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X-Ray photons are electromagnetic radiation with 
wavelengths in the range 0.1 - 100 Å. X Rays used in 
diffraction experiments have typical wavelengths of 0.5 - 
1.8 Å. X Rays can be produced by conventional generators, 
by synchrotrons, and by plasma sources. Electromagnetic 
radiation from nuclear reactions, called γ radiation, can also 
occur at the same energies as X rays, but γ radiation is 
differentiated from X ray radiation simply by the source of 
the radiation.  

X rays are sometimes called Röntgen rays after their 
discoverer, Wilhelm Conrad Röntgen.1 For this discovery, 
he received the first Nobel Prize in physics in 1901.  

A great deal of information about the properties of X rays 
and X-ray generation is available at the X-Ray Data Book. 
Electromagnetic radiation is made up of waves of energy 
that contain electric and magnetic fields vibrating 
transversely and sinusoidally to each other and to the 
direction of propogation of the waves. Conventional 
generators are by far the most widely used sources of X 
rays in a laboratory setting.  

Conventional Generators 

X Rays are produced in labs by directing an energetic beam 
of particles or radiation, at a target material. X Rays for 
crystallographic studies are typically generated by 
bombarding a metal target with an energetic beam of 
electrons. The electrons are produced by heating a metal 
filament, emitting photo electrons. The electrons coming 
from the filament are then accelerated towards the target 
by a large applied electrical potential between the filament 
and the target. When the beam of electrons hits the target 
(or anode) a variety of events occur. This rapid 
deceleration of electrons causes the emission of X-ray 
radiation, photoelectrons, Auger electrons, and a large 
amount of heat. Actually two types of X rays are emitted in 
this process. X Rays are emitted in a continuous band of 
white radiation as well as a series of discrete lines that are 
characteristic of the target material.  

White Radiation 

Some of the collisions between the photo-electrons and the 
target result in the emission of a continuous spectrum of X 
rays called white radiaion or Bremsstrahlung. White radiation 
is believed due to the collision of the accelerated electrons 
with the atomic electrons of the target atoms. If all of the 
kinetic energy carried by an electron is converted into 
radiation, the energy of the X-ray photon would be given 
by  

Emax = hνmax= eV  

where h = Plank's constant, νmax = the largest frequency, e 
= charge of an electron, V = applied voltage. This 
maximum energy or minimum wavelength is called the 
Duane-Hunt limit.  

hνmax = hc/λmin = eV  

λmin = hc / eV = 12398. / V (volts)  

 
Figure 1. X-ray Tube Schematic.2  

 
Figure 2. White Radiation from an X-Ray Generator.2 The 
intensity of the beam is plotted as a function of the 
wavelength of the radiation.  

The majority of collisions that produce white radiation do 
not completely dissipate the kinetic energy of the electron 
in a single collision. Typically, these colliding electrons hit 
electrons in the target material with a glancing blow 
dissipating some energy as emitted X-ray photons. Then 
these photoelectrons hit other electrons in the target 
material emitting lower energy X-ray photons or hit 
valence electrons producing heat.  

Thus the white radiation spectrum does have a minimum 
wavelength or maximum energy related to the kinetic 
energy of the incident radiation beam, and continues to 
longer wavelengths or lower energies until all of the kinetic 
energy is absorbed. The highest intensity of emitted white 
radiation spectrum is obtained at a wavelength that is about 
1.5 times the minimum wavelength. The white radiation 
intensity curve may be fit to an expression of the form:  

http://imagine.gsfc.nasa.gov/docs/science/know_l1/emspectrum.html
http://nobelprize.org/nobel_prizes/physics/laureates/1901/rontgen-bio.html
http://xdb.lbl.gov/


Iw = A i Z Vn, n ~ 2  

where i is the applied current, Z is the atomic number of 
the target, V is the applied voltage and A is a 
proportionality constant. The only type of diffraction 
experiment that uses white radiation is the Laue 
experiment.  

Characteristic Radiation 

When the energy of the electron beam is above a certain 
threshold value, called the excitation potential, an additional 
set of discrete peaks is observed superimposed on the 
white radiation curve. The energies of these peaks are 
characteristic of the type of target material.  

These peaks are generated by a two-stage process. First an 
electron from the filament collides with and removes a 
core electron from an atom of the target. Then an electron 
in a higher energy state "drops down" to fill the lower 
energy, vacant hole in the atom's structure, emitting an X-
ray photon. These emitted X-ray photons have energies 
that are equal to the difference between the upper and 
lower energy levels of the electron that filled the core hole. 
The excitation potential for a material is the minimum 
energy needed to remove the core electron.  

 

Figure 3. Characteristic radiation from an X-ray generator.2  

The characteristic lines in an atom's emission spectra are 
called K, L, M, ... and correspond to the n = 1, 2, 3, ... 
quantum levels of the electron energy states, respectively. 
When the two atomic energy levels differ by only one 
quantum level then the transitions are described as α lines 
(n = 2 to n = 1, or n = 3 to n = 2). When the two levels 
are separated by one or more quantum levels, the 
transitions are known as β lines (n = 3 to n = 1 or n = 4 to 
n = 2).  

 
Figure 4. Electronic energy levels of an atom of the anode.2  

Because all K lines (n = 1) arise from a loss of electrons in 
the n = 1 state, the Kα and Kβ lines always appear at the 
same time. The n = 2 and higher energy levels (L, M, N, O) 
are actually split into multiple energy levels causing the α 
and β transitions to split into a variety of closely spaced 
lines at high resolution. Thus, the observed Cu Kα line can 
be resolved at high scattering angle (high resolution) into 
Kα1 and Kα2 lines with separate wavelengths. The Kα1 line 
is about twice as intense as the Kα2 line. At low resolution 
(lower scattering angle) the Kα wavelength is considered as 
a weighted average of the Kα1 and Kα2 lines with λ(Kαave) = 
[2*(λ(Kα1)) + λ(Kα2)]/3. The Kα line is about 5 - 10 times as 
intense as the Kβ line.  

The intensity of the Kα line can be approximately 
calculated by  

Ik = B i (V - Vk)1.5  

where i = applied current, Vk = excitation potential of the 
target material, V = applied voltage. It can be shown that 
the ratio Ik / Iw is a maximum if the accelerating voltage is 
chosen to be about 4 times the excitation potential of the 
anode.  

The wavelengths of characteristic X-ray lines were found 
to be inversely related to the atomic number of the atoms 
of the target material. Moseley found that  

√(f) = K1 [Z - σ] 

where f is the frequency of the radiation, K1 is a 
proportionality constant, Z is the atomic number of the 
target atom type, and σ is the shielding constant that 
typically has a value of just less than 1. Today this formula 
is more typically recast as 

1/λ = K2 [Z - σ]2 

where λ is the wavelength of the radiation, K2 is a 
proportionality constant, Z is the atomic number of the 
target atoms, and σ is the shielding constant.  

The notation for describing the characteristic X-ray lines 
shown above was first presented by Siegbahn. In 1991, the 



International Union of Pure and Applied Chemists 
(IUPAC) recommended that X-ray lines be referred to by 
writing the initial and final levels separated by a hyphen, e.g. 
Cu K- L3, rather than using the Siegbahn notation, e.g. Cu 
Kα1, which is based on the relative intensities of the lines.3 
A table of the correspondence between IUPAC and 
Siegbahn notations is given in the "International Tables for 
Crystallography," Vol. C.4 The Siegbahn notation remains 
common in the chemical and crystallographic literature.  

The shape of the incident beam depends on the focal 
projection of the filament onto and the anode material. X-
Ray beams that are parallel with wide projection of the 
filament have a focal shape of a line. X-Ray beams that are 
parallel with the narrow projection of the filament have an 
approximate focal shape of a square, which is usually 
labeled as a spot. These two focal projections are necessarily 
about 90 ° apart in the plane normal to the filament-anode 
axis. The X-ray beams emitted from the anode travel in a 
variety of angular directions from the anode surface. As the 
angle from the anode surface is increased, the intensity of 
the beam increases, but the spot also becomes less focused. 
Thus take-off angles are typically selected in the 3 - 6 ° 
range.  

 
Two cartoons of an X-ray tube. Drawing a) shows the line 
and spot focus patterns of a typical sealed tube. Drawing b) 

shows the take-off angle of a tube.  

The generation of X rays is very inefficient. In addition to 
white radiation and characteristic lines, laboratory sources 
also produce Auger electrons and photo-electrons. 
However, the vast majority of the power used in generating 
X rays results in the collision of accelerated electrons with 
valence electrons of the target material producing heat. A 
small fraction of the energy applied to the tube actually 
produces the characteristic radiation used in diffraction 
experiments.  

Sealed-tube X-ray generators use a stationary anode. These 
tubes are limited in the power that can be applied to the 
tube by the amount of heat that can be dissipated through 
water cooling. One way to increase the heat dissipating 
ability of the system, and thus increase the X-ray beam 
intensity, is to move or rotate the anode surface so that the 
beam of electrons continually hits a new region of the 
anode. These rotating-anode generators typically yield 
about 5 times the flux of X-rays as is routinely produced by 
sealed-tube generators with normal-focus X-ray tubes.  

Because macromolecular crystallographers need the most 
intense beam available, they typically use rotating-anode X-
ray generators. Rotating-anode generators require a 
considerable amount of maintenance to replace filaments, 
and repair or replace the anode bearings as well as vacuum 
and water seals. To keep from burning the filament, it must 
remain in a high vacuum. The anode with its constant flow 
of cooling water must be continuously rotating at speeds of 
6000 rpm or more. Special ferro-fluidic seals are used to 
maintain the vacuum along the rotating shaft of the anode. 
Sealed-tube sources with their minimal maintenance 
requirements are generally quite adequate for most small 
molecule needs.  

Another type of sealed-tube source that produces beam 
fluxes comparable to rotating-anode systems is a micro-
focus generator. Because heat dissipates rather quickly in a 
metal block, manufacturers have found that when the focal 
size is reduced to 10-300 μm then the power can be 
increased to make the beam flux much higher than for 
normal- or even fine-focus sealed tube sources. One of the 
great advantages of a micro-focus radiation source is that 
the electrical power needs are in the range of 30-80 Watts 
not the 2-3 kWatts that are required of a typical sealed tube 
generator, or the 3-12 kWatts required by a rotating anode 
generator.  

Other Sources 

There are other sources of X-ray photons that have special 
applications in the laboratory. Synchrotrons produce the 
highest flux sources available. Unfortunately, because 
synchrotrons are very expensive to build and maintain, 
there are few such sources available throughout the world.   

Certain radioactive materials decay to produce photons 
with energies in the X-ray region (e.g., 55Fe). The flux of 
photons of this radioactive material is so low that it is not 
used as a source of X-rays for diffraction experiments. 
However, small samples of 55Fe are often used to test the 
functioning of X-ray detectors. 

A new method of generating X rays that is not yet 
commercially available uses an electron-impact beam 
impinging on a stream of liquid gallium.5 These authors 
have already reported achieving beam fluxes greater that 
modern rotating anodes, with the theoretical capability of 
increasing this flux by another 3 orders of magnitude. 

As a side note, X rays may also be produced by very 
different means, for example, when doing such simple 
tasks as unrolling adhesive tape from a tape dispenser. 
Tribologists found that low energy X rays were emitted 
even when unrolling the tape at rather slow rates of a few 
centimeters per second.6  

Choice of Radiation 



Most X-ray tubes used for diffraction studies have targets 
(anodes) made of copper or molybdenum metal. The 
characteristic wavelengths and excitation potentials for 
these materials are shown below. Copper radiation is 
preferred when the crystals are small or when the unit cells 
are large. Copper radiation (or softer) is required when the 
absolute configuration of a compound is needed and the 
compound only contains atoms with atomic numbers & 10. 
A copper source is preferred for most types of powder 
diffraction.  

Molybdenum radiation is preferred for larger crystals of 
strongly absorbing materials and for very high resolution, 
sin (θ) / λ < 0.6 Å, data. The scintillation point detectors, 
often used in small molecule diffraction, have somewhat 
higher quantum efficiencies for molybdenum radiation 
than for copper radiation. Because the diffraction spots are 
closer together for molybdenum radiation than for copper 
radiation, molybdenum is the preferred radiation source 
when using area detectors to study small molecules. The 
solid angle coverage of most area detectors is such that 
with molybdenum radiation, it is usually possible to collect 
an entire data set with the detector sitting at a single 
position. However, because a brighter incident beam of X-
rays is produced from a copper tube than from a 
molybdenum tube at the same power level, very small 
crystals of even strongly absorbing materials will often yield 
better diffracted intensities from copper radiation than 
from molybdenum radiation.  

Occasionally, other types of target materials, e.g. Cr, Fe, W, 
or Ag, are chosen for specialized diffraction experiments. 
Sources with Cr or Fe targets are often chosen when 
protein crystals are very small or when anomalous 
differences need to be enhanced. When samples are very 
strongly absorbing or when extremely high resolution data 
are needed then X-ray tubes with sources such as W or Ag 
are usually selected.  

Table 1. Selected X-Ray Wavelengths and Excitation Potentials. 

 Cr Fe Cu Mo 

Z 24 26 29 42 

Kα1, Å  2.28962   1.93597   1.54051   0.70932  

Kα2, Å  2.29351   1.93991   1.54433   0.71354  

Kαave, Å  2.29092   1.93728   1.54178   0.71073  

Kβ, Å  2.08480   1.75653   1.39217   0.63225  

β filter Ti Cr Ni Nb 

Resolution, Å 1.15 0.95 0.75 0.35 

Excit. Pot. (kV) 5.99 7.11 8.98 20.0 

Monochromatization and Collimation of X Rays 

Nearly all of the data collection experiments require that 
the energy of the X-ray radiation be limited to as narrow a 
band of energies (and hence wavelengths) as possible. 
Using a narrow wavelength band of X rays significantly 
reduces the fluorescent radiation given off by the sample 
and makes absorption corrections much simpler to 

perform. It has been noted that when the applied voltage 
for K excitation occurs, both the Kα and Kβ lines as well as 
the white radiation curve are observed. Usually the Kα 
band is selected for diffraction experiments because of its 
greater intensity.  

Also, typical data collection methods require that the 
incident beam be a parallel beam of photons. To assure 
that the beam is as parallel as possible (lacking divergence), 
the incident beam path is collimated to produce an incident 
beam that is about 0.5 mm in diameter.  

Filters 

When the energy of a photon beam is just above the 
excitation potential or absorption edge of a material, that material 
strongly absorbs the given photon beam. If another 
substance can be found that has an absorption edge 
between the Kα and Kβ lines of the incident photon beam, 
this other substance can be used to significantly reduce the 
intensity of the Kβ line relative to the Kα line. The 
absorption edges of elements with ZFilter = ZTarget - 1 (or - 2) 
meet this requirement. The thickness of the filtering 
material is usually chosen to reduce the intensity of the Kβ 
line by a factor of 100 while reducing the intensity of the 
Kα line by a factor of 10 or less.  

The absorption of X rays follows Beer's Law:  

I / Io = exp(-μ × t)  

where I = transmitted intensity, Io = incident intensity, t = 
thickness of material, μ = linear absorption coefficient of 
the material. The linear absorption coefficient depends on 
the substance, its density, and the wavelength of radiation. 
Since μ depends on the density of the absorbing material, it 
is usually tabulated as the mass absorption coefficient μm = 
μ / ρ.  

Monochromators 

An alternative way to produce an X-ray beam with a 
narrow wavelength distribution is to diffract the incident 
beam from a single crystal of known lattice dimensions. X-
Ray photons of different wavelengths are diffracted from a 
given set of planes in a crystal at different scattering angles 
according to Bragg's Law. Therefore a narrow band of 
wavelengths can be chosen by selecting a particular 
scattering angle for the monochromator crystal. Crystal 
monochromators need to have the following properties.  

1. The crystal must be mechanically strong and stable in 
the X-ray beam.  

2. The crystal must have a strong diffracted intensity at a 
reasonably low scattering angle for the wavelength of 
the radiation being considered.  



3. The mosaicity of the crystal, which determines the 
divergence of the diffracted beam and the resolution of 
the crystal, should be small.  

A variety of geometries are possible for crystal 
monochromators. Most monochromators are cut with one 
face parallel to a major set of crystal planes. These 
monochromators are then oriented to diffract Kα lines 
from this major set of planes. Some monochromators are 
cut at an angle to the major set of planes in order to 
produce a diffracted beam with a smaller divergence. By 
properly curving the monochromator crystal, the diffracted 
beam may be focused onto a very small area. This curving 
may be achieved either by bending or grinding or both 
bending and grinding. Curved monochromators are usually 
reserved for special applications such synchrotrons.  

Graphite crystals cut on the (0002) face are the most 
common crystals used as monochromators in X-ray 
diffraction laboratories. Other special purpose 
monochromator materials include germanium and lithium 
fluoride. In all commercially available single-crystal 
instruments, the monochromator is placed in the incident 
beam path. Powder diffraction instruments with a point 
detector typically place a monochromator in the diffracted 
beam path to remove any fluorescent radiation from the 
sample. Crystal monochromators systematically alter the 
polarization of the incident beam, requiring different 
geometric corrections be applied to the intensity data.  

Collimators 

Collimators are objects inserted in the incident- or 
diffracted-beam path to shape the X-ray beam. Metal tubes 
are typically used in single-crystal experiments. The inside 
radius of the collimators is typically chosen to be 
somewhat larger than the size of the sample so that the 
sample may be bathed in the incident beam at all times. 
Incident-beam collimators are usually manufactured with 
two narrow regions. The region closest to the X-ray source 
carries out the collimation functions. The second narrow 
region has a slightly larger diameter than the first and is 
used to remove the "parasitic" radiation that takes a bent 
path due to interaction with the edge of the first narrow 
region of the collimator. Diffracted beam collimators only 
function to remove any stray radiation from hitting the 
detector. 

  

The left end of the collimator shown is mounted on the X-
ray tube (or incident beam monochormator). The small 
yellow-colored region at the left is the part of the 
collimator where the size of the beam is determined. The 
green region at the right is chosen to have an opening 
slightly larger than the region drawn in yellow. This green 
region removes the "parasitic" radiation.  

Recently, manufacturers have been selling metal 
collimators with a single or multiple glass capillaries. These 
glass capillaries redirect much of the X-ray beam that 
would otherwise be blocked by the collimator. Such 
capillary inserts in a collimator have been shown to 
increase the intensity of the incident beam by a factor of 
between two and four.  

When a very intense and very small point source is needed, 
such as in protein crystallography, X-ray mirrors may be 
used to shape the incident beam. Mirrors are sometimes 
made from materials that act as beta filters for the radiation 
in use. Mirrors are primarily used with very bright X-ray 
sources such as rotating-anode generators or synchrotrons.  

Powder diffraction experiments usually require a line-
shaped incident beam that is produced from a pair of 
parallel knife edges. A set of Soller slits are used in the 
beam path after the knife edges to remove parasitic 
radiation that scatters from the edges of the blades. Soller 
slits are a set of parallel thin foil sheets that absorb nearly 
all of the X rays not traveling parallel to the metal sheets.  

X-ray mirrors are sometimes used in the incident beam to 
shape the beam as is done by a collimator. Even with Cu 
radiation, the spots in protein diffraction patterns are often 
very close together. The mirrors act to focus the incident 
beam into an very small cross section producing very sharp 
spots in the diffraction pattern. Mirrors are often 
constructed to absorb more of the Kβ radiation than the 
Kα radiation making the beam approximately 
monochromatic. Monochromators significantly reduce the 
intensity of the incident beam; omitting the 
monochromator maximizes the incident beam flux. 
Macromolecular structures are crystalline to only low 
resolution. The Kβ and Kα peaks are generally not 
separated at these low scattering angles. 
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X-ray Diffraction: Indexing Cubic Diffractograms 

 

 
 

A two-dimensional lattice is spanned by two vectors a and b. Every point on the lattice can be reached 

by a lattice vector of the form 

 1 2n n R a b                                                                                                                                  (1) 

 

 

We state without proof
1
that if eq. 1 is extended in three dimensions ( 1 2 3n n n  R a b c ) we have the 

following types of crystal systems. Draw these structures to visualise them. 

                                                
 



 
Such lattices are known as Bravais lattices. 

 

  
14 unique Bravais lattices are possible in three dimensions 

Consider a set of points R constituting a Bravais lattice, and a plane wave defined by: 

 

If this plane wave has the same periodicity as the Bravais lattice, then it satisfies the equation: 

 

 

                                                                                                                            (2) 

Mathematically, we can describe the reciprocal lattice as the set of all vectors K that satisfy the above 

identity for all lattice point position vectors R. This reciprocal lattice is itself a Bravais lattice, and the 

reciprocal of the reciprocal lattice is the original lattice.  

For an infinite three dimensional lattice, defined by its primitive vectors 

( 1 1 1 1 1 2 2 3 3; ; ;with n n n     a a b b c c R a a a ), its reciprocal lattice can be determined by 

generating its three reciprocal primitive vectors, through the formulae 



 

 

 

What are the reciprocal lattice vectors of the simple cubic structure? 

 

 
 

A lattice acts like a diffraction grating for X-rays and the condition for constructive interference 

is the the well known Bragg’s law ( 2 sind n  ) as shown below 

 





 
This implies that constructive interference will occur if the difference between scattered and 

incident X-ray wave vectors is a reciprocal lattice vector. 

 
This condition can illustrated as shown below  

 

with 
2 2 2

2 sin 2 sin
n

K k n
d d

   
 

 
     

This result implies for any set of lattice planes separated by a distance d, there exists a set of 

reciprocal lattice vectors of length n2/d.  It is natural to choose the shortest reciprocal lattice 

vectors to represent the orientation of different lattice planes. 

 

 



 

For cubic crystals with lattice spacing a, show that  2 2 2

2 2

1 1
h k l

d a
    

Examples of Miller indices are shown below: 

 
Source: http://www.diracdelta.co.uk/science/source/m/i/miller%20indices/source.html 

 

Braggs law can therefore be written as 2 sinhkld   

 



The typical X-diffraction measurement geometry is shown below. This is known as Bragg-Brentano 

geometry 

 
The incident angle, , is defined between the X-ray source and the sample. The diffracted angle, 2, is 

defined between the incident beam and the detector angle. The incident angle is always ½ of the 

detector angle 2 .  

 

 



 
Braggs law can be rewritten as 

 



 

 
 

Why do different Bravais lattices have different set of Miller indices? As we go from a simple cubic 

(primitive cubic) to a body centered cubic to face centered cubic, the number of atoms per unit cell 

increases. This implies additional or intervening lattice planes. Certain reflections present in the simple 

cubic structure destructively interfere with reflections from the additional lattice planes. Therefore 

certain sets of planes and their corresponding Miller indices are absent in the diffractogram pattern. 

You will read about this quantitatively in the Condensed Matter Physics course. 

 

 

Source: 

http://bama.ua.edu/~mweaver/courses/MTE481/Laboratory1-2006.pdf 

http://prism.mit.edu/xray/BasicsofXRD.ppt 

Solid State Physics, by Ibach and Luth 

Solid State Physics, by Ashcroft and Mermin 

 

http://prism.mit.edu/xray/BasicsofXRD.ppt


 
Your task is to index the given power diffraction pattern and determine the lattice parameters 

 
You will be given a diffractogram corresponding to a cubic lattice. The indexing of other lattice types 

is non-trivial. Interested students may refer to  

http://bama.ua.edu/~mweaver/courses/MTE481/Laboratory1-2006.pdf 

 

Here is an example of an indexed pattern: 

 



Pattern to be indexed -1 

 

 
 

 



Laboratory Module 1 
Indexing X-Ray Diffraction Patterns 

 
 

LEARNING OBJECTIVES 
 
Upon completion of this module you will be able to index an X-ray diffraction pattern, 
identify the Bravais lattice, and calculate the lattice parameters for crystalline materials. 
 
 

BACKGROUND 
 
We need to know about crystal structures because structure, to a large extent, determines 
properties.  X-ray diffraction (XRD) is one of a number of experimental tools that are used 
to identify the structures of crystalline solids. 
 
The XRD patterns, the product of an XRD experiment, are somewhat like fingerprints in 
that they are unique to the material that is being examined.  The information in an XRD 
pattern is a direct result of two things:   
 

(1) The size and shape of the unit cells determine the relative positions of the diffraction 
peaks; 

(2) Atomic positions within the unit cell determine the relative intensities of the 
diffraction peaks (remember the structure factor?). 

 
Taking these things into account, we can calculate the size and shape of a unit cell from the 
positions of the XRD peaks and we can determine the positions of the atoms in the unit cell 
from the intensities of the diffraction peaks. 
 
Full identification of crystal structures is a multi-step process that consists of: 

(1) Calculation of the size and shape of the unit cell from the XRD peak positions; 
(2) Computation of the number of atoms/unit cell from the size and shape of the cell, 

chemical composition, and measured density; 
(3) Determination of atom positions from the relative intensities of the XRD peaks 

 
We will only concern ourselves with step (1), calculation of the size and shape of the unit 
cell from XRD peak positions.  We loosely refer to this as “indexing.”  The laboratory 
module is broken down into two sections.  The first addresses how to index patterns from 
cubic materials.  The second addresses how to index patterns from non-cubic materials. 
 



PART 1 
PROCEDURE FOR INDEXING CUBIC XRD PATTERNS 

 
When you index a diffraction pattern, you assign the correct Miller indices to each peak 
(reflection) in the diffraction pattern.  An XRD pattern is properly indexed when ALL of the 
peaks in the diffraction pattern are labeled and no peaks expected for the particular structure 
are missing. 
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This is an example of a properly indexed diffraction pattern.  All peaks are accounted for.  
One now needs only to assign the correct Bravais lattice and to calculate lattice parameters. 
 
How to we correctly index a pattern?  The correct procedures follow. 
 
 

PROCEDURE FOR INDEXING AN XRD PATTERN 
 
The procedures are standard.  They work for any crystal structure regardless of whether the 
material is a metal, a ceramic, a semiconductor, a zeolite, etc…  There are two methods of 
analysis.  You will do both.  One I will refer to as the mathematical method.  The second is 
known as the analytical method.  The details are covered below. 
 

Mathematical Method 
 
Interplanar spacings in cubic crystals can be written in terms of lattice parameters using the 
plane spacing equation: 
 



2 2

2 2

1 h k l
d a

2+ +
=  

 
You should recall Bragg’s law ( 2 sindλ θ= ), which can be re-written either as: 
 

2 2 24 sindλ θ=  OR 
2

2
2sin

4d
λθ =  

 
Combining this relationship with the plane spacing equation gives us a new relationship: 

 
2 2 2 2

2 2

1 4h k l
d a 2

sin θ
λ

+ +
= = , 

 
which can be rearranged to: 
 

( )
2

2 2
2sin

4
h k l

a
λθ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
2 2+  

 

The term in parentheses 
2

24a
λ⎛

⎜
⎝ ⎠

⎞
⎟  is constant for any one pattern (because the X-ray 

wavelength λ and the lattice parameters a do not change).  Thus 2sin θ  is proportional to 
.  This proportionality shows that planes with higher Miller indices will diffract 

at higher values of θ. 

2 2h k l+ + 2

 

Since 
2

24a
λ⎛

⎜
⎝ ⎠

⎞
⎟  is constant for any pattern, we can write the following relationship for any 

two different planes: 
 

( )

( )

2
2 2 2

1 1 122
1

2 2
2 2 2 2

2 2 22

4sin
sin

4

h k l
a

h k l
a

λ
θ
θ λ

⎛ ⎞
+ +⎜ ⎟

⎝ ⎠=
⎛ ⎞

+ +⎜ ⎟
⎝ ⎠

 or 
( )
( )

2 2 22
1 1 11

2 2 2 2
2 2 2 2

sin
sin

h k l

h k l
θ
θ

+ +
=

+ +
. 

 
The ratio of 2sin θ  values scales with the ratio of 2 2h k l 2+ +  values.   
 
In cubic systems, the first XRD peak in the XRD pattern will be due to diffraction from 
planes with the lowest Miller indices, which interestingly enough are the close packed 
planes (i.e.:  simple cubic, (100), 2 2h k l 2+ + =1; body-centered cubic, (110) =2; 
and face-centered cubic, (111) =3). 

2 2h k l+ + 2

22 2h k l+ +
 



Since h, k, and l are always integers, we can obtain h k2 2 2l+ +  values by dividing the 
2sin θ  values for the different XRD peaks with the minimum one in the pattern (i.e., the 
2sin θ  value from the first XRD peak) and multiplying that ratio by the proper integer 

(either 1, 2 or 3).  This should yield a list of integers that represent the various  
values.  You can identify the correct Bravais lattice by recognizing the sequence of allowed 
reflections for cubic lattices (i.e., the sequence of allowed peaks written in terms of the 
quadratic form of the Miller indices). 

2 2h k l+ + 2

2

2

2

2

 
Primitive  = 1,2,3,4,5,6,8,9,10,11,12,13,14,16… 2 2h k l+ +
Body-centered  = 2,4,6,8,10,12,14,16… 2 2h k l+ +
Face-centered  = 3,4,8,11,12,16,19,20,24,27,32… 2 2h k l+ +
Diamond cubic  = 3,8,11,16,19,24,27,32… 2 2h k l+ +
 
The lattice parameters can be calculated from: 

 

( )
2

2 2
2sin

4
h k l

a
λθ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
2 2+  

 
which can be re-written as: 
 

( )
2

2 2 2 2
24sin

a h k lλ
θ

= + + 2 2 2

2sin
a h k lλ

θ
= + + OR  

 
 
Worked Example 
 
Consider the following XRD pattern for Aluminum, which was collected using CuKα 
radiation. 
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(82.33,7.8) 
(98.93,3.6) 

(111.83,12.2) 

(116.36,11.9) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Index this pattern and determine the lattice parameters. 
 
Steps: 

(1) Identify the peaks. 
(2) Determine 2sin θ . 
(3) Calculate the ratio 2sin θ / 2

minsin θ  and multiply by the appropriate integers. 
(4) Select the result from (3) that yields 2 2h k l 2+ +  as an integer. 
(5) Compare results with the sequences of 2 2h k l 2+ +  values to identify the Bravais 

lattice. 
(6) Calculate lattice parameters. 
 

Here we go! 
 

(1) Identify the peaks and their proper 2θ values.  Eight peaks for this pattern.  Note: 
most patterns will contain α1 and α2 peaks at higher angles.  It is common to neglect 
α2 peaks. 

 

Peak 
No. 2θ sin2θ 

2

2
min

sin1
sin

θ
θ

×

 

2

2
min

sin2
sin

θ
θ

×

 

2

2
min

sin3
sin

θ
θ

×
h2+k2+l2 hkl a (Å) 

1 38.43        
2 44.67        
3 65.02        
4 78.13        
5 82.33        
6 98.93        
7 111.83        
8 116.36        

 
 

(2) Determine 2sin θ . 
 

Peak 
No. 2θ sin2θ 

2

2
min

sin1
sin

θ
θ

×

 

2

2
min

sin2
sin

θ
θ

×

 

2

2
min

sin3
sin

θ
θ

×
h2+k2+l2 hkl a (Å) 

1 38.43 0.1083       
2 44.67 0.1444       
3 65.02 0.2888       
4 78.13 0.3972       
5 82.33 0.4333       
6 98.93 0.5776       
7 111.83 0.6859       



8 116.36 0.7220       
 



(3) Calculate the ratio 2sin θ / 2
minsin θ  and multiply by the appropriate integers. 

 

Peak 
No. 2θ sin2θ 

2

2
min

sin1
sin

θ
θ

×

 

2

2
min

sin2
sin

θ
θ

×

 

2

2
min

sin3
sin

θ
θ

×
h2+k2+l2 hkl a (Å) 

1 38.43 0.1083 1.000 2.000 3.000    
2 44.67 0.1444 1.333 2.667 4.000    
3 65.02 0.2888 2.667 5.333 8.000    
4 78.13 0.3972 3.667 7.333 11.000    
5 82.33 0.4333 4.000 8.000 12.000    
6 98.93 0.5776 5.333 10.665 15.998    
7 111.83 0.6859 6.333 12.665 18.998    
8 116.36 0.7220 6.666 13.331 19.997    

 
(4) Select the result from (3) that most closely yields 2 2h k l 2+ +  as a series of integers. 

 

Peak 
No. 2θ sin2θ 

2

2
min

sin1
sin

θ
θ

×

 

2

2
min

sin2
sin

θ
θ

×

 

2

2
min

sin3
sin

θ
θ

×
h2+k2+l2 hkl a (Å) 

1 38.43 0.1083 1.000 2.000 3.000    
2 44.67 0.1444 1.333 2.667 4.000    
3 65.02 0.2888 2.667 5.333 8.000    
4 78.13 0.3972 3.667 7.333 11.000    
5 82.33 0.4333 4.000 8.000 12.000    
6 98.93 0.5776 5.333 10.665 15.998    
7 111.83 0.6859 6.333 12.665 18.998    
8 116.36 0.7220 6.666 13.331 19.997    

 
(5) Compare results with the sequences of 2 2h k l 2+ +  values to identify the miller 

indices for the appropriate peaks and the Bravais lattice. 
 

Peak 
No. 2θ sin2θ 

2

2
min

sin1
sin

θ
θ

×

 

2

2
min

sin2
sin

θ
θ

×

 

2

2
min

sin3
sin

θ
θ

×
h2+k2+l2 hkl a (Å) 

1 38.43 0.1083 1.000 2.000 3.000 3 111 4.0538 
2 44.67 0.1444 1.333 2.667 4.000 4 200 4.0539 
3 65.02 0.2888 2.667 5.333 8.000 8 220 4.0538 
4 78.13 0.3972 3.667 7.333 11.000 11 311 4.0538 
5 82.33 0.4333 4.000 8.000 12.000 12 222 4.0538 
6 98.93 0.5776 5.333 10.665 15.998 16 400 4.0541 
7 111.83 0.6859 6.333 12.665 18.998 19 331 4.0540 
8 116.36 0.7220 6.666 13.331 19.997 20 420 4.0541 

Bravais lattice is Face-Centered Cubic 



 



(6) Calculate lattice parameters. 
 

Peak 
No. 2θ sin2θ 

2

2
min

sin1
sin

θ
θ

×

 

2

2
min

sin2
sin

θ
θ

×

 

2

2
min

sin3
sin

θ
θ

×
h2+k2+l2 hkl a (Å) 

1 38.43 0.1083 1.000 2.000 3.000 3 111 4.0538 
2 44.67 0.1444 1.333 2.667 4.000 4 200 4.0539 
3 65.02 0.2888 2.667 5.333 8.000 8 220 4.0538 
4 78.13 0.3972 3.667 7.333 11.000 11 311 4.0538 
5 82.33 0.4333 4.000 8.000 12.000 12 222 4.0538 
6 98.93 0.5776 5.333 10.665 15.998 16 400 4.0541 
7 111.83 0.6859 6.333 12.665 18.998 19 331 4.0540 
8 116.36 0.7220 6.666 13.331 19.997 20 420 4.0541 

Average lattice parameter is 4.0539 Å 
 
 

Analytical Method 
 
This is an alternative approach that will yield the same results as the mathematical method.  
It will give you a nice comparison. 
 
Recall: 
 

( )
2

2 2 2 2
2sin

4
h k l

a
λθ

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
 and 

2

2 = constant
4a
λ⎛ ⎞

⎜ ⎟
⎝ ⎠

 for all patterns 

 

If we let K = 
2

24a
λ⎛ ⎞

⎜
⎝ ⎠

⎟ , we can re-write these equations as: 

 
( )2 2 2sin 2K h k lθ = + +  

 
For any cubic system, the possible values of 2 2h k l 2+ +  correspond to the sequence: 
 

2 2h k l+ + 2  = 1,2,3,4,5,6,8,9,10,11… 
 
If we determine 2sin θ  for each peak and we divide the values by the integers 
2,3,4,5,6,8,9,10,11…, we can obtain a common quotient, which is the value of K 
corresponding to  = 1. 2 2h k l+ + 2

 
K is related to the lattice parameter as follows: 
 



2

24
K

a
λ⎛

= ⎜
⎝ ⎠

⎞
⎟  OR 

2
a

K
λ

=  

 
If we divide the 2sin θ  values for each reflection by K, we get the 2 2h k l 2+ +  values.  The 
sequence of  values can be used to label each XRD peak and to identify the 
Bravais lattice. 

2 2h k l+ + 2

 
Let’s do an example for the Aluminum pattern presented above. 
 
Steps: 

(1) Identify the peaks. 
(2) Determine 2sin θ . 
(3) Calculate the ratio 2sin θ /(integers) 
(4) Identify the lowest common quotient from (3) and identify the integers to which it 

corresponds.  Let the lowest common quotient be K. 
(5) Divide 2sin θ  by K for each peak.  This will give you a list of integers 

corresponding to . 2 2h k l+ + 2

2(6) Select the appropriate pattern of 2 2h k l+ +  values and identify the Bravais lattice. 
(7) Calculate lattice parameters. 

 
Here we go again! 

 
(1) Identify the peaks. 

Peak 
No. 2θ 2sin θ  

2sin
2

θ  
2sin

3
θ  

2sin
4

θ  
2sin

5
θ  

2sin
6

θ  
2sin

8
θ  

1 38.43   
2 44.67   
3 65.02   
4 78.13   
5 82.33   
6 98.93   
7 111.83   
8 116.36   

 
(2) Determine 2sin θ . 

Peak 
No. 2θ 2sin θ  

2sin
2

θ  
2sin

3
θ  

2sin
4

θ  
2sin

5
θ  

2sin
6

θ  
2sin

8
θ  

1 38.43 0.1083  
2 44.67 0.1444  
3 65.02 0.2888  
4 78.13 0.3972  
5 82.33 0.4333  
6 98.93 0.5776  



7 111.83 0.6859  
8 116.36 0.7220  

 
(3) Calculate the ratio 2sin θ /(integers) 

 

Peak 
No. 2θ 2sin θ  

2sin
2

θ  
2sin

3
θ  

2sin
4

θ  
2sin

5
θ  

2sin
6

θ  
2sin

8
θ  

1 38.43 0.1083 0.0542 0.0361 0.0271 0.0217 0.0181 0.0135
2 44.67 0.1444 0.0722 0.0481 0.0361 0.0289 0.0241 0.0181
3 65.02 0.2888 0.1444 0.0963 0.0722 0.0578 0.0481 0.0361
4 78.13 0.3972 0.1986 0.1324 0.0993 0.0794 0.0662 0.0496
5 82.33 0.4333 0.2166 0.1444 0.1083 0.0867 0.0722 0.0542
6 98.93 0.5776 0.2888 0.1925 0.1444 0.1155 0.0963 0.0722
7 111.83 0.6859 0.3430 0.2286 0.1715 0.1372 0.1143 0.0857
8 116.36 0.7220 0.3610 0.2407 0.1805 0.1444 0.1203 0.0903

 
 

(4) Identify the lowest common quotient from (3) and identify the integers to which it 
corresponds.  Let the lowest common quotient be K. 

 

Peak 
No. 2θ 2sin θ  

2sin
2

θ  
2sin

3
θ  

2sin
4

θ  
2sin

5
θ  

2sin
6

θ  
2sin

8
θ  

1 38.43 0.1083 0.0542 0.0361 0.0271 0.0217 0.0181 0.0135
2 44.67 0.1444 0.0722 0.0481 0.0361 0.0289 0.0241 0.0181
3 65.02 0.2888 0.1444 0.0963 0.0722 0.0578 0.0481 0.0361
4 78.13 0.3972 0.1986 0.1324 0.0993 0.0794 0.0662 0.0496
5 82.33 0.4333 0.2166 0.1444 0.1083 0.0867 0.0722 0.0542
6 98.93 0.5776 0.2888 0.1925 0.1444 0.1155 0.0963 0.0722
7 111.83 0.6859 0.3430 0.2286 0.1715 0.1372 0.1143 0.0857
8 116.36 0.7220 0.3610 0.2407 0.1805 0.1444 0.1203 0.0903

K = 0.0361 
 

(5) Divide 2sin θ  by K for each peak.  This will give you a list of integers 
corresponding to . 2 2h k l+ + 2

 

Peak 
No. 2θ 2sin θ  

2sin
K

θ  2 2 2h k l+ + hkl 
1 38.43 0.1083 3.000   
2 44.67 0.1444 4.000   
3 65.02 0.2888 8.001   
4 78.13 0.3972 11.001   
5 82.33 0.4333 12.002   
6 98.93 0.5776 16.000   
7 111.83 0.6859 19.001   



8 116.36 0.7220 20.000   
 
 
 

(6) Select the appropriate pattern of 2 2h k l 2+ +  values and identify the Bravais lattice. 
 

Peak 
No. 2θ 2sin θ  

2sin
K

θ  2 2h k l 2+ + hkl 
1 38.43 0.1083 3.000 3 111 
2 44.67 0.1444 4.000 4 200 
3 65.02 0.2888 8.001 8 220 
4 78.13 0.3972 11.001 11 311 
5 82.33 0.4333 12.002 12 222 
6 98.93 0.5776 16.000 16 400 
7 111.83 0.6859 19.001 19 331 
8 116.36 0.7220 20.000 20 420 

Sequence suggests a Face-Centered Cubic Bravais Lattice 
 

(7) Calculate lattice parameters. 
 

1.540562 A
2 2 0.0361

a
K

λ
= =  = 4.0541 Å 

 
 
These methods will work for any cubic material.  This means metals, ceramics, ionic 
crystals, minerals, intermetallics, semiconductors, etc… 
 
 

PART 2 
PROCEDURE FOR INDEXING NON-CUBIC XRD PATTERNS 

 
The procedures are standard and will work for any crystal.  The equations will differ 
slightly from each other due to differences in crystal size and shape (i.e., crystal structure).  
As was the case for cubic crystals, there are two methods of analysis that involve 
calculations.  You will do both.  One I will refer to as the mathematical method.  The 
second I will refer to as the analytical method.  Both the mathematical and graphical 
methods require some knowledge of the crystal structure that you are dealing with and the 
resulting lattice parameter ratios (e.g., c/a, b/a, etc…). 
This information can be determined graphically using Hull-Davey charts.  We will first 
introduce the concept of Hull-Davey charts prior to showing how to proper index patterns. 

Hull-Davey Charts 
 



The graphical method developed by Hull and Davey1 are convenient for indexing 
diffraction patterns, in particular for systems of lower symmetry.  The reason is that this 
method allows one to determine structure even if lattice parameters are unknown.  The 
mathematical methods that will be illustrated in later sections of this module require such 
knowledge, in particular the values of the various lattice parameter ratios (c/a, b/a, c/b 
etc…).  The steps involved in constructing and indexing patterns using Hull-Davey charts is 
very straightforward. 
 
First, consider the plane spacing equations for the crystal structures of interest.  Some 
examples are shown below: 
 

Hexagonal 
2 2

2 2

1 4
3

h hk k l
d a

⎛ ⎞+ + 2

2c
= +⎜ ⎟

⎝ ⎠
 

Tetragonal 
2 2 2

2 2

1 h k l
d a

+
2c

= +  

Orthorhombic 
2 2

2 2 2

1 h k l
d a b c

2

2= + +  

Etc. 
 
You should recall Bragg’s law ( 2 sindλ θ= ), which can be re-written either as: 
 

2 2 24 sindλ θ=  
 

or 
 

2
2

2sin
4d
λθ =  

 
Combining Bragg’s law with the plane spacing equations yields the relationship: 
 

 

Hexagonal 
2 2 2

2 2 2

1 4 4sin
3

h hk k l
d a c

2

2

θ
λ

⎛ ⎞+ +
= + =⎜ ⎟

⎝ ⎠
 

Tetragonal 
2 2 2 2

2 2 2 2

1 4h k l
d a c

sin θ
λ

+
= + =  

Orthorhombic 
2 2 2 2

2 2 2 2 2

1 4h k l
d a b c

sin θ
λ

= + + =  

Etc… 
 
which can be rearranged in terms of sin2θ to: 

                                                 
1 A.W. Hull and W.P. Davey, Phys. Rev., vol. 17, pp. 549, 1921; W.P. Davey, Gen. Elec. Rev., vol. 25, pp. 
564, 1922. 



 

Hexagonal 
2 2 2

2
2 2

4sin
4 3

h hk k l
a c

λθ
2⎡ ⎤⎛ ⎞ ⎛ ⎞+ +

= = +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

 

Tetragonal 
2 2 2 2

2
2 2sin

4
h k l

a c
λθ

⎛ ⎞⎛ +
= +⎜ ⎟⎜

⎝ ⎠⎝

⎞
⎟
⎠

 

Orthorhombic 
2 2 2 2

2
2 2 2sin

4
h k l
a b c

λθ
⎛ ⎞⎛

= + +⎜ ⎟⎜
⎝ ⎠⎝

⎞
⎟
⎠

 

 

You should note that as unlike cubic systems where 
2

24a
λ⎛

⎜
⎝ ⎠

⎞
⎟  is constant, your results for 

non-cubic systems will depend upon ratios of lattice parameters (i.e., c/a, b/a, etc.) and your 
interaxial angles (i.e., α, β, γ).  We will illustrate this (“sort of”) below.  This is due to the 
non-equivalence of indices in these systems (e.g., tetragonal – 001 ≠ 100; orthorhombic – 
001 ≠ 010 ≠ 100; etc…).   
 
Let’s concentrate on hexagonal systems for the time being.  I may ask you to derive 
relationships for tetragonal and orthorhombic systems in a homework assignment.  As noted 
previously, the mathematical method requires knowledge of the c/a ratio.  We don’t know 
what it is so we need to construct a Hull-Davey chart.  To accomplish this goal, we must 
first rewrite our revised d-spacing equations as follows: 
 

( )

2 2 2 2

2 2 2 2

2
2 2

2

1 4 4sin
3

42log 2log log
3 (

h hk k l
d a c

ld a h hk k
c a

θ
λ

⎛ ⎞+ +
= + =⎜ ⎟

⎝ ⎠
⇓

/ )
⎡ ⎤

= − + + +⎢ ⎥
⎣ ⎦  

 
Letting the term in brackets equal s, we finally end up with: 

 
[ ]2log 2log logd a= − s  

 
We can now construct the Hull-Davey chart by plotting the variation of log [s] with c/a for 
different hkl values.  One axis will consist of c/a values while the other will consist of -log 
[s] values with the origin set at log [1] = 0.  A representative chart is presented on the next 
page.   



 

Hull-Davey Plot for HCP
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To determine the c/a ratio, one only needs to collect an XRD pattern, identify the peak 
locations in terms of the Bragg angle, calculate the d-spacing for each peak and to construct 
a single range d-spacing scale (2⋅log d) that is the same size as the logarithmic [s] scale (you 
can use sin2θ instead if you prefer).  I know this is confusing so I have schematically 
illustrated what I mean in the next set of figures. 



 
 

h1k1l1

h2k2l2

h3k3l3

h4k4l4

c/a ratio 

log [s] 

+

d scale 

sin
2θ-scale 

1.0 1.0 1.0 

+ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Next, you need to calculate the d-spacing or sin2θ values for the observed peaks and mark 
them on a strip laid along side the appropriate d- or sin2θ - scale. 
 
 

h1k1l1

h2k2l2

h3k3l3

h4k4l4

c/a ratio 

log [s]

+

sin
2θ-scale 

d scale

1.0 1.0 1.0 

+ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The strip should be moved horizontally and vertically across the log [s] – c/a plot until a 
position is found where each mark on your strip coincides with a line on the chart.  This is 
illustrated schematically on the next figure. 
 
 
 

Please keep in mind that my illustrations for the Hull-Davey method are SCHEMATIC.  
This method is very difficult to convey.  You should consult the classical references to find 

out more information about this technique. 
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This is our c/a ratio for the pattern!

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This method really does work as I showed you in class.  Once you know your c/a ratio, you 
can index the XRD pattern.  As we noted above, there are two ways to do this.  The first is 
the mathematical method.   
 
 

Mathematical Method for Non-Cubic Crystals 
 
Recall the following equation: 

 

( )
2 2

2 2 2
2 2

4sin
4 3 ( / )

lh hk k
a c

λθ
⎛ ⎞ ⎡

= + + +⎜ ⎟ a
⎤

⎢ ⎥
⎝ ⎠ ⎣ ⎦

 

 
Note that the lattice parameter a and the ratio of lattice parameters c/a are constant for a 

given diffraction pattern.  Thus, 
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indexed in by considering the terms in brackets: 
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Let’s start with term 1.  This term only depends on the indices h and k.  Thus its value can 
be calculated for different values of h and k.  This is done below for various hk values. 
 



Term 1 calculated for various values of hk 

0 1 2 3
0 0.000 1.333 5.333 12.000
1 1.333 4.000 9.333 17.333
2 5.333 9.333 16.000 25.333
3 12.000 17.333 25.333 36.000

h

k

 
 
The second term can be determined by substituting in the known c/a ratio.  This is 
illustrated for zinc (c/a = 1.8563) in the table below. 
 

Term 2 calculated for zinc (c/a = 1.8563) 
l l 2 l 2/(c/a )2

0 0 0.000
1 1 0.290
2 4 1.161
3 9 2.612
4 16 4.643
5 25 7.255
6 36 10.447  

 
The next step is to add the values for the two terms that are permitted by the structure factor 
(i.e., the values corresponding to the allowed hkl values) and to rank them in increasing 
order.  The structure factor calculation for hexagonal systems yields the following rules: 
 

1.  When h + 2k = 3N (where N is an integer), there is no peak. 
2. When l is odd, there is no peak. 

 
Both criteria must be met! 
 

Indices (hkl) l h + 2k Peak
301 Odd 3 NO 
103 Odd 1 ≠ 3N YES 

Etc…    
Compare with values in appendix 9 in Cullity. 

 
Several values for the bracketed quantity are calculated below minus the peaks forbidden by 
the structure factor. 
 



h k l sum
0 0 2 1.1608
1 0 0 1.3333
1 0 1 1.6235
1 0 2 2.4942
1 0 3 3.9452
1 1 0 4.0000
0 0 4 4.6433
1 1 2 5.1608
2 0 0 5.3333
2 0 1 5.6235
1 0 4 5.9766
2 0 2 6.4942  

 
The values in this table have been calculated for specific (hkl) planes.  We can assign 
specific hkl  values for each of the peaks in a hexagonal unknown by noting that the 
sequence of peaks will be the same as indicated in the table. 
 
Lattice parameters can be determined in two ways: 
 
We can calculate a by looking for peaks where l = 0 (i.e., hk0 peaks).  If you substitute l = 0 
into: 
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you will get, 
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You can now perform this calculation for every hk0 peak, which will yield values for a.  
Similarly, values for c can be determined by looking for 00l type peaks.  In these instances, 
h = k = 0.  Thus, 
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Worked Example 
 
Consider the following XRD pattern for Titanium, which was collected using CuKα 
radiation. 
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CuKα radiation 
λ = 1.540562 Å 

 
Index this pattern and determine the lattice parameters. 
 
Steps: 
 

(1) Identify the peaks. 
 

(2) Determine values of ( 24
3

h hk k+ + )2  for reflections allowed by the structure factor. 

(3) Determine values of 
2

2( / )
l

c a
 for the allowed reflections and the known c/a ratio 

(4) Add the solutions from parts (2) and (3) together and re-arrange them in increasing 
order. 

 
(5) Use this order to assign indices to the peaks in your diffraction pattern. 
 
(6) Look for hk0 type reflections and calculate a for these reflections. 
 
(7) Look for 00l type reflections.  Calculate c for these reflections. 
 



Here we go! 
 

(1) Identify the peaks. 
 

Peak I/Io sin2θ d 
35.275 21 0.0918 2.542
38.545 18 0.1089 2.334
40.320 100 0.1188 2.235
53.115 16 0.1999 1.723
63.095 11 0.2737 1.472
70.765 9 0.3353 1.330
74.250 10 0.3643 1.276
76.365 8 0.3821 1.246
77.500 14 0.3918 1.231
82.360 2 0.4335 1.170
86.940 2 0.4733 1.120
92.900 10 0.5253 1.063

 

(2) Determine values of ( 24
3

h hk k+ + )2  for reflections allowed by the structure factor. 

 
    k 
    0 1 2 3 

0 0.000 1.333 5.333 12.000 
1 1.333 4.000 9.333 17.333 
2 5.333 9.333 16.000 25.333 

h 

3 12.000 17.333 25.333 36.000 
 

(3) Determine values of 
2

2( / )
l

c a
 for the allowed reflections and the known c/a ratio. 

Titanium: c/a = 1.587 
l l2 l2/(c/a)2

0 0 0.000
1 1 0.397
2 4 1.588
3 9 3.573
4 16 6.352
5 25 9.925
6 36 14.292

 
 



(4) Add the solutions from parts (2) and (3) together and re-arrange them in increasing 
order. 

 
hkl Pt.1+Pt.2  hkl Pt.1+Pt.2 
002 1.588 100 1.333
100 1.333 002 1.588
101 1.730 101 1.730
102 2.921 102 2.921
103 4.906 110 4.000
110 4.000 103 4.906
004 6.352 200 5.333
112 5.588 112 5.588
200 5.333 201 5.730
201 5.730 004 6.352
104 7.685 202 6.921
202 6.921 104 7.685
203 8.906 203 8.906
105 11.258 210 9.333
114 10.352 211 9.730
210 9.333 114 10.352
211 9.730 212 10.921
204 11.685 105 11.258
006 14.292 204 11.685
212 10.921 300 12.000
106 15.625 213 12.906
213 12.906 302 13.588
300 12.000 006 14.292
205 15.258 205 15.258
302 13.588 106 15.625

 
 

(5) Use this order to assign indices to the peaks in your diffraction pattern. 
 

Peak I/Io sin2θ d (nm) hkl a c h2+hk+k2 l2

35.275 21 0.091805 2.5423 100    
38.545 18 0.108941 2.3338 002    
40.320 100 0.118779 2.2351 101     
53.115 16 0.199895 1.7229 102     
63.095 11 0.273744 1.4723 110    
70.765 9 0.335278 1.3303 103     
74.250 10 0.36428 1.2763 200    
76.365 8 0.382132 1.2461 112     
77.500 14 0.39178 1.2307 201     
82.360 2 0.433526 1.1699 004    
86.940 2 0.473309 1.1197 202     
92.900 10 0.525296 1.0628 104     

    AVG   
 



 
(6) Look for hk0 type reflections and calculate a for these reflections. 

 
Peak I/Io sin2θ d (nm) hkl a c h2+hk+k2 l2

35.275 21 0.091805 2.5423 100 2.936  1   
38.545 18 0.108941 2.3338 002      
40.320 100 0.118779 2.2351 101       
53.115 16 0.199895 1.7229 102       
63.095 11 0.273744 1.4723 110 2.945 3  
70.765 9 0.335278 1.3303 103       
74.250 10 0.36428 1.2763 200 2.947 4  
76.365 8 0.382132 1.2461 112       
77.500 14 0.39178 1.2307 201       
82.360 2 0.433526 1.1699 004      
86.940 2 0.473309 1.1197 202         
92.900 10 0.525296 1.0628 104         

    AVG 2.943 c/a:  
 
 

(7) Look for 00l type reflections.  Calculate c for these reflections. 
 

Peak I/Io sin2θ d (nm) hkl a c h2+hk+k2 l2

35.275 21 0.091805 2.5423 100 2.936  1   
38.545 18 0.108941 2.3338 002   4.668   4 
40.320 100 0.118779 2.2351 101         
53.115 16 0.199895 1.7229 102         
63.095 11 0.273744 1.4723 110 2.945  3   
70.765 9 0.335278 1.3303 103         
74.250 10 0.36428 1.2763 200 2.947  4   
76.365 8 0.382132 1.2461 112         
77.500 14 0.39178 1.2307 201         
82.360 2 0.433526 1.1699 004   4.680   16 
86.940 2 0.473309 1.1197 202         
92.900 10 0.525296 1.0628 104         

    AVG 2.943 4.674 c/a: 1.588 
 

Pretty good correlation with ICDD value.  Actual c/a for Titanium is 1.5871 
 
 
This method, though effective for most powder XRD data, can yield the wrong results if 
XRD peaks are missing from your XRD pattern.  In other words, missing peaks can cause 
you to assign the wrong hkl values to a peak.  Other methods should be available. 
 

Analytical Method for Non-Cubic Crystals 
 
To accurately apply this technique, one must first consider our altered plane spacing 
equation: 
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Since a and c/a are constants for any given pattern, we can re-arrange this equation to: 
 

( )2 2 2sin A h hk k Clθ = + + + 2  
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= .  Since h, k, and l are always integers, the term in 

parentheses,  can only have values like 0, 1, 3, 4, 7, 9, 12… and l2h hk k+ + 2 2 can only 
have values like 0, 1, 4, 9,…. 
 
We need to calculate 2sin θ  for each peak, divide each 2sin θ  value by the integers 3, 4, 7, 
9… and look for the common quotient (i.e., the 2sin / nθ  value that is equal to one of the 
observed 2sin θ  values).  The 2sin θ  values representing this common quotient refer to hk0 
type peaks.  Thus this common quotient can be tentatively assigned as A. 
 
We can now re-arrange terms in our modified equation to obtain C.  This is done as follows: 
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We get the value of C by subtracting from each 2sin θ  the values of n⋅A (i.e., A, 3A, 4A, 
7A,…) where A is the common quotient that we identified above.  Next, we need to look for 
the remainders that are in the ratio of 1, 4, 9, 16…, which will be peaks of the 00l type.  We 
can determine C from these peaks.  The remaining peaks are neither hk0-type nor 00l type.  
Instead they are hkl-type.  They can be indexed from a combination of A and C values.  
Let’s do an example. 
 
 
Worked Example 
 
Steps: 

(1) Identify the peaks and calculate 2sin θ  for each peak. 
(2) Divide each 2sin θ  value by the integers 3, 4, 7, 9…. 
(3) Look for the common quotient.   
(4) Let the lowest common quotient represent A.   
(5) Assign hk0 type indices to peaks. 
(6) Calculate 2sin θ - nA where n = 1, 3, 4, 7…. 



(7) Look for the lowest common quotient.  From this we can identify 00l type peaks.  
Recall, that 001 is not allowed for hexagonal systems.  The first 00l type peak will 
be 002.  We can calculate C from: 

 
2 2 2 2sin ( )C l A h hk kθ⋅ = − ⋅ + +

2in

 
 

(8) Look for values of s θ  that increase by factors of 4, 9… (this is because l = 1, 2, 
3… and l2 = 1, 4, 9…).  Peaks exhibiting these characteristics are 00l type peaks, 
which can be assigned the indices 004, 009, etc…).  Also note that the values of 

2sin θ  will be some integral number times the value observed in (7) which 
indicates the indices of the peak 

(9) Peaks that are neither hk0 nor 00l can be identified using combinations of our 
calculated A and C values. 

(10) Calculate the lattice parameters from the values of A and C. 
 

 
Confused yet?  You could be.  I was the first time I learned these things.  Let me show you 
an example that should make all things clear. 
 

Here we go! 
 
Consider the diffraction pattern for Titanium as shown below.  This one is a little different 
than the specimen that we analyzed above. 
 
   Intensity (%) 

2 θ (°)

30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0 

10 

20 
30 

40 

50 

60 
70 

80 

90 

100 

105 110 115 120

(35.10,25.5) 

(38.44,25

(40.  

(53.02,12.8) (62.96,13.4) (70.70,13.0)

(74.17,1.8)

(76.24,13.1)

(77.37,9.3)

(82.35,1.7)

(86.79,2.1)

(92.79,1.8)

(102.41,4.4) (105.82,1.4) 
(109.08,8.3) 

(114.35,5.4) 
(119.30,2.7)

.6) 

18,100.0)

λ = 1.540562 Å
Titanium 

c/a = 1.1.587 

 



 

Peak I/Io sin2θ (sin2θ)/3 (sin2θ)/4 (sin2θ)/7 (sin2θ)/9 (sin2θ)/12 hkl (sin2θ)/LCQ
35.100 25.5 0.0909 0.0303 0.0227 0.0130 0.0101 0.0076 100 1.0
38.390 25.6 0.1081 0.0360 0.0270 0.0154 0.0120 0.0090 1.2
40.170 100 0.1179 0.0393 0.0295 0.0168 0.0131 0.0098 1.3
53.000 12.8 0.1991 0.0664 0.0498 0.0284 0.0221 0.0166 2.2
62.940 13.4 0.2725 0.0908 0.0681 0.0389 0.0303 0.0227 110 3.0
70.650 13 0.3343 0.1114 0.0836 0.0478 0.0371 0.0279 3.7
74.170 1.8 0.3636 0.1212 0.0909 0.0519 0.0404 0.0303 200 4.0
76.210 13.1 0.3808 0.1269 0.0952 0.0544 0.0423 0.0317 4.2
77.350 9.3 0.3905 0.1302 0.0976 0.0558 0.0434 0.0325 4.3
82.200 1.7 0.4321 0.1440 0.1080 0.0617 0.0480 0.0360 4.8
86.740 2.1 0.4716 0.1572 0.1179 0.0674 0.0524 0.0393 5.2
92.680 1.8 0.5234 0.1745 0.1308 0.0748 0.0582 0.0436 5.8

102.350 4.4 0.6069 0.2023 0.1517 0.0867 0.0674 0.0506 6.7
105.600 1.4 0.6345 0.2115 0.1586 0.0906 0.0705 0.0529 210 7.0
109.050 8.3 0.6632 0.2211 0.1658 0.0947 0.0737 0.0553 7.3
114.220 5.4 0.7051 0.2350 0.1763 0.1007 0.0783 0.0588 7.8
119.280 2.7 0.7445 0.2482 0.1861 0.1064 0.0827 0.0620 8.2

A = 0.0908

= 3 x A

= 4 x A

= 7 x A

Indices correspond to:
h2+hk+k2 = 1, 3, 4, 7…

or
hk  = 10, 11, 20, 21

Steps to success:
1. Calculate sin2θ for each peak
2. Divide each sin2θ value by integers 3, 4, 7…
        (from h2+hk+k2 allowed by the structure factor)
3. Look for lowest common quotient.
4. Let lowest common quotient = A .
5. Peaks with lowest common quotient are hk 0 type peaks.  Assign allowed hk 0 indices to peaks.

 



λ
1.54062
Peak I/Io sin2θ sin2θ-A sin2θ-3A sin2θ-4A sin2θ-4A h k l C= LCQ/l 2 l 2 =LCQ/C
35.100 25.5 0.0909 1 0 0
38.390 25.6 0.1081 0.0173 0 0 2 0.0270 4.0
40.170 100 0.1179 0.0271
53.000 12.8 0.1991 0.1083 1 0 2 0.0271
62.940 13.4 0.2725 0.1817 0.0001 1 1 0
70.650 13 0.3343 0.2435 0.0618
74.170 1.8 0.3636 0.2728 0.0911 0.0003 2 0 0
76.210 13.1 0.3808 0.2900 0.1083 0.0175 1 1 2 0.0271
77.350 9.3 0.3905 0.2997 0.1180 0.0272
82.200 1.7 0.4321 0.3413 0.1597 0.0688 0 0 4 0.0270 16
86.740 2.1 0.4716 0.3807 0.1991 0.1083 2 0 2 0.0271
92.680 1.8 0.5234 0.4326 0.2509 0.1601

102.350 4.4 0.6069 0.5161 0.3345 0.2436
105.600 1.4 0.6345 0.5436 0.3620 0.2711 2 1 0
109.050 8.3 0.6632 0.5724 0.3907 0.2999 0.0274
114.220 5.4 0.7051 0.6143 0.4326 0.3418 0.0693
119.280 2.7 0.7445 0.6537 0.4721 0.3812 0.1087

LCQ = 0.1083

6. Subtract from each sin2θ value 3A , 4A , 7A …
        (from h 2+hk +k 2 allowed by the structure factor)

7. Look for lowest common quotient (LCQ).  From this you can identify 00l -type peaks.
        The first allowed peak for hexagonal systems is 002.  Determine C  from the equation:
                C ⋅ l 2 = sin2θ-A (h 2+hk +k 2)
         since h =0 and k =0, then:
                C=LCQ/l 2 = sin2θ/l 2

8. Look for values of sin2θ that increase by factors of 4, 9, 16... (because l  = 1,2,3,4..., l 2=1,4,9,16...)
        The peaks exhibiting these characteristics are 00l -type peaks (002...).

We identify the 4th peak as 102 because we observe the 
LCQ for sin2θ-1A.  Recall that the 1 comes from the 
quadratic form of Miller indices (i.e., h 2+hk +k 2=1).

We identify the 8th peak as 112 because we observe the 
LCQ for sin2θ-3A.  Recall that the 1 comes from the 
quadratic form of Miller indices (i.e., h 2+hk +k 2=3).

We identify the 11th peak as ...

etc...

This peak is 004 because sqrt(LCQ/C)=4

 
 



A C
0.0908 0.0270

Peak I/Io sin2θ h k l
sin2 θ

Calculated
35.100 25.5 0.0909 1 0 0 0.0908
38.390 25.6 0.1081 0 0 2 0.1081
40.170 100 0.1179 1 0 1 0.1179
53.000 12.8 0.1991 1 0 2 0.1989
62.940 13.4 0.2725 1 1 0 0.2725
70.650 13 0.3343 1 0 3 0.3341
74.170 1.8 0.3636 2 0 0 0.3633
76.210 13.1 0.3808 1 1 2 0.3806
77.350 9.3 0.3905 2 0 1 0.3903
82.200 1.7 0.4321 0 0 4 0.4324
86.740 2.1 0.4716 2 0 2 0.4714
92.680 1.8 0.5234 1 0 4 0.5232

102.350 4.4 0.6069 2 0 3 0.6065
105.600 1.4 0.6345 2 1 0 0.6358
109.050 8.3 0.6632 2 1 1 0.6628
114.220 5.4 0.7051 1 1 4 0.7049
119.280 2.7 0.7445 2 1 2 0.7439

a c c /a
2.951 4.686 1.588

HOW DO THESE VALUES COMPARE WITH THOSE FROM THE ICDD CARDS?

9. Peaks that are not hk 0 or 00l  can be identified using combinations of A  and C  values.
        This is accomplished by considering:
                sin2θ = C ⋅l 2 + A (h 2+hk +k 2)
        Cycle through allowed values for l  and hk , and compare sin2θ value to labeled peaks.

10. Once A  and C  are known, the lattice parameters can be calculated.

sin2θ = C ⋅l 2 + A ⋅ (h 2+hk +k 2)

10. Once A  and C  are known, the lattice parameters can be calculated.

 
 



X-ray Characteristics 

 

After gaining adequate background (document enclosed. Feel free to find your own resource) in the 

generation and properties of X-rays, the following tasks need to be performed: 

 

1. Obtain the X-ray spectrum from a Cu X-ray tube after reading instructions provided in the 

document titled, ‘Characteristic X-rays of Copper’. 

2. Establish the Duane-Hunt displacement law and obtain the value of the Planck’s constant after 

reading the appropriate document. 

3. Establish the similarity between Bremsstrahlung radiation and back-body radiation. (Read 

paper by C. T. Ulrey. Study relevant portions more carefully. For eg. Section on discussion of 

results)  

4. Determine the X-ray equivalent of Wein’s displacement law. 

5. Monochromatize the X-ray beam after reading the appropriate document. 

 

 

 

Please note:  The instructions concerning the hardware and software provided by the manufacturer has 

to be strictly followed. 
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Related topics
X-ray tube, bremsstrahlung, characteristic X-rays, energy
levels, crystal structures, lattice constant, interference, Bragg
equation.

Principle and task
By means of an x,y-recorder, X-ray spectra are recorded as a
function of the anode voltage. From the short-wave length
limit of the bremsspectrum, the Duane-Hunt displacement law
and Planck’s “quantum of action” are determined.

Equipment
X-ray unit, w. recorder output 09056.97 1
Counter tube, type A, BNC 09025.11 1
Pulse rate meter 13622.93 1
xyt recorder 11416.97 1
Screened cable, BNC, l 750 mm 07542.11 1
Connecting cord, 1000 mm, red 07363.01 2
Connecting cord, 1000 mm, blue 07363.04 2

Problems
1. The intensity of the X-rays emitted by the copper anode at

various anode voltages is to be drawn as a function of the
Bragg angle by an x,y-recorder.

2. The short wavelength limit (or maximum energy) of the
bremsspectrum is to be determined for the spectra of 1.

3. The Duane-Hunt displacement law and Planck’s “quantum
of action“ are to be verified by these measurements.

Set-up and procedure
The experiment is set up as shown in Fig. 1. The aperture of
d = 2 mm is introduced into the outlet of X-rays.

By pressing the “zero key”, the counter tube and crystal hold-
er device are brought into starting position. The crystal hold-
ers are mounted with the crystal surface set horizontally. The
counter tube, with horizontal slit aperture, is mounted in such
a way that the mid-notch of the counter tube closes onto the
back side of the holder.

Typical settings of the peripheral equipment are:

Pulse rate meter: Couter tube voltage 500 V
Sensitivity 105 imp/min
Time constant 0.5 or 1.5 s

x,y-recorder: x-axis (q-axis) 1 V/cm,
additionally
variable

y-axis (intensity) 0.1 V/cm,
additionally
variable

The output of the pulse rate meter is connected to the y-input
of the recorder. The angle-proportional direct-current voltage
(0.1 V/degree) of the X-ray unit lies on the x-input. The plotting
of the spectra is performed at a slow velocity of rotation (posi-
tions “V1” and “Auto”), crystal and counter tube must rotate in
synchronization.

First, at maximum anode voltage, a general spectrum (Fig. 2)
is drawn. After, that, the bremsspectra for various anode volt-
ages are recorded up to the Kb-line. (Fig. 3)

R

Fig. 1: Experimental set-up for energy analysis of X-rays.



where h = 6.6256 · 10–34 Js Planck’s constant

c = 2.9979 · 108 ms–1 velocity of light

e = 1.6021 · 10–19 As elementary charge

The shortest wavelength is calculated to be:

lmin = 1.2398 · 10–6 1 V · m

The analysis of the polychromatic X-rays is carried out by the
use of a monocrystal. If the X-rays impinge under a glancing
angle q, constuctive interference will only appear in reflection
if the paths of the partial waves reflected on the lattice planes
differ by one or more wavelengths. This situation is described
by the Bragg equation.

This situation is explained by the Bragg equation:

2d sin q =  n · l (4)

(LiF-lattice constant d = 201.4 pm, n =  order of diffraction)

The short wavelength limit of the bremsspectrum is deter-
mined by the appertaining glancing angle q. In conjunction
with (4), lmin can be calculated.

In Fig. 5, lmin is represented as a function of the reciprocal
value of the anode voltage.
The slope of the resulting line is:

m  = 
lmin =  (1.233 ± 0.007) · 10–6 V · m

This formula is acceptably consistent with the Duane-Hunt
displacement law.

By using the same measured curves, it is also possible to
determine Planck’s “quantum of action”.

1/U
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In order to obtain exact angle determination of the brems-
spectra, the sensitivity of the x-channel must be increased
accordingly and calibrated carefully; likewise, the zero-line of
the y-axis must be displaced for each new measurement.

Note:
The counter tube should never be exposed to primary radia-
tion for any longer period of time.

Theory and evaluation
A positve voltage, lying on the anode of the x-ray tube, accel-
erates the electrons emitted from the cathode with a rather
low energy distribution.

In reaching the anode, the electrons have the kinetic energy:

Ekin = eU (e = elementary charge) (1)

At arrival, a part of the electrons will be progressively slowed
down, thus converting their kinetic energy into electro-mag-
netic radiation with continuous energy distribution. This
bremsspectrum has a short wavelength limit which has been
determined in that the entire kinetic energy of some electrons
is converted into radiation in just on step. In 1915, Duane and
Hunt empirically found that the product of anode voltage and
the shortest wavelength lmin is constant, and that the follow-
ing formula holds:

U · lmin z 1.25 · 10–6 V · m (2)

This relationship can easily be derived from Einstein’s energy
equation, according to which:

Ekin = eU =  hfmax = h · 
c

(3)
lmin

R

Fig. 2: Copper X-ray spectrum with LiF-analyzer.
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From (3) and (4) follows:

U =       
h · c

(5)

In Fig. 6, the anode voltage is drawn as a function of (sin q–1).
Using the slope m of the resulting line, it is possble to attain:

h = m · 2 · e · d = (6.59 ± 0.04) · 10–34 Js; Dh = ±0.5% 

In conjunction with (5) and glancing angle values from Fig. 2,
the energies of the characteristic copper X-ray lines can be
calculated to be:

n = 1 E-Ka– =  7.98 KeV
K-Kb =  8.83 KeV

n = 2 E-Kb =  8.88 KeV

These values are in good approximation with the literature
values. (See also experiment 5.4.1)

hc

2 · e · d · sin q

R

Fig. 4: Bragg scattering on the lattice planes.

Fig. 3: Bremsspectra as functions of the anode voltage. Fig. 5: Duane-Hunt displacement law. lmin as a function of
reciprocal anode voltage.

Fig. 6: Planck’s “quantum of action”. sin qmin as a function of
reciprocal anode voltage.
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