imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LogiCORE IP Video Direct Memory Access v1.1

DS730 September 21, 2010

Product Specification

Introduction

The Xilinx Video Direct Memory Access (Video DMA) LogiCORE[™] IP allows video cores to access external memory via the Video Frame Buffer Controller (VFBC) port on the Multi-Port Memory Controller (MPMC). The Video DMA is highly programmable through registers coupled with a wide range of interrupts, allowing for easy control of the various features of the core. The integration with the MicroBlaze[™] Soft Processor for in-system control of the block in real-time allows designers an easy path to integrate DMA functionality for video data accesses.

Features

- Programmable register control
- Selectable processor interface
 - EDK pCore
 - General Purpose Processor
- Selectable Master/Slave Gen-Lock Mode
- Selectable data interface
 - VDMA FIFO interface
 - Xilinx Streaming Video Interface (XSVI)
- Configurable Read, Write, or Read/Write DMA mode
- Programmable data width -8, -16, -32 or -64
- Seamless integration with Video Frame Buffer Controller
- PLB46 support for interrupts and status register access
- Support for up to 16 buffer addresses
- Support for non-aligned transfers

	C	Core Sp	ecifics			
Supported Device Spartan [®] -3A DSP, Spartan-6, Virtex [®] -5, Virtex-6 Family ⁽¹⁾						
Supported User Interfaces	G	General F	Processor	Interface, I	EDK PLB 4.6	
		Reso	ources ⁽²⁾		Frequency	
Configuration	LUTs	FFs	DSP Slices	Block RAMs ⁽³⁾	Max. Freq. ⁽⁴⁾	
Write_Only, pCore IF, 5 Frame Stores	1048	1617	0	0	225	
Read_Only, pCore IF, 3 Frame Stores, Non-Aligned Transfers	1177	1588	0	0	225	
Read/Write, pCore IF, 3 Frame Stores	1240	1678	0	0	225	
	Pro	vided	with Co	re		
Documentation				Product	Specificatior	
Design Files				Netlist	, EDK pCore	
Example Design					Not Provideo	
Test Bench					Not Provided	
Constraints File					Not Provided	
Simulation Model					Not Provideo	
	Tes	ted Des	sign Too	ols		
Design Entry Tools					ISE [®] 12.3 XPS 12.3	
Simulation					delSim v6.50 imulator 12.3	
Synthesis Tools				ļ	SE XST 12.3	
		Sup	port			

- 1. For a complete listing of supported devices, see the release notes for this core.
- Resources listed here are for Virtex-6® devices. For more complete device performance numbers, see "Core Resource Utilization," page 42.
- 3. Based on 36K block RAMs.
- . Performance numbers listed are for Virtex-6 FPGAs. For more complete performance data, see "Performance," page 44.

© Copyright 2009 - 2010. Xilinx, Inc. XILINX, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owner.

www.xilinx.com

Applications

- Video Surveillance
- Industrial Imaging
- Video Conferencing
- Machine Vision

Overview

The majority of video systems being designed utilize external buffers for temporary storage of video frames. The requirements of these systems provide a challenge to developers to easily control this external buffer and the transfer of the data for processing. Additionally complicating the control is processing cores implemented within the design clocked at different sampling rates, and external memory interfaces imposing restrictions on the format or location of memory transfers. As a result, synchronizing video as it passes through a multi-rate system can be very challenging and error prone, making the job of designing a video system very difficult.

The Video DMA was designed to help address these issues. It was designed to directly interface to the Video Frame Buffer Controller (VFBC) integrated into the Multi-Port Memory Controller (MPMC). It automatically generates the CMD signals for the VFBC and simplifies the process of setting up and controlling frame buffers in external memory. Additionally, it can compensate for data transfers that do not meet the VFBC format requirements. The Video DMA also has a system synchronization mechanism called Gen-Lock that eases the burden of synchronizing data as it moves from one processing domain to another based on block-to-block shared signaling.

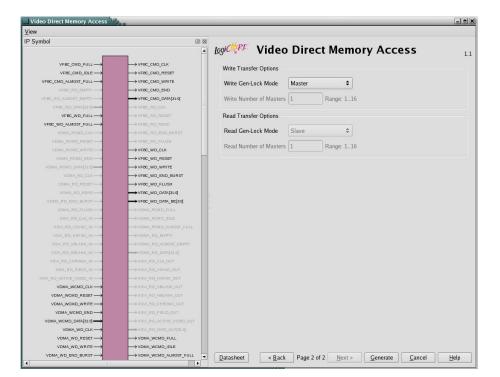
The Video DMA is very flexible and can be used in a number of modes and configurations. A comprehensive set of registers and interrupts makes the Video DMA highly programmable and easy to control in real-time with a processor such as MicroBlaze.

CORE Generator Graphical User Interface (GUI)

The Xilinx Video Direct Memory Access LogiCORE IP is easily configured to meet the developer's specific needs through the CORE GeneratorTM graphical user interface (GUI). This section provides a quick reference to parameters that can be configured at generation time. Figure 1 shows the first page of the GUI.

Video Direct Memory Access 🦉	ha	
View		
IP Symbol	Øx	
	•	logicere Video Direct Memory Access
		1.1
VFBC_CMD_FULL		Component Name v_vdma_v1_1_u0
VFBC_CMD_IDLE		
VFBC_CMD_ALMOST_FULL	VFBC_CMD_WRITE	Interface Selection
VFBC_RD_EMPTY	VFBC_CMD_END	EDK pCore
VFBC_RD_ALMOST_EMPTY	VFBC_CMD_DATA[310]	
VFBC_RD_DATA[31:0]	→ VFBC_RD_RESET	General Purpose Processor
VFBC_WD_ALMOST_FULL		
VDMA RCMD CLK	VFBC_RD_READ	Bus Interface
VDMA_RCMD_CER	VFBC_RD_END_BURSI	VDMA
VDMA_RCMD_WRITE	→ VFBC_WD_CLK	
VDMA_RCMD_END	→ VFBC_WD_RESET	O XSVI
	→ VFBC_WD_WRITE	DMA Options
VDMA RD CLK-		
VDMA RD RESET		DMA Mode Write Only 🗘
VDMA_RD_READ	VFBC_WD_DATA[31:0]	
VDMA_RD_END_BURST	VFBC_WD_DATA_BE[3:0]	Frame Stores 3
VDMA_RD_FLUSH		
XSVI_RD_CLK_IN	WDMA_RCMD_IDLE	Data Width 32 🗢
XSVI_RD_VSYNC_IN		Allow Non-Aligned Transfers
XSVI_RD_HSYNC_IN		
XSVI RD VBLANK IN		Use Frame Sync
XSVI RD HBLANK IN	VDMA RD DATA[31:0]	Auto-Flush FIFOs
XSVI RD CHROMA IN		
XSVI_RD_FIELD_IN		
XSVI_RD_ACTIVE_VIDEO_IN		
VDMA_WCMD_CLK		
VDMA_WCMD_RESET		
VDMA_WCMD_WRITE		
VDMA_WCMD_END		
VDMA_WCMD_DATA[31:0]		
VDMA_WD_CLK	XSVI_RD_DATA_OUT[31:0]	
VDMA_WD_RESET		
VDMA_WD_WRITE		
VDMA_WD_END_BURST		Datasheet < Back Page 1 of 2 Next > Generate Cancel Help
•		

Figure 1: Video DMA Main Screen


The main screen displays a representation of the IP symbol on the left side, and the parameter assignments on the right side, which are described as follows:

• **Component Name:** The component name is used as the base name of output files generated for the module. Names must begin with a letter and must be composed from characters: a to z, 0 to 9 and "_".

Note: The name "v_vdma_v1_1" is not allowed.

- Interface Selection: The Video DMA is generated with one of two processor interfaces
 - EDK pCore Interface: CORE Generator will generate the Video DMA as a pCore which can be easily imported into an EDK project as a hardware peripheral. The core registers can then be programmed in real-time via the processor. See the "EDK pCore Interface" section. When the EDK pCore is selected, the rest of the options are disabled and set to the default value. All modifications to the Video DMA pCore are made with the EDK GUI.
 - General Purpose Processor Interface: CORE Generator will generate a set of ports that can be used to program the Video DMA. See the "General Processor Interface" section. When the General Purpose Processor interface is selected, the rest of the configuration options become active and can be used to generate a customized Video DMA core.

- **Bus Interface:** The Video DMA is generated with one of two data interfaces
 - VDMA: CORE Generator will generate the Video DMA with a VDMA FIFO data interface.
 - XSVI: CORE Generator will generate the Video DMA with an XSVI streaming data interface.
- DMA Options
 - **DMA Mode:** The Video DMA can be configured for three different modes of operation. The allowable selections are:
 - Write_Only Mode: The Video DMA will perform only write operations.
 - Read_Only Mode: The Video DMA will perform only read operations.
 - Read/Write Mode: The Video DMA will perform both read and write operations.
 - Frame Stores: The Frame Stores parameter allows the Video DMA to be configured with the specified number of Read or Write Address Registers. The permitted values are 1 16. Typically this is the number of frame buffers to be created in external memory.
 - **Data Width:** The Data Width parameter specifies the width of the data buses of the Video DMA data read and write ports. The permitted values are 8, 16, 32 and 64.
 - Allow Non-Aligned Transfers: When selected, this parameter specifies that additional logic will be included in the Video DMA to perform horizontal cropping/padding of VFBC read or writes. Horizontal cropping/padding is necessary if any transfers will not be properly aligned with the 128-byte boundaries required by the VFBC. This includes memory addressing that does not align to the 128-byte boundaries or to horizontal data lengths that are not 128-byte multiples.
 - Use Frame Sync: When selected, this parameter specifies that the Video DMA will synchronize all frame operations with the falling edge of the fsync signal. The fsync signal is commonly driven by the Video Timing Controller LogiCORE IP or the vsync signal of a streaming video bus.
 - Auto-Flush FIFOs: When selected, this parameter specifies that all VFBC FIFOs should be Flushed and Reset before each transfer. This option is available only if "Use Frame Sync" is selected.

Page 2 of the Video DMA GUI (Figure 2) allows the specification of the core optional Gen-Lock capabilities.

Figure 2: Video DMA, Gen-Lock Options Screen

- Write Transfer Options: These parameters configure the Video DMA Gen-Lock when in operated in write mode.
 - Write Gen-Lock Mode: Specifies the operating mode of the Write Gen-Lock. The allowed selections are:
 - Master: Master mode specifies that the Video DMA will operate as the Gen-Lock Master. Gen-Lock Masters do not drop or repeat frames. See the "Gen-Lock Operation" section for more details.
 - Slave: Slave mode specifies that the Video DMA will operate as a Gen-Lock Slave. Gen-Lock Slaves automatically drop and repeat frames based on the master and slave frame rates. See the "Gen-Lock Operation" section for more details.
 - Write Number of Masters: Specifies the number of Masters to which the Slave can synchronize. The Video DMA uses a register to dynamically specify which master is in control at any given time. The Write Number of Masters parameter is available only if the Write Gen-Lock Mode is set to Slave.
- **Read Transfer Options:** These parameters configure the Video DMA Gen-Lock when in operated in read mode.
 - Read Gen-Lock Mode: Specifies the operating mode of the Read Gen-Lock. The allowed selections are:
 - Master: Master mode specifies that the Video DMA will operate as the Gen-Lock Master. Gen-Lock Masters do not drop or repeat frames. See the "Gen-Lock Operation" section for more details.
 - Slave: Slave mode specifies that the Video DMA will operate as a Gen-Lock Slave. Gen-Lock Slaves automatically drop and repeat frames based on the master and slave frame rates. See the "Gen-Lock Operation" section for more details.
 - **Read Number of Masters:** Specifies the number of Masters to which the Slave can synchronize. The Video DMA uses a register to dynamically specify which master is in control at any given time. The Read Number of Masters parameter is available only if the Read Gen-Lock Mode is set to Slave.

EDK pCore Graphical User Interface (GUI)

When the Xilinx Video Direct Memory Access LogiCORE IP is generated from CORE Generator as an EDK pCore, it is generated with each option set to the default value. All customizations of a Video DMA pcore are done with the EDK pCore graphical user interface (GUI). Figure 3 and Figure 4 illustrate the EDK pCore GUI for the Video DMA. All of the options in EDK pCore GUI for the Video DMA correspond to the same options in the CORE Generator GUI for the Video DMA. See the "CORE Generator Graphical User Interface (GUI)" section for option details.

General		
Gen-Lock	Bus Interface DMA Mode Frame Stores	VDMA ¢ WRITE_ONLY ¢ 3 ¢
	Data Width Allow Non-Aligned Transfers Use Frame Sync Auto-Flush FIFOs	32 \$

Figure 3: Video DMA General Screen

	5	HDL	
General Gen-Lock	Write Gen-Lock Mode	MASTER	•
	Write Number of Masters	1	•
	Read Gen-Lock Mode	SLAVE ;	•
	Read Number of Masters	1	*

Figure 4: Video DMA Gen-Lock Screen

Video DMA Core Interfaces

There are many video systems developed that use an integrated MicroBlaze processor soft core to dynamically control the parameters within the system. This is especially important when several independent image processing cores are integrated into a single FPGA. The Video DMA core can be configured with one of two interfaces: an EDK pCore Interface or a General Purpose Processor Interface.

EDK pCore Interface

The pCore interface creates a core that can be easily added to an EDK Project as a hardware peripheral. This section describes the Register Set, the pCore Driver Files, and the I/O signals associated with the Video DMA pCore.

Once generated by CORE Generator software, the new VDMA pCore is located in the CORE Generator project directory at <Component_Name>/pcores/vdma_v1_01_a. The pCore should be copied to the user's <EDK_Project>/pcores directory or to a user pCores repository. The VDMA pCore driver software is located in the CORE Generator project directory at <Component_Name>/drivers/vdma_v1_01_a. The driver software should be copied to the user's <CORE Generator project directory at <Component_Name>/drivers/vdma_v1_01_a. The driver software should be copied to the user's <CORE Generator project directory at <Component_Name>/drivers/vdma_v1_01_a. The driver software should be copied to the user's <EDK_Project>/drivers directory or to a user pCores repository.

pCore Register Set

The pCore interface provides a memory mapped interface for the programmable registers within the core, which are defined in Table 1, all registers default to 0x00000000 on Power-on/Reset.

Address (hex)	Register Name	Access Type		Description
BASEADDR + 0x0000	VDMA Control	R/W	General Cor	ntrol Register
			31	Reserved
			30	SW Write DMA Reset Clear Write DMA Command and Flush Write Data.
			29	SW Read DMA Reset Clear Read DMA Command and Flush Read Data.
			28	SW Write FIFO Flush
			27	SW Read FIFO Flush
			26	Reserved
			25	Read HW Lockout 1=Disable VDMA Read Command Hardware from writing to Command Interface. All commands from the VDMA Read Command Interface will be ignored.
			24	Write HW Lockout 1=Disable VDMA Write Command Hardware from writing to Command Interface. All commands from the VDMA Write Command Interface will be ignored.
			20:23	Read Frame Store Pointer When Circular Buffer Enable = 0, the Frame Store Start Address reference number stored here will force the VDMA to place transactions to/from this Start Address. Ignored with Circular Buffer Enable = 1.
			16:19	Write Frame Store Pointer When Circular Buffer Enable = 0, the Frame Store Start Address reference number stored here will force the VDMA to place transactions to/from this Start Address. Ignored with Circular Buffer Enable = 1.

Table 1: Video DMA pCore Memory Mapped Register Set

Address (hex)	Register Name	Access Type		Description
			12:15	Read Pointer Number The source pointer to use for Read Gen-Lock frame pointer comparisons. Used only when the "Read Number of Masters" parameter is > 1.
			8:12	Write Pointer Number The source pointer to use for Write Gen-Lock frame pointer comparisons. Used only when the "Write Number of Masters" parameter is > 1.
			7	Frame Count Enable 1 = Based on value in Frame Count register, only enable transfers for this number of frames. The VDMA will halt when the frame count is reached.
			5:6	Reserved
			4	Horizontal Cropping Enable 1 = Allow Non-Aligned Memory transfers as well as horizontal lengths that are not 128-byte multiples.
			3	Sync_Enable When Circular Buffer Enable = 1, and when 1, compare current frame store address pointer to incoming frame store address pointer. When 0, the slave VDMA will not be synchronized to the master VDMA.
			2	Circular Buffer Enable 0 = Use Start Address specified in Read/Write Frame Store Pointer. 1 = Rotate Start Addresses.
			1	VDMA Read Enable Enable/Start Internal VDMA Read Transaction(s). This enables generating internal VDMA read command words. Read Command words can still be written into the VDMA if this bit is zero.
			0	VDMA Write Enable Enable/Start Internal VDMA Write Transaction(s). This enables generating internal VDMA write command words. Write Command words can still be written into the VDMA if this bit is zero.

Address (hex)	Register Name	Access Type	Description		
BASEADDR + 0x000c	Control Counters	R/W	Frame and Delay Counters		
			24:31	Read Frame Count Send interrupt after this number of frames has been read.	
			16:23	Read Delay Timer Count Send interrupt after this number of delay counter ticks for the read DMA. The delay counter period is controlled by a clock divider.	
			8:15	Write Frame Count Send interrupt after this number of frames has been written.	
			0:7	Write Delay Timer Count Send interrupt after this number of delay counter ticks for the write DMA. The delay counter period is controlled by a clock divider.	
BASEADDR + 0x0010	Status Counters	R	Frame and	Delay Counters Status	
			24:31	Read Frame Counter Value Indicates the number of frames left to be read of the number specified Read Frame Count.	
			16:23	Read Delay Count Value Indicates the number of counter ticks left of the number specified in Read Delay Timer Count.	
			8:15	Write Frame Counter Value Indicates the number of frames left to be written of the number specified in Write Frame Count.	
			0:7	Write Delay Count Value Indicates the number of counter ticks left of the number specified in Write Delay Timer Count.	

Address (hex)	Register Name	Access Type	Description		
BASEADDR + 0x0014	Status Frame Store	R	General Sta Information	atus Register for Frame Store	
			31	VDMA Busy DMA transaction in progress.	
			30	Cmd FIFO Full	
			29	Cmd FIFO Almost Full	
			28	Write FIFO Full	
			27	Write FIFO Almost Full	
			26	Read FIFO Empty	
			25	Read FIFO Almost Empty	
			24	Cmd FIFO Write Enable	
			23	Write FIFO Write Enable	
			22	Read FIFO Read Enable	
			20:21	Reserved	
			16:19	Max Valid Frame Store Number of last Frame Store in VDMA. The VDMA can be configured for $1 - 16$ frame stores. This register will report $0 - 15$.	
			8:15	Reserved	
			4:7	Current Read Frame Store Pointer to Current Frame Store Start Address Number. Reports the frame store the current transaction is operating upon.	
			0:3	Current Write Frame Store Pointer to Current Frame Store Start Address Number. Reports the frame store the current transaction is operating upon.	

Address (hex)	Register Name	Access Type		Description
BASEADDR + 0x0020	Control Write Frame Size	R/W	Horizontal S FIFO Frame	Size and Vertical Size of Each Write
			28:31	Reserved
				VDMA Write Vsize
			16:27	The write vertical size in lines starting from line 0.
			12:15	Reserved
				VDMA Write HSize
			0:11	The horizontal size in number of data writes.
BASEADDR + 0x0024	Control Write Stride	R/W	Stride (Line Frame	Increment) of each Write FIFO
			20:31	Reserved
				Write Frame Delay
			16:19	The number of frame stores the write VDMA should be behind the locked Read DMA.
				Used only if the "Write Gen-Lock Mode" parameter is set to "SLAVE" and the circular buffer is enabled.
			12:15	Reserved
			0:11	VDMA Write Stride The stride in number of data elements of DATA WIDTH size.
BASEADDR + 0x0028	Control Read Frame Size	R/W	Horizontal S FIFO Frame	Size and Vertical Size of each Read
			28:31	Reserved
			16:27	VDMA Read Vsize The read vertical size in lines starting from line 0.
			12:15	Reserved
			0:11	VDMA Read HSize The horizontal size in number of data reads.
BASEADDR + 0x002c	Control Read Stride	R/W	Stride (Line Frame	Increment) of each Read FIFO
			20:31	Reserved
				Read Frame Delay
			16:19	The number of frame stores the read VDMA should be behind the locked Write DMA.
				Used only if the "Read Gen-Lock Mode" parameter is set to "SLAVE" and the circular buffer is enabled.
			12:15	Reserved
			0:11	VDMA Read Stride. The stride in number of data elements of DATA WIDTH size.

Address (hex)	Register Name	Access Type	Description
BASEADDR + 0x0030	Control Write Start Address 0	R/W	Start Address of Write Frame Store 0
BASEADDR + 0x0034	Control Write Start Address 1	R/W	Start Address of Write Frame Store 1
BASEADDR + 0x0038	Control Write Start Address 2	R/W	Start Address of Write Frame Store 2
BASEADDR + 0x003c	Control Write Start Address 3	R/W	Start Address of Write Frame Store 3
BASEADDR + 0x0040	Control Write Start Address 4	R/W	Start Address of Write Frame Store 4
BASEADDR + 0x0044	Control Write Start Address 5	R/W	Start Address of Write Frame Store 5
BASEADDR + 0x0048	Control Write Start Address 6	R/W	Start Address of Write Frame Store 6
BASEADDR + 0x004c	Control Write Start Address 7	R/W	Start Address of Write Frame Store 7
BASEADDR + 0x0050	Control Write Start Address 8	R/W	Start Address of Write Frame Store 8
BASEADDR + 0x0054	Control Write Start Address 9	R/W	Start Address of Write Frame Store 9
BASEADDR + 0x0058	Control Write Start Address 10	R/W	Start Address of Write Frame Store 10
BASEADDR + 0x005c	Control Write Start Address 11	R/W	Start Address of Write Frame Store 11
BASEADDR + 0x0060	Control Write Start Address 12	R/W	Start Address of Write Frame Store 12
BASEADDR + 0x0064	Control Write Start Address 13	R/W	Start Address of Write Frame Store 13
BASEADDR + 0x0068	Control Write Start Address 14	R/W	Start Address of Write Frame Store 14
BASEADDR + 0x006c	Control Write Start Address 15	R/W	Start Address of Write Frame Store 15
BASEADDR + 0x0070	Control Read Start Address 0	R/W	Start Address of Read Frame Store 0
BASEADDR + 0x0074	Control Read Start Address 1	R/W	Start Address of Read Frame Store 1
BASEADDR + 0x0078	Control Read Start Address 2	R/W	Start Address of Read Frame Store 2
BASEADDR + 0x007c	Control Read Start Address 3	R/W	Start Address of Read Frame Store 3
BASEADDR + 0x0080	Control Read Start Address 4	R/W	Start Address of Read Frame Store 4
BASEADDR + 0x0084	Control Read Start Address 5	R/W	Start Address of Read Frame Store 5
BASEADDR + 0x0088	Control Read Start Address 6	R/W	Start Address of Read Frame Store 6

Table	1:	Video	DMA	pCore	Memory	Mapped	Register	Set (Cont'd)
-------	----	-------	-----	-------	--------	--------	----------	--------------

Address (hex)	Register Name	Access Type		Description	
BASEADDR + 0x008c	Control Read Start Address 7	R/W	Start Addre	ss of Read Frame Store 7	
BASEADDR + 0x0090	Control Read Start Address 8	R/W	Start Address of Read Frame Store 8		
BASEADDR + 0x0094	Control Read Start Address 9	R/W	Start Addre	ss of Read Frame Store 9	
BASEADDR + 0x0098	Control Read Start Address 10	R/W	Start Addre	ss of Read Frame Store 10	
BASEADDR + 0x009c	Control Read Start Address 11	R/W	Start Addre	ss of Read Frame Store 11	
BASEADDR + 0x00a0	Control Read Start Address 12	R/W	Start Addre	ss of Read Frame Store 12	
BASEADDR + 0x00a4	Control Read Start Address 13	R/W	Start Addre	ss of Read Frame Store 13	
BASEADDR + 0x00a8	Control Read Start Address 14	R/W	Start Addre	ss of Read Frame Store 14	
BASEADDR + 0x00ac	Control Read Start Address 15	R/W	Start Address of Read Frame Store 15		
BASEADDR + 0x0F0	Version Register	R	Reports Version of the Video DMA core		
			28:31	Major Version Number. Set to 0x2.	
			20:27	Minor Version Number. Set to 0x01.	
			16:19	Revision Number. Set to 0xA.	
			0:15	Reserved	
BASEADDR + 0x021c	Global Interrupt Enable	R/W	Global Inter	rupt Enable	
			31:	Writing a 1 to this bit will enable all interrupts. Set to 0 (all interrupts disabled) by default.	
			0:30	Reserved	
BASEADDR + 0x0220	Interrupt Status/Clear	R/W	Interrupt Status when read, Interrupt Clear when written		
			19:31	Reserved	
			18	Write FIFO Error	
			17	Write Cmd FIFO Error	
			16	Write Frame Count Interrupt Indicates that the Frame count has reached the frame count threshold. Write 1 to clear.	
			15	Write Delay Count Interrupt Indicates that the delay timeout event has occurred. Write 1 to clear.	

 Table 1: Video DMA pCore Memory Mapped Register Set (Cont'd)

Address (hex)	Register Name	Access Type	Description		
			14	Write Frame Repeat This bit indicates that the Frame Store Pointer or Start Address was repeated based on Gen-Lock synchronization. Write 1 to clear.	
			13	Write Frame Skip This bit indicates that the Frame Store Pointer or Start Address was advanced by more than one Frame Store based on Gen-Lock synchronization. Write 1 to clear.	
			12	Write DMA Done This bit indicates that the current Frame has completed. Write 1 to clear.	
			11	Reserved	
			10	Read FIFO Error	
			9	Read Cmd FIFO Error	
			8	Read Frame Count Interrupt Indicates that the Frame count has reached the frame count threshold Write 1 to clear.	
			7	Read Delay Count Interrupt Indicates that the delay timeout event has occurred. Write 1 to clear.	
			6	Read Frame Repeat This bit indicates that the Frame Store Pointer or Start Address was repeated based on Gen-Lock synchronization. Write 1 to clear.	
			5	Read Frame Skip This bit indicates that the Frame Store Pointer or Start Address was advanced by more than one Frame Store based on Gen-Lock synchronization. Write 1 to clear.	
			4	Read DMA Done This bit indicates that the current Frame has completed. Write 1 to clear.	
			2:3	Reserved	
			1	Address Error Interrupt Current Buffer Address is Not a valid address. Valid Addresses are between C_PI_BASEADDR and C_PI_HIGHADDR. Write 1 to clear.	

Address (hex)	Register Name	Access Type	Description		
			0	Write Busy Error Interrupt This bit indicates that the Frame Size, Frame Stride or Frame Start Address registers were written while the DMA was busy. Write 1 to clear.	
BASEADDR + 0x0228	0x0228 For e 0 = N		For each bi 0 = Mask Ir	nterrupt Enable Mask or each bit: = Mask Interrupt = Enable Interrupt	
			17:31	Reserved	
			16	Write Frame Count Interrupt En	
			15	Write Delay Count Interrupt En	
			14	Write Frame Repeat En	
			13	Write Frame Skip En	
			12	Write DMA Done En	
			9:11	Reserved	
			8	Read Frame Count Interrupt En	
			7	Read Delay Count Interrupt En	
			6	Read Frame Repeat En	
			5	Read Frame Skip En	
			4	Read DMA Done En	
			2:3	Reserved	
			1	Address Error En	
			0	Write Busy Error En	

pCore Driver Files

The Video DMA pCore includes a software driver written in the C programming language that the user can use to control the Video DMA. A high-level API is provided to hide the details of the Xilinx Video DMA, and application developers are encouraged to use it to access the device features. A low-level API is also provided in case developers prefer to access the devices directly through the system registers described in the previous section.

Table 2 lists the files that are included with the Video DMA pCore driver.

File Name	Description
xvdma.h	Contains all prototypes of high-level API to access all of the features of the Xilinx Video DMA devices.
xvdma.c	Contains the implementation of high-level API to access all of the features of the Xilinx Video DMA devices except interrupts.
xvdma_intr.c	Contains the implementation of high-level API to access the interrupt feature of the Xilinx Video DMA devices.
xvdma_sinit.c	Contains static initialization methods for the Xilinx Video DMA device driver.
xvdma_g.c	Contains a template for a configuration table of Xilinx Video DMA devices. This file is used by the high-level API and is automatically generated to match the Video DMA device configuration by Xilinx EDK/SDK tools when the software project is built.
xvdma_hw.h	Contains low-level API (that is, identifiers and register-level driver API) that can be used to access the Xilinx Video DMA devices.
xvdma_i.h	Contains internal functions of the Xilinx Video DMA device driver. The application should never need to invoke any function/macro in this file.
example.c	An example that demonstrates how to control the Xilinx Video DMA devices using the high-level API.

pCore I/O Signals

The I/O signals for the Video DMA pCore are shown in Table 3. The signals can be broken into three groups: Streaming Video, pCore Gen-Lock and PLB v4.6 signals. The Streaming Video Signals are specified in Table 4. The pCore Gen-Lock signals are specified in Table 5. The PLB v4.6 signals are specified in Table 6.

The selected modes of the Video VDMA pCore determine the signals that are available to the user. When the Bus_Interface is set to VDMA, the VDMA bus interface is available and the XSVI bus interface is not. Conversely, when the XSVI is selected the XSVI bus interface is available and the VDMA bus interface is not. When the DMA_Mode is set to Read/Write, both read and write related signals are available. When Read_Only mode is selected, only read related signals are available. When Write_Only mode is selected, only write related signals are available.

VFBC Command Interface				
VFBC_cmd_full VFBC_cmd_almost_full VFBC_cmd_idle	VFBC_cmd_clk VFBC_cmd_reset VFBC_cmd_data VFBC_cmd_write VFBC_cmd_end			
VFBC Read Interface				
VFBC_rd_empty VFBC_rd_almost_empty VFBC_rd_data	VFBC_rd_clk VFBC_rd_reset VFBC_rd_read VFBC_rd_end_burst VFBC_rd_flush			
VFBC Writ	e Interface			
VFBC_wd_full VFBC_wd_almost_full	VFBC_wd_clk VFBC_wd_reset VFBC_wd_write VFBC_wd_end_burst VFBC_wd_flush VFBC_wd_data VFBC_wd_be			
VDMA Read Cor	nmand Interface			
VDMA_rcmd_full VDMA_rcmd_almost_full VDMA_rcmd_idle	VDMA_rcmd_clk VDMA_rcmd_reset VDMA_rcmd_data VDMA_rcmd_write VDMA_rcmd_end			
VDMA Read Interface				
VFBC_rd_empty VFBC_rd_almost_empty VFBC_rd_data	VFBC_rd_clk VFBC_rd_reset VFBC_rd_read VFBC_rd_end_burst VFBC_rd_flush			

Table 3: Video DMA pCore I/O Diagram

VDMA Write Co	VDMA Write Command Interface					
VDMA_wcmd_full	VDMA_wcmd_clk					
VDMA_wcmd_almost_full	VDMA_wcmd_reset					
VDMA_wcmd_idle	VDMA_wcmd_data					
	VDMA_wcmd_write					
	VDMA_wcmd_end					
VDMA Write Interface						
VDMA_wd_full	VDMA_wd_clk					
VDMA_wd_almost_full	VDMA_wd_reset					
	VDMA_wd_write					
	VDMA_wd_end_burst					
	VDMA_wd_flush					
	VDMA_wd_data					
	VDMA_wd_be					
XSVI Read	d Interface					
XSVI_rd_clk_in	XSVI_rd_clk_out					
XSVI_rd_vsync_in	XSVI_rd_vsync_out					
XSVI_rd_hsync_in	XSVI_rd_hsync_out					
XSVI_rd_vblank_in	XSVI_rd_vblank_out					
XSVI_rd_hblank_in	XSVI_rd_hblank_out					
XSVI_rd_chroma_in	XSVI_rd_chroma_out					
XSVI_rd_field_in	XSVI_rd_field_out					
XSVI_rd_active_video_in	XSVI_rd_active_video_out					
	XSVI_rd_data_out					
XSVI Writ	e Interface					
XSVI_wd_clk_in						
XSVI_wd_vsync_in						
XSVI_wd_active_video_in						
XSVI_wd_data_in						
	ne Synchronization					
Gen-Lock and Frar s_rd_frame_ptr_in1	m_rd_frame_ptr_out					
Gen-Lock and Frar s_rd_frame_ptr_in1 s_rd_frame_ptr_in2						
Gen-Lock and Frar s_rd_frame_ptr_in1 s_rd_frame_ptr_in2 s_rd_frame_ptr_in3	m_rd_frame_ptr_out					
Gen-Lock and Fran s_rd_frame_ptr_in1 s_rd_frame_ptr_in2 s_rd_frame_ptr_in3 s_rd_frame_ptr_in4	m_rd_frame_ptr_out					
Gen-Lock and Frar s_rd_frame_ptr_in1 s_rd_frame_ptr_in2 s_rd_frame_ptr_in3 s_rd_frame_ptr_in4 s_rd_frame_ptr_in5	m_rd_frame_ptr_out					
Gen-Lock and Frar s_rd_frame_ptr_in1 s_rd_frame_ptr_in2 s_rd_frame_ptr_in3 s_rd_frame_ptr_in4 s_rd_frame_ptr_in5 s_rd_frame_ptr_in6	m_rd_frame_ptr_out					
Gen-Lock and Frar s_rd_frame_ptr_in1 s_rd_frame_ptr_in2 s_rd_frame_ptr_in3 s_rd_frame_ptr_in4 s_rd_frame_ptr_in5 s_rd_frame_ptr_in6 s_rd_frame_ptr_in7	m_rd_frame_ptr_out					
Gen-Lock and Fran s_rd_frame_ptr_in1 s_rd_frame_ptr_in2 s_rd_frame_ptr_in3 s_rd_frame_ptr_in4 s_rd_frame_ptr_in5 s_rd_frame_ptr_in6 s_rd_frame_ptr_in7 s_rd_frame_ptr_in8	m_rd_frame_ptr_out					
Gen-Lock and Fran s_rd_frame_ptr_in1 s_rd_frame_ptr_in2 s_rd_frame_ptr_in3 s_rd_frame_ptr_in4 s_rd_frame_ptr_in5 s_rd_frame_ptr_in6 s_rd_frame_ptr_in7 s_rd_frame_ptr_in8 s_wd_frame_ptr_in1	m_rd_frame_ptr_out					
Gen-Lock and Fran s_rd_frame_ptr_in1 s_rd_frame_ptr_in2 s_rd_frame_ptr_in3 s_rd_frame_ptr_in4 s_rd_frame_ptr_in5 s_rd_frame_ptr_in6 s_rd_frame_ptr_in7 s_rd_frame_ptr_in8 s_wd_frame_ptr_in1 s_wd_frame_ptr_in2	m_rd_frame_ptr_out					
Gen-Lock and Fran s_rd_frame_ptr_in1 s_rd_frame_ptr_in2 s_rd_frame_ptr_in3 s_rd_frame_ptr_in4 s_rd_frame_ptr_in5 s_rd_frame_ptr_in6 s_rd_frame_ptr_in7 s_rd_frame_ptr_in8 s_wd_frame_ptr_in1 s_wd_frame_ptr_in2 s_wd_frame_ptr_in3	m_rd_frame_ptr_out					
Gen-Lock and Fran s_rd_frame_ptr_in1 s_rd_frame_ptr_in2 s_rd_frame_ptr_in3 s_rd_frame_ptr_in4 s_rd_frame_ptr_in5 s_rd_frame_ptr_in6 s_rd_frame_ptr_in7 s_rd_frame_ptr_in7 s_wd_frame_ptr_in1 s_wd_frame_ptr_in2 s_wd_frame_ptr_in3 s_wd_frame_ptr_in4	m_rd_frame_ptr_out					
Gen-Lock and Fran s_rd_frame_ptr_in1 s_rd_frame_ptr_in2 s_rd_frame_ptr_in3 s_rd_frame_ptr_in4 s_rd_frame_ptr_in5 s_rd_frame_ptr_in6 s_rd_frame_ptr_in7 s_rd_frame_ptr_in8 s_wd_frame_ptr_in1 s_wd_frame_ptr_in2 s_wd_frame_ptr_in3 s_wd_frame_ptr_in4 s_wd_frame_ptr_in5	m_rd_frame_ptr_out					
Gen-Lock and Fran s_rd_frame_ptr_in1 s_rd_frame_ptr_in2 s_rd_frame_ptr_in3 s_rd_frame_ptr_in4 s_rd_frame_ptr_in5 s_rd_frame_ptr_in6 s_rd_frame_ptr_in7 s_rd_frame_ptr_in8 s_wd_frame_ptr_in1 s_wd_frame_ptr_in2 s_wd_frame_ptr_in3 s_wd_frame_ptr_in4 s_wd_frame_ptr_in5 s_wd_frame_ptr_in5 s_wd_frame_ptr_in6	m_rd_frame_ptr_out					
Gen-Lock and Fran s_rd_frame_ptr_in1 s_rd_frame_ptr_in2 s_rd_frame_ptr_in3 s_rd_frame_ptr_in4 s_rd_frame_ptr_in5 s_rd_frame_ptr_in6 s_rd_frame_ptr_in7 s_rd_frame_ptr_in8 s_wd_frame_ptr_in1 s_wd_frame_ptr_in2 s_wd_frame_ptr_in3 s_wd_frame_ptr_in4 s_wd_frame_ptr_in5 s_wd_frame_ptr_in5 s_wd_frame_ptr_in6 s_wd_frame_ptr_in7	m_rd_frame_ptr_out					
Gen-Lock and Fran s_rd_frame_ptr_in1 s_rd_frame_ptr_in2 s_rd_frame_ptr_in3 s_rd_frame_ptr_in5 s_rd_frame_ptr_in6 s_rd_frame_ptr_in7 s_rd_frame_ptr_in8 s_wd_frame_ptr_in1 s_wd_frame_ptr_in2 s_wd_frame_ptr_in3 s_wd_frame_ptr_in4 s_wd_frame_ptr_in5 s_wd_frame_ptr_in6 s_wd_frame_ptr_in7 s_wd_frame_ptr_in7 s_wd_frame_ptr_in7 s_wd_frame_ptr_in7 s_wd_frame_ptr_in8	m_rd_frame_ptr_out					
Gen-Lock and Fran s_rd_frame_ptr_in1 s_rd_frame_ptr_in2 s_rd_frame_ptr_in3 s_rd_frame_ptr_in5 s_rd_frame_ptr_in5 s_rd_frame_ptr_in7 s_rd_frame_ptr_in7 s_wd_frame_ptr_in1 s_wd_frame_ptr_in2 s_wd_frame_ptr_in3 s_wd_frame_ptr_in4 s_wd_frame_ptr_in5 s_wd_frame_ptr_in5 s_wd_frame_ptr_in6 s_wd_frame_ptr_in7 s_wd_frame_ptr_in7 s_wd_frame_ptr_in8 fsync	m_rd_frame_ptr_out					
Gen-Lock and Fran s_rd_frame_ptr_in1 s_rd_frame_ptr_in2 s_rd_frame_ptr_in3 s_rd_frame_ptr_in4 s_rd_frame_ptr_in5 s_rd_frame_ptr_in6 s_rd_frame_ptr_in7 s_rd_frame_ptr_in8 s_wd_frame_ptr_in2 s_wd_frame_ptr_in3 s_wd_frame_ptr_in3 s_wd_frame_ptr_in4 s_wd_frame_ptr_in5 s_wd_frame_ptr_in6 s_wd_frame_ptr_in7 s_wd_frame_ptr_in7 s_wd_frame_ptr_in7 s_wd_frame_ptr_in8	m_rd_frame_ptr_out					

Table 3: Video DMA pCore I/O Diagram (Cont'd)

Table	3:	Video	DMA	pCore	I/O	Diagram	(Cont'd)
-------	----	-------	-----	-------	-----	---------	----------

PLB Interface			
SPLB_Clk	SI_addrAck		
SPLB_Rst	SI_SSize		
PLB_ABus	SI_wait		
PLB_UABus	SI_rearbitrate		
PLB_PAValid	SI_wrDAck		
PLB_SAValid	SI_wrComp		
PLB_rdPrim	SI_wrBTerm		
PLB_wrPrim	SI_rdDBus		
PLB_MasterID	SI_rdWdAddr		
PLB_abort	SI_rdDAck		
PLB_buslock	SI_rdComp		
PLB_RNW	SI_rdBterm		
PLB_BE	SI_MBusy		
PLB_Msize	SI_MWrErr		
PLB_size	SI_MRdErr		
PLB_type	SI_MIRQ		
PLB_lockErr	IP2INTC_Irpt		
PLB_wrDBus			
PLB_wrBurst			
PLB_rdBurst			
PLB_wrPendReq			
PLB_rdPendReq			
PLB_wrPendPri			
PLB_rdPendPri			
PLB_reqPri			
PLB_TAttribute			

Table 4: Streaming Video Signals

Name	Direction	Description
fsync	In	Frame Synchronization Input (Read_Only or Write_Only modes)
rd_fsync	In	Read Frame Synchronization Input (Read/Write mode)
wd_fsync	In	Write Frame Synchronization Input (Read/Write mode)
vfbc_cmd_clk	Out	VFBC Command Clock
vfbc_cmd_reset	Out	VFBC Command Reset
vfbc_cmd_data [31:0]	Out	VFBC Command Data
vfbc_cmd_write	Out	VFBC Command Write Enable
vfbc_cmd_end	Out	VFBC Command End
vfbc_cmd_full	In	VFBC Command Full
vfbc_cmd_almost_full	In	VFBC Command Almost Full
vfbc_cmd_idle	In	VFBC Command Idle
vfbc_wd_clk	Out	VFBC Write Data Clock
vfbc_wd_reset	Out	VFBC Write Data Reset

Table 4: Streaming Video Signals (Cont'd)

Name	Direction	Description
vfbc_wd_write	Out	VFBC Write Data Write Enable
vfbc_wd_end_burst	Out	VFBC Write Data End Burst
vfbc_wd_flush	Out	VFBC Write Data Flush
vfbc_wd_data [DATA_WIDTH-1:0]	Out	VFBC Write Data
vfbc_wd_data_be [(DATA_WIDTH/8)-1:0]	Out	VFBC Write Data Byte Enable
vfbc_wd_full	In	VFBC Write Data Full
vfbc_wd_almost_full	In	VFBC Write Data Almost Full
vfbc_rd_clk	Out	VFBC Read Data Clock
vfbc_rd_reset	Out	VFBC Read Data Reset
vfbc_rd_read	Out	VFBC Read Data Read Enable
vfbc_rd_end_burst	Out	VFBC Read Data End Burst
vfbc_rd_flush	Out	VFBC Read Data Flush
vfbc_rd_data [DATA_WIDTH-1:0]	In	VFBC Read Data
vfbc_rd_empty	In	VFBC Read Data Empty
vfbc_rd_almost_empty	In	VFBC Read Data Almost Empty
vdma_wcmd_clk	In	VDMA Write Command Clock
vdma_wcmd_reset	In	VDMA Write Command Reset
vdma_wcmd_data [31:0]	In	VDMA Write Command Data
vdma_wcmd_write	In	VDMA Write Command Write Enable
vdma_wcmd_end	In	VDMA Write Command End
vdma_wcmd_full	Out	VDMA Write Command Full
vdma_wcmd_almost_full	Out	VDMA Write Command Almost Full
vdma_wcmd_idle	Out	VDMA Write Command Idle
vdma_wd_clk	In	VDMA Write Data Clock
vdma_wd_reset	In	VDMA Write Data Reset
vdma_wd_write	In	VDMA Write Data Write Enable
vdma_wd_end_burst	In	VDMA Write Data End Burst
vdma_wd_flush	In	VDMA Write Data Flush
vdma_wd_data [DATA_WIDTH-1:0]	In	VDMA Write Data
vdma_wd_data_be [(DATA_WIDTH/8)-1:0]	In	VDMA Write Data Byte Enable
vdma_wd_full	Out	VDMA Write Data Full
vdma_wd_almost_full	Out	VDMA Write Data Almost Full
vdma_rcmd_clk	In	VDMA Read Command Clock
vdma_rcmd_reset	In	VDMA Read Command Reset
vdma_rcmd_data [31:0]	In	VDMA Read Command Data
vdma_rcmd_write	In	VDMA Read Command Write Enable
vdma_rcmd_end	In	VDMA Read Command End
vdma_rcmd_full	Out	VDMA Read Command Full

Name	Direction	Description
vdma_rcmd_almost_full	Out	VDMA Read Command Almost Full
vdma_rcmd_idle	Out	VDMA Read Command Idle
vdma_rd_clk	In	VDMA Read Data Clock
vdma_rd_reset	In	VDMA Read Data Reset
vdma_rd_read	In	VDMA Read Data Read Enable
vdma_rd_end_burst	In	VDMA Read Data End Burst
vdma_rd_flush	In	VDMA Read Data Flush
vdma_rd_data [DATA_WIDTH-1:0]	Out	VDMA Read Data
vdma_rd_empty	Out	VDMA Read Data Empty
vdma_rd_almost_empty	Out	VDMA Read Data Almost Empty
xsvi_rd_clk_in	In	XSVI Read Data Clock Input
xsvi_rd_vsync_in	In	XSVI Read Vertical Sync Input
xsvi_rd_hsync_in	In	XSVI Read Horizontal Sync Input
xsvi_rd_vblank_in	In	XSVI Read Vertical Blank Input
xsvi_rd_hblank_in	In	XSVI Read Horizontal Blank Input
xsvi_rd_chroma_in	In	XSVI Read Chroma Input
xsvi_rd_field_in	In	XSVI Read Field Input
xsvi_rd_active_video_in	In	XSVI Read Active Video Input
xsvi_rd_clk_out	Out	XSVI Read Data Clock Output
xsvi_rd_vsync_out	Out	XSVI Read Vertical Sync Output
xsvi_rd_hsync_out	Out	XSVI Read Horizontal Sync Output
xsvi_rd_vblank_out	Out	XSVI Read Vertical Blank Output
xsvi_rd_hblank_out	Out	XSVI Read Horizontal Blank Output
xsvi_rd_chroma_out	Out	XSVI Read Chroma Output
xsvi_rd_field_out	Out	XSVI Read Field Output
xsvi_rd_active_video_out	Out	XSVI Read Active Video Output
xsvi_rd_data_out [DATA_WIDTH-1:0]	Out	XSVI Read Data Output
xsvi_wd_clk_in	In	XSVI Write Data Clock Input
xsvi_wd_vsync_in	In	XSVI Write Vertical Sync Input
xsvi_wd_active_video_in	In	XSVI Write Active Video Input
xsvi_wd_data_in [DATA_WIDTH-1:0]	In	XSVI Write Data Input

Name	Direction	Description
s_wd_frame_ptr_in1[4:0]	In	Gen-Lock Slave Write Frame Pointer Input #1
s_wd_frame_ptr_in2[4:0]	In	Gen-Lock Slave Write Frame Pointer Input #2
s_wd_frame_ptr_in3[4:0]	In	Gen-Lock Slave Write Frame Pointer Input #3
s_wd_frame_ptr_in4[4:0]	In	Gen-Lock Slave Write Frame Pointer Input #4
s_wd_frame_ptr_in5[4:0]	In	Gen-Lock Slave Write Frame Pointer Input #5
s_wd_frame_ptr_in6[4:0]	In	Gen-Lock Slave Write Frame Pointer Input #6
s_wd_frame_ptr_in7[4:0]	In	Gen-Lock Slave Write Frame Pointer Input #7
s_wd_frame_ptr_in8[4:0]	In	Gen-Lock Slave Write Frame Pointer Input #8
m_wd_frame_ptr_out[4:0]	Out	Gen-Lock Master Write Frame Pointer Output
s_rd_frame_ptr_in1[4:0]	In	Gen-Lock Slave Read Frame Pointer Input #1
s_rd_frame_ptr_in2[4:0]	In	Gen-Lock Slave Read Frame Pointer Input #2
s_rd_frame_ptr_in3[4:0]	In	Gen-Lock Slave Read Frame Pointer Input #3
s_rd_frame_ptr_in4[4:0]	In	Gen-Lock Slave Read Frame Pointer Input #4
s_rd_frame_ptr_in5[4:0]	In	Gen-Lock Slave Read Frame Pointer Input #5
s_rd_frame_ptr_in6[4:0]	In	Gen-Lock Slave Read Frame Pointer Input #6
s_rd_frame_ptr_in7[4:0]	In	Gen-Lock Slave Read Frame Pointer Input #7
s_rd_frame_ptr_in8[4:0]	In	Gen-Lock Slave Read Frame Pointer Input #8
m_rd_frame_ptr_out[4:0]	Out	Gen-Lock Master Read Frame Pointer Output

Table 5: pCore Gen-Lock Signals

 Table 6: Processor Local Bus (PLB) v4.6 Signals

Name	Direction	Description
SPLB_Clk	In	Slave PLB Clock
SPLB_Rst	In	Slave PLB Reset
PLB_ABus [0:C_SPLB_AWIDTH-1]	In	PLB Address Bus
PLB_PAValid	In	PLB Primary Address Valid indicator
PLB_masterID[0:C_SPLB_MID_WIDTH-1]	In	PLB Current Master identifier
PLB_abort	In	PLB Abort Bus Request indicator
PLB_RNW	In	PLB Read Not Write
PLB_BE [0:(C_SPLB_DWIDTH/8)-1]	In	PLB Byte Enables
PLB_MSize [0:1]	In	PLB Master Data Bus Size
PLB_size [0:3]	In	PLB Transfer Size
PLB_type [0:2]	In	PLB Transfer Type
PLB_wrDBus [0:C_SPLB_DWIDTH-1]	In	PLB Write Data Bus
PLB_wrBurst	In	PLB Burst Write Transfer indicator
PLB_rdBurst	In	PLB Burst Read Transfer indicator
PLB_SAValid	In	PLB Secondary Address Valid

Name	Direction	Description
PLB_UABus[0:31]	In	PLB Upper Address Bus
PLB_BusLock	In	PLB Bus Lock
PLB_LockErr	In	PLB Lock Error
PLB_TAttribute[0:15]	In	PLB Attribute
PLB_RdPrim	In	PLB Read Primary
PLB_WrPrim	In	PLB Write Primary
PLB_RDPendPri[0:1]	In	PLB Read Pending on Primary
PLB_WrPendPri[0:1]	In	PLB Write Pending on Primary
PLB_RdPendReq	In	PLB Read Pending Request
PLB_WrPendReq	In	PLB Write Pending Request
SI_addAck	Out	Slave Address Acknowledge
SI_SSize[0:1]	Out	Slave Data Bus Size
SI_wait	Out	Slave Wait Indicator
SI_rearbitrate	Out	Slave Rearbitrate Bus indicator
SI_wrDAck	Out	Slave Write Data Acknowledge
SI_wrComp	Out	Slave Write Transfer Complete indicator
SI_wrBTerm	Out	Slave Terminate Write Burst Transfer
SI_rdDBus[0:C_SPLB_DWIDTH-1]	Out	Slave Read Data Bus
SI_rdWdAddr[0:3]	Out	Slave Read Word Address
SI_rdDAck	Out	Slave Read Data Acknowledge
SI_rdComp	Out	Slave Read Transfer Complete indicator
SI_rdBTerm	Out	Slave Terminate Read Burst Transfer
SI_MBusy[0:C_SPLB_NUM_MASTERS-1]	Out	Slave Busy indicator
SI_MrdErr[0:C_SPLB_NUM_MASTERS-1]	Out	Slave Read Error indicator
SI_MwrErr[0:C_SPLB_NUM_MASTERS-1]	Out	Slave Write Error indicator
SI_MIRQ[0:C_SPLB_NUM_MASTERS-1]	Out	Slave Interrupt
IP2INTC_Irpt	Out	Interrupt Signal

Table	6.	Processor	Local Bus	(PI B) v4 6	Signals	(Cont'd)
Table	υ.	110003301	LOCAI DUS		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Orginalis	

General Processor Interface

The other interface option is the General Purpose Processor (GPP) interface. The GPP Interface is shown in Table 7 and consists of the Streaming Video Signals listed in Table 4, the GPP Gen-Lock Signals listed in Table 8 and the Control, Interrupt, and Status signals detailed in Table 9. The signals in Table 9 correspond to the registers in Table 1, which has more in-depth descriptions of each signal.

The selected modes of the Video DMA core determine the signals that are available to the user. When the Bus_Interface is set to VDMA, the VDMA bus interface is available and the XSVI bus interface is not. Conversely, when the XSVI is selected the XSVI bus interface is available and the VDMA bus interface is not. When the DMA_Mode is set to Read/Write, both read and write related signals are available. When Read_Only mode is selected, only read related signals are available. When Write_Only mode is selected, only write related signals are available.

The directly exposed control, interrupt and status signals allow the user to wrap these signals with a user-defined bus interface targeting any arbitrary processor. New values written to the control signals take effect immediately. The recommendation when using this functionality is to disable the ctrl_rd_dma_en and ctrl_wd_dma_en signals before updating the control signals.

VFBC Command Interface			
/FBC_cmd_full VFBC_cmd_clk			
VFBC_cmd_idle	VFBC_cmd_reset		
VFBC_cmd_almost_full	VFBC_cmd_data		
	VFBC_cmd_write		
	VFBC_cmd_end		
VFBC Read Interface			
VFBC_rd_empty	VFBC_rd_clk		
VFBC_rd_almost_empty	VFBC_rd_reset		
VFBC_rd_data	VFBC_rd_read		
	VFBC_rd_end_burst		
	VFBC_rd_flush		
VFBC Write Interface			
VFBC_wd_full	VFBC_wd_clk		
VFBC_wd_almost_full	VFBC_wd_reset		
	VFBC_wd_write		
	VFBC_wd_end_burst		
	VFBC_wd_flush		
	VFBC_wd_data		
	VFBC_wd_be		
VDMA Read Command Interface			
VDMA_rcmd_full	VDMA_rcmd_clk		
VDMA_rcmd_idle	VDMA_rcmd_reset		
VDMA_rcmd_almost_full	VDMA_rcmd_data		
	VDMA_rcmd_write		
	VDMA_rcmd_end		

Table 7: Video DMA General Purpose Processor I/O Diagram