrightarrow CH_2CICH_2CI$		Penalise C ₂ H ₄ Cl ₂
7(b)(i)	(chlorine free) <u>radical</u>	1	Ignore formula.
7(b)(ii)	M1 $CI \bullet + O_3 \longrightarrow CIO \bullet + O_2$ M2 $CIO \bullet + O_3 \longrightarrow CI \bullet + 2O_2$	2	M1 and M2 could be in either order. Credit the dot anywhere on the radical. Penalise absence of dot once only. Individual multiples acceptable but both need to be doubled if two marks are to be awarded.

Question	Marking Guidance	Mark	Comments
8(a)	Structure for 3-methylbut-1-ene H ₂ C=CHCH(CH ₃) ₂	1	Any correct structural representation. Credit "sticks" and require the double bond.
8(b)	Structure for 2-methylpropan-2-ol (CH ₃) ₃ COH	1	Any correct structural representation. Credit "sticks".
8(c)	Structure for propene $H_2C=CHCH_3$	1	Any correct structural representation. Credit "sticks" and require the double bond.
8(d)	Structure for 2-aminobutane CH ₃ CH ₂ CH(NH ₂)CH ₃	1	Any correct structural representation. Credit "sticks".

Question	Marking Guidance	Mark	Comments
4(a)	Fractional distillation / fractionation / GLC / gas liquid chromatography	1	
4(b)	C₄H₁₀ Because it has a higher bp / has stronger IMF / larger molecule / longer chain / larger surface (area)	1	Need C_4H_{10} and the reason for the mark
4(c)	$C_4H_{10} + 6\frac{1}{2}O_2 \longrightarrow 4CO_2 + 5H_2O$	1	Accept multiples Ignore state symbols
4(d)	CO_2 or H_2O evolved is a greenhouse gas / CO_2 or H_2O evolved contribute to global warming / the products are greenhouse gases	1	Ignore climate change
4(e)	$CH_{3}CH_{2}CH_{2}CH_{3} + 3.5O_{2} \longrightarrow C_{2}H_{2}(CO)_{2}O + 4H_{2}O$	1	Accept multiples Allow with or without a number 1 before the organic molecules
4(f)(i)	$C_2H_5SH + 4.5O_2 \longrightarrow 2CO_2 + 3H_2O + SO_2$	1	Accept multiples
4(f)(ii)	Calcium oxide / calcium carbonate	1	Allow any base or alkali Allow correct formulae Can only score M2 if base or alkali used in M1
		I	Allow M2 if blank in M1

4(f)(iii)	Ethanol contains Hydrogen bonding Which is stronger than IMF (VDW / dipole-dipole forces) in ethanethiol/ (H bonding) is the strongest IMF	1	Breaking covalent bonds CE = 0/2 Only award M2 if M1 given, but allow IMF in ethanol are stronger than in ethanethiol for maximum 1 mark
4(g)(i)	(2,2-)dimethylpropane	1	Ignore punctuation
4(g)(ii)	Because molecule is smaller / less polarisable / has less surface (area)/ is more spherical / molecules can't get as close to one another (to feel the vdW forces) <u>vdW intermolecular</u> forces or <u>vdW force between molecules</u> are weaker or fewer	1	Allow converse answers referring to straight chain isomers CE = 0/2 if breaking bonds Need vdW rather than just IMF
4(g)(iii)	1 or one	1	
4(h)(i)	C ₉ H ₂₀	1	H ₂₀ C ₉
4(h)(ii)	Thermal (cracking) High pressure AND high temperature OR Pressure of \ge 10 atm, \ge 1 MPa \ge 1000 kPa AND temp of 400 °C \le T \le 1000 °C or 650 K \le T \le 1300 K	1	If not thermal cracking CE = 0/2 If blank mark on Allow high P and T Do not allow high heat If no units for T, then range must be 650-1000

Question	Marking Guidance	Mark	Comments
7(a)(i)	(Free-) <u>radical substitution</u>	1	Both underlined words are required Penalise a correct answer if contradicted by an additional answer
7(a)(ii)	Initiation $F_2 \longrightarrow 2F^{\bullet}$ First propagation $F^{\bullet} + CH_3F \longrightarrow \bullet CH_2F + HF$ Second propagation $F_2 + \bullet CH_2F \longrightarrow CH_2F_2 + F^{\bullet}$ Termination (must make 1,2-difluoroethane) $2 \bullet CH_2F \longrightarrow CH_2F_2F$	4	Penalise absence of dot once only Penalise + or – charges every time Accept dot anywhere on CH ₂ F radical Mark independently Use of half-headed arrows must be correct to score, but if not correct then penalise once only in this clip
7(a)(iii)	$\begin{array}{rcl} CH_3CH_3 & + & 5F_2 & \longrightarrow & CF_3CHF_2 & + & 5HF \\ (C_2H_6) & & & (C_2HF_5) \end{array}$	1	
7(b)	1,1,1,2-tetrachloro-2,2-difluoroethane <i>OR</i> 1,2,2,2-tetrachloro-1,1-difluoroethane	1	Accept phonetic spelling eg "fluro, cloro" Penalise "flouro" and "floro", since QoL Ignore commas and hyphens

7(c)(i) $2O_3 \longrightarrow 3O_2$	1	ONLY this equation or a multiple Ignore NO over the arrow Other species must be cancelled
7(c)(ii) O + NO ₂ \longrightarrow NO + O ₂	1	ONLY this answer and NOT multiples Ignore any radical dot on the O atom

Question	Marking Guidance	Mark	Comments
5(a)	Crude oil OR petroleum	1	Not petrol.
	Fractional distillation / fractionation	1	Not distillation alone.
5(b)	$C_{12}H_{26} + 12.5O_2 \longrightarrow 12CO + 13H_2O$	1	Allow balanced equations that produce CO_2 in addition to CO Accept multiples.
5(c)(i)	M1 Nitrogen and oxygen (from air) <u>react / combine</u> / allow a correct equation	1	If nitrogen from petrol / paraffin / impurities CE=0/2
	M2 at high temperatures	1	Allow temperatures above 1000 °C or spark.
			Not just heat or hot.
			M2 dependent on M1
			But allow 1 mark for nitrogen and oxygen together at high temperatures.
5(c)(ii)	$2NO + O_2 \longrightarrow 2NO_2$	1	Allow multiples.
5(c)(iii)	$4NO_2 + 2H_2O + O_2 \longrightarrow 4HNO_3$	1	Allow multiples.
5(d)(i)	C _n H _{2n+2}	1	Allow C _x H _{2x+2}
	CnH2n+2		Allow CxH2x+2

5(d)(ii)	$C_{12}H_{26} \longrightarrow C_6H_{14} + C_6H_{12}$	1	Only.
	C ₃ H ₇	1	Only.
	Zeolite / aluminosilicate(s)	1	Ignore aluminium oxide.
5(d)(iii)	Larger molecule / longer carbon chain / more electrons / larger surface area	1	
	More / stronger <u>van der Waals' forces between molecules</u>	1	Allow dispersion forces / London forces / temporary induced dipole-dipole forces <u>between molecules.</u> If breaking bonds, CE = 0/2
5(e)	2,2,3,3,4,4-hexamethylhexane	1	Only. Ignore punctuation. Ignore branch(ed).
5(f)	Cl ₂ Cl–Cl	1	Only. Not CL_2 or Cl2 or CL2 or Cl^2 or CL^2 Ignore Chlorine.

Question	Marking Guidance	Mark	Comments
5(a)(i)	M1 Initiation $Cl_2 \longrightarrow 2Cl \bullet$	4	Penalise absence of dot once only.
	M2 First propagation CI• + CHF ₃ \longrightarrow CF ₃ • + HCI		Penalise + or – charges <u>every time</u>
	M3 Second propagation $Cl_2 + CF_3 \bullet \longrightarrow CCIF_3 + CI \bullet$		Credit $CF_3 \bullet$ with the radical dot above / below / to either side.
	M4 Termination (must make C_2F_6) 2 CF ₃ • \longrightarrow C ₂ F ₆ or CF ₃ CF ₃		Mark independently.
5(a)(ii)	ultra-violet / uv / sun light OR (very) high temperature OR 500 °C \leq T \leq 1000 °C OR 773 K \leq T \leq 1273 K	1	

5(b)(i)	Cl• OR chlorine atom / chlorine (free-) radical / Cl (atom)	1	Not 'chlorine' alone. Credit 'CI' alone on this occasion.
5(b)(ii)	$2O_3 \longrightarrow 3O_2$	1	Or multiples. Ignore state symbols. If the correct answer is on the line OR clearly identified below some working, then ignore any working.

Question	Marking Guidance	Mark	Comments
8(a)(i)	$\textbf{M1}$ double-headed curly arrow from the lone pair of the bromide ion to the C atom of the CH_2	2	Penalise additional arrows.
	M2 double-headed arrow from the bond to the O atom As follows		
	$Br: \xrightarrow{H_3C-CH-CH_2-OH_2^+} \xrightarrow{H_3C-CH-CH_2-Br} H_2O$		
8(a)(ii)	M1 <u>nucleophilic substitution</u>	2	M1 both words needed (allow phonetic spelling).
	M2 1-bromo(-2-)methylpropane		M2 Require correct spelling in the name but ignore any hyphens or commas.

8(b)	M1 hydrolysis	3	For M1 give credit for 'hydration' on this occasion only.
	M2 <u>C=N</u> with absorption range <u>2220–2260</u> (cm ⁻¹)		Credit 1 mark from M2 and M3 for identifying C≡N and either O–H(acids) or C=O or C–O without reference to
	M3 <u>O-H</u> (acids) with absorption range <u>2500–3000</u> (cm ^{-1})		wavenumbers or with incorrect wavenumbers.
	OR (-0) with absorption range 1680–1750 (cm ⁻¹)		Apply the list principle to M3
	OR		
	<u>C–O</u> with absorption range <u>1000–1300 (</u> cm ⁻¹)		
8(c)(i)	M1 Yield / product OR ester increases / goes up / gets more	3	If no reference to $M1$, marks $M2$ and $M3$ can still score BUT if $M1$ is incorrect CE=0
	M2 (By Le Chatelier's principle) the position of <u>equilibrium is driven / shifts</u> / moves to the right / L to R / in the forward direction / to the product(s)		
	M3 – requires a correct statement in M2		
	(The position of equilibrium moves)		
	to oppose the increased concentration of ethanol		If there is reference to 'pressure' award M1 ONLY.
	to oppose the increased moles of ethanol		
	to lower the concentration of ethanol		
	to oppose the change and decrease the ethanol		
		1	

Question	Marking Guidance	Mark	Comments
6(a)	Saturated – single bonds only / no double bonds	1	
	Hydrocarbon – contains carbon and hydrogen (atoms) only	1	
6(b)	$C_{16}H_{34} + 16.5O_2 \longrightarrow 16CO + 17H_2O$	1	Allow multiples
6(c)	(On combustion) SO ₂ produced	1	Allow equation to produce SO ₂ . Ignore sulfur oxides.
	Which causes acid rain	1	If formula shown it must be correct
			M2 is dependent on M1. But if M1 is sulfur oxides, allow M2.
			For M2 allow consequence of acid rain or SO_{2} .
			Ignore greenhouse effect and toxic
6(d)(i)	$C_{16}H_{34} \longrightarrow C_8H_{18} + C_2H_4 + 2C_3H_6$	1	Allow multiples

6(d)(ii)	polypropene / propan(-1 or 2-)ol / propane(-1,2-)diol / isopropanol / propanone / propanal	1	Accept alternative names Ignore plastic and polymer
6(d)(iii)		1	
6(e)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Allow any unambiguous representation
6(f)	2,4-dichloro-2,4-dimethylhexane	1	Only but ignore punctuation

Question	Marking Guidance	Mark	Comments
5(a)(i)	Initiation	4	
	$Br_2 \longrightarrow 2Br^{\bullet}$		Penalise absence of dot once only
	First propagation Br• + CHF ₃ \longrightarrow •CF ₃ + HBr		Credit the dot anywhere on the radical
	Second propagation $Br_2 + \bullet CF_3 \longrightarrow CBrF_3 + Br \bullet$		
	Termination		
	$2 \bullet CF_3 \longrightarrow C_2F_6 OR \ CF_3CF_3$ OR		
	$2Br \rightarrow Br_2$		
	$Br\bullet + \bullet CF_3 \longrightarrow CBrF_3$		

5(a)(ii)	Ultra-violet / uv / sunlight	1	
	OR		
	T > 100°C OR <u>high</u> temperature		

5(b)(i)	F	1	Displayed formula required with the radical dot on carbon
	FC		
	F		

5(b)(ii)	 (The) <u>C—Br</u> (bond) breaks more readily / is weaker than (the) <u>C—CI</u> (bond) (or converse) OR The <u>C—Br bond enthalpy / bond strength</u> is less than that for <u>C—CI</u> (or converse) 	1	Requires a comparison between the two bonds Give credit for an answer that suggests that the UV frequency / energy may favour <u>C—Br</u> bond breakage rather than <u>C—CI</u> bond breakage Ignore correct references either to size, polarity or electronegativity
			Credit correct answers that refer to, for example "the bond between carbon and bromine requires less energy to break than the bond between carbon and chlorine"

5(b)(iii)	M1	3	M1 and M2 could be in either order
	$Br\bullet + O_3 \longrightarrow BrO\bullet + O_2$		Credit the dot anywhere on the radical
			Penalise absence of dot once only
	M2		Penalise the use of multiples once only
	$BrO \bullet + O_3 \longrightarrow Br \bullet + 2O_2$		
	M3 One of the following		
	They / it / the bromine (atom)		
	 does not appear in the overall equation is regenerated is unchanged <u>at the end</u> has <u>not been used up</u> provides an alternative route / mechanism 		

Question	Marking Guidance	Mark	Comments
4(a)(i)	Alk <u>a</u> ne(s)	1	Ignore C _n H _{2n+2}
4(a)(ii)	C_8H_{18} + 12.5 $O_2 \rightarrow 8CO_2$ + 9 H_2O	1	Allow multiples
4(a)(iii)	2, 2, 4-trimethylpentane	1	
4(b)(i)	But-1-ene	1	Ignore (E or Z)
4(b)(ii)	C ₁₄ H ₃₀	1	
4(b)(iii)	Thermal High pressure / 7000kPa / 70 atms and High temperature/temperature in range 400-1000°C (673–1273K)	1	If catalytic CE = 0 (allow \geq 1000 kPa or \geq 10 atms – no upper value) Allow high temperature and pressure or high pressure and temperature If no units for temperature allow 673-1000

8

Question	Answers	Mark	Additional Comments/Guidance
3a) i.	$CH_3Cl + 2Cl_2 \rightarrow CHCl_3 + 2HCl$	1	IGNORE state symbols ALLOW multiples
3a) ii.	(Free-)radical substitution	1	This answer only
3a) iii.	Initiation: $Cl_2 \rightarrow 2Cl \cdot$ 1^{st} Propagation step $Cl \cdot + CH_2Cl_2 \rightarrow \cdot CHCl_2 + HCl$ 2^{nd} Propagation step $\cdot CHCl_2 + Cl_2 \rightarrow CHCl_3 + Cl \cdot$ Termination $2 \cdot CHCl_2 \rightarrow C_2H_2Cl_4$	1 1 1 1	Penalise absence of dot once only Penalise + and/or – charges every time ALLOW • anywhere on •CHCl ₂ but, if drawn out as a structure, then • must be on C Mark independently
			ALLOW • $CH_2Cl + • CCl_3 \rightarrow C_2H_2Cl_4$ IGNORE state symbols throughout
3b) i.	$CClF_3 \rightarrow \bullet CF_3 + Cl \bullet$	1	ALLOW • anywhere on •CF $_3$ unless displayed
3b) ii.	$Cl \bullet + O_3 \rightarrow Cl O \bullet + O_2$ $Cl O \bullet + O_3 \rightarrow 2O_2 + Cl \bullet$	1 1	Equations can be in either order Penalise absence of • once only ALLOW • anywhere on •ClO NOT •O ₃
Total		9	

Question	Answers	lark	Additional Comments/Guidance
	NaOH/KOH <i>reaction 1</i> = ethanolic/alcoholic AND <i>reaction 2</i> = aqueous	1	IGNORE OH ⁻ NOT M1 if any mention of acidified/H ⁺ in reagents or conditions IGNORE temp NOT ethanoic
	rxn 1 = base/proton acceptor	1	
	rxn 2 = nucleophile/lone pair donor/electron pair donor	1	
	(Base) Elimination	1	NOT nucleophilic
8(a)	$H_{3}CCH_{2}CH_{2}-C - C - H - H - H_{3}CCH_{2}CH_{2}-C - C - H + H_{2}O + Br - H_{3}CCH_{2}CH_{2} - C - H_{3}CCH_{3}C$	1 1 1	
	HO		ALLOW correct E1 mechanism
	M6 must show an arrow from the lone pair on the oxygen of a negatively charge hydroxide ion to a correct H atom	d	IGNORE incorrect inorganic products
	 M7 must show an arrow from a correct C–H bond on C adjacent to the C of the C–Br bond to a correct C–C bond. Only award if an arrow is shown attacking th H atom of a correct adjacent C–H bond in M6 M8 is independent provided it is from their original molecule and shows curly 	e	If forming pent-2-ene can award M8 only even if arrows in mechanism correct
	arrow from C-Br to Br		If C chain length or halogen wrong in reactant or product max 2/3