
Xilinx Quick Emulator User
Guide

QEMU

UG1169 (v2020.1) June 3, 2020

See all versions
of this document

https://www.xilinx.com
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG1169

Revision History
The following table shows the revision history for this document.

Section Revision Summary
06/03/2020 Version 2020.1

QEMU Supported Features Updated table.

Using CAN with Xilinx QEMU New section.

Revision History

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=2

Table of Contents
Revision History...2

Chapter 1: Using Xilinx QEMU... 5
What is QEMU?.. 5

Chapter 2: Getting Started with QEMU.. 6
QEMU Supported Features.. 6
Installing QEMU...8

Chapter 3: QEMU Quick Reference Card.. 10
Zynq UltraScale+ MPSoC Command Base Template...10
Zynq-7000 SoC Command Base Template... 11
MicroBlaze Processor Command Base Template..12
QEMU Command Line Options..12

Chapter 4: Using XDB with QEMU..37
Connecting QEMU...37

Chapter 5: Co-Simulating with QEMU... 38
Remote-Port...39
libsystemctlm-soc..39
Co-Simulating with QEMU..39

Chapter 6: Using Boot Images on QEMU... 42
Using SD for Boot..42
Using QSPI for Boot.. 43
Using TFTP for Boot.. 44
SD-Card Partitioning and Loading an Ubuntu-core File System... 44
Adding New Devices to the Design... 45

Chapter 7: Troubleshooting.. 47
FSBL Hangs on QEMU...47
QEMU CPU Stall Messages...47

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=3

Appendix A: Additional Resources and Legal Notices............................. 49
Xilinx Resources...49
Documentation Navigator and Design Hubs...49
References..49
Please Read: Important Legal Notices... 50

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=4

Chapter 1

Using Xilinx QEMU

What is QEMU?
Xilinx provides a Quick Emulator (QEMU) for software developers targeting Zynq®-7000 SoC,
Zynq® UltraScale+™ MPSoC, and MicroBlaze™ development platforms. This system-emulation-
model runs on an Intel-compatible Linux or Windows host systems. To use this system emulation
model you must be familiar with:

• Device architecture

• GNU debugger (GDB) for debugging QEMU remotely

• Generation of guest software application using Xilinx® PetaLinux and Software Development
Kit (SDK) tools

• Device trees

This document provides the basic information to familiarize, use, and debug software with
QEMU.

Chapter 1: Using Xilinx QEMU

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=5

Chapter 2

Getting Started with QEMU

QEMU Supported Features
The following table summarizes the status each element of the QEMU model according to the
delivery.

Table 1: QEMU Supported Features

Description QEMU Status
Application Processing Units

Arm® interrupt controller (GIC v2 and v3) Yes

Arm v8 (A53 and A72) implementation. Quad
Core.

Little endian only

Arm v8 EL0 support AArch64 and AArch32

Arm v8 EL1 support AArch64 and AArch32

Arm v8 EL2 support AArch64

Arm v8 EL3 support AArch64

Arm v8 Crypto instruction support Supported

Vector Floating Point (VFP) support As maintained by mainline. No formal acceptance criteria to feature.

SIMD support As maintained by mainline. No formal acceptance criteria to feature.

Arm v7 Support A9, R5, R4 supported.

Realtime Processing Units

Dual core Cortex™-R5F Incomplete coverage of system register set, little endian only.

Dual core R5 CPU run-time configuration Static dual core, no parallel/lock transitioning.

Fault Handling Faults can be externally injected.

Tightly coupled Memories No R5 local view. Only globally accessible TCM memory region is
accessible. Flat memory only, no control register implementation.

Interrupt controller Yes.

SLCRs Very limited functionality. Only dummy registers, except SD is_MMC
control.

PMU Zynq UltraScale+ MPSoC

IP Integrator Limited Connectivity specific to PMU functionality.

Global Registers Yes.

PMU MicroBlaze™ Yes.

PMU Interrupt Control Yes.

Chapter 2: Getting Started with QEMU

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=6

Table 1: QEMU Supported Features (cont'd)

Description QEMU Status
I/O Peripherals and Devices

I/O Peripherals Not all peripherals are implemented. Some standard peripherals are
slight variations on the actual cores configuration-wise.

Cadence Gigabit Ethernet Controller 1588 not supported.

SD Host Controller Interface (v3.0) Yes.

SD Card model No SDxC.

QSPI controller (excludes Linear and Generic) Yes.

QSPI linear region No XIP. Slow emulation performance.

QSPI NOR flash devices Incomplete but reasonable selection of parts including many modern
QSPI capable devices.

UART Controller Yes.

SPI controller Master mode only.

I2C controller Master mode only.

DDR Simple flat RAM model, no ECC.

CAN Yes.

XADC No.

GPIO Limited functionality: connects to remote port.

MDIO and Ethernet PHY Dummy models, show link up on requested PHY using MDIO.

USB No.

SATA Yes.

PCI™ Yes.

OSPI Yes.

RTC Yes.

Display Ports

DP model AUX Communication.
DPCP: DisplayPort Configuration Information.
EDID.

DPDMA Yes

2 Layers Yes.

Alpha Blending Yes.

Audio With some unexpected behavior.

Dynamic resolution changes Yes.

Multiple Pixel formats Not all.

Mali™ GPU No.

AMBA® AXI Bus

AMBA/AXI bus interconnect system Simple bus model, no AXI/AMBA-specific features (such as MIDs).
Master IDs and Trustzone (secure versus non-secure) transactions
supported.

Bus quality of service monitoring and control N/A

On Chip Memory Yes

Chapter 2: Getting Started with QEMU

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=7

Table 1: QEMU Supported Features (cont'd)

Description QEMU Status
AXI Performance Monitor (APM)
ATM AXI Trace Monitor (ATM)

N/A

Additional Zynq UltraScale+ MPSoC Capabilities

XMPU Does not return Slave error; CPU does not recognize asynchronous
aborts on failed accesses.

XPPU Does not return Slave error; CPU does not recognize asynchronous
aborts on failed accesses.

SMMU Only supports 64-bit page tables

Clock/reset controllers for low-power and high
power domains.

Limited feature set specific to CPU functionality.

Interprocessor Interrupt Control Yes.

PL-based AMS block N/A.

Miscellaneous QEMU Non-IP Related Feature

Ability to boot multiple software in different
CPUs.

Yes.

Create QEMU Machine models from Linux
device tree binaries (DTB)s.

Limited to QEMU maintained DTBs only. IPI/HSI generated DTBs
unsupported.

FPDDMA No FCI and no rate-control.

LPDDMA No FCI and no rate-control.

MTTCG Yes.

Timers and Clock Generators

Triple Timer Counter Yes.

SWDT, WDT No.

Si570/71 I2C device. Dummy emulation of clock generator.

Installing QEMU
QEMU comes with the Xilinx® PetaLinux Tools and Xilinx SDK installer. See the PetaLinux Tools
documentation for installation instructions.

TIP: Use which-qemu-system-aarch64  command to know where the QEMU binary is installed after
PetaLinux or SDK paths are set.

TIP: Xilinx QEMU Source is available at https://github.com/Xilinx/qemu, for building QEMU manually refer to
Chapter 3, QEMU Quick Reference Card.

Launch QEMU Using PetaLinux Commands
QEMU is integrated with the PetaLinux workflow.

Chapter 2: Getting Started with QEMU

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 8Send Feedback

https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html
https://github.com/Xilinx/qemu
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=8

It is assumed that at this step you have already downloaded and installed Xilinx PetaLinux on
your Linux machine. If you have not done so, please see the PetaLinux Tools documentation for
installation instructions, and install it now.

For this example, to get you started quickly without having to have a Vivado® project ready,
Xilinx® recommends you to download a pre-built PetaLinux BSP. Also, download the ZCU102
BSP (prod-silicon) BSP from the Petalinux Download Page.

To use QEMU with a PetaLinux project, you need to create and build a PetaLinux project for the
Zynq® UltraScale+™ MPSoC platform (use the pre-built ZCU102 BSP).

Open your favorite terminal and type the following:

1. source <petalinux-install-path>/settings.csh

2. petalinux-create -t project -s <path to bsp>/xilinx-zcu102-v201X.X-
final.bsp -n xilinx-qemu-first-run

3. cd xilinx-qemu-first-run

4. petalinux-boot --qemu --prebuilt 3

On completing step 4 you should see the QEMU boot sequence loading the prebuilt linux image.
At the prompt enter the username and passowrd as root.

Note: On step 4 you can pass additional arguments to QEMU using the following option: --qemu-args
"....". You can pass any additional argument within double quotes.

QEMU DTBs
The QEMU tool uses device tree blobs (dtb) for machine creation. For MicroBlaze™ and
Zynq®-7000, dtbs built for Linux kernels are used for emulation. Xilinx maintains device-tree
sources at https://github.com/Xilinx/qemu-devicetrees for Zynq UltraScale+ MPSoC. For more
information on how to use device trees see Chapter 3, QEMU Quick Reference Card.

Chapter 2: Getting Started with QEMU

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 9Send Feedback

https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.html
https://github.com/Xilinx/qemu-devicetrees
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=9

Chapter 3

QEMU Quick Reference Card

Zynq UltraScale+ MPSoC Command Base
Template

This is a basic template for Zynq® UltraScale+™ MPSoC QEMU command lines:

qemu-system-aarch64 -M arm-generic-fdt -nographic -dtb <hw-dtb> \
-device loader,file=<progam.elf>,cpu-num=<cpu-id> \
-global xlnx,zynqmp-boot.cpu-num=<cpu index> \
[-device loader,addr=<cpu-reset-register-addr>,data=<value>,data-len=4] \
[-global xlnx,zynqmp-boot.use-pmufw=true] \
[-global xlnx,zynqmp-boot.load-pmufw-cfg=<false/true>] \
[-boot mode=<boot-mode-id>] \
[-m <ddr ram size>]
[-drive file=<image-path>, if=<(sd | mtd | pflash)>, format=raw,\
index=<index_num>]

QEMU Command Options and Descriptions
The following table lists the options and descriptions for QEMU commands.

Table 2: QEMU Command Options and Descriptions

Option Description
-device loader,file=<progam.elf>,cpu=<cpu-id> Specify the software to run (in ELF format).
-device loader,addr=<cpu-reset-register-
addr>,data=<value>,data-len=4

Release CPU from reset.
This command is optional because the next command can
also be used to release resets of A53s.

Note: R5 resets can be released only with this command.

-global xlnx,zynqmp-boot.cpu-num=<cpu index> Release the specified A53 core.
For details regarding the CPU index, refer to CPU
Enumeration.

-global xlnx,zynqmp-boot.use-pmufw=<true/
false>

Specify true if running with pmu firmware.

Note: This option will be deprecated in future, when pmufw
uses a default configuration.

Chapter 3: QEMU Quick Reference Card

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=10

Table 2: QEMU Command Options and Descriptions (cont'd)

Option Description
-global xlnx,zynqmp-boot.load-pmufw-
cfg=<false/true>

Mention QEMU to use or not to use static pmufw config
data.

• true: loads static pmufw config data

• false: Do not use static data, FSBL populates it

-boot mode=<boot-mode-id> Specify the boot mode pins.
-drive file=<image-path>, if=<[sd | mtd |
pflash]>, format=raw, index=<index_num>

Specify files for persistent storage media (SD, QSPI, or
NAND respectively).
<index_num> specifies the respective controller for each
media type.

-M arm-generic-fdt -nographic -dtb <hw-dtb> Standard options. <hw-dtb> is the QEMU machine
description.

-m <ddr ram size> Mention size of ram to be emulated, default is 2G.
ex: -m 4G

Standalone Hello World Example
This example runs a “Hello-world” ELF file on an A53 processor. Substitute the
hello_world.elf with the location of your target software, as follows:

qemu-system-aarch64 -nographic -M arm-generic-fdt \
-dtb zcu102-arm.dtb \
-device loader,file=./hello_world.elf,cpu-num=0 \
 -device loader,addr=0xfd1a0104,data=0x8000000e,data-len=4

Zynq-7000 SoC Command Base Template
Following is the command base template for Zynq-7000 SoC devices.

qemu-system-aarch64 -M arm-generic-fdt-7series \
 [-machine linux=on] \
-serial /dev/null -serial mon:stdio \
 -display none \
-kernel <guest image path> \
-dtb <dtb path> \
[-device loader,addr=0xf8000008,data=0xDF0D,data-len=4 \
-device loader,addr=0xf8000140,data=0x00500801,data-len=4 \
-device loader,addr=0xf800012c,data=0x1ed044d,data-len=4 \
-device loader,addr=0xf8000108,data=0x0001e008,data-len=4]

Table 3: Command Options for Zynq-7000 SoC Devices

Option Description
-machine linux=on Specifies if -kernel is provided an linux kernel image.

Chapter 3: QEMU Quick Reference Card

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=11

Table 3: Command Options for Zynq-7000 SoC Devices (cont'd)

Option Description
-kernel <guest image path> Specify path to guest image, such as kernel
-dtb <dtb path> Specify the linux dtb path which is used by QEMU emulation

MicroBlaze Processor Command Base
Template

Following is the command base template for MicroBlaze™ processors.

qemu-system-microblazeel -M microblaze-fdt-plnx \
-m <ram_size> \
-serial mon:stdio \
-display none \
-kernel <guest image path> \
-dtb <path to the dtb>

Table 4: Command Options for Zynq-7000 SoC Devices

Option Description
-m <ram_size> Specifies the RAM needed to be created.
-kernel <guest image path> Specifies the RAM needed to be created.
-dtb <dtb path> Specifies the RAM needed to be created.

QEMU Command Line Options
This section provides details of QEMU command line options. The following sections detail boot,
network, serial, storage, and miscellaneous command line options.

Using Extra QEMU Command Line Arguments with
PetaLinux
The petalinux-boot --qemu command has an argument --qemu-args that lets you
specify extra QEMU command line arguments.

Some of the optional arguments specified in the section can be passed to the PetaLinux QEMU
using this switch.

Chapter 3: QEMU Quick Reference Card

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=12

IMPORTANT! Do not specify the standard, boot, or network options to petalinux-boot; those options are
handled transparently by the application.

QEMU Boot Options
[-device loader,(file=<file_name>|data=<value>,data-len=4),\
[addr=<value>],[cpu-num=<value>],[force-raw=true]] ...

This (repeatable) argument configures the QEMU machine for boot. The boot options perform
the following tasks:

• Loads software or data into RAM sections

• Sets the CPU entry points

• Releases CPUs from reset

By default, theZynq UltraScale+ MPSoC has six Arm® CPUs (four cores of Cortex™-A53 and two
cores of Cortex-R5F) are in reset by their respective reset controllers when no software is loaded.
You can use a combination of -device loader arguments to load software and setup the CPUs.

There are two basic modes for the loader argument: file mode and single transaction mode.
Specify one mode only. The following subsections describe these modes.

File Mode

In file mode, the loader accepts a file as data to load. The file can be in any format and is passed
using the file=<file_name> sub-option. If the file is an ELF or a U-Boot image, the file is
parsed and the sections loaded into memory as specified by the image; otherwise, the file is
assumed as a raw image and loaded accordingly as an image into memory. Specify the address for
loading raw images with the addr=<value> argument. The address default is 0. The address is
ignored if the file is an ELF or U-Boot image. Optionally, you can specify a CPU using the cpu-
num=<value> sub-option.

Note: Specifying cpu-num also sets the Program Counter (PC).

If specified, the CPU has a set entry point.

• For ELFs and U-Boot images, the address is set as specified by the image.

• For raw images, the entry point is set to the start address.

• If you do not specify a CPU, the bus for CPU0 loads images, but no program entry point is set.
See CPU Enumeration, for more details on the meaning of <value>.

Chapter 3: QEMU Quick Reference Card

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=13

There are cases where you might want to treat an ELF or a U-Boot image as a raw data image
(particularly useful for testing bootloaders with ELF or U-Boot capability). You can pass the
force-raw=true sub-option to instruct the loader to treat the image as raw in this case. You
must specify the addr; in this case and the section information in the ELF or U-Boot image are
ignored.

Single Transaction Mode

In single transaction mode, a single bus transaction occurs.

• data addr and data-len must be specified.

○ data-len must equal 4 (corresponding to a single 4-bit transaction).

○ addr must be aligned to 4-bits.

Before the initial system reset for Zynq UltraScale+ MPSoC, the QEMU performs the specified
bus transaction. The initial system reset might clear the value set by the single transaction when
the transaction accesses the I/O peripherals. As a work-around, key registers interpret bit 31
(usually reserved) as an indicator to not reset that particular register when resetting this system.
This is useful for releasing CPU resets from the command line. The registers that support bit-31
reset-ignore are:

• CRF.RST_FPD_APU

• CRL.RST_LPD_TOP

• PMU_LOCAL.LOCAL_RESET

• RPU.RPU_GLBL_CNTL

Optionally, you can specify a CPU using the cpu-num=<value> sub-option. The single
transaction occurs from the perspective of the specified CPU. If you do not specify a CPU, then
the system assumes CPU0. See the Zynq UltraScale+ MPSoC Register Reference (UG1087) for more
information about registers.

CPU Enumeration

The cpu-num=<value> argument interprets value are shown in the following table:

Table 5: CPU Enumeration Values

Value CPU
0 A53-0

1 A53-1

2 A53-2

3 A53-3

Chapter 3: QEMU Quick Reference Card

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 14Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+ultrascale
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=14

Table 5: CPU Enumeration Values (cont'd)

Value CPU
4 R5-0

5 R5-1

Advanced

If you edit the /cpus dtb node, these enumerations change. The enumerations of the CPUs
matches the DTS /cpus node ordering.

Hot Loading

You can use the loader at runtime to load new software into an already running system. This is
accessible from the QEMU monitor. See the Non-Graphical I/O Option for information on
accessing the monitor. From the monitor, you can stop the emulation using the stop command:

(qemu) stop

You can then use the loader to add new software or release CPUs from reset. The syntax is:

(qemu) device_add loader,(file=<file>|data=<value>,data len=4),\
[addr=<value>],[cpu-num=<value>],[force-raw=true]

All sub-options are the same as described in the previous section. The emulation can then be
resumed (with the new memory and CPU state from the loading operations) using the following
c command:

(qemu) c

QEMU Command Examples

The following table provides command examples:

Table 6: Command Examples and Descriptions

Description Command
Load an ELF onto Cortex™-A53-0. -device loader, file=./hello_world.elf,cpu-num=0

Release Cortex-A53-0 from reset. -device loader,addr=0xfd1a0104,
data=0x8000000e,data-len=4

Load a binary image into RAM at a specific address (no
CPU entry point will be set).

-device loader,file=./Image,addr=0x0008000

Load an ELF to RAM (no CPU entry point will be set). -device loader,file=./foo.elf

Chapter 3: QEMU Quick Reference Card

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=15

Table 6: Command Examples and Descriptions (cont'd)

Description Command
Load an ELF to Cortex-A53-0 from the monitor in an
already running system.

(qemu) stop

(qemu) device_add loader,file=./foo.elf,cpu-num=0

(qemu) device_add
loader,addr=0xfd1a0104,data=0x8000000e,data-len=4

(qemu) c

Using Single Transactions to Unlock CPUs

You can unlock CPUs by writing into system configuration registers using single transactions. The
A53-0, 1, 2, 3 reset register is CRF_APB.RST_FPD_APU. The following table lists the arguments
that can unlock certain CPU combinations:

Table 7: Single Transaction Unlock Arguments

Argument Command
A53-0 -device loader addr=0xfd1a0104,data=0x8000000e,data-len=4

A53-1 -device loader addr=0xfd1a0104,data=0x8000000d,data-len=4

A53-2 -device loader addr=0xfd1a0104,data=0x8000000b,data-len=4

A53-3 -device loader addr=0xfd1a0104,data=0x80000007,data-len=4

All A53 -device loader addr=0xfd1a0104,data=0x80000000,data-len=4

Similarly the R5-0,1 reset register is CRL_APB.RST_LPD_TOP. As R5-0 and R5-1 can work in
split-mode or lockstep mode, split-mode/lock-step requires extra configuration for R5, which is
done using register RPU.RPU_GLBL_CNTL.

Table 8: Cortex™-R5 Registers and Commands

Register Command
R5-0 (split mode) -device loader,addr=0xff5e023c,data=0x80008fde,data-len=4

-device loader,addr=0xff9a0000,data=0x80000218,data-len=4

R5-1 (split mode) -device loader,addr=0xff5e023c,data=0x80008fdd,data-len=4

-device loader,addr=0xff9a0000,data=0x80000218,data-len=4

Both R5 (split mode) -device loader,addr=0xff5e023c,data=0x80008fdc,data-len=4

-device loader,addr=0xff9a0000,data=0x80000218,data-len=4

Lockstep Mode -device loader,addr=0xff5e023c,data=0x80008fde,data-len=4

See the Zynq UltraScale+ MPSoC Register Reference (UG1087) for more information.

Hardware Specifications
-M arm-generic-fdt (-hw-dtb | -dtb) <file> ...

Chapter 3: QEMU Quick Reference Card

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 16Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+ultrascale
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=16

These arguments are required for all supported boot flows. The -M argument to QEMU specifies
the QEMU machine to create. In this case, you are selecting the arm-generic-fdt machine
option, which tells QEMU to parse a device tree binary (or DTB) for machine generation.

QEMU automatically creates CPUs and peripherals for each node in the device tree it has a
corresponding device model for (QEMU has a library of known DTS compatible strings).

The -dtb or -hw-dtb argument specifies the DTB describing the system.

Note: For Zynq UltraScale+ MPSoC device, dts are available on github: https://github.com/Xilinx/qemu-
devicetrees.git. For Zynq-7000 SoC device and MicroBlaze™ processor kernel, dtb can be used.

The Zynq UltraScale+ MPSoC DTB is also available in a PetaLinux project at:

<proj_path>/images/linux/zynqmp-qemu-arm.dtb

or

<proj_path>/pre-built/linux/images/zynqmp-qemu-arm.dtb

Advanced

DTSs for QEMU are available in the following directory:

<project_directory>/project-spec/meta-user/recipes-bsp/device-tree/
files/.

Example
qemu-system-aarch64 -nographic -M arm-generic-fdt \-dtb ./images/
linux/zynqmp-qemu-arm.dtb

-dtb vs -hw-dtb

For Linux Kernel boots, QEMU supports a flow where different DTBs are used for machine
generation and Linux Kernel boot. In this flow, both -dtb and -hw-dtb are specified on the
command line.

The -hw-dtb is used for machine generation and -dtb is passed to the Linux Kernel (using a
memory buffer). When -dtb is passed, QEMU removes the nodes that it cannot emulate and
later copies it to RAM for kernel boot.

Note: This procedure is applicable only when kernel is passed on QEMU command line.

For standalone flows, these two arguments are fully interchangeable; specify only one or the
other.

CAUTION! For Zynq UltraScale+ MPSoC, the QEMU DTB is different from the kernel system.dtb.

Chapter 3: QEMU Quick Reference Card

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 17Send Feedback

https://github.com/Xilinx/qemu-devicetrees.git
https://github.com/Xilinx/qemu-devicetrees.git
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=17

QEMU DTS are different for Zynq UltraScale+ MPSoC single and multi-architecture models. The
following DTBs are available in PetaLinux project.

• Single-arch : zynqmp-qemu-arm.dtb

• Multi-arch : zynqmp-qemu-multiarch-arm.dtb, zynqmp-qemu-multiarch-
pmu.dtb

Non-Graphical I/O Option

-nographic

By default, QEMU attempts to create a display for user I/O. This option instructs the QEMU that
there is no need for a display and I/O is serial.

QEMU attaches the invoking terminal to the serial port in this case (in the default use cases, this
is UART0). See Serial Options for more information and choices.

In this mode, the QEMU monitor (a command line interface for sending control commands to
QEMU) is multiplexed on stdio. To switch between the serial port and the monitor, use the
following command:

CTRL-a c

Boot Mode

-boot mode=<value>

This command line argument selects the value of boot mode pins.

Multiple-Architecture QEMU (Zynq UltraScale+ MPSoC)

A multiple architecture (Multi-Arch) QEMU is a special concept in which more than one instance
of QEMU of completely different architecture can communicate with each other and can run
together using socket communication.

This version of QEMU supports running the Arm® Cortex-A53s and Cortex-R5Fs, and the
MicroBlaze™ device power management unit (PMU).

The multi-architecture version of QEMU needs different device tree binaries (DTBs) than what is
necessary for Single-Architecture.

Multi-Architecture DTB

The following are PetaLinux DTBs:

• zynqmp-qemu-multiarch-arm.dtb: DTB for the qemu-system-aarch64

• zynqmp-qemu-multiarch-pmu.dtb: DTB for qemu-system-microblazeel

Chapter 3: QEMU Quick Reference Card

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=18

In qemu-devicetrees repositories, you can find them in the following path:

• qemu-devicetrees/LATEST/MULTI_ARCH/zcu102-arm.dtb: DTB for the qemu-
system-aarch64

• qemu-devicetrees/LATEST/MULTI_ARCH/zynqmp-pmu.dtb: DTB for qemu-system-
microblazeel

Single-Architecture DTB

• zynqmp-qemu-arm.dtb: DTB for qemu-system-aarch64

• qemu-devicetrees/LATEST/SINGLE_ARCH/zcu102-arm.dtb

Machine-path

• -machine-path [./qemu-tmp]

• -machine-path takes any folder path as argument, and QEMU uses that area for creating
Unix sockets for remote-port links and shared memories.

Note: These are mandatory arguments for using Multiple-Architecture.

As mentioned above machine-path works with Unix sockets. To use tcp sockets use chardev
devices as in the following example.

• To create RP links for APU and PMU:

○ -chardev socket,id=pmu-apu-rp,host=<hostname>,port=<port-
num>[,server]

• To create RP links for APU and Cosim:

○ -chardev socket,id=pl-rp,host=<hostname>,port=<port-num>[,server]

See the Zynq UltraScale+ MPSoC: Software Developers Guide (UG1137) for steps on running
QEMU with Arm and PMU.

Storage Media
Several disk and storage media interfaces are modeled. You can pass each to a regular file(s) to
use for stored data. QEMU updates the files so the data can be persistent across multiple
sessions.

Argument Format

The format is: -drive file=<image-path>,if=(mtd|sd|
pflash),format=raw,index=<value>[,readonly]

Chapter 3: QEMU Quick Reference Card

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 19Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1137-zynq-ultrascale-mpsoc-swdev.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=19

The argument allows specification of extra options such as marking the file as read-only. The
argument can also be used to specify the index of the device, allowing specifying files for devices
in an order-independent way.

QSPI

QSPI is modeled with the flash specified in DTS. The SPI flashes can connect in a dual-parallel
arrangement. The flash file size should match the flash model size.

If you are using only a single mode QSPI, then only one QSPI argument is needed. For each QSPI
flash, if an image is not provided, QEMU still models the flash, but initializes with NULL data and
discards the data after QEMU exits. The data can be written and read back within a single
session in this case.

Flash Striper Utility

In parallel mode, the QSPI data passes in for each flash is unique to that flash chip. Because the
QSPI controller implements bit-striping in dual parallel mode, a special utility is needed to take a
single QSPI data image and format it into two images. The syntax is as follows:

flash_strip_bw <input> <out1> <out0>

where:

• <input> is a 128MB image.

• <out0> and <out1> are the two 64MB images passable to the -mtdblock arguments for
QSPI.

This can also be reversed by taking two striped images and converting them back to a single
64MB image as shown in the following command:

flash_unstrip_bw <output> <in1> <in0>

Building the Flash Strip

Compile for your host with the following commands:

SOURCE=flash_stripe.c
gcc $SOURCE -o flash_strip_bw -DFLASH_STRIPE_BW
gcc $SOURCE -o flash_unstrip_bw -DUNSTRIP -DFLASH_STRIPE_BW

Download the flash strip utilities (flashstrip.c) from the QEMU wiki page. flash_strip_be_bw
is also available as part of the PetaLinux tools. The following table lists the supported SPI Flash
models.

Chapter 3: QEMU Quick Reference Card

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 20Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842196/QEMU+Flash+Strip+Utilities#Build%20flash%20strip
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=20

Table 9: Supported QSPI Flash Models

Vendor Flash Models
Atmel at25fs010, 25fs040, at25df041a, at25df321a, at25df641, at26f004, at26df081a,

at26df161a, at26df321, at45db081d

EON -- en25xxx en25f32, en25p32, en25q32b, en25p64, en25q64

GigaDevice gd25q32, gd25q64

Intel/Numonyx
-- xxxs33b

160s33b, 320s33b, 640s33b n25q064

Macronix mx25l2005a, mx25l4005a,mx25l8005, mx25l1606e, mx25l3205d, mx25l6405d
mx25l12805d, mx25l12855e, mx25l25635e, mx25l25655e

Micron n25q032a11. n25q032a13, n25q064a11, n25q064a13, n25q128a11, n25q128a13
n25q256a11, n25q256a13, n25q512a11, n25q512a1

Spansion -- single (large) sector size
only, at least for the chips listed
here (without boot sectors)

s25sl032p, s25sl064p, s25fl256s0, s25fl256s1, s25fl512s, s70fl01gs, s25sl12800,
s25sl12801, s25fl129p0, s25fl129p1, s25sl004a, s25sl008a, s25sl016as, 25sl032a
s25sl064a, s25fl016k, s25fl064k

Winbond -- w25x “blocks” are 64k,
“sectors” are 4KiB

w25x10, w25x20, w25x40, w25x80, w25x16, w25x32, w25q32, w25q32dw, w25x64.
w25q64, w25q80, w25q80b, w25q256

Numonyx 25q128

SST sst25vf040b, sst25vf080b, sst25vf016b, sst25vf032b, sst25wf512, sst25wf010,
sst25wf020, sst25wf040, sst25wf080

ST Microelectronics m25p05, m25p10, m25p20, m25p40, m25p80, m25p16, m25p32, m25p64, m25p128,
n25q032, m45pe10, m45pe80, m45pe16, m25pe20, m25pe80, m25pe16, m25px32,
m25px32-s0, m25px32-s1, m25px64

SPI

For each SPI Flash, if an image is not provided QEMU still models the flash, but initializes with
NULL data and discards the data after QEMU exits. Data can be written and read back within a
single session in this case.

SD

QEMU models an SD card for -drive file=<file_path>,if=sd.

The SD card model in QEMU is generic and does not attempt to model a specific physical part.
The size of the input file initializes the size of the emulated SD card. Only 512MB SD images are
officially supported, although powers of two around that order of magnitude will work.

IMPORTANT! SDXC (>32GB) sizes do not work.

If an SD argument is not specified, no SD card is modeled, the corresponding SD slot is ejected.

Note: This is different form the SPI, where if there is no argument those modes still model a physical
device.

Chapter 3: QEMU Quick Reference Card

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=21

EMMC

QEMU models an EMMC card for -drive file=<file_path>,if=sd. EMMC connects to
its respective host interface controllers, based on the slcr settings. For zynqmp index=2
works as EMMC card connected to sdhci0.

The size of the input file initializes the size of the emulated MMC card. Only 512MB images are
supported, although powers of two, around that order of magnitude will work.

EEPROM

QEMU models EEPROMS connected to I2C. A back-end file can be passed as follows:

-drive file=<file_path>,if=mtd, index=<id>.

Users can find the information on which I2C controller eeproms are connected in respective
board DTS.

Passing Bootable Images
Boot images are passed to the QEMU using the command line with the storage media options.
This is useful for testing, or testing with FSBL or U-Boot bootloaders. See the Bootgen
documentation in the Zynq UltraScale+ MPSoC: Software Developers Guide (UG1137) for how to
create bootable images.

See the Example command for a comprehensive suite of examples for bootable image
commands.

Chardev Options
-chardev backend, id=id [,options]

The -chardev arguments lets you create a character device. This can be thought of as a file
descriptor that routes text from inside QEMU to outside QEMU. The -chardev arguments
consists of three main parts:

1. The output

2. If the chardev is muxable

3. The ID of this chardev

Chapter 3: QEMU Quick Reference Card

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 22Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1137-zynq-ultrascale-mpsoc-swdev.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=22

Character Device Option Examples

-chardev null,id=id[,mux=<on|off>]
-chardev socket,id=id[,host=host],port=port,[to=to],[ipv4],[ipv6]\ ,
[nodelay],[reconnect=seconds],[server],[nowait][,telnet]\
,[reconnect=seconds] [mux=<on|off>] (tcp)
-chardev socket,id=id,path=path[,server][,nowait][,telnet]\ ,
[reconnect=seconds],[mux=<on|off>] (unix)
-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\ ,
[localport=localport],[ipv4],[ipv6],[mux=on|off]
-chardev msmouse,id=id, [mux=on|off]
-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols]\
,[rows=rows]] ,mux=on|off]
-chardev ringbuf,id=id,[size=size]
-chardev file,id=id,path=path,[mux=on|off]
-chardev pipe,id=id,path=path[,mux=on|off]
-chardev pty,id=id[,mux=on|off]
-chardev stdio,id=id[,mux=on|off][,signal=on|off]
-chardev serial,id=id,path=path[,mux=on|off]
-chardev tty,id=id,path=path[,mux=on|off]
-chardev parallel,id=id,path=path[,mux=on|off]
-chardev parport,id=id,path=path[,mux=on|off]

STDIO
The following is an example chardev:

-chardev stdio,mux=on,id=terminal

In this case anything sent to the chardev is redirected to the standard I/O. This chardev
supports muxing and is called terminal.

Server (TCP Socket)
The following is an example of using chardev to connect to a server:

-chardev socket,id=terminal,host=localhost,port=4444,mux=on

The server can be nc, in this case use:

nc -k -l localhost 4444

Socket (UNIX Socket)
The following is an example of connecting to a standard UNIX socket:

-chardev socket,id=output,path=/tmp/socket,mux=on

The socket can be created by nc by using:

nc -k -lU /tmp/socket

Chapter 3: QEMU Quick Reference Card

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=23

pty
The following is an example of connecting to a pseudo-terminal:

chardev pty,id=output,mux=on

There is no wait on this chardev to get connected to pty. You can open pty c with any serial
terminal: Minicoy, putty, screen.

screen /dev/pty/188

QEMU puts out on which pty it is connected.

“char device redirected to /dev/pts/188 (label IO-base)”

Serial Options
-serial <arg>

By default, the QEMU connects the invoking terminal to UART0 to provide the user I/O (see
Non-Graphical I/O Option for more information.). You can override this behavior by providing at
least one explicit -serial argument. The following table lists the supported values for <arg>:

Table 10: Serial Arguments and Effects

<arg> Effects
/dev/null Disconnect this particular serial.
mon:stdio Connect this serial and monitor to the terminal.
stdio Connect this serial to terminal.
telnet::<port>,server, nowait Create a localhost telnet server on <port> for the serial connection. It can be

accessed by: telnet localhost <port>.

chardev: dev Connects serial to a backend; for example, to a socket, pipe, or terminal.

Serial Command Examples

The following are some of the common non-default serial setups:

• Disconnect all serials: -serial /dev/null -serial /dev/null

• Connect UART1 to the terminal and ignore UART0: -serial /dev/null -serial
mon:stdio

• Connect UART0 to terminal and UART1 to telnet: -serial mon:stdio -serial
telnet::1234,server,nowait

• Connect UART0 to chardev socket:-serial chardev:terminal

Note: terminal is the Chardev device ID. For details see Chardev Options.

Chapter 3: QEMU Quick Reference Card

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=24

Using CAN with Xilinx QEMU
XlnxCAN is based on SocketCAN, QEMU CAN bus implementation. Zynq UltraScale+ MPSoC
devices support two CANs: CAN0 and CAN1. Bus connection and socketCAN interface for each
CAN module is set through command lines.

IMPORTANT! SocketCAN is supported with Linux only. If this is not already installed on the host Linux
machine, install it using sudo apt -get install can-utils

You can use the following three commands to initialize a CAN device for Xilinx QEMU. These
commands will be appended with the ARM instance.

1. -object can-bus,id=canbus0: Creates a new canbus0.

2. -global driver=xlnx.zynqmp-can,property=canbus0,value=canbus0:
Connects the CAN0 controller with the above-created canbus0.

3. -object can-host-socketcan,id=socketcan0,if=vcan0,canbus=canbus0:
Connects CAN0 (canbus0) to host system CAN bus (which is virtual CAN socket vcan0 in
this example). Any data transferred by CAN0 is sent to the vcan0 socket and goes to all
devices connected on this vcan0 interface.

Before launching QEMU with CAN devices, you need to set up CAN interfaces on the host
machine. Linux supports Virtual CAN and a physical CAN interface. A virtual CAN interface can
be created easily. The physical CAN interface needs a physical CAN bus/adapter on the host
machine to work.

Chapter 3: QEMU Quick Reference Card

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=25

Figure 1: Overview of CAN with QEMU

Guest

User Application

Linux Kernel Guest

CAN Driver

Xilinx QEMU

Emulated CPU, Memory,
I/O Space

CAN0 CAN1

System Bus

CAN Bus

Host System

CAN Socket
Net Device vcan0/can0

CAN Adapter

X24052-052720

Creating a Virtual CAN Interface on the Host Machine

The following commands create a virtual CAN interface:

sudo modprobe vcan
sudo ip link add dev vcan0 type vcan
sudo ip link set up vcan0

Chapter 3: QEMU Quick Reference Card

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=26

Creating a Physical CAN Interface on the Host Machine

The host system's CAN interface must beconfigured for proper bitrate and set up. The
configuration is not propagated from emulated devices through the bus to the physical host
device. The following is an example configuration for 1 Mb/s:

ip set can0 type can bitrate 1000000
ip set can0 up

Creating a Single CAN with QEMU

The following example: creates a canbus0, connects CAN0 to canbus0, and connects the
CAN0 bus (i.e., canbus0) to vcan0 interface on the host device.

#ARM instance:
./qemu-system-aarch64 -M arm-generic-fdt \
-serial mon:stdio -serial /dev/null -display none\
-device loader,file=pre-built /linux/images/bl31.elf,cpu-num=0 \
-device loader,file=pre-built /linux/images/Image,addr=0x00080000\
-device loader,file=pre-built /linux/images/system.dtb,addr=0x1407f000\
-device loader,file=build /misc/linux-boot/linux-boot.elf\
-gdb tcp::9000 -net nic -net nic -net nic -net nic,vlan=l -net
user,vlan=l,tftp=pre-built/linux/images/ \
-hw-dtb dts/LATEST/MULTI_ARCH/zcu102-arm.dtb -dtb pre-built/linux/images/
system.dtb \
-machine-path /tmp/tmp.ziqQHfo540 -global xlnx,zynqmp-boot.cpu-num=0 -
global xlnx,zynqmp-boot.use-pmu fw=true -m 4G \
-object can-bus,id=canbus0 \
-global driver=xlnx.zynqmp-can,property=canbus0,value=canbus0 \

#MicroBlaze instance is used same way.

Using Both CAN0 and CAN1 Devices with QEMU

The following example creates two separate can buses, canbus0 and canbus1. It connects
CAN0 to canbus0 and CAN1 to canbus1, and then connects both CAN0 and CAN1 to the
vcan0 interface on the host device.

./qemu-system-aarch64 -M arm-generic-fdt \
-serial mon:stdio -serial /dev/null -display none\
-device loader,file=pre-built /linux/images /bl31.elf,cpu-num=0 \
-device loader,file=pre-built /linux/images/Image,addr=0x00080000 \
-device loader,file=pre-built /linux/images/system.dtb,addr=0x 1407f000\
-device loader,file=build /misc/linux-boot/linux-boot.elf\
-gdb tcp::9000 -net nic -net nic -net nic -net nic,vlan=l -net
user,vlan=l,tftp=pre-built/linux/images/ \
-hw-dtb dts/LATEST/MULTI_ARCH/zcu102-arm.dtb -dtb pre-built/linux/images/
system.dtb \
-machine-path /tmp/tmp.ziqQHfo540 -global xlnx,zynqmp-boot.cpu-num=0 -
global xlnx,zynqmp-boot.use-pmu fw=true -m 4G \
-object can-bus,id=canbus0 \

Chapter 3: QEMU Quick Reference Card

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=27

-object can-bus,id=canbus l \
-global driver=xlnx.zynqmp-can,property=canbus0,value=canbus0 \
-global driver=xlnx.zynqmp-can,property=canbusl,value=canbusl \
-object can-host-socketcan,id=socketcan0,if=vcan0,canbus=canbus0 \
-object can-host-socketcan,id=socketcan1,if=vcan0,canbus=canbus1

Dumping Random Data to CAN Through Virtual CAN Interface

The following command pumps random data to the vcan0 interface, which is received by CAN0
and CAN1 if they are connected to the vcan0 interface.

cangen - v vcan0
#use cangen -h to know all supported option with cangen utility

Analyzing Data on the Host CAN Interface

The host side CAN interface can be used to analyze CAN traffic with the candump command,
included in can-utils. This shows any data sent from Xilinx CAN devices in QEMU.

candump vcan0
#use candump -h to know all use cases

Monitor Options
The monitor option specifies where to send the QEMU monitor. Generally, this is sent to the
standard I/O which can be done with the following command:

-monitor chardev:terminal

Network Options
QEMU supports a range of detailed networking options. Some are covered here, but a more
detailed list can be found at this link.

-net nic -net user,tftp=<directory>

This connects GEM0 to a virtual network, with a TFTP server hosting the argument directory. The
TFTP server IP is 10.0.2.2. The guest software can configure the machine to an IP on the same
subnet (for example 10.0.2.4) and communicate. The following command connects GEM3 of
the ZCU102 board to the user network:

-net nic -net nic -net nic -net user

See the QEMU public documentation for more comprehensive listing of QEMU networking
options.

Chapter 3: QEMU Quick Reference Card

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 28Send Feedback

https://wiki.qemu.org/Documentation/Networking
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=28

Port Redirection

Adding the following command makes every packet in/out of host-port to redirect to target-port
of guest. For example, to get connected to guest using telnet, one can redirect the port 23 of
guest to any free port of the host.

-redir tcp:<host-port>:<guest-ip>:<target-port>

Example

-redir tcp:1440:10.0.2.15:23

Tap Mode (Requires Sudo)

Tap network is similar to bridge network; it allows the guest to communicate with host DHCP
and DNS. This makes it also a real device on a network.

Unlike user mode, in tap mode, networking guest is directly accessible without any port
redirection/forwarding. The following is an example:

-net nic -net nic -net nic -net nic -net tap,downscript=no

Before running QEMU ensure that you have the qemu-ifup script available in /etc/. Follow
the instructions in this link to set up tap network.

Debug Options
The best option is a multi-arch GDB. This is usually available through your distributor. Following
are the QEMU arguments.

Enabling and using the GDB stub:

-gdb tcp:<host_name>:<port> -S

Where:

• -gdb: Creates a GDB stub on the local host at the specified port.

• -S: Causes the emulation to start in the pause state. This allows you to attach a debugger
before software starts executing. You can attach your GDB to QEMU as follows: (gdb)
target remote :<port>

On the GDB host, use the GDB that corresponds to your build toolchain; for example:

• aarch64-none-elf-gdb or aarch64-linux-gnu-gdb for debugging A53 code.

Or:

• arm-none-eabi-gdb for R5 software.

Chapter 3: QEMU Quick Reference Card

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 29Send Feedback

http://wiki.qemu.org/Documentation/Networking/NAT
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=29

QEMU emulation can be resumed using a continue command in the GDB as shown below:

(gdb) c

Breakpoints can be inserted as normal. Either symbolic function names, file lines, or text memory
addresses can be used. See the Arm Information Center for more information.

Debug-Related Monitor Commands
You can use a range of QEMU monitor commands to access helpful debug information and
perform some basic operations. The following are a few of the more commonly used options. See
Non-Graphical I/O Option for information on accessing the monitor.

Stopping and resuming the VM:

(qemu) stop
 (qemu) c

These commands stop and resume the emulation, respectively. If QEMU is started with the -S
argument, you can use the c command to commence emulation.

Display Options
The QEMU display option emulates a virtual monitor for the display applications.

IMPORTANT! To make use of the Display option, do not pass the -nographic  argument in the command
line; it restricts the ability to create a display console.

CAUTION! PetaLinux QEMU does Not include SDL support for Display Monitor Emulation, It is recommended
that you build QEMU from source with SDL enabled. See Building QEMU from source.

The following command option, when passed on the QEMU command line, creates a VNC
session through which you can view the display console:

-vnc <hostname>:<display>

For example, the command -vnc localhost:1 connects to a VNC session using VNC viewer
on localhost:1, where 1 represents the display ID. In this way you can have n number of
display monitors open.

Using TightVNC and RealVNC
In both TightVNC and RealVNC you can open the monitor using following command:

vncviewer localhost:<display id>

To open monitor for a different server, enable port forwarding using the following command:

Chapter 3: QEMU Quick Reference Card

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 30Send Feedback

http://infocenter.arm.com/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=30

ssh <target-host> -L <localhost-port>:localhost:<target-host-port>

For example, if the QEMU display id is 1, it should map to TCP port 5901. Then, run the port
forwarding command as follows:

ssh qemu-host -L 5901:localhost:5901

Now use the same vncviewer command to open the display.

Note: RealVNC does not directly work. Follow the workaround in the following link.

Listening on a VNC Session
You can connect to a display at any time using the -vnc <hostname>:<display> command;
however, if you need the QEMU to wait until it is connected to a VNC session, configure the
QEMU to work with a listening VNC session.

-vnc <hostname>:<tcp port number>,reverse

For example, -vnc localhost:5501,reverse, will be able to connect to a listening VNC
session with display-id 1.

Note: The TCP port number for display ID 1 maps as 5500+d, where d is the display ID.

Running the VNC viewer with -listen 1 results in the host listening for connections on the
VNC session with display 1.

Listing and Selecting CPUs in the System
From the QEMU Monitor Console, use the following commands:

(qemu) info cpus
 (qemu) cpu <value>

Example for Zynq UltraScale+ MPSoC:

• The info cpus lists out the CPUs in the system and indicated the currently selected CPU. In
a normal setup there are six CPUs: 4 x A53 and 2 x R5. QEMU has the concept of a currently
selected CPU with respect to some monitor commands. This is very similar to GDBs concept
of a currently selected thread.

• Change the selected CPU using the cpu <value> command; where <value> is a number
from 0 to 5 that corresponds to the QEMU CPU indexes.

• CPUs with an asterisk (*) are currently selected.

See CPU Enumeration for information on how QEMU CPU indexes match the Zynq UltraScale+
MPSoC platform CPUs.

Chapter 3: QEMU Quick Reference Card

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 31Send Feedback

https://support.realvnc.com/Knowledgebase/Article/View/422/12/problems-connecting-to-vmware-qemu-xens-built-in-or-other-third-party-vnc-compatible-server-software
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=31

Inspecting CPU State
(qemu) info registers

The info registers command dumps out useful information about the current CPU (such as
registers and current EL). For R5 CPUs, R15 is the program counter. See Arm Architecture
Reference Manual for more information.

Inspecting Physical Memory
(qemu) (xp | x) <addr>

(qemu) memsave <addr> <length> <file>

Use these commands to dump memory data. The x or xp command can be used to read a single
address:

• xp: (qemu) xp 0x1234F00D

○ x uses virtual addresses for the currently selected cpu

○ xp uses physical addresses

• The memsave command saves a buffer of specified length (<length>) and address (<addr>)
to a file specified by <file>, where <file> is the data buffer as raw binary data.

For example: (qemu) memsave 0xc0ae1a80 16384 dumpmem.logbuf

Linux Kernel Logbuf Extraction
The following instructions are directly applicable to booting Linux Zynq® UltraScale+™ MPSoC
QEMU. There is more information available at Linux Kernel Logbuf Extraction.

Multi-Threaded Tiny Code Generator (MTTCG)
The Multi-Threaded Tiny Code Generator runs each vcpu on an individual host cpu thread, this
enhances performance when compared to the single threaded model. Xilinx® QEMU is now
enabled with the MTTCG by default. It is available in Arm® SoC emulation. You need not pass
any additional arguments. To control MTTCG, use the following arguments:

• To enable MTTCG:

accel tcg,thread=multi

• To disable MTTCG:

accel tcg,thread=single

Chapter 3: QEMU Quick Reference Card

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 32Send Feedback

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.architecture.reference/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.architecture.reference/index.html
http://www.wiki.xilinx.com/QEMU-Linux+Kernel+logbuf+Extraction
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=32

Note: MTTCG is not compatible with icount. Enabling icount will force a single threaded run. See QEMU
Wiki for more information.

Examples for Single Arch
This section provides few examples of elaborated QEMU command lines. Substitute particular
arguments to suit your application as needed. See the QEMU Command Line Reference Manual
for further details. For each command, it is assumed that the current working directory is a
PetaLinux project root.

You can run the commands without a PetaLinux project but file paths of boot components will
need to be adjusted. See Storage Media as required for details on how to generate storage media
files for QSPI, NAND, and SD.

FSBL as an Application on A53-0
In each of the following examples, first stage boot loader (FSBL) is run as the application;
however, these command line formats are applicable to other standalone software. Substituting
the FSBL ELF file for another standalone application is valid.

A53-0 FSBL in JTAG Mode

qemu-system-aarch64 -M arm-generic-fdt -nographic \
-dtb ./images/linux/zynqmp-qemu-arm.dtb \
-device loader,file=./images/linux/zynqmp_a53_fsbl.elf,cpu-num=0 \
-device loader,addr=0xfd1a0104,data=0x8000000e,data-len=4

A53-0 FSBL in QSPI Boot Mode (Single)

qemu-system-aarch64 -M arm-generic-fdt -nographic \
-dtb ./images/linux/zynqmp-qemu-arm.dtb \
-device loader,file=./images/linux/zynqmp_a53_fsbl.elf,cpu-num=0 \
-device loader,addr=0xfd1a0104,data=0x8000000e,data-len=4 \
-drive file=qemu_qspi.bin,if=mtd,format=raw,index=0\
-boot mode=1

A53-0 FSBL in QSPI Boot Mode (Dual Parallel)

qemu-system-aarch64 -M arm-generic-fdt -nographic \
-dtb ./images/linux/zynqmp-qemu-arm.dtb \
-device loader,file=./images/linux/zynqmp_a53_fsbl.elf,cpu-num=0 \
-device loader,addr=0xfd1a0104,data=0x8000000e,data-len=4 \
-drive file=qemu_qspi_low.bin,if=mtd,format=raw,index=0\
-drive file=qemu_qspi_high.bin,if=mtd,format=raw,index=1\
-boot mode=1

Note: Default ZCU102 PetaLinux design works as Dual Parallel Configuration.

Chapter 3: QEMU Quick Reference Card

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 33Send Feedback

https://wiki.qemu.org/Features/MTTCG
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=33

A53-0 FSBL in SD Boot Mode

qemu-system-aarch64 -M arm-generic-fdt -nographic \
-dtb ./images/linux/zynqmp-qemu-arm.dtb \
-device loader,file=./images/linux/zynqmp_a53_fsbl.elf,cpu-num=0 \
-device loader,addr=0xfd1a0104,data=0x8000000e,data-len=4 \
-drive file=qemu_sd.img,if=sd,format=raw,index=0\
-boot mode=3

Note: Default ZCU102 board supports SD1. Index should be set to 1 for sd drive argument.

FSBL as an Application on R5-0
In each of the following examples, FSBL is run as the application. These command line format are
however applicable to other standalone software. Substituting the FSBL ELF file for another
standalone application is valid.

R5-0 FSBL in JTAG Mode

qemu-system-aarch64 -M arm-generic-fdt -nographic \
-dtb ./images/linux/zynqmp-qemu-arm.dtb \
-device loader,file=zynqmp_r5_fsbl.elf,cpu-num=4 \
-device loader,addr=0xff5e023c,data=0x80008fde,data-len=4 \
-device loader,addr=0xff9a0000,data=0x80000218,data-len=4

R5-0 FSBL in QSPI Boot Mode (Single)

qemu-system-aarch64 -M arm-generic-fdt -nographic \
-dtb ./images/linux/zynqmp-qemu-arm.dtb \
-device loader,file=zynqmp_r5_fsbl.elf,cpu-num=4 \
-device loader,addr=0xff5e023c,data=0x80008fde,data-len=4 \
-device loader,addr=0xff9a0000,data=0x80000218,data-len=4 \
-drive file=qemu_qspi.bin,if=mtd,format=raw,index=0\
-boot mode=1

R5-0 FSBL in QSPI Boot Mode (Dual Parallel)

qemu-system-aarch64 -M arm-generic-fdt -nographic \
-dtb ./images/linux/zynqmp-qemu-arm.dtb \
-device loader,file=zynqmp_r5_fsbl.elf,cpu-num=4 \
-device loader,addr=0xff5e023c,data=0x80008fde,data-len=4 \
-device loader,addr=0xff9a0000,data=0x80000218,data-len=4 \
-drive file=qemu_qspi_low.bin,if=mtd,format=raw,index=0 \
-drive file=qemu_qspi_high.bin,if=mtd,format=raw,index=1
-boot mode=1

Chapter 3: QEMU Quick Reference Card

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 34Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=34

R5-0 FSBL in SD Boot Mode

qemu-system-aarch64 -M arm-generic-fdt -nographic \
-dtb ./images/linux/zynqmp-qemu-arm.dtb \
-device loader,file=zynqmp_r5_fsbl.elf,cpu-num=4 \
-device loader,addr=0xff5e023c,data=0x80008fde,data-len=4 \
-device loader,addr=0xff9a0000,data=0x80000218,data-len=4 \
-drive file= qemu_sd.img,if=sd,format=raw,index=0 \
-boot mode=3

R5 Lockstep FSBL

Only one example is provided for lock step, although all boot modes are valid. See the previous
example command line arguments for storage media and boot mode that could be applied to this
command line. This specific example is JTAG boot mode:

qemu-system-aarch64 -M arm-generic-fdt -nographic \
-dtb ./images/linux/zynqmp-qemu-arm.dtb \
-device loader,file=zynqmp_r5_fsbl.elf,cpu=4 \
-device loader,addr=0xff5e023c,data=0x80008fde,data \
-len=4

Running PMU and Arm QEMU
The following examples run two instances of QEMU. One emulating the PS part of Cortex-A53s
and Cortex-R5Fs and another emulating the PMU in a MicroBlaze™ device.

Note: DTBs used for single and present multiarch model are different.

1. Set up the Arm® instance by typing the following commands:

qemu-system-aarch64 -M arm-generic-fdt -nographic \
-dtb <proj>/pre-built/linux/images/zynqmp-qemu-multiarch-arm.dtb \
-device loader,file=<proj>/pre-built/linux/images/bl31.elf,cpu-num=0 \
-device loader,file=<proj>/pre-built/linux/images/u-boot.elf \
-global xlnx,zynqmp-boot.cpu-num=0 \
-global xlnx,zynqmp-boot.use-pmufw=true \
-machine-path <any-folder-path> -gdb tcp::9000

Note: When booting from fsbl, loading of static pmufw config can be disabled by appending the
following arguments: -global xlnx,zynqmp-boot.load-pmufw-cfg=false

2. Set up a PMU instance by typing the following commands:

qemu-system-microblazeel -M microblaze-fdt -nographic \
-dtb <proj>/pre-built/linux/images/zynqmp-qemu-multiarch-pmu.dtb \
-kernel <proj>/pre-built/linux/images/pmu_rom_qemu_sha3.elf \
-device loader,file=<proj>/pre-built/linux/images/pmufw.elf \
-machine-path <any-folder-path> -gdb tcp::9005

You can connect to Arm QEMU using the XSDB connect command. See Building QEMU from
Source for more information.

Chapter 3: QEMU Quick Reference Card

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=35

Building QEMU from Source
QEMU source code is available on the github link. The following are the build steps:

1. Clone QEMU and update the sub-modules dtc and pixman.

IMPORTANT! Make sure to install the build dependencies before starting the build.

For Ubuntu, use apt-get build-dep qemu. It is recommended to do an out-of-tree build.

2. Make an empty folder outside of the source folder, and change into the new folder.

3. Run the following configure command:

<QEMU_SOURCE_PATH>/configure
--target-list=”aarch64-softmmu,microblazeel-softmmu,arm-softmmu" \
--enable-debug \
--enable-fdt \
--disable-kvm

4. Run make -j16.

QEMU binaries are available at:

• <build_path>/aarch64-softmmu/qemu-system-aarch64

• <build_path>/microblazeel-softmmu/qemu-system-microblazeel

You might need to install additional libraries based on your configuration inputs.

Chapter 3: QEMU Quick Reference Card

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 36Send Feedback

https://github.com/qemu/QEMU
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=36

Chapter 4

Using XDB with QEMU

Connecting QEMU
XSDB connects to QEMU GDB by using remote ports. While passing arguments to load and run
QEMU, attach a GDB client by appending the option: -gdb tcp::<port-num> to QEMU
command line. The following is the command:

qemu-system-aarch64 -M arm-generic-fdt -nographic \
-dtb ./images/linux/zynqmp-qemu-arm.dtb -gdb tcp::1440

Note: Port number is not specific; it can be any free port.

With QEMU running, connect the QEMU using the XSDB gdbremote command shown in the
following command line:

gdbremote connect <hostname>:<port-num>

Note: The hostname can be localhost or the name of the server or an IP address upon which

Table 11: Processors Out of Reset Command

Processor Command and Address
Cortex™-A53 mwr 0xfd1a0104 0

Cortex-R5F mwr 0xff5e023c 0x00008fde

mwr 0xff9a0000 0x00000218

Chapter 4: Using XDB with QEMU

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=37

Chapter 5

Co-Simulating with QEMU
You can use the Xilinx® QEMU to connect and drive mixed simulation environments. This feature
enables you to model large and complex systems right from the beginning of the system design.
As of 2016.4 release, Xilinx exposes a SystemC/TLM interface to connect QEMU which models
the hardened Processing System (PS) of any Zynq® based product to a model of your own IP
written in Verilog/VHDL or SystemC instantiated in the Programmable Logic (PL), see the
following figure.

Figure 2: Xilinx QEMU Mixed Simulation Environment

Xilinx’s QEMU

Zynq Processing
System (PS)

RP

Mixed Simulation Environment
(SystemC-TLM and/or RTL)

libSystemCTLM-SOC
(Zynq PS SystemC/TLM Wrapper)

RPRemote Port IPC

AXI
I/C Your

IP

M_AXI_...

S_AXI_...

Unique Process

Xilinx’s Remote Port

Xilinx’s Zynq PS or PS SystemC/TLM Wrapper

Zynq PS-PL AXI Master/Slave Ports

Your IP(s)
X22325-021919

QEMU and the RTL or SystemC Simulator run on different processes enabling a less intrusive and
much more flexible integration between your existing mixed simulation environment and QEMU.

Note: This feature is predominantly suitable for experienced developers in SystemC/TLM and integration
with Mixed Simulation environments. This feature is provided "as-is" and under open source license model.
Feel free to use our libSystemCTLM-SOC to interface your simulation environment to Xilinx QEMU. Please
see the SystemC page of Accellera’s website for further details and demo with Accellera's Open Source
SystemC Reference Simulation Environment (Accellera's SystemC Reference Simulation Environment is free
and under the Apache v2 License as of 2016).

Chapter 5: Co-Simulating with QEMU

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 38Send Feedback

http://www.accellera.org/downloads/standards/systemc
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=38

Remote-Port
The underlying mechanism that QEMU uses to connect to external simulation environments is
through remote-port (RP). Remote-Port is a protocol/framework that uses sockets and shared-
memory to communicate transactions and synchronize time between simulators.

libsystemctlm-soc
You do not need to interface directly with Remote-Port. Xilinx provides abstractions for
SystemC/TLM-2.0 that encapsulate your SystemC/TLM-2.0 module, allowing it to connect to
remote QEMU instances. These modules use Remote-Port. SystemC/TLM-2.0 users can,
therefore, treat QEMU as any other standard SystemC/TLM-2.0 module. These abstractions are
in the libsystemctlm-soc repository. For an example of wrapping your SystemC application, see
the SystemC/TLM-2.0 co-simulation demonstration.

SystemC/TLM-2.0 Co-Simulation Demo
This demo is written using standard, compliant SystemC/TLM-2.0 APIs. You can run the demo on
any SystemC/TLM-2.0 simulator that is compliant with Accellera Systems Initiative (ASI) industry
standard specifications. This open source reference implementation of the simulator is tested and
verified with Accellera’s standard.

The SystemC/TLM-2.0 co-simulation demonstration provides an example project that
demonstrates how to use libsystemctlm-soc to connect custom SystemC/TLM-2.0 and RTL
models to QEMU.

The examples in this demonstration show how QEMU models the PS aspect of both Zynq®-7000
devices and Zynq UltraScale+™ devices while SystemC/TLM-2.0 and RTL models can be used to
model the custom PL logic.

Co-Simulating with QEMU
Generating Required Device Trees
You need to instruct QEMU to co-simulate with other simulation environments. This can be done
by editing the hardware device tree passed into QEMU using the -hw-dtb option.

Chapter 5: Co-Simulating with QEMU

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 39Send Feedback

https://github.com/xilinx/libsystemctlm-soc
https://github.com/xilinx/systemctlm-cosim-demo
https://github.com/xilinx/systemctlm-cosim-demo
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=39

Note: The hardware device tree is specific to QEMU and should not be confused with Linux guest device
tree.

For more information, see QEMU Wiki and device tree repository.

Extra Command Line Options
-machine-path: Specifies a directory where QEMU creates shared memory files and named
UNIX sockets.

-sync-quantum: Specifies the TLM synchronization quantum in nanoseconds (only used if -
icount is enabled).

-icount: Enables virtual instruction counter with 2^N clock ticks per instruction; enables
aligning the host and virtual clocks or disables real-time CPU sleeping.

Useful starting values for icount:

• Zynq UltraScale+ MPSoC devices: 1

• Zynq-7000 devices: 7

As you lower the sync-quantum, the modeling speed decreases, but the accuracy increases. A
general starting value is 100000.

Example Extra Options
-icount 1 -sync-quantum 100000

Example QEMU Command
qemu-system-aarch64 -M arm-generic-fdt -nographic \
 -dtb <path to dtb build form qemu-devicetrees repo> \
 -device loader,file=<proj_dir>images/linux/bl31.elf,cpu=0 \
 -device loader,addr=0xfd1a0104,data=0x8000000e,data-len=4 \
 -device loader,file=<proj_dir>/images/linux/u-boot..elf \
 -tftp images/linux/ -machine-path <soc_dir> -icount 1 \
 -sync-quantum 100000

Note: Use the same sync-quantum number for the other simulators.

Chapter 5: Co-Simulating with QEMU

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 40Send Feedback

http://www.wiki.xilinx.com/QEMU
https://github.com/Xilinx/qemu-devicetrees
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=40

Example Simulator Command

When the QEMU command shown above runs successfully, QEMU waits for SystemC/TLM-2.0
connection on the socket created in the directory that was supplied by the -machine-path
argument. You must use the same socket path while running the SystemC application, as
follows:

./demo-app unix:<socket path> <sync-quantum number>

More details on how to build and run the SystemC demo application are in systemctlm-cosim-
demo repository.

Chapter 5: Co-Simulating with QEMU

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 41Send Feedback

https://github.com/xilinx/systemctlm-cosim-demo
https://github.com/xilinx/systemctlm-cosim-demo
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=41

Chapter 6

Using Boot Images on QEMU
This section details some end-to-end image generation and QEMU boot flows. The standard
FSBL, Arm® Trusted firmware (ATF), U-Boot, and Linux boot flow is the example in each case.
This specific use case is similar to PetaLinux, and you can access it more simply using the
PetaLinux tool suite. This section details the lower-level tools available for complex boot flows
should they be required for greater customization. This section does not cover building the boot
products. See the Zynq UltraScale+ MPSoC: Software Developers Guide (UG1137) for information
on how to build the following:

• FSBL

• U-Boot

• ATF

• Linux image (Kernel plus RAM disk)

• Device tree binary

• BOOT.bin

Note: This is different from the hardware DTB that is passed to QEMU command lines.

It is assumed all of these boot products are available. You can build all of the listed images in a
standard PetaLinux project. In the example, FSBL, ATF (bl31.elf), U-Boot runs on Cortex
A53 core as shown in the BIF file. U-Boot loads the Kernel onto A53. The following run
commands point to the <proj_dir>/images/linux/ folder for all the boot products. You
can also use a pre-built area.

Using SD for Boot
1. Create the SD image:

dd if=/dev/zero of=qemu_sd.img bs=128M count=1
mkfs.vfat -F 32 qemu_sd.img
mcopy -i qemu_sd.img BOOT.BIN ::/
mcopy -i qemu_sd.img Image ::/
mcopy -i qemu_sd.img system.dtb ::/

Chapter 6: Using Boot Images on QEMU

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 42Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1137-zynq-ultrascale-mpsoc-swdev.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=42

2. Boot the image on QEMU:

qemu-system-aarch64 -M arm-generic-fdt -nographic \
-device loader,file=<proj_dir>/images/linux/ron_a53_fsbl.elf,cpu-num=0 \
-dtb <proj_dir>/images/linux/zynqmp-qemu-arm.dtb \
-device loader,addr=0xfd1a0104,data=0x8000000e,data-len=4 \
-drive file=qemu_sd.img,if=sd,format=raw,index=0\
-boot mode=3

Note: Even though the FSBL is packed in the SD image, it should be passed over the command line as a
runnable ELF because QEMU does not contain the boot ROM.

Using QSPI for Boot
1. Create the QSPI boot image(s) for either or both single flash mode and dual parallel mode.

Single Flash Mode:

dd if=/dev/zero of=qemu_qspi.bin bs=64M count=1
dd if=BOOT.BIN of=qemu_qspi.bin bs=1 seek=0 conv=notrunc

Dual Parallel Mode:

dd if=/dev/zero bs=128M count=1 of=qemu_qspi_tmp.bin
dd if=BOOT.BIN of=qemu_qspi_tmp.bin bs=1 seek=0 conv=notrunc
flash_strip_bw qemu_qspi_tmp.bin qemu_qspi_low.bin qemu_qspi_high.bin

2. Boot either the single or dual image(s) on QEMU.

Single Flash Mode:

qemu-system-aarch64 -M arm-generic-fdt -nographic \
-dtb <proj_dir>/images/linux/zynqmp-qemu-arm.dtb \
-device loader,file=<proj_dir>/ images/linux/zynqmp_a53_fsbl.elf,cpu-
num=0 \
-device loader,addr=0xfd1a0104,data=0x8000000e,data-len=4 \
-drive file=qemu_qspi.bin,if=mtd,format=raw,index=0 \
-boot mode=1

Dual Parallel Mode:

qemu-system-aarch64 -M arm-generic-fdt -nographic \
-dtb <proj_dir>/images/linux/zynqmp-qemu-arm.dtb \
-device loader,file=<proj_dir>/images/linux/zynqmp_a53_fsbl.elf,cpu=0 \
-device loader,addr=0xfd1a0104,data=0x8000000e,data-len=4 \
-drive file=qemu_qspi_low.bin,if=mtd,format=raw,index=0\
-drive file=qemu_qspi_high.bin,if=mtd,format=raw,index=1
-boot mode=1

TIP: See the Storage Media for more information on flash_strip_bw.

Chapter 6: Using Boot Images on QEMU

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=43

Using TFTP for Boot
In the normal JTAG boot mode, petalinux-build command has the required images in the
images/linux/ directory (or) a prebuilt path (for example: pre-built/linux/images/).

1. Point QEMU to the ./images/linux directory for tftp boot.

2. Use the following command for TFTP boot.

qemu-system-aarch64 -M arm-generic-fdt -nographic \
-dtb <proj_dir>/images/linux/zynqmp-qemu-arm.dtb \
-device loader,file=<proj_dir>images/linux/bl31.elf,cpu-num=0 \
-device loader,addr=0xfd1a0104,data=0x8000000e,data-len=4 \
-device loader,file=<proj_dir>/images/linux/u-boot..elf \
-net nic -net nic -net nic -net nic \
-net user,tftp=images/linux/

IMPORTANT! The /TFTP  folder should contain the image and the system.dtb.

TIP: The image creation steps are the same for SD and EMMC .

SD-Card Partitioning and Loading an Ubuntu-
core File System

The following are the steps to create an SD card image.

1. Create a dummy container using qemu-img. The qemu-img is a utility used to create disk
images for using with QEMU. It comes with Ubuntu packages and is also packaged with
PetaLinux tools.

qemu-img create <Image name> <size>

For example, the command, qemu-img create sd.img 2G, creates a 2G raw disk, with
no partitions present.

2. Create the network back end with qemu-nbd.

The qemu-nbd command connects sd.imge file to NBD device.

For example, sudo qemu-nbd -c /dev/nbd0 sd.img makes the sd.img connect to a
NBD device.

TIP: If /dev/nbd0  is not found in the machine, nbd  driver is probably not installed.

3. Create partitions using fdisk, a text-based tool used to create partitions on a disk.

Chapter 6: Using Boot Images on QEMU

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=44

You can also use gparted, a GUI-based partitioning tool.

fdisk /dev/nbd0 connects to the block device.

4. Create partitions, mostly two primary partitions are required.

• One is bootable partition for keeping BOOT.BIN,Image, and the system.dtb.

• Another is the partition for rootfs.

5. Write the partition table and exit.

6. Format the partitions. Always format the bootable partition using FAT file systems. The
second partition can be ext2/ext4.

For example:

mkfs.vfat -F 32 /dev/nbd0pl formats the first partitions using FAT.

mkfs.ext4 /dev/nb0p2 formats the second partition using ext4.

7. Mount the partitions and copy the necessary files. To load the Image file without
initramfs, de-select []Initial RAM filesystem and RAM disk (initramfs/initrd) support
located in General Setup in menuconfig.

Note: This step in not required if performing switch-root.

8. Extract the ubutu-core available for Arm64 in to the second partition.

TIP: The ubuntu-core  is located on the Ubuntu-Core  release page.

9. Un-mount the partition and disconnect the nbd connection using the following command:
sudo qemu-nbd -d /dev/nbd0.

10. Ensure that the bootargs points to appropriate device for root, which is the following:
root=/dev/mmcblk0p2 rw rootfstype=ext4.

Adding New Devices to the Design
QEMU has limited device models; you can use the device model if it is available in QEMU source
by directly adding the bindings into the device tree.

The following is an example of adding a SI57X I2c controlled clock generator to one of the I2C
buses:

&i2cswitch{
i2c@3 {
 #address-cells = <1>;
 #size-cells = <0>;
 reg = <3>;
 si570_21 clock-generator@5e {
 compatible = “silabs,si57x”;

Chapter 6: Using Boot Images on QEMU

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=45

 reg = <0x5d>;
 temperature-stability=<50>;
 };
 };
 };

The compatible string is QEMU device, TYPE_NAME.

• reg represents the I2C address of the slave.

• temperature-stability is the property that the device expects to be set before device
initialization happens.

See the Property structure in the device model to know what properties must be added.

static Property si57x_properties[] = {
 DEFINE_PROP_UINT16(“temperature-stability”, Si57xState, temp_stab,
 TEMP_STAB_50PPM),
 DEFINE_PROP_END_OF_LIST(),

Chapter 6: Using Boot Images on QEMU

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=46

Chapter 7

Troubleshooting

FSBL Hangs on QEMU
First stage boot loader (FSBL) uses psu-init.c, which is dynamically generated code, and
changes it according to the design. psu_init functions generally make clock configurations for
the SoC, which QEMU does not emulate. Due to such missing emulation, sometimes psu_init
calls may hang during fsbl boot.

Possible Solution: Build a customized fsbl by commenting out the functions that cause the
hangs in psu_init.c.

For additional information on possible solutions, see the Xilinx Developer Forum .

QEMU CPU Stall Messages
When running Linux on top of QEMU, Linux sometimes warns about CPU stalls. Following are
the stalls and their causes:

• vCPU in QEMU has hung.

Note: This is a bug in QEMU, please report it to your Xilinx representative if you encounter this.

• vCPU in QEMU has not been scheduled for enough time and Linux thinks it has hung, when in
fact it has not.

Note: This may cause due to multiple reasons related to vCPUs not getting scheduled to run. For
example, due to an overloaded host, or low priority scheduling assignments to QEMU.

Possible Solutions to Avoid Scheduling Issues
• If possible, avoid running QEMU in a Linux VM like Virtualbox. VMs are subject to CPU

scheduling by the host (for example Windows host). This adds more scheduling latency,
increasing the probability of a vCPU stall.

Chapter 7: Troubleshooting

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 47Send Feedback

https://forums.xilinx.com/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=47

• Avoid running a lot of other CPU intensive programs while running QEMU. These other
programs use up CPU resources and increase the scheduling latency and the probability of
vCPU stalls.

• Avoid giving QEMU a low scheduling priority (e.g., nice QEMU).

• Disable the RCU CPU stalls check in the guest Linux kernel.

• Disable SMP in the guest to decrease the amount of CPU processing needed by QEMU.

• Try using an MTTCG enabled QEMU to avoid all CPUs depending on one single host thread.

Chapter 7: Troubleshooting

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=48

Appendix A

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
These documents provide supplemental material useful with this guide:

Appendix A: Additional Resources and Legal Notices

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 49Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=49

Zynq Documentation:

1. Zynq UltraScale+ MPSoC: Software Developers Guide (UG1137)

2. SDK Online Help (UG782) (Includes XSDB)

3. OS and Libraries Document Collection (UG643)

4. Xilinx Third-Party End User License Agreement

5. UltraScale Architecture and Product Data Sheet: Overview (DS890)

6. Zynq UltraScale+ Device Technical Reference Manual (UG1085)

7. Zynq UltraScale+ MPSoC Register Reference (UG1087)

8. PetaLinux Tools

9. Vivado Design Suite Documentation

Wiki Sites and GitHub Resources

1. QEMU wiki

2. Zynq MPSoC XEN wiki

3. GNU FTP

4. Zynq MPSoC Non-Secure Boot and Zynq MPSoC Secure Boot

5. Arm Information Center

6. Using Git

7. GitHub

8. OpenAMP wiki

9. QEMU Linux Kernel Logbuf Extraction

10. libsystemctim-soc Repository

11. SystemC/TLM 2.0 Co-simulation Demo Repository

12. Device Tree Repository

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including

Appendix A: Additional Resources and Legal Notices

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 50Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1137-zynq-ultrascale-mpsoc-swdev.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=SDK_Doc/index.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=oslib_rm.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug763_tplg.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds890-ultrascale-overview.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+ultrascale
https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html
https://www.xilinx.com/products/design-tools/vivado.html?resultsTablePreSelect=documenttype:SeeAll#documentation
http://www.wiki.xilinx.com/QEMU
http://www.wiki.xilinx.com/XEN+Hypervisor
http://ftp.gnu.org/gnu/coreutils
http://www.wiki.xilinx.com/MPSoC+Non+Secure+Boot
http://www.wiki.xilinx.com/MPSoC+Secure+Boot
http://infocenter.arm.com/
http://www.wiki.xilinx.com/Using+Git
https://github.com/qemu/QEMU
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841718/OpenAMP
http://www.wiki.xilinx.com/QEMU-Linux+Kernel+logbuf+Extraction
https://github.com/xilinx/libsystemctlm-soc
https://github.com/xilinx/systemctlm-cosim-demo
https://github.com/Xilinx/qemu-devicetrees
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=50

negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2019-2020 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal,
Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries.AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight,
Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other
countries. All other trademarks are the property of their respective owners.

Appendix A: Additional Resources and Legal Notices

UG1169 (v2020.1) June 3, 2020 www.xilinx.com
QEMU User Guide 51Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1169&Title=Xilinx%20Quick%20Emulator%20User%20Guide&releaseVersion=2020.1&docPage=51

	Xilinx Quick Emulator User Guide
	Revision History
	Table of Contents
	Ch. 1: Using Xilinx QEMU
	What is QEMU?

	Ch. 2: Getting Started with QEMU
	QEMU Supported Features
	Installing QEMU
	Launch QEMU Using PetaLinux Commands
	QEMU DTBs

	Ch. 3: QEMU Quick Reference Card
	Zynq UltraScale+ MPSoC Command Base Template
	QEMU Command Options and Descriptions
	Standalone Hello World Example

	Zynq-7000 SoC Command Base Template
	MicroBlaze Processor Command Base Template
	QEMU Command Line Options
	Using Extra QEMU Command Line Arguments with PetaLinux
	QEMU Boot Options
	File Mode
	Single Transaction Mode
	CPU Enumeration
	Advanced

	Hot Loading
	QEMU Command Examples
	Using Single Transactions to Unlock CPUs

	Hardware Specifications
	Advanced
	Example
	-dtb vs -hw-dtb
	Non-Graphical I/O Option
	Boot Mode
	Multiple-Architecture QEMU (Zynq UltraScale+ MPSoC)
	Multi-Architecture DTB
	Single-Architecture DTB
	Machine-path

	Storage Media
	Argument Format
	QSPI
	Flash Striper Utility
	Building the Flash Strip
	SPI
	SD
	EMMC
	EEPROM

	Passing Bootable Images
	Chardev Options
	Character Device Option Examples

	STDIO
	Server (TCP Socket)
	Socket (UNIX Socket)
	pty
	Serial Options
	Serial Command Examples

	Using CAN with Xilinx QEMU
	Creating a Virtual CAN Interface on the Host Machine
	Creating a Physical CAN Interface on the Host Machine
	Creating a Single CAN with QEMU
	Using Both CAN0 and CAN1 Devices with QEMU
	Dumping Random Data to CAN Through Virtual CAN Interface
	Analyzing Data on the Host CAN Interface

	Monitor Options
	Network Options
	Port Redirection
	Tap Mode (Requires Sudo)

	Debug Options
	Debug-Related Monitor Commands
	Display Options
	Using TightVNC and RealVNC
	Listening on a VNC Session
	Listing and Selecting CPUs in the System
	Inspecting CPU State
	Inspecting Physical Memory
	Linux Kernel Logbuf Extraction
	Multi-Threaded Tiny Code Generator (MTTCG)
	Examples for Single Arch
	FSBL as an Application on A53-0
	A53-0 FSBL in JTAG Mode
	A53-0 FSBL in QSPI Boot Mode (Single)
	A53-0 FSBL in QSPI Boot Mode (Dual Parallel)
	A53-0 FSBL in SD Boot Mode

	FSBL as an Application on R5-0
	R5-0 FSBL in JTAG Mode
	R5-0 FSBL in QSPI Boot Mode (Single)
	R5-0 FSBL in QSPI Boot Mode (Dual Parallel)
	R5-0 FSBL in SD Boot Mode
	R5 Lockstep FSBL

	Running PMU and Arm QEMU
	Building QEMU from Source

	Ch. 4: Using XDB with QEMU
	Connecting QEMU

	Ch. 5: Co-Simulating with QEMU
	Remote-Port
	libsystemctlm-soc
	SystemC/TLM-2.0 Co-Simulation Demo

	Co-Simulating with QEMU
	Generating Required Device Trees
	Extra Command Line Options
	Example Extra Options
	Example QEMU Command
	Example Simulator Command

	Ch. 6: Using Boot Images on QEMU
	Using SD for Boot
	Using QSPI for Boot
	Using TFTP for Boot
	SD-Card Partitioning and Loading an Ubuntu-core File System
	Adding New Devices to the Design

	Ch. 7: Troubleshooting
	FSBL Hangs on QEMU
	QEMU CPU Stall Messages
	Possible Solutions to Avoid Scheduling Issues

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Please Read: Important Legal Notices

