

- Production of X-rays

OBJECTIVES

- X-ray tube construction
- Anode types, efficiency
- X-ray tube working characteristics
- Intensity of X-ray beam, housing and filtration
- Classical X-ray generator (block diagram)
- Medium frequency X-ray generator (block diagram)
- Principle of radiographic contrast formation
- X-ray film and film/screen combination
- Mammographic contrast and X-ray tubes
- Various radiographic contrasts (definitions)

Table 2.	Annual exposure of the UK population from all	
sources o	f radiation.	

Source	Percentage
Natural	
Radon gas	50
Gamma rays from rocks and soil	14
Radionuclides in food and drink ^a	11.5
Cosmic rays	10
Artificial	
Medical x-rays	13
Nuclear medicine	1
Occupational ^b	0.3
Fallout from nuclear weapons tests	0.2
Nuclear discharges ^c	< 0.1
Consumer products	< 0.1

^b About 80% from natural sources.

Approximately 90% of the total collective dose to UK population from man-made radiation sources arises from Diagnostic Radiology

Safety in Diagnostic Radiology, IPEM, 1995

Patient radiation doses from diagnostic radiology, D Hart, 1996

In most industrialised countries there are between 300 and 900 X-ray examinations for every 1000 inhabitants every year. Over half of these are chest examinations (these figures does not include dental X-ray examinations or mass screening programs).

Doses varies widely from hospital to hospital, even in the same country, sometimes by a factor of 100.

Radiation and You, EU, Luxembourg 1990

Collective dose to population from Diagnostic Radiology

Estimated annual collective dose to UK population from Diagnostic Radiology (approx. figures):

1989 - 17,000 manSv;

1999 - 20,000 manSv (risk estimate approx. 700 cancer deaths/year);

2008 - 25,000 manSv

Safety in Diagnostic Radiology, IPEM, 1995; UK population dose from medical X-ray examinations , D. Hart , B. F. Wall, 2002; Considerations for Radioactive Substances Regulation under the Radioactive Substances Act 1993 at nuclear sites in England and Wales, 2008

c About 20% from natural activity.

Metal X-ray tube with liquid metal bearing ('aqua planning' groove)

Anode heat - storage and dissipation (cooling)

 $P_{\text{max}} \sim f^{3/2}.D^{1/2}.n^{1/2} / \sin \alpha$

The maximal power of the rotating anode(P_{max}) depends from the effective focal spot size (f); the diameter of the target track (D); the angle of the anode (α); and the speed of rotation (n - r.p.m.):

X-ray H.V. Generator

- Basic circuits of classical High Voltage X-ray Generator
- kVp waveforms and ripple
- New Medium frequency X-ray Generator
- Basic circuits of medium frequency X-ray Generator
- kVp Control and diagnostic use
- Automatic Exposure Control

Images from www.emerald2.net and Siemens

photon energy (keV)

scattered

(a)

