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EGC21 preface

Preface

This book contains the abstracts of the invited talks, contributed papers, and contributed talks
accepted for presentation at the XIX Spanish Meeting on Computational Geometry (formerly
Encuentros de Geometŕıa Computacional, EGC). The current edition was organized in Madrid,
Spain, but held online on July 5-7, 2021, due to the COVID-19 pandemic.

This series of meetings focuses on current research topics in discrete and computational
geometry. Since the seminal edition in 1990, the Encuentros have combined a strong scien-
tific program with a friendly atmosphere. The intended audience ranges from experienced
researchers to students facing their debut in the area. The strong collaboration links of the
Spanish community with foreign colleagues made advisable, in 2011, to change the language of
the meeting to English and have the submissions peer-reviewed by an international program
committee.

In this edition, following the experience started in the previous one, two lengths were possible
for the contributed submissions: 4 pages (”paper”) or 1 page (”talk”). We received a total of
26 submissions, consisting of 16 talks and 10 papers. Among them, one was withdrawn before
reviewing and the other 25 were finally accepted, composing the core of this book. Three
revisions were collected for all the submissions, except for one passing two reviews.

As each of them, the current edition of the meeting is the result of the work and dedication of
a lot of people. First thanks go to the authors for choosing EGC to share and disseminate their
work. Second, I would like to thank the members of the program committee and the external
reviewers for accepting to contribute their expertise to this meeting carefully, constructively,
and on time. Thirdly, I am truly thankful to the three excellent invited speakers for accepting
our invitation: Fernando Blasco, Kevin Buchin, and Evanthia Papadopoulou. Finally, it is very
appreciated the support of the Departamento de Matemática Aplicada a las Tecnoloǵıas de la
Información y las Comunicaciones and the Escuela Técnica Superior de Ingenieŕıa de Sistemas
Informáticos from the Universidad Politécnica de Madrid, although this edition would not have
been possible without the tough work of the organizing committee, Guillermo Esteban, Jesús
Garćıa, and Alejandra Mart́ınez. Having to deal with the uncertainty of these times, they did
their best for the success of this meeting.

July, 2021
Alcalá de Henares

David Orden
Program Committee Chair
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Algorithms for trajectory clustering and segmentation

Kevin Buchin

Eindhoven University of Technology

Nowadays more and more trajectory data is being collected, of people, animals, and vehicles. Analyzing such
data requires efficient algorithms. In this talk, I will focus on geometric algorithms for two fundamental analysis
tasks: clustering and segmenting trajectories.
Clustering asks to group similar trajectories or subtrajectories, for instance to identify common routes. The
main clustering problem that I will consider is center-based clustering with respect to the Fréchet distance,
where centers are required to have constant complexity. For this problem, I will present a 3-approximation and
discuss subsequent developments.
Segmentation asks to partition a trajectory into movement phases, such that within each phase the variation of
movement characteristics low. I will present geometric and model-based approaches to segmenting one or several
trajectories.
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Abstract tree-like Voronoi diagrams and site-deletion in
expected linear time

Evanthia Papadopoulou1

1Faculty of Informatics, Università della Svizzera italiana, Lugano, Switzerland

Differences between classical Voronoi diagrams of points in the plane, versus segments, circles, polygons, or
clusters of points, are sometimes forgotten or underestimated. As a result, basic open problems exist even to date:
updating a Voronoi diagram after deletion of one site is such an example. Although linear-time techniques for
site deletion in point Voronoi diagrams had been known to exist since the late 80’s, the corresponding problems
for non-point sites remained open until recently.

In this talk, I will address this problem in expected linear time, under the framework of abstract Voronoi dia-
grams, simultaneously covering several concrete cases of non-point or weighted-point sites. To pursue this goal,
I will introduce abstract Voronoi-like diagrams, a relaxed Voronoi structure of independent interest, which leads
to a very simple randomized incremental technique, generalizing the one for points. The algorithm extends to
computing various other tree-like Voronoi diagrams, such as constructing the farthest abstract Voronoi diagram,
after the order of its regions at infinity is known, constructing the order-(k+1) subdivision within an order-k
Voronoi region, and others. The time analysis introduces a simple alternative to backwards analysis applicable
to order-dependent structures.

Parts of this talk are joint work with Kolja Junginger.
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Algorithms and ideas in mathematical magic

Fernando Blasco∗1

1Dep. Matemática Aplicada, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid

Abstract

There are a few mathematical principles that arise in card magic. Most of them are related to concepts that
appear in Discrete Mathematics, such as modular arithmetic or permutations (in fact, shuffling a deck of cards
is applying a permutation to it). Moreover, binary system is related to faro shuffles and De Bruijn sequences
are not only related to Penrose tilings and quasicrystals but also they are related to amazing magic tricks.

In this talk we shall make a review of different papers, published in mathematical journals such as Mathe-
matical Intelligencer or The American Mathematical Monthly as well as some books on the subject, with ideas
from Martin Gardner, Brent Morris, Ron Graham, Persi Diaconis and Colm Mulcahy. The talk will be partic-
ipative, showing in a first stage te magic effect and, after that we shall comment the underlying mathematics
behind the trick that, for mathematical effects, are often more interesting than the trick itself.

Some ideas concerning the use of mathematical card magic in an usual course on Mathematics will be shown.
We will also present programs and apps that use mathematical ideas in order to create magical effects.

3
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Plane paths in simple drawings of complete graphs

Oswin Aichholzer∗1, Alfredo Garćıa†2, Javier Tejel‡2, Birgit Vogtenhuber§1, and Alexandra Weinberger∗1

1Institute of Software Technology, Graz University of Technology, Austria.
2Departamento de Métodos Estad́ısticos. IUMA. Universidad de Zaragoza. Spain.

Simple drawings are drawings of graphs in the plane
such that vertices are distinct points in the plane,
edges are Jordan arcs connecting their endpoints, and
edges intersect at most once either in a proper crossing
or in a shared endpoint.

It is conjectured that every simple drawing of the
complete graph with n vertices, Kn, contains a plane
Hamiltonian cycle, and consequently a plane Hamil-
tonian path. However, to the best of our knowledge,
Ω((log n)

1
6 ) [4] is currently the best known lower bound

for the length of a plane path contained in any simple
drawing of Kn. We improve this bound to Ω( logn

log logn ).
To prove our new bound, we will use a special kind

of simple drawings. We say that a simple drawing
D is c-monotone if there is a point O such that any
ray emanating from O intersects any edge of D at
most once. A c-monotone drawing D is generalized
twisted [1] if there exists a ray r emanating from O
that intersects every edge of D. Note that given a c-
monotone drawing D, if there exists a ray r emanating
from O such that no edge of D crosses r, then D is
strongly isomorphic to an x-monotone drawing (any
vertical line intersects any edge of the drawing at most
once). See Figure 1 for some examples.

It is well-known that any x-monotone drawing of Kn

contains a plane Hamiltonian path. Besides, we can
show that generalized twisted drawings of Kn also
contain plane Hamiltonian paths. Using Dilworth’s
Theorem about chains and anti-chains [2], we can
prove that any c-monotone drawing of Kn contains a
subdrawing of K√n that is either generalized twisted or
strongly isomorphic to an x-monotone drawing of K√n.
As a consequence, any c-monotone drawing of Kn

contains a plane path of length at least
√
n.

Using this result, we prove the following theorem.

Theorem 1 Any simple drawing D of Kn contains a
plane path of length Ω( logn

log logn ).

∗Emails: {oaich,weinberger}@ist.tugraz.at. Supported by
the Austrian Science Fund (FWF) grant W1230.
†Email: olaverri@unizar.es. Supported by Gobierno Aragón

E41-17R.
‡Email: jtejel@unizar.es. Supported by project PID2019-

104129GB-I00 / AEI / 10.13039/501100011033 of the Spanish
Ministry of Science and Innovation.
§Email: bvogt@ist.tugraz.at. Supported by the FWF grant

I 3340-N35.
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Figure 1: A generalized twisted drawing of K5 (left)
and a c-monotone drawing of K5 that is strongly iso-
morphic to an x-monotone drawing of K5 (right).

Sketch of the proof. We take the star of a vertex v
(the set of edges of D incident to v), and we extend
this star to a maximal plane subdrawing H, which
must be biconnected [3].

If there is a vertex w in H \v that has degree at least
(log n)2 in H, then the subdrawing H ′ of H induced
by v, w, and their at least (log n)2 common neighbors
is weakly isomorphic to a c-monotone drawing, so H ′

contains a plane path of length at least logn.
Otherwise, the maximum degree in H \v is less than

(log n)2. As H is biconnected, H \ v contains a plane
tree T of order n − 1 whose maximum degree is at
most (log n)2. Since the diameter of a d-ary tree of
order n is at least Ω( logn

log d ), T contains a plane path

of length at least Ω( logn
log logn ). �

A manuscript with proofs is added as an appendix.
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Crossing-optimal extension of simple drawings∗

Robert Ganian†1, Thekla Hamm†1, Fabian Klute‡2, Irene Parada§3, and Birgit Vogtenhuber¶4

1Algorithms and Complexity Group, TU Wien, Austria
2Utrecht University, The Netherlands

3TU Eindhoven, The Netherlands
4Graz University of Technology, Austria

We study the extension problem for simple draw-
ings1 in the context of crossing minimization. Our aim
is to extend a given simple drawing with k new edges
while maintaining simplicity and restricting newly
created crossings. We consider the following problem:

Simple Crossing-Minimal Edge Insertion (SCEI)

Input: A graph G = (V,E) along with a connected
simple drawing G, an integer `, and a set F of k
edges of the complement of G.

Question: Can G be extended to a simple drawing
G′ of the graph G′ = (V,E∪F ) such that the num-
ber of crossings in G′ involving an edge of F is at
most `?

SCEI was recently shown to be NP-complete al-
ready when |F | = 1 and ` ≥ |E| (meaning that the
aim is merely to obtain a simple drawing) [1]. Our
main contribution is an FPT algorithm2.

Theorem 1 SCEI is FPT with respect to k + `.

On a high level, our approach follows the general
strategy used in [2] for extending 1-planar drawings.

1. We preprocess G and a planarization of G to re-
move parts of G which are too far away to interact
with our solution. This is then translated into a
graph representation of bounded treewidth.

2. We identify a combinatorial characterization that
captures how the solution curves will be embed-
ded into G. Crucially, the characterization has
size bounded by our parameters.

∗Full paper: arXiv:2012.07457.
R.G., F.K., and B.V. supported by the Austrian Science Fund
(FWF) via projects P31336, J-4510, and I 3340, respectively.

†Emails: [rganian|thamm]@ac.tuwien.ac.at
‡Email: f.m.klute@uu.nl
§Email: i.m.de.parada.munoz@tue.nl
¶Email: bvogt@ist.tugraz.at
1In a simple drawing any two edges share at most one point.
2A fixed-parameter tractable (FPT) algorithm with respect

to a parameter κ runs in time f(κ) · nO(1), where f is any
computable function and n is the size of the input.

3. We perform brute-force branching over all char-
acterizations to pre-determine the behavior of a
solution in G, and for each such characteriza-
tion we employ Courcelle’s theorem to determine
whether there exists a solution with this charac-
terization.

The specific implementation of each step of this strat-
egy differs substantially from the previous work [2].
By far the greatest challenge occurs in Step 1. No-
tably, removing the parts of G required to obtain a
bounded-treewidth graph representation creates holes
in the drawing, and these could disconnect edges in-
tersecting these holes. The graph representation can
then lose track of “which edge parts belong to each
other”, which means we can no longer use it to deter-
mine whether the extended drawing is simple.

To handle this problem, we employ an in-depth ge-
ometric analysis combined with a careful use of the
sunflower lemma and subroutines which invoke Cour-
celle’s theorem to construct a representation which
(a) still has bounded treewidth, and (b) contains par-
tial information about which edge parts belong to the
same edge in G.

Finally, we note that a core ingredient in our ap-
proach is the use of Courcelle’s theorem, and hence
the algorithms underlying our tractability results will
have an impractical dependency on k. However, for
the special case of |F | = 1 (i.e., when inserting a single
edge), we use so-called representative sets to provide
a single-exponential fixed-parameter algorithm which
is tight under the exponential time hypothesis.

Theorem 2 SCEI with |F | = 1 can be solved in time
O(2O(`) · |G| · log |E(G)|).

References

[1] A. Arroyo, F. Klute, I. Parada, R. Seidel, B. Vogtenhu-
ber, and T. Wiedera. Inserting one edge into a simple
drawing is hard. In Proc. WG, LNCS 12301, pages
325–338, 2020.

[2] E. Eiben, R. Ganian, T. Hamm, F. Klute, and
M. Nöllenburg. Extending partial 1-planar drawings.
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Computing the continuous mean distance for certain graph classes∗

Delia Garijo†1, Alberto Márquez‡1, and Rodrigo I. Silveira§2

1Universidad de Sevilla, Spain
2Universitat Politècnica de Catalunya, Spain

The mean distance of a connected unweighted
graph was first introduced in the context of archi-
tecture to compare floor plans, although a lot of in-
terest came from chemical graph theory, where the
closely related Wiener index—the sum of all pairwise
distances in the graph—has been extensively studied.
The most usual way to define the mean distance is as
the arithmetic mean of all nonzero distances between
vertices, where distances are taken in the graph over
all unordered pairs of vertices. In the context of graph
theory, Doyle and Graver [1] were the first to propose
the mean distance as a graph parameter. Since then,
it has been intensively studied.

In a different direction, Doyle and Graver [2, 3] also
introduced the mean distance of a shape, defined for
any weighted graph embedded in the plane. Each
edge of the graph is iteratively subdivided into shorter
edges, so that the edge lengths approach zero. The
mean distance of the shape is then defined as the
limit of the mean distance of such a sequence of re-
finements. Doyle and Graver managed to compute its
exact value for seven specific types of simple graphs
(i.e., a path, a Y-shape, an H-shape, a cross, and three
more) and six rather specific families of graphs; the
most general ones being cycles and stars with k edges
of length 1/k [3].

In this work we continue in this direction, studying
the mean distance of weighted graphs in a continuous
setting. Our main motivation arises from geometric
graphs: undirected graphs where each vertex is a two-
dimensional point, and each edge is a straight line seg-
ment between the corresponding two points. Unlike
abstract graphs, in geometric graphs distances are not
only defined for pairs of vertices, but they exist for any
two points on the graph, including points on the inte-
rior of edges. Therefore, the concept of mean distance
generalizes naturally to geometric graphs, defined as
the average distance between all pairs of points on
edges of the graph.

In this talk we will present novel computational

∗This work was supported by PID2019-104129GB-I00/
AEI/10.13039/501100011033, Gen. Cat. 2017SGR1640, and
BFU2016-74975-P.
†Email: dgarijo@us.es.
‡Email: almar@us.es.
§Email: rodrigo.silveira@upc.edu.

results about the continuous mean distance. While
we can show that the continuous mean distance of
a weighted graph with m edges can be computed in
O(m2) time, the focus of the talk will be on particular
graph classes for which the mean distance can be com-
puted faster. We will present several structural re-
sults that allow a faster computation of the continuous
mean distance for several classes of weighted graphs,
including complete graphs and families of graphs that
have a cut vertex. In particular, we will show the fol-
lowing results, which apply to geometric graphs, and
also to some other non-geometric graphs.

Proposition 1 The continuous mean distance of a
weighted tree T` with n vertices can be computed in
O(n) time.

Proposition 2 The continuous mean distance of a
weighted cactus graph with n vertices can be com-
puted in O(n) time.

Proposition 3 The continuous mean distance of the
complete graph on n vertices where all edges have
length α is given by the following formula:

α(9n2 − 22n+ 12)

6 (n2 − n)

All results to be presented in the talk can be found
in the full version of this work [4].
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Abstract

A continuous 2-dimensional space is often discretized
by being tessellated into a grid of weighted hexago-
nal cells. Two types of shortest paths between points
s and t can be defined, namely the weighted short-
est path SPw(s, t), and the shortest path constrained
to the grid SGPw(s, t). We prove that the ratio
‖SGPw(s,t)‖
‖SPw(s,t)‖ is at most 3

2 , for any weight assignment.

1 Introduction

Finding optimal obstacle-avoiding paths from a start-
ing point s to an ending point t is an important prob-
lem in areas such as robotics [10], video-games [4],
and geographical information systems (GIS) applica-
tions [3], among others. Some methods use regular
grids as navigation regions in two dimensions. These
approaches are easier to implement [11] and are very
common in video-games. In a 2-dimensional space,
only three types of regular polygons can be used to
tessellate continuous 2D environments, namely trian-
gles, squares and hexagons.

Often, the cost of traversing space is not uni-
form and going through different regions incurs dif-
ferent costs. This leads to the Weighted Region Prob-
lem (WRP) [6, 8], i.e., determining a shortest path
through a weighted planar polygonal subdivision. Ex-
isting algorithms for the WRP are quite complex in
design and implementation or have very high time and
space complexities [7]. Recently, it has been proven [2]
that the WRP cannot be solved in the Algebraic Com-
putation Model over the Rational Numbers. This
makes approximation algorithms suitable and neces-
sary. Our work focuses on two possibilities previously
considered in the literature for graphs in a regular
grid, called k-corner grid graph and space graph.

∗Research supported by NSERC, Project PID2019-
104129GB-I00 / AEI / 10.13039/501100011033 of the Spanish
Ministry of Science and Innovation, Gen. Cat. 2017SGR164,
and H2020-MSCA-RISE project 734922 - CONNECT.
†Email: jit@scs.carleton.ca.
‡Email: g.esteban@uah.es.
§Email: david.orden@uah.es.
¶Email: rodrigo.silveira@upc.edu.

v

(a) Neighbors of a ver-
tex v in G3corner.

v

(b) Neighbors of a ver-
tex v in G12corner.

Figure 1: Vertex v is connected to its neighbors in a
hexagonal tessellation.

In a k-corner grid graph (Gkcorner) the vertex set is
the set of corners of the tessellation. Each vertex is
connected by an edge to all of its k neighboring ver-
tices. Different definitions of neighbor are considered,
depending on the tessellation and the design decision.
See Figure 1 for 3-corner and 12-corner grid graphs
in a hexagonal tessellation. (Analogous k-corner grid
graphs can be defined for triangular and square tes-
sellations.) In the unrestricted space graph, the vertex
set is the set of all points in the plane, and the edges
correspond to segments between any pair of vertices
of the graph.

When the continuous space is tessellated, each
cell Hi has a weight ωi ∈ R>0, and the cost of
a segment πi traversing cell Hi is given by ωi‖πi‖,
where ‖ · ‖ is the Euclidean norm. In the case where
a segment π goes along the boundary of two cells Hj

and Hk, the cost is min{ωj , ωk}‖π‖.
Different types of shortest paths between two ver-

tices s and t travel along different geometric graphs,
for which two main possibilities have been con-
sidered in the literature: a weighted shortest grid
path, SGPw(s, t), which is the optimal path whose
edges are edges of a k-corner grid graph, and a
weighted shortest path, SPw(s, t), which is the opti-
mal path between s and t. See red path SGPw(s, t),
and blue path SPw(s, t) in Figure 2 for a comparison
of these two types of paths in the 3-corner grid graph.

Geographic and spatial models provide approxi-
mations of continuous 2D-spaces, and high-quality
approximate paths are favored over optimal paths
that are expensive to compute. Thus, SGPw(s, t)
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ω1 =
√
13

ω2 = 1
s

t

Figure 2: SPw(s, t) (blue) and a SGPw(s, t) (red) be-
tween two corners s and t in G3corner. The cost of
each path is 14 and 16.42, respectively.

is considered alternative to SPw(s, t) and the ratio

R = ‖SGPw(s,t)‖
‖SPw(s,t)‖ indicates the approximation factor.

In this paper, we focus on upper bounding the ratio R
in G3corner for a weighted hexagonal tessellation.

2 Previous results

Almost all previous bounds for the ratio ‖SGPw(s,t)‖
‖SPw(s,t)‖

consider a limited set of weights for the cells. Nash [9]
considered only weights in the set {1,∞} and proved
that the weight of SGPw(s, t) in hexagonal G6corner,
hexagonal G12corner, square G4corner, square G8corner,
triangle G6corner, and triangle G3corner can be up to
≈1.15, ≈1.04, ≈1.41, ≈1.08, ≈1.15, and 2 times the
weight of SPw(s, t), respectively. When the weights
of the cells are allowed to be in R>0, the only result
that we are aware of is for square tessellations and
another type of shortest path, with vertices at the
center of the cells, for which Jaklin [5] showed that
‖SGPw(s,t)‖
‖SPw(s,t)‖ ≤ 2

√
2.

3 ‖SGPw(s,t)‖
‖SPw(s,t)‖ ratio in G3corner for hexagonal cells

We are interested in obtaining, for two vertices s

and t, an upper bound for the ratio ‖SGPw(s,t)‖
‖SPw(s,t)‖

in G3corner for hexagonal tessellations H. We first
show, in Theorem 1, that given a path GP (s, t) be-
tween s and t whose edges are edges of the 3-corner

grid graph, the ratio ‖GP (s,t)‖
‖SPw(s,t)‖ of the whole path can

be upper bounded by the maximum among all the ra-

tios ‖GP (ui,ui+1)‖
‖SPw(ui,ui+1)‖ , where ui and ui+1 are two consecu-

tive crossing points between a GP (s, t) and SPw(s, t).
Hereforth, grid graphs will be 3-corner grid graphs un-
less otherwise specified.

Theorem 1 Let GP (s, t) and SPw(s, t) be, respec-
tively, a grid path, and a weighted shortest path,
from s to t. Let ui and ui+1 be two consecutive cross-
ing points between GP (s, t) and SPw(s, t). Then, the

ratio ‖GP (s,t)‖
‖SPw(s,t)‖ is at most the maximum of all ratios

‖GP (ui,ui+1)‖
‖SPw(ui,ui+1)‖ .

The key idea to prove our main result is to ob-
tain a relation between the weights of cells adjacent

s=a1=u1

t=a5=u4

a2=u2

a3

a4=u3

H1

H2 H3

H4

Figure 3: Weighted shortest path SPw(s, t) (blue) and
the crossing path X(s, t) (red) from s to t in G3corner.

to SGPw(s, t). To do so, we will define a class of grid
paths called crossing paths X(s, t), see the red path
in Figure 3.

Let (H1, . . . ,Hn) be the ordered sequence of con-
secutive cells traversed by SPw(s, t) in the tessella-
tion H. Let vi1, . . . , v

i
6 be the six consecutive cor-

ners of the boundary of Hi, 1 ≤ i ≤ n. Let (s =
a1, a2, . . . , an+1 = t) be the sequence of consecutive
points where SPw(s, t) traverses the cells boundary
in H. In particular, let ai and ai+1 be, respectively,
the points where SPw(s, t) enters and leaves Hi. The
crossing path X(s, t) from a vertex s to a vertex t is
piecewise defined next.

Definition 2 The crossing path X(s, t) between two
vertices s and t is defined as the path X1 ∪ . . . ∪Xn,
where Xi is determined for the pair (ai, ai+1), 1 ≤
i ≤ n, as follows:

• If ai = vi1 and ai+1 = vi2, Xi = (vi1, v
i
2), if ai+1 =

vi3, Xi = (vi1, v
i
2, v

i
3), and if ai+1 = vi4, Xi =

(vi1, v
i
2, v

i
3, v

i
4), see Figure 4(a). The cases when

ai ∈ {vi5, vi6}, are symmetric.

• If ai = vi1 and ai+1 ∈ (vi1, v
i
2), Xi = (vi1, v

i
2),

if ai+1 ∈ (vi2, v
i
3), Xi = (vi1, v

i
2, v

i
3), see Figure

4(b), and if ai+1 ∈ (vi3, v
i
4), Xi = (vi1, v

i
2, v

i
3, v

i
4),

see Figure 4(c). The cases when ai+1 ∈
{(vi4, vi5), (vi5, v

i
6), (vi6, v

i
1)} are symmetric.

If ai belongs to the interior of an edge ei1 ∈ Hi, let p be
the point, different from ai, where the line through ai
perpendicular to ei1 intersects the boundary of Hi.

• If ai+1 is a corner of Hi to the left (right)
of −→aip, Xi is the set of ai+1 and the corners of Hi

to the left (right) of −−−−→aiai+1, see Figure 4(d).

• If ai+1 is a point to the left (right) of −→aip in the
interior of an edge ei2 ∈ Hi not parallel to ei1, Xi

is the set of the endpoint of ei1 to the left (right)
of −→aip, and both endpoints of ei2, see Figure 4(e).

• If ai+1 is a point in the interior of an edge ei2
parallel to ei1, and Xi−1 contains the endpoint
of ei1 to the left (right) of −→aip, Xi is the set of
corners of Hi to the left (right) of −−−−→aiai+1.
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ai+1

ai = vi1

ai+1

aiai

ai+1

(d)

(c)

(e)

vi4

ei1

ai+1 = vi4

ai = vi1

(a)

vi3

vi5

vi6

vi2

ai+1ai = vi1

(b)

vi4

vi3

vi5

vi6

vi2

ei1

ei2

p p

vi2

vi3

Hi Hi Hi

Hi Hi

Figure 4: Some of the positions of the intersection
points between SPw(s, t) (blue) and the edges of Hi.
The subpath of the crossing path X(s, t) created is in
red.

Let (s = u1, u2, . . . , u` = t) be the se-
quence of consecutive crossing points between
X(s, t) and SPw(s, t), see Figure 3. The union
of SPw(s, t) and X(s, t) between two consecutive
crossing points uj and uj+1, for 1 ≤ j < `, induces
a weakly simple polygon (see [1] for a formal defini-
tion). Depending on the number of cells that sep-
arate uj and uj+1, we distinguish different types of
weakly simple polygons. The crossing points uj , uj+1

could belong to the same cell, see Figure 5, or to differ-
ent cells, see Figure 6. Observe that, by the definition
of X(s, t), the only weakly simple polygons that can
arise are those defined in Definitions 3 and 4.

Definition 3 A weakly simple polygon induced
by two consecutive crossings uj , uj+1 ∈ Hi be-
tween X(s, t) and SPw(s, t) is of type P 1

k , 1 ≤ k ≤ 6,
if:

• For 1 ≤ k ≤ 5, X(uj , uj+1) travels along k edges
of Hi.

Let p be the intersection point, different from uj , be-
tween the edges of Hi and the line through uj per-
pendicular to the edge ei1 3 uj .

• For k = 6, uj+1 is a corner of Hi to the
left (right) of −→ujp and uj+1 is connected to uj
in X(uj , uj+1) through the corners of Hi to the
left (right) of −→ujp. In addition, SPw(s, t) tra-
verses Hi from ei1 to its parallel edge.

Definition 4 Let (Hi, . . . ,Hm), m ≥ i + 1, be an
ordered sequence of consecutive cells whose interior is
traversed by SPw(s, t). Let uj ∈ Hi and uj+1 ∈ Hm

be two consecutive crossing points between SPw(s, t)
and X(s, t). Let p /∈ Hm−1 be the intersection point
between the edges of Hm and the line through uj

P 1
1 P 1

3P 1
2

Hi

P 1
5P 1

4

uj
uj

uj+1

uj+1

uj+1

P 1
6

ei1

p

uj+1

uj+1

uj+1

uj

uj uj

uj

Hi
Hi

Hi Hi Hi

θ

θ

Figure 5: Some weakly simple polygons P 1
k , and the

subpath of the crossing path X(s, t) (red) from uj
to uj+1. The angle of incidence θ of SPw(s, t) (blue)
in the boundary of Hi obeys Snell’s law and, for sim-
plicity, is only depicted in P 1

3 .

Pm−i+1
1

uj

uj+1 = q

Hi

Hi+1

b

Hm

Pm−i+1
5

uj

uj+1 = b

Hi

Hi+1

Hm

p p

q

Figure 6: Two weakly simple polygons Pm−i+1
1

and Pm−i+1
5 , and the subpaths of SPw(s, t) (blue)

and X(s, t) (red) from uj to uj+1.

perpendicular to the edge uj belongs to. Let q be
the point where SPw(uj , uj+1) leaves Hm for the first
time, and let q be to the left (right) of −→ujp. Let b be
the left (right) endpoint of the edge q belongs to, with
respect to the SPw(s, t), when considering SPw(s, t)
oriented from s to t. A weakly simple polygon in-
duced by uj and uj+1 is of type Pm−i+1

k , 1 ≤ k ≤ 5,
if:

• X(uj , b) travels through the corners
of {Hi, . . . ,Hm} to the left (right) of −→ujp.
• For 1 ≤ k ≤ 4, in addition, X(b, uj+1) travels

along k edges of Hm.

In order to prove our main theorem, we will need a
series of intermediate results.

Let (Hi, . . . ,Hm), m ≥ i + 1, be an ordered se-
quence of consecutive cells whose interior is traversed
by SPw(s, t). Let uj ∈ Hi and uj+1 ∈ Hm be
two consecutive crossing points between SPw(s, t)
and X(s, t). According to Lemmas 5 and 6, an up-

per bound for the ratio
‖X(uj ,uj+1)‖
‖SPw(uj ,uj+1)‖ in the weakly

simple polygons of type Pm−i+1
k , k ∈ {1, . . . , 4}, and

Pm−i+1
5 is obtained when m = i + 1 and m = i, re-

spectively.
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Lemma 5 Let uj and uj+1 be two consecutive
crossing points between SPw(s, t) and X(s, t) in
a weakly simple polygon of type Pm−i+1

k , k ∈
{1, . . . 4}, m ≥ i + 1. Then, an upper bound for the

ratio
‖X(uj ,uj+1)‖
‖SPw(uj ,uj+1)‖ is obtained when m = i+ 1.

Lemma 6 Let uj and uj+1 be two consecutive cross-
ing points between SPw(s, t) and X(s, t) in a weakly
simple polygon of type Pm−i+1

5 , m ≥ i. Then, an

upper bound for the ratio
‖X(uj ,uj+1)‖
‖SPw(uj ,uj+1)‖ is obtained

when m = i.

We can see that
‖X(uj ,uj+1)‖
‖SPw(uj ,uj+1)‖ = 1 in a P 1

1 .

A P 1
3 may contain two appearances of a P 1

2 ,
i.e., SPw(uj , uj+1) goes along the edges of the cell uj
and uj+1 belong to. If that is the case, we can bound
its ratio by the ratio in a P 1

2 . Analogously, in a P 2
2 ,

if SPw(uj , uj+1) goes along the edges of the cell uj+1

belongs to, we can bound its ratio by the ratio in a P 2
1

and a P 1
2 . In addition, note that a P 1

4 and a P 1
5 con-

tain multiple appearances of a P 1
2 and a P 1

3 . Hence,
the ratios for them can be bounded by the ratios in
a P 1

2 and a P 1
3 . Also, a P 2

3 and a P 2
4 contain multiple

appearances of a P 1
2 and a P 1

3 in the cell uj+1 belongs
to, and hence, the ratios for them are bounded by
that for a P 2

1 and a P 2
2 .

All this implies that the upper bound for the ratio
‖X(uj ,uj+1)‖
‖SPw(uj ,uj+1)‖ is obtained in a weakly simple polygon

of type either (i) P 1
2 , (ii) P 1

3 or P 2
2 when SPw(uj , uj+1)

does not travel along the edges of a cell, (iii) P 1
6 , or

(iv) P 2
1 . The proofs of the bounds in Lemmas 7, 8

and 9 require multiple case analyses.

Lemma 7 Let uj and uj+1 be two consecutive cross-
ing points between a shortest path SPw(s, t) and the
crossing path X(s, t). An upper bound for the ratio
‖X(uj ,uj+1)‖
‖SPw(uj ,uj+1)‖ in P 1

2 is 2√
3
.

Lemma 8 Let uj and uj+1 be two consecutive cross-
ing points between a shortest path SPw(s, t) and the
crossing path X(s, t). An upper bound for the ratio
‖X(uj ,uj+1)‖
‖SPw(uj ,uj+1)‖ in P 1

3 , P 1
6 , and P 2

1 is 3
2 .

Lemma 9 Let uj and uj+1 be two consecutive cross-
ing points between a shortest path SPw(s, t) and the
crossing path X(s, t). An upper bound for the ratio
‖X(uj ,uj+1)‖
‖SPw(uj ,uj+1)‖ in P 2

2 is 5√
13

.

According to Lemmas 7, 8 and 9, an upper bound

for the ratio
‖X(uj ,uj+1)‖
‖SPw(uj ,uj+1)‖ in the five types of weakly

simple polygons is 3
2 . Hence, using Theorem 1, and

the fact that ‖SGPw(s, t)‖ ≤ ‖X(s, t)‖, we obtain our
main result.

Theorem 10 In G3corner, an upper bound for the ra-

tio ‖SGPw(s,t)‖
‖SPw(s,t)‖ is 3

2 .

4 Conclusions

We proved an upper bound for the ratio between
the lengths of a weighted shortest grid path in the
3-corner grid graph and a weighted shortest path.
Following an analogous procedure we can obtain an

upper bound for the ratio ‖SGPw(s,t)‖
‖SPw(s,t)‖ in G12corner,

as well as for other tessellations, such as triangular,
and square. Along similar lines, we can obtain up-
per bounds for another type of grid graph, where the
vertices are cell centers instead of corners.
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Abstract

We show that any total preorder on a set with
(
n
2

)
elements coincides with the length order on pairwise
distances of some point set of size n in Rn−1. For
total orders, a set of n points in Rn−2 suffices. We
also prove that the required dimensions in both cases
are optimal. We use tools from convexity and positive
semidefinite quadratic forms.

1 Introduction

For a positive integer n, we define [n] = {1, 2 . . . , n}.
Let P = {pi : i ∈ [n]} be a set of n points in d-
dimensional Euclidean space. We assume that P is in
general position.

Under these assumptions, the point set P induces
a total preorder ≤ on the family of pairs

Dn =

(
[n]

2

)
= {(i, j) : 1 ≤ i < j ≤ n},

given by (i1, i2) ≤ (j1, j2) if and only if ‖pi1 − pi2‖ ≤
‖pj1 − pj2‖. When P induces pairwise distinct dis-
tances this preorder is also antisymmetric, and thus
it is a total order on Dn. We say that ≤ is induced
by P .

P1

P2

P3

P4

(1, 2) ≤ (2, 3) ≡ (1, 3) ≤ (3, 4) ≡ (2, 4) ≤ (1, 4)

Figure 1: Example of induced preorder

Is every total preorder on Dn induced by a set of
points in d-dimensional Euclidean space? What about
total orders?

∗Email: vh.almendra.h@ciencias.unam.mx. This work was
supported by UNAM-PAPIIT IA104621
†Email: leomtz@ciencias.unam.mx. This work was sup-

ported by UNAM-PAPIIT IA104621

We prove that any given total order or preorder is
achievable if and only if d is large enough in terms of
n. Our main result is an exact bound on the minimal
dimension required for this to happen.

Theorem 1 Let n ≥ 3 be an integer.

• The minimal dimension into which any total or-
der on Dn can be induced by the pairwise dis-
tances of a point set in Rd is d = n− 2.

• The minimal dimension into which any total pre-
order on Dn can be induced by the pairwise dis-
tances of a point set in Rd is d = n− 1.

As a helpful reminder, a total preorder on a set X
is a reflexive and transitive relation ≤ in which every
two elements of X are comparable. We say that x < y
if x ≤ y is in the relation but y ≤ x is not. We define
x ≡ y if and only if x ≤ y and y ≤ x. It is immediate
that ≡ is an equivalence relation on X and that ≤
induces a total order on the equivalence classes. If
≤ is antisymmetric, then each equivalence class has
exactly one element, so ≤ is itself a total order on X.

We divide the proof of Theorem 1 in two sections.
In Section 2 we provide our lower bounds. We ex-
hibit for each n ≥ 3 a total order on Dn that cannot
be induced from a family of n points in Rn−3. We
also exhibit a preorder that cannot be induced from
a family of n points in Rn−2.

In Section 3 we use a powerful lemma on Euclidean
distances and positive semidefinite matrices to induce
any given total order on Dn from a point set in Rn−2.
To introduce our technique, first we prove that any
preorder on Dn can be attainable in Rn−1. We then
show how to adapt the technique to reduce the re-
quired dimension in the case of total orders.

2 Lower bound

If n = 3, it is clear that we need d ≥ 1 to attain every
possible total order on D3. Thus, the first non-trivial
case is n = 4. We claim that there is no point set in
R that induces a total order on D4 with the following
relations:

11



XIX Spanish Meeting on Computational Geometry, Madrid, July 5-7, 2021

P1 P2 P3 P4

Figure 2: Case n = 4

1. (1, 4) is the (unique) maximal element of the total
order

2. (1, 2) < (1, 3)

3. (2, 4) < (3, 4)

The proof is simple in this case: since (1, 4) is the
maximal element, this forces p1 and p4 to be the ex-
tremal points in the geometric configuration. We may
assume without loss of generality that p1 is the left-
most point and p4 is the rightmost point. The second
relation forces p2 to be closer to p1 than p3, but this
contradicts the last relation.

The constructions for larger values of n require a
careful selection of prescribed relations and convexity
arguments. We begin by stating an auxiliary geomet-
ric result and a corollary.

Proposition 2 Let P = {p1, . . . , pd+1} be a set of
d+1 affinely independent points in Rd. For i ∈ [d+1]
let Πi be the hyperplane spanned by P \ {pi} and Hi

the closed halfspace defined by Πi in which pi lies.
Let Π be a hyperplane such that p1 lies in one of

its open halfspaces, which we call H+, and such that
P \{p1} is contained in the (closed) complement H−.
Then the closure ∆′ of

H+ ∩H2 ∩ . . . ∩Hd+1

is a simplex contained in the simplex

∆ = H1 ∩H2 ∩ . . . ∩Hd+1.

A proof for this proposition can be found in the
appendix.

By repeatedly applying the lemma above, we have
the following consequence.

Corollary 3 Let P = {p1, . . . , pd+1} be a set of d+1
affinely independent points in Rd. For i ∈ [d + 1]
let Πi be a hyperplane such that pi lies on one of its
open halfspaces Hi, and P \ {pi} is contained in the
complement of Hi.

Then the closure ∆′ of H1 ∩ H2 ∩ . . . ∩ Hd+1 is
a (possibly empty) simplex contained in the simplex
spanned by P .

Proposition 4 Let n ≥ 4 be an integer. Then there
is no set of n points P in general position in Rn−3 that
induces a total order on Dn including the following in
the relation:

1. For any pair (i, j) in Dn−3 and a pair (k, l) in
Dn \Dn−3, we have (i, j) > (k, l).

2. For any pair (i, j) ∈ [n−3]×{n−2, n−1, n} and
a pair (k, l) in Dn \ ([n − 3] × {n − 2, n − 1, n})
we have (i, j) < (k, l).

{P1, . . . , Pn−3} {Pn−2, Pn−1, Pn}

< <

Figure 3: Relations for order in Dn

Proof. We proceed by contradiction. Suppose that
there is a point set P = {1, 2, . . . , n} that induces a
total order ≤ on Dn with the given relations. Since ≤
is a total order, all pairwise distances of P are distinct.

Let Π be the affine hyperplane spanned by
p1, . . . , pn−3. Among the points pn−2, pn−1, pn, two
of them lie on the same open halfspace defined by Π.
Without loss of generality, we may assume they are
pn−2 and pn−1. We now show that pn−1 lies in the
simplex ∆ spanned by {p1, . . . , pn−2}.

To do so, for i ∈ [n − 3] let Πi be the perpendic-
ular bisector hyperplane to the segment pipn−2 and
Πn−2 = Π (See Figure 4). For i in [n − 2] let Hi be
the open halfspace of Πi on which pi lies.

P1 P2

P3

P4

P5

Π = Π3

Π1

Π2

Figure 4: Proof for n = 5 in the plane.

By the relations in (1), the distances among points
pi, pj with i, j ∈ [n − 3] are the largest. This implies
that for distinct i, j ∈ [n − 3] we have ‖pi − pj‖ >
‖pj − pn−2‖, so pj is on the opposite open halfspace
defined by Πi as pi. This means that H1, . . . ,Hn−2

satisfy the hypothesis of Corollary 3, and therefore the
closure ∆′ of H1 ∩ . . . ∩Hn−2 is contained in ∆ (for
example, in Figure 4 this corresponds to the orange-
shaded triangle lying inside the triangle P1, P2, P3).

To finish the proof of our claim, note that the re-
lations in (2) imply that the next largest distances

12
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are among points pi, pj with i, j ∈ {n − 2, n − 1, n},
so the remaining distances are smaller than these. In
particular, for every i in [n− 3] we have that

‖pn−1 − pn−2‖ > ‖pn−1 − pi‖ ,

and thus pn−1 lies in Hi. Since pn−1 was originally
chosen to be in Hn−2, we conclude that pn−1 is in
∆′ ⊆ ∆, as claimed.

An analogous proof shows that pn−2 lies in the sim-
plex spanned by P \ {pn−2, pn}. We conclude that
pn−2 = pn−1, a contradiction to P having n distinct
points.

�

Now we focus on the lower bound for total pre-
orders.

Proposition 5 Let n ≥ 3 be an integer. Then there
is no set of n points P in general position in Rn−2

that induces a preorder on Dn in which (n − 1, n) is
a unique minimal element and the rest of the pairs
belong to a single and maximal class.

A proof for this can be found in the appendix. The
lower bound in the case of preorders can be obtained
in other ways. For example Yugai [4] proves that the
maximal number of times a diameter can appear in a
point set on n points in Rn−2 is

(
n−1

2

)
+ n− 3 <

(
n
2

)
.

Therefore, any preorder that imposes more than this
number of diameters will be impossible to attain. For
a deeper study on the maximal number of times a
diameter of a point set can appear, see [1] and the
references therein.

3 Upper bound

Our upper bounds rely on a powerful lemma by
Schoenberg [3] that characterizes families of real num-
bers that can appear as Euclidean distances induced
by a point set. We refer the reader to the text by Ma-
toušek [2] for a nice and short proof of the following
result using linear algebra.

Theorem 6 Let mij , for i, j in [n+1] be nonnegative
real numbers with mij = mji for all i, j and mii = 0
for all i. Then there exist points p1, . . . , pn+1 in Rn

with ‖pi − pj‖ = mij for all i, j if and only if the n×n
matrix G with entries

gij =
1

2
(m2

(n+1)i +m2
(n+1)j −m

2
ij)

for i, j ∈ [n] is positive semidefinite.

Note that Theorem 6 does not guarantee that the
points p1, . . . , pn+1 are distinct. To illustrate our tech-
nique, we begin by proving the upper bound in the
case of preorders.

Proposition 7 Any total preorder ≤ on Dn can be
induced by a set of n points in Rn−1.

Proof. Let ≡ be the equivalence relation induced on
Dn by ≤. Since ≤ induces a total order on the equiv-
alence classes, we may name them as follows:

Q1 < Q2 < . . . < Qm.

Let ε > 0 be a sufficiently small real number to be
determined later.

We define the following numbers:

mij =


0 if i = j

1 + kε if i < j and (i, j) ∈ Qk

1 + kε if i > j and (j, i) ∈ Qk

Note the mij are well defined since we have a total
preorder, for each pair (i, j) ∈ Dn there exists k such
that (i, j) ∈ Qk. From this definition, it is clear that
mij = mji. Consider now the (n−1)× (n−1) matrix
G with entries

gij =
1

2
(m2

ni +m2
nj −m2

ij)

for i, j ∈ [n]. We claim that if ε is small enough,
then G is positive definite.

Indeed, the values gij depend continuously on the
values mij , and these in turn depend continuously on
ε. As ε→ 0, we get that

2G→


2 1 1 · · · 1
1 2 1 · · · 1
1 1 2 · · · 1

...
. . .

...
1 1 1 · · · 2


The matrix on the right hand side corresponds to

the quadratic form

(x1, . . . , xn) 7→ 2

 n∑
i=1

x2
i +

∑
1≤i<j≤n

xixj


=

(∑
i=1

xi

)2

+
n∑

i=1

x2
i ,

which is positive definite.
The subset of Mn(R) consisting of positive definite

matrices is open. So we may set ε > 0 as a num-
ber such that 2G is positive definite, therefore, G will
be positive definite too. By Theorem 6, there are
p1, . . . , pn in Rn−1 such that ‖pi − pj‖ = mij for all
i, j. Since distances between distinct points are non
zero, this set P has exactly n points. We claim that
P induces the given preorder ≤ on Dn.
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Indeed, if (i, j) ≤ (k, l), then there are indices m1 ≤
m2 such that (i, j) ∈ Qm1 and (k, l) ∈ Qm2 , and then

‖pi − pj‖ = 1 +m1ε ≤ 1 +m2ε = ‖pk − pl‖ .

If it is not the case that (i, j) ≤ (k, l), then (k, l) <
(i, j), so there are indices m2 < m1 such that (i, j) ∈
Qm1

and (k, l) ∈ Qm2
. Thus, we have

‖pi − pj‖ = 1 +m1ε > 1 +m2ε = ‖pk − pl‖ ,

which shows that the we do not have (i, j) ≤ (k, l)
in the induced relation.

Therefore, we recover exactly the relations given by
≤ with the order of pairwise distances of P .

�

A careful adaptation of the proof above yields the
desired result for total orders.

Proposition 8 Any total order ≤ on Dn can be in-
duced by a set of points in Rn−2.

Proof. (Sketch)
Let ≤ be a total order on Dn, and let N =

(
n
2

)
.

Then all the elements in Dn can be listed as follows:

(i1, j1) < (i2, j2) < . . . < (iN , jN ).

Without loss of generality, we may assume that
(i1, j1) = (n− 1, n).

Let ε > 0 be a sufficiently small real number to be
determined later. For (i, j) 6= (n− 1, n) we define the
numbers

mij =


0 if i = j

1 + kε if i < j and (i, j) = (ik, jk)

1 + kε if i > j and (j, i) = (ik, jk)

The mij are well defined since we have a total or-
der, for each pair (i, j) ∈ Dn there exists k such that
(i, j) = (ik, jk). We can find point sets p1, . . . , pn−1

and q1, . . . , qn−2, qn such that

‖pi − pj‖ = mij for i, j ∈ [n− 1]

‖qi − qj‖ = mij for i, j ∈ [n− 2] ∪ {n}

The point sets P ′ = {p1, . . . , pn−2} and Q′ =
{q1, . . . , qn−2} have the same pairwise distances, so
there is an isometry that takes one to the other. Thus,
we may assume that pi = qi for i ∈ [n− 2]. Let π be
the hyperplane of Rn−2 spanned by {p1, . . . , pn−2}.
We may assume that pn−1 and qn lie on the same
halfspace defined by π.

As ε → 0, the point sets P ′ and Q′ converge to
be the vertices of a unit regular (d − 2)-dimensional
simplex. Therefore, as ε → 0, we have that
‖pn−1 − qn‖ → 0.

We set pn := qn. Note that pn 6= pn−1 as otherwise
we would get the contradiction

m1(n−1) = ‖p1 − pn−1‖ = ‖p1 − pn‖ = m1n.

Therefore, P = {p1, . . . , pn−1, pn} is point set of
size n. It can be shown that this set induces the total
order ≤ on Dn.

�

4 Discussion

We have shown that n − 1 is the minimal dimension
into which every total preorder on Dn can be induced
by the order of the pairwise distances of n distinct
points. In the case of total orders on Dn, this minimal
dimension can be reduced to n− 2.

The proof of Proposition 8 may give the impression
that the hypothesis can be weakened to only require
a total preorder with a unique minimal element, to
which we will associate the distance ‖pn−1 − pn‖. The
proof will fail, as witnessed by the counterexample in
the remark on diameters after the proof of Proposition
5.

The main problem when replicating the argument
is that there will be no guarantee that the constructed
points are distinct.

Our study leads to the following open problem.

Problem 9 For n ≥ d + 3 (resp. n ≥ d + 2), char-
acterize the linear orders (resp. total preorders) on
Dn that can be induced from the ordering of pairwise
distances of a point set of size n in Rd.

We expect a full characterization to be out of reach
of current tools in the area, as e.g. a full solution to
the total preorders problem would imply a solution
to the maximum number of diameter pairs problem
[1]. Nevertheless, any partial progress would shed ad-
ditional light on the complex behaviour of pairwise
distances of points in Euclidean space.
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Sensory analysis is a very important branch of
science for food industry, where sensory profiling is
crucial in order to adapt the products to the con-
sumers’ preferences. While traditionally such a task
was mainly performed by trained panels and therefore
time-consuming, a number of rapid sensory methods
have arisen in the last two decades [4].

Among such methods, Projective Mapping asks the
tasters to position samples on the plane following a
simple rule: The more similar the samples, the closer
they should be positioned (and vice versa). Despite
the geometric and two-dimensional nature of this pro-
cess, the data collected had only been treated by sta-
tistical techniques until some of us recently proposed
the geometric method SensoGraph [1], using Gabriel
graphs for clustering the answers and the Kamada-
Kawai graph drawing algorithm to produce an aver-
age positioning.

This talk will review the methods and results in [2],
where distances between samples are considered as
an alternative to the Gabriel graph and the resulting
two geometric methods are compared to the statisti-
cal standard [3], Multiple Factor Analysis (MFA), in
terms of quality and stability of the results. A large
number of 349 tasters participated in the study, evalu-
ating eight different commercial chocolate chip cook-
ies (one best-selling brand and seven private labels
from different supermarkets) plus a blind duplicate
sample (the best-selling brand).

Both the geometric and the statistical outputs pro-
vided the same groups of samples, with the two blind
duplicates appearing as the most similar ones. See
Figure 1. Actually, the identification of the duplicates
was clearer with the geometric methods. On the con-
trary, the stability of the results (studied using boot-
strapping resampling) was better for MFA. As for the
geometric methods, using distances provided greater
stability than the use of the Gabriel graph.

Our results show the interest for sensory analysts of

∗Supported by Project PID2019-104129GB-I00 / AEI /
10.13039/501100011033 of the Spanish Ministry of Science.

†Email: david.orden@uah.es.
‡Email: encarnacion.fernandez@uva.es.
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adding techniques based on geometric graphs to their
toolbox.

Figure 1: Output for SensoGraph using distances.
Samples considered more similar appear closer and
vice versa. The similarity between samples is also rep-
resented by the width and color of the connections.
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Graph associahedra are generalized permutohedra
arising as special cases of nestohedra and hyper-
graphic polytopes [3, 7]. The graph associahedron
of a connected graph G encodes the combinatorics
of search trees on G, defined recursively by a root r
together with search trees on each of the connected
components of G − r. In particular, the skeleton of
the graph associahedron is the rotation graph of those
search trees: two vertices form an edge if the corre-
sponding trees differ by a rotation, a local operation
similar to rotations in binary search trees.

The question of how large the diameter of a poly-
hedron arises naturally from the study of linear pro-
gramming and the simplex algorithm (see, for in-
stance [10] and references therein). The case of associ-
ahedra [4, 12]—whose diameter is known exactly [8]—
is particularly interesting. Indeed, the diameter of
these polytopes is related to the worst-case complex-
ity of rebalancing binary search trees [11]. Classical
associahedra are associahedra of paths of length n,
and their diameter is 2n− 6 for a large enough n.

We investigate the diameter of graph associahe-
dra as a function of some parameters of the under-
lying graph. The results are relevant in the context
of data structures for searching in graphs [1]. The
question has already been studied by Manneville and
Pilaud [5], by Pournin [9] in the special case of cy-
clohedra, and by Cardinal, Langerman and Pérez-
Lantero [2] in the special case of tree associahedra.

We aim at giving tighter bounds on the diameter of
graph associahedra in terms of some structural invari-
ants of the underlying graph, in particular the path-
width, the treewidth, and the tree-depth. These in-
variants play a key role in the theory of graph minors
and in graph algorithms. The tree-depth of a graph
G is the smallest height of a search tree on G, where
a tree composed of a single vertex has height one [6].
The tree-depth is definitely a natural invariant to con-
sider, as it is a function of the exact same objects that
form the vertices of the graph associahedron.

∗This is a summary of a paper to appear in the Proceed-
ings of the XI Latin and American Algorithms, Graphs and
Optimization Symposium (LAGOS’21).
†Email: jcardin@ulb.ac.be
‡Email: lionel.pournin@univ-paris13.fr.
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We first prove that the lower bound of m from Man-
neville and Pilaud [5] on the diameter of the associa-
hedra of a graph on m edges is essentially tight for all
trivially perfect graphs. Those graphs appear natu-
rally here, as they are maximal for a fixed tree-depth.
Using this, we give lower and upper bounds on the
maximum diameter of associahedra of graphs on n
vertices as a function of the pathwidth, treewidth,
and tree-depth of the graph. These bounds are near-
linear in n · p(G), where p(G) is the parameter. For
the tree-depth, we get a tight linear bound. Finally,
we prove that the maximum diameter of associahedra
of graphs of pathwidth two is already superlinear.
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Abstract

In [Zhe20a], Hailun Zheng constructs a combinato-
rial 3-sphere on 16 vertices whose graph is the com-
plete 4-partite graph K4,4,4,4. Such a sphere seems
unlikely to be realizable as the boundary complex of
a 4-dimensional polytope, but all known techniques
for proving this fail because there are just too many
possibilities for the 16× 4 = 64 coordinates of its ver-
tices. Known results [PPS12] on polytopal realizabil-
ity of graphs also do not cover multipartite graphs.

In this paper, we level up the old idea of
Grassmann–Plücker relations, and assemble them us-
ing integer programming into a new and more pow-
erful structure, called positive Grassmann–Plücker
trees, that proves the non-realizability of this exam-
ple and many other previously inaccessible families of
simplicial spheres. See [Pfe20] for the full version.

1 Introduction

A simplicial (d − 1)-sphere Σ is a simplicial complex
homeomorphic to a (d − 1)-dimensional sphere. We
say that Σ is non-realizable if there does not exist
a (necessarily simplicial) d-polytope whose boundary
complex is isomorphic to Σ.

Example 1 The following list of 19 facets defines a 3-
sphere Σ on 8 vertices with 27 edges and 38 triangles:

+[0123] -[0124] +[0135] -[0146]

+[0157] -[0167] -[0234] +[0345]

-[0456] +[0567] +[1237] -[1246]

-[1267] +[1357] -[2347] +[2456]

-[2457] -[2567] +[3457]

The signs define an orientation of Σ.

How to prove that this 3-sphere is non-realizable?
In this case, the venerable Grassmann–Plücker rela-
tions suffice. These are polynomial relations that are
satisfied by the determinants of any d+ 1 points of a

*Email: julian.pfeifle@upc.edu. The author was supported
by the grant PID2019-106188GB-I00 from the Spanish Ministry
of Education (MEC)

realization of Σ in d-space. The most basic ones are
the three-term GP relations Γ(S|ijkl) = 0 with

Γ(S|ijkl) = [Sij][Skl]− [Sik][Sjl] + [Sil][Sjk], (1)

which are valid for any subset S ⊂ {1, 2, . . . , n} of size
(d−1), and any four indices i, j, k, l ∈ {1, 2, . . . , n}\S.
A typical 3-term GP relation in our example is

0 = Γ(045|1267)

= [04512][04567]− [04516][04527] + [04517][04526].

By permuting the entries inside these determinants,
we can change their signs — even permutations will
leave the sign unchanged, while odd permutations will
flip it. A particularly advantageous way of changing
the signs is

0 = Γ(045|1267)

= (−1)[01425](−1)[05674]

− [04651](−1)[24750]

+ [01574] [24560]

= [01425][05674] + [04651][24750] + [01574][24560].

The advantage of rewriting Γ(045|1267) in this way is
that now all determinants are positive! For example,
[01425] > 0 because [01425] = −[01245], and [01245]
is the “signed slack” of the point x5 with respect to
the facet [0124] in the supposed convex realization of
Σ; but the orientation of 0124 in Σ is negative by the
above list. The other determinants can be similarly
checked to be positive.

But this expresses zero as a positive combination
of positive numbers, which is impossible; therefore,
there is no convex realization of this 3-sphere.

2 The non-realizability of Zheng’s 3-sphere

To explain why Zheng’s combinatorial 3-sphere Z is
important, let’s fix definitions. A (d− 1)-dimensional
simplicial complex is balanced if its 1-skeleton is d-
colorable in the graph-theoretic sense, i.e., its vertices
can be colored with d colors in such a way that the
endpoints of all edges receive different colors. More-
over, a (d − 1)-dimensional balanced simplicial com-
plex Σ is balanced k-neighborly if each k-subset of the
vertex set that contains at most one vertex of each
color class is actually a face of Σ.
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Now we can say why Zheng’s example Z is impor-
tant — in fact, it is important in at least two ways.

First, there has been a lot of work on analogies
between combinatorial data in the balanced and the
non-balanced settings [JM18, JMNS18, Ven19]. For
example, one would like to have a balanced analogue
of the celebrated Upper Bound Theorem by McMullen
and Stanley. For this, in particular one would like bal-
anced analogues of the extremal examples to even ex-
ist, i.e., one would like to construct infinite families
of balanced k-neighborly simplicial spheres. What
Zheng shows in [Zhe20a], however, is that (i) there
is no balanced 2-neighborly homology 3-sphere on 12
vertices; (ii) there is no balanced 2-neighborly homol-
ogy 4-sphere on 15 vertices; (iii) but taking suspen-
sions over Z yields a balanced 2-neighborly homology
(3 +m)-sphere on 16 + 2m vertices for every m ≥ 0.

The second reason why her example is important
lies in the fact that in [PPS12], the authors study
which graphs are realizable as the 1-skeleton of poly-
topes. The case of multipartite graphs was not treated
there, and to date the only polytope whose graph is
known to be the multipartite graph K4,4,4,4 is the 4-
dimensional cross polytope.

We can now show for the first time that Z is not
realizable as the boundary complex of a convex poly-
tope, and therefore that Z does not yield a new poly-
tope whose graph is K4,4,4,4.

Theorem 2 Zheng’s balanced sphere Z is not poly-
topal.

Proof. An orientation of the facets of Z is given by
the following list:

-[048c] +[048e] +[049c] -[049d] +[04ad]

-[04ae] +[059d] -[059f] -[05ad] +[05ae]

-[05be] +[05bf] +[068c] -[068e] -[069c]

+[069e] -[079e] +[079f] +[07be] -[07bf]

+[148c] -[148e] +[14ae] -[14af] -[14bc]

+[14bf] -[158c] +[158d] -[159d] +[159f]

+[15bc] -[15bf] +[168e] -[168f] -[16ae]

+[16af] -[178d] +[178f] +[179d] -[179f]

-[24ad] +[24af] +[24bd] -[24bf] +[258c]

-[258d] -[25ac] +[25ad] -[268c] +[268d]

+[269c] -[269e] +[26ae] -[26af] -[26bd]

+[26bf] -[279c] +[279e] +[27ac] -[27ae]

-[349c] +[349d] +[34bc] -[34bd] +[35ac]

-[35ae] -[35bc] +[35be] -[368d] +[368f]

+[36bd] -[36bf] +[378d] -[378f] +[379c]

-[379d] -[37ac] +[37ae] -[37be] +[37bf]

We prove the non-realizability of Z in a similar way as
in Example 1, but we allow GP relations in which we
do not have full control over the signs. For example,
we can express

0 = Γ(18f|56bd)

= [18f56][18fbd] − [18f5b][18f6d] + [18f5d][18f6b]

= [16f85][18bdf]? + [15fb8][16f8d] + [158df][16f8b],

where all (black) signs are known to be positive in any
realization of Z, but the (red) sign with a question
mark can be either positive or negative. For instance,
[16f8] is a positively oriented facet because the ori-
entation of [168f] in the given list is negative, and
this implies that all determinants of the form [16f8x]

must be positive, because all points x lie on the same
side of the facet in any convex realization. On the
other hand, no four-element subset of [18bdf]? ap-
pears in the list of facets of Z, so the sign of that
determinant could be positive or negative.

To balance this uncertainty, we look for another
GP relation that involves [18bdf]?. A candidate is

0 = Γ(1bf|48de)

= [1bf48][1bfde] − [1bf4d][1bf8e] + [1bf4e][1bf8d]

= [14bf8][1bdef]? + [14bfd][18bef]? − [14bfe][18bdf]?.

On the one hand, we can eliminate the unknown sign
[18bdf]? by forming the polynomial combination

[14bfe] · Γ(18f|56bd) + [16f85] · Γ(1bf|48de),

but on the other hand we now have two additional
unknown signs to worry about.

Somewhat surprisingly, we are able to bring this
process to a closure by forming the following polyno-
mial combination of GP relations:

[36fb5]

(
[36fb4]

(
[14bf3]

(
[16f85]

(
[14bfd](−Γ(18f|46be))

+[16f84] Γ(1bf|48de)
)

+[16f84] [14bfe] Γ(18f|56bd)
)

+[16f84] [14bf8] [16f85] Γ(1bf|34de)

)
+[16f84] [14bf8] [14bfe] [16f85](−Γ(3bf|146d))

)
+ [16f84] [14bf8] [14bfd] [16f85] [36fb4] Γ(3bf|156e) .

It is encoded in the positive Grassmann–Plücker tree
in Figure 1, and multiplying it out as in Figure 2
proves the non-realizability of Z. �

One can check that arranging the GP polynomials
into a tree, i.e., a graph without cycles, guarantees
that the final certificate does not depend on the order
in which the certificate is multiplied out.

3 Finding positive Grassmann–Plücker trees

How do we go about finding such certificates? First,
we restrict to a useful subclass of GP relations that
permit algebraic elimination:

Definition 3 A three-term GP relation as in (1) has
no adjacent unknown solids if no two determinants
that are multiplied together have unknown sign.
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−Γ(18f|46be)

Γ(18f|56bd)

Γ(1bf|34de)Γ(1bf|48de)

−Γ(3bf|146d)

Γ(3bf|156e)

[13bdf]?

[13bef]?[18bdf]?

[18bef]?

[1bdef]?

Figure 1: Grassmann–Plücker tree proving the non-realizability of Zheng’s 3-sphere

0 = [36fb5]

(
[36fb4]

(
[14bf3]

(
[16f85]

(
[14bfd](−[16f84][18bef]? + [14bf8][16f8e] + [14e8f][16f8b])

+ [16f84]([14bf8][1bdef]? + [14bfd][18bef]? − [14bfe][18bdf]?)
)

+ [16f84] [14bfe]
(
[16f85][18bdf]? + [15fb8][16f8d] + [158df][16f8b]

))
+ [16f84] [14bf8] [16f85]

(
− [14bf3][1bdef]? + [13bdf]?[14bfe]− [13bef]?[14bfd]

))
+ [16f84] [14bf8] [14bfe] [16f85]

(
[14bf3][36fbd] + [36fb1][34dbf]− [13bdf]?[36fb4]

))
+ [16f84] [14bf8] [14bfd] [16f85] [36fb4]

(
[15fb3][36fbe] + [36fb1][35bef] + [13bef]?[36fb5]

)
= [14bf3] [16f84] [14bf8] [14bfe] [16f85] [36fb5] [36fbd] + [14bf3] [16f84] [14bfe] [15fb8] [16f8d] [36fb4] [36fb5]

+ [14bf3] [16f84] [14bfe] [158df] [16f8b] [36fb4] [36fb5] + [14bf3] [14bf8] [14bfd] [16f85] [16f8e] [36fb4] [36fb5]

+ [14bf3] [14e8f] [14bfd] [16f85] [16f8b] [36fb4] [36fb5] + [15fb3] [16f84] [14bf8] [14bfd] [16f85] [36fb4] [36fbe]

+ [36fb1] [16f84] [14bf8] [14bfd] [16f85] [36fb4] [35bef] + [36fb1] [16f84] [14bf8] [14bfe] [16f85] [34dbf] [36fb5] .

Figure 2: The certificate derived from Figure 1. The sign of each determinant with a “?” can be different in
different realizations, but the certificate is arranged in such a way that they all cancel. After multiplying out, all
surviving determinants are known to be positive in any realization, but the whole certificate must sum to zero.
Since this can’t happen, the realization cannot exist.

Next, we set up the GP graph in which we will
search for our certificate. Its nodes are

VΣ =

{
±Γ(S|ijkl) : Γ(S|ijk`) has no two adjacent

unknown solids

}
,

and the edges are labelled with the set S(Σ) of
normal forms [Pfe20, Definition 3.2] of solids of Σ.
There can be multiple edges between two nodes, but
they have different labels: two nodes Γ,Γ′ ∈ VΣ are
joined with an edge (π, {Γ,Γ′}) labelled π ∈ S(Σ)
in EΣ ⊆ S(Σ)×

(
VΣ

2

)
iff they share a solid π such that

σi = −σ′i, where σi, σ
′
i are the canonical signs [Pfe20,

Definition 4.4] of the terms containing π in Γ,Γ′.
Said differently, each GP polynomial is connected

to many other GP polynomials, and each connect-
ing edge is labelled with an unknown solid common
to both polynomials. At each node, there can be at
most 3 different labels, but potentially thousands of
incident edges with those labels.

Our goal is to find a tree in this graph in such a way
that each node has exactly one incident edge labelled
with each label occurring at that node. The task is
therefore to distill the lucky nodes out of this graph,

and for each lucky node the up to three lucky edges
out of the thousands of candidates; oh, and we’d like
the resulting tree to be as small as possible.

For this, we solve the integer program on the in-
teger indicator variables {xΓ : Γ ∈ VΣ} and {xe :
e = (π, {Γ,Γ′}) ∈ EΣ} defined in Figure 3. The in-
equalities for these variables xΓ, xe ∈ {0, 1} have the
following interpretation:

� (2) ensures that both endpoints of an edge
present in the solution are present;

� (3) ensures that at most one edge is selected be-
tween two selected nodes;

� (4) forces the solution to be a tree with at least
one node;

� (5) ensures that if a node Γ with an unknown
sign π? is present in the solution, then there is
exactly one edge of that label incident to Γ.

4 More results

We have implemented a search for positive GP trees in
the software framework polymake [GJ00]. With this
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min
∑

Γ∈VΣ

xΓ s.t. 2
∑

π: e=(π,{Γ,Γ′})∈EΣ

xe ≤ xΓ + xΓ′ for each {Γ,Γ′} ∈
(
VΣ

2

)
(2)

∑
π: e=(π,{Γ,Γ′})∈EΣ

xe ≤ 1 for each {Γ,Γ′} ∈
(
VΣ

2

)
, (3)

1 +
∑
e∈EΣ

xe =
∑

Γ∈VΣ

xΓ (4)

∑
Γ′: e=(π?,{Γ,Γ′})∈EΣ

xe = xΓ for all Γ ∈ VΣ, for all unknown π? ∈ Γ (5)

Figure 3: The integer program for finding positive Grassmann–Plücker trees

implementation, we can prove the non-realizability of
several previously inaccessible families.

4.1 Topological Prismatoids

In [CS19], Francisco Criado and Francisco Santos
introduced topological prismatoids, a combinatorial
abstraction of the geometric prismatoids used by
Santos [San12] to construct counterexamples to the
Hirsch conjecture. Criado and Santos construct
four combinatorially distinct non-d-step topological
4-dimensional prismatoids on 14 vertices, referred to
as #1039, #1963, #2669 and #3513, which imply
the existence of 8-dimensional spheres on 18 ver-
tices whose combinatorial diameter exceeds the Hirsch
bound. In [CS19], the question of polytopality of these
combinatorial prismatoids was left open.

Theorem 4 The topological prismatoids #1039,
#1963, #2669 and #3513 are not polytopal. �

4.2 Novik and Zheng’s centrally symmetric neigh-
borly d-spheres

In [NZ19], Novik and Zheng give several constructions
of centrally symmetric, highly neighborly d-spheres.
They are based on a family ∆d

n of cs-dd2e-neighborly
combinatorial d-spheres on 2n ≥ 2d + 2 vertices,
which arise as the case i = dd2e of an inductively con-
structed family ∆d,i

n of cs-i-neighborly combinatorial
d-spheres. Each of those contains a certain combina-
torial d-ball Bd,i−1

n , which is the only part that gets
deleted in a step of the inductive construction. For
d = 3, Novik and Zheng’s family {∆3

n : n ≥ 4} is
precisely Jockusch’s family from [Joc95].

Theorem 5 For n ≥ 6, no member ∆4
n of Novik and

Zheng’s family is realizable. �

Theorem 6 (with [Zhe20b]) For n − 2 ≥ d ≥ 3, no
member ∆d

n of Novik and Zheng’s family is realizable.
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Computing the type cone of nestohedra
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Nestohedra are an important family of polytopes,
introduced independently by Feichtner and Sturm-
fels [1] and Postnikov [2]. They can be seen as
the hypergraph generalization of Carr and Deva-
doss’ graph associahedra [3]. Their face lattice en-
codes the combinatorial structure of the connected
induced sub(hyper)graphs of a given (hyper)graph,
and was first introduced by De Concini and Procesi
in their study of wonderful compactifications of sub-
space arrangements [4]. As particular examples, they
contain several well known polytopes, such as per-
mutohedra, associahedra, cyclohedra, stellohedra and
Pitman-Stanley polytopes.

Postnikov’s nestohedra are generalized permutohe-
dra, which means that they can be obtained from
the classical permutahedron by gliding its facets along
their normal vectors. It is natural to ask for the whole
set of deformations of the permutahedron that realize
a given nestohedron. This is equivalent to studying
its type cone, a notion introduced by McMullen [5].
Given a polytope P with facet normal vectors given
in a matrix G, the type cone TC(P ) is the set of vec-
tors h such that P and {x ∈ Rn ; Gx ≤ h} have
the same normal fan. In other words, it records how
to move the facets of P along their normal vectors
without changing the combinatorics of P .

Our work is motivated by a recent realization of
the associahedron by Arkani-Hamed et al. in [6] that
arose in the study of scattering particles in mathemat-
ical physics. This realization was extended to other
generalizations of the associahedron by Bazier-Matte
et al. in [7] and by Padrol et al. in [8], and it can be
reinterpreted in terms of the type cone. In particular,
it is shown in [8] that a key ingredient of the original
construction resides in the fact that the type cone of
the associahedron is simplicial.

The type cone is classically described as a poly-
hedral cone by a family of inequalities, called wall-
crossing inequalities, but the vast majority of these
inequalities are redundant. Our result gives non-
redundant facet descriptions of the type cones of all
nestohedra. In our description, each induced subhy-

∗Email: aranau.padrol@imj-prg.fr
†Email: vincent.pilaud@lix.polytechnique.fr
‡Email: germain.poullot@polytechnique.edu

pergraph gives rise to few natural inequalities. Es-
pecially, when the type cone is simplicial, we can ex-
plicitly associate each facet of the type cone to an in-
duced subhypergraph. Our description has several ap-
plications: we can determine the hypergraphs whose
nestohedron has a simplicial type cone, easily com-
pute the number of facets of the type cone even in
the non-simplicial case, and provide new Minkowski
sum decompositions of nestohedra.
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Seara5, and Martin Suderland2

1Dipartimento di Ingegneria, Università Roma Tre, Italy.
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1 Introduction

We introduce the Rotating Rays Voronoi Diagram, a
Voronoi structure where the input is a set S of n rays,
and the distance from a ray r ∈ S to a point x ∈ R2

is the counterclockwise angular distance; see Fig. 1.
We denote the diagram by RVD(S).

Figure 1: Left: Point x has distance α from r. The
wedge is an α-floodlight. Right: The RVD of 4 rays.

The diagram can be used to solve illumination
problems where a domain has to be covered by α-
floodlights, i.e., wedges of aperture α; see e.g., [2].
More specifically, given a set of n α-floodlights aligned
to the rays of S, we show how to compute the mini-
mum angle α∗ required to illuminate a given domain.

2 RVD in the plane

When the considered domain is the whole plane,
we show that RVD(S) has Ω(n2) worst case com-
plexity, even if the set of input rays are pairwise
non-intersecting. Further, a single Voronoi region of
RVD(S) can have Θ(n2) worst case complexity.

Using the envelopes of distance functions in 3-space,
we derive that RVD(S) has O(n2+ε) complexity, and
it can be constructed in O(n2+ε) time ∀ε > 0. The an-
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gle α∗ is realized at a vertex of RVD(S). Hence, after
constructing RVD(S), a simple traversal reveals α∗.

3 RVD of a convex polygon - Brocard illumination

If the target domain is an n-sided simple polygon with
an α-floodlight aligned to each edge, then the prob-
lem of finding the angle α∗ is known as the Brocard
illumination problem; see Fig. 2. For a convex poly-
gon we improve upon previous results [1] computing
α∗ in optimal Θ(n) time by means of the RVD.

Given a convex polygon P, we obtain a set SP of
edge-aligned rays. The diagram RVD(SP) confined
to P is a tree of Θ(n) complexity; see Fig. 2. We
describe an algorithm to construct RVD(SP) ∩ P in
deterministic Θ(n) time: We first partition SP into
4 subsets, then construct the RVD of each subset in
O(n) time, and we finally merge the 4 diagrams. The
angle α∗ is again realized at a vertex of RVD(SP)∩P.
Hence, we can find α∗ in Θ(n) time.

Figure 2: Left: Illumination with α-floodlights
aligned to the edges of a polygon P. Right: RVD(SP)
confined to P. Highlighted are the rays realizing α∗.
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The algorithm described in [1] is in fact incorrect, but it
easily implies a O(n logn) time and O(n) space algorithm.
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Abstract

We present an edge labeling of order-k Voronoi dia-
grams, Vk(S), of point sets S in the plane, and study
properties of the regions defined by them. Among
them, we show that Vk(S) has a small orientable cycle
and path double cover, and we identify configurations
that cannot appear in V3(S).

1 Introduction

Let S be a set of n points in general position in the
plane (no three collinear, and no four cocircular), and
let 1 ≤ k ≤ n− 1 be an integer. The order-k Voronoi
diagram of S, Vk(S), is a subdivision of the plane into
cells, also called faces, such that the points in the same
cell have the same k nearest points of S, also called
k nearest neighbors. Voronoi diagrams have appli-
cations in a broad range of disciplines, see e.g. [1].
The most studied Voronoi diagrams of point sets S
are V1(S), the classic Voronoi diagram, and Vn−1(S),
the furthest point Voronoi diagram, which only has
unbounded faces. Many properties of Vk(S) were ob-
tained by Lee [8], we also mention [4, 9, 10, 13] among
the sources on the structure of Vk(S).

An edge that delimits a cell of Vk(S) is a (possibly
unbounded) segment of the perpendicular bisector of
two points of S. This well-known observation induces
a natural labeling of the edges of Vk(S) with the fol-
lowing rule:

• Edge rule: An edge of Vk(S) in the perpendic-
ular bisector of points i, j ∈ S has labels i and j. We
put the label i on the side (half-plane) of the edge
that contains point i and label j on the other side.
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See Figure 1. Based on the edge rule, we prove a
vertex rule and a face rule. Vk(S) contains two types
of vertices, denoted as type I and type II (also called
new and old vertices [8]), that are defined below.
• Vertex rule: Let v be a vertex of Vk(S) and let
{i, j, `} ∈ S be the set of labels of the edges incident to
v. The cyclic order of the labels of the edges around
v is i, i, j, j, `, ` if v is of type I, and it is i, j, `, i, j, ` if
v is of type II.
• Face rule: In each face of Vk(S), the edges that

have the same label i are consecutive, and these labels
i are either all in the interior of the face, or are all in
the exterior of the face.

Note that when walking along the boundary of a
face, in its interior (exterior), a change in the labels
of its edges appears whenever we reach a vertex of
type II (type I), or possibly at consecutive unbounded
edges of an unbounded face, see Figure 1.

Edges with same label i enclose a region Rk(i) con-
sisting of all the points of the plane that have point
i ∈ S as one of their k nearest neighbors from S.
The union of all these regions Rk(i) is a k-fold cover-
ing of the plane. Rk(i) is related to the k-th nearest
point Voronoi diagram (k − NP VD) of S, that as-
signs to each point of the plane its k-nearest neighbor
from S [10]. This diagram is also called k-th degree
Voronoi diagram in [4]. The region of a point i in
k − NP V D is Rk(i)\Rk−1(i). In [5] it was proved
that Rk(i) is star-shaped. We further observe that
R1(i) is contained in its kernel, and we identify the
reflex (convex) vertices on its boundary Bk(i) as ver-
tices of type II (type I).

We also show that every Vk(S) admits an orientable
double cover [7] of its edges using, precisely, the cycles
and paths

⋃
i∈S Bk(i). A cycle and path double cover

of a graph G is a collection of cycles and paths C
such that every edge of G belongs to precisely two
elements of C. Paths are needed in the double cover
C of Vk(S) due to the unbounded edges. A double
cover C is orientable if an orientation can be assigned
to each element of C such that for every edge e of G,
the two cycles, resp. paths, that cover e are oriented
in opposite directions through e [7].

The small cycle double cover conjecture states that
every simple bridgeless graph on n vertices has a cy-
cle double cover with at most n − 1 cycles [2]. Seyf-
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farth [12] proved this conjecture for 4-connected pla-
nar graphs, and also proved that any simple bridgeless
planar graph of size n has a cycle double cover with at
most 3b(n− 1)/2c cycles [11]. We show in Property 7
that a higher order Voronoi diagram admits a much
smaller cycle and path double cover compared to its
number of vertices.

We present several more new properties of Vk(S).
All of them rely on the edge labeling and on elemen-
tary geometric arguments in the plane. This tech-
nique also allows us to obtain new proofs of known re-
sults about Vk(S). Other techniques used previously
also apply projections of points to Rd and hyperplane
arrangements, among others.

We finally focus on the edge labeling of V3(S) and
show that certain configurations cannot appear in
V3(S). We omit all proofs in this abstract.

We define some notation. The points of S are
{1, . . . , n}. A set of k neighbors defining a cell of Vk(S)
is denoted by Pk ⊂ S and the corresponding face is
denoted by f(Pk). If the face is bounded, we denote
it by f b(Pk). Note that not every possible Pk deter-
mines a face in Vk(S). The (perpendicular) bisector
of two points i, j ∈ S is denoted bij . And an edge of
Vk(S) on bij is denoted bij . A vertex of Vk(S) is the
intersection of three bisectors bab, bbc and bca. Equiv-
alently, it is the center of the circle through a, b, c ∈ S.
There are two types of vertices in f(Pk), and hence in
Vk(S): If a ∈ Pk and b, c ∈ S \ Pk we say that it is of
type I; and if a, b ∈ Pk and c ∈ S \ Pk, we say that it
is of type II. It is well known that a vertex of type I in
Vk(S) is also a vertex of Vk+1(S), and a vertex of type
II in Vk(S) is also a vertex of Vk−1(S) [8]. Further,
the three edges of Vk(S) around the vertex alternate
in cyclic order with the three edges of Vk+1(S) (resp.
Vk−1(S)).

The edges and vertices of Vk(S) form (a drawing
of) a graph, which also contains unbounded edges.
When considering the union of Vk(S) and Vk+1(S)
(resp. Vk−1), the graph induced by Vk+1(S) (Vk−1) in
a cell f(Pk) of Vk(S) is the subgraph of Vk+1 (Vk−1)
whose vertices and edges are contained in f(Pk).

2 Properties of the labeling of Vk(S)

Property 1 For k > 1, every bounded face f b(Pk) of
Vk(S) contains at least two and at most n−k vertices
of type I, and at least two and at most k vertices of
type II.

The lower bounds in Property 1 were already given
in [8]. In particular, they imply that for k > 1, Vk(S)
does not contain triangles, as also proved in [9] with a
different method. As for the upper bounds, there exist
point sets S such that some face of Vk(S) has exactly
n− k vertices of type I and k vertices of type II.
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Figure 1: The edge labeling of V3(S) for a set S of
eight points in convex position. Vertices of type I are
drawn in blue, and vertices of type II in red.

Vk(S)

Vk+1(S)

Vk−1(S)

Figure 2: The graphs induced by Vk−1(S) and
Vk+1(S) in a face f b(Pk) are trees. Each of them
creates a subdivision of f b(Pk) into regions.

The next property concerns the graphs induced by
Vk+1(S) and Vk−1(S) inside f b(Pk). It is known that
these graphs are trees [4, 8, 13], see Figure 2.

Property 2 Let f b(Pk) be a bounded cell of Vk(S),
for k > 1. Then, on its boundary, not all vertices of
the same type are consecutive. Equivalently, inside
f b(Pk), there is an edge of Vk+1(S) that crosses an
edge of Vk−1(S).

The graphs induced by Vk+1(S) and Vk−1(S) inside
a bounded face f b(Pk) of Vk(S) determine a subdi-
vision of f b(Pk) into regions, see Figure 2. All the
regions induced by Vk+1(S) in f b(Pk) have the same
k nearest neighbors from S, and a different (k + 1)-
nearest neighbor. Similarly, all the regions induced
by Vk−1(S) in f b(Pk) have the same k nearest neigh-
bors and differ in the k-nearest neighbor. Property 3
describes the labeling of the edges in the boundary
of such regions, from which the vertex rule in the in-
troduction can be deduced. There are two types of
boundary edges in the regions: edges of f b(Pk) and
edges of Vk+1(S) (resp. Vk−1(S)).

Property 3 Let f b(Pk) be a bounded cell of Vk(S),
k > 1, and let R be a region in the subdivision of
f b(Pk) induced by Vk+1(S) (resp. Vk−1(S)). The
edges of Vk+1(S) (Vk−1(S)) in the boundary of R have
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Figure 3: V3(S) for S the point set in Figure 1; in
each face, its three nearest neighbors are indicated.
In green, the region R3(2) formed by all the cells of
V3(S) that have point 2 as one of their three nearest
neighbors. All the cells in R3(2) contain the label
2. The boundary B3(2) of R3(2) is formed by all the
edges that have the label 2 and this label is always
inside R3(2). Vertices of B3(2) with an incident edge
lying in the interior of R3(2) are of type II, and the
other vertices of B3(2) are of type I.

the unique (k + 1)-nearest neighbor (resp. k-nearest
neighbor) of the points of R as label inside (outside)
R. The edges of f b(Pk) in the boundary of R have
this label outside (inside) R.

Figure 4 illustrates Property 3 and the vertex rule.
We now describe properties of the region Rk(i)

formed by all the faces of Vk(S) having point i ∈ S
as one of their defining points; and of its boundary
Bk(i). First, we observe that for every k > 1, and for
every point i ∈ S, Rk−1(i) ⊂ Rk(i).

Property 4 Rk(i) is a connected region. Further-
more, for any bounded face f b(Pk) contained in Rk(i),
Rk(i) \ f b(Pk) is a connected region.

Property 5 The boundary Bk(i) of a region Rk(i) is
formed by all the edges of Vk(S) that have the label i,
and this label is always inside Rk(i). Bk(i) is either a
cycle, or one or more paths whose first and last edge
are unbounded edges of Vk(S).

Property 5 is illustrated in Figure 3.

Property 6 The vertices of Bk(i) that are incident
to an edge of Vk(S) lying in the interior of Rk(i) are
of type II, and the remaining vertices of Bk(i) are of
type I. Moreover, for k > 1, if Bk(i) is a cycle, then
it encloses at least three faces of Vk(S). If Bk(i) has
r reflex vertices, then it encloses at least r faces of
Vk(S).

Let C be the collection of paths and cycles in⋃
i∈S Bk(i) of Vk(S). We prove that C forms a double

cover of Vk(S). Let f∞k be the number of unbounded
faces (or unbounded edges) in Vk(S), also equal to the
number of (k− 1)-edges of S [4, 13]. It is known that
f∞k is at least 2k + 1 [6] and at most O(n 3

√
k) [3]. We

use precisely f∞k paths for C.

Property 7 Vk(S), which has f∞k unbounded faces,
has an orientable cycle and path double cover consist-
ing of f∞k paths and of at most max{n− 2k− 1, 2k−
n− 1} cycles.

This double cover of a higher order Voronoi diagram
is small compared to its number of vertices; from [4,
8], we deduce that Vk(S) has at least (2k− 1)n− 2k2

vertices, for k < (n − 2)/2. When S is in convex
position, then Vk(S) has this number of vertices.

The bound on the number of cycles in Property 7
is attained for the point sets S from [6] which have
2k + 1 (k − 1)-edges. Property 7 also shows that for
k = bn/2c and k = dn/2e, Vk(S) has an orientable
path double cover with f∞k paths. This also holds for
point sets in convex position and any value of k:

Property 8 Let S be a set of n points in convex
position. Then, Vk(S) has an orientable path double
cover consisting of n paths.

Property 9 For every i ∈ S, the region Rk(i) of
Vk(S) is star-shaped. Furthermore, the face R1(i) of
V1(S) is contained in its kernel.

Property 10 Let v be a vertex of Bk(i). If v is of
type I, then it is a convex vertex of Bk(i); and if v is
of type II, it is a reflex vertex of Bk(i).

3 Not too many alternating hexagons in V3(S)

A hexagon in Vk(S) is called alternating, if its vertices
alternate between type I and type II, see Figure 5. By
Property 1, V2(S) contains no alternating hexagons.
We consider then V3(S). Figure 5 shows that it is not
possible to label the edges of the hexagons of V3(S)
while complying with the properties of the labeling.

Property 11 Let v be a vertex of type I in V3(S).
Then, at most two of the three incident faces to v are
alternating hexagons.

Property 12 Any alternating hexagon in V3(S) is
adjacent to at most three other alternating hexagons.
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Figure 4: (a) The graph induced by Vk+1(S) in f b(Pk) divides f b(Pk) into regions Rmi delimited by bisectors
between the (k + 1)-nearest neighbor mi ∈ S of the points of the region, and another point of S. The cyclic
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(b) The graph induced by Vk−1(S) in f b(Pk) divides f b(Pk) into regions Rij delimited by bisectors between the
k-nearest neighbor ij ∈ S of the points of Rij , and another point of S. The cyclic order of the labels of the edges
around v is ir, is, it, ir, is, it.
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Abstract

Let R be a set of n pairwise disjoint axis-aligned rect-
angles, each having at least one side contained in the
boundary of a given rectangular domain. In this note,
we prove that any set R as above has a subset of at
least 3

4n − O(1) rectangles that are separable by a
straight guillotine partition of the plane, and that this
bound is tight.

1 Introduction

A guillotine partition of the plane is a subdivision of
the plane into (possibly unbounded) cells using the
following recursive strategy: We start with a sin-
gle subdivision, consisting of the whole plane as the
unique cell. At each step, we take a cell C of the
current subdivision and a straight line ` through the
interior of C, and subdivide C into the two new sub-
cells C1 = C∩`+ and C2 = C∩`−, losing cell C, where
`+ and `− are the two closed half-planes bounded by
`, respectively. A set R∗ of k pairwise disjoint rectan-
gles is guillotine-separable if there exists a guillotine
partition P of k cells that separates R∗. That is, each
cell of P contains one rectangle of R∗ (see Figure 1a
and Figure 1b). In this paper, all rectangles are con-
sidered axis-aligned and close.

Pach and Tardos [8] wrote that “it seems plausi-
ble” that there exists a constant c such that any set
R of n pairwise disjoint rectangles in the plane has a
guillotine-separable subset of at least c · n rectangles.
They proved this statement for c = Ω(1/ log n), not
a constant, and considered in the proof axis-aligned
guillotine partitions. We say that a guillotine par-
tition is axis-aligned if it is built with axis-parallel
lines, which subdivide the plane into (possibly un-
bounded) rectangular cells. Abed et al. [1] proved
that the statement is true for axis-aligned guillotine

∗Email: pablo.perez.l@usach.cl. Research supported by DI-
CYT 041933PL Vicerrectoŕıa de Investigación, Desarrollo e In-
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(a) (b)

Figure 1: (a) 6 guillotine-separable rectangles. (b) 4
rectangles that are not guillotine-separable.

partitions when R is a set of squares (with c = 1/81,
recently improved to 1/40 [5]). More importantly,
they noted that the existence of such a constant c
for any set of pairwise disjoint rectangles (when re-
stricted to axis-aligned guillotine partitions) implies a
O(n5)-time c-approximation algorithm for the Maxi-
mum Independent Set of Rectangles (MISR) problem.
The MIRS problem is a fundamental NP-hard combi-
natorial optimization problem defined as: Given a set
of n rectangles, finding a subset of them of maximum
cardinality such that the rectangles in the subset are
pairwise disjoint.

Recently, Mitchell [7] proved that any set R of n
pairwise disjoint rectangles in a rectangular domain,
has a subset R′ of size at least n/10, for which there
exists a hierarchical rectilinear cut of the domain such
that any leaf cell contains exactly one rectangle of R′,
and every segment of every cut penetrates at most
two rectangles of R′. Every cut is a polyline made
of O(1) axis-aligned segments, so that every cell is an
orthogonal polygon obtained by removing a set of up
to four disjoint subrectangles from a given rectangle
R, with each subrectangle containing exactly one of
the four corners of R. Base on this, Mitchell [7] gave
the first polynomial-time constant approximation al-
gorithm to the MIRS problem, with O(n34) running
time and 1/10 approximation factor.

We consider that all guillotine partitions are axis-
aligned, and study the next open question:

Question 1 Do there exist constants c ∈ (0, 1] and
n0 > 0, such that any set of n ≥ n0 pairwise disjoint
rectangles in the plane has a guillotine-separable sub-
set of at least c · n rectangles?
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We have several motivations to study Question 1:
First, if it is true, then we will directly obtain a O(n5)-
time c-approximation algorithm for the MISR prob-
lem. Second, we consider this question interesting
by itself, because it explores the combinatorial dis-
tribution of finite sets of pairwise disjoint rectangles.
Finally, as the topic of this paper, we can impose re-
strictions to the set of rectangles such as: The rectan-
gles are contained in a rectangular region with a side
in the boundary of the region [2, 6], or the rectangles
intersect the same diagonal line [3, 4].

Ahmadinejad and Zarrabi-Zadeh [2], and Kong et
al. [6], studied the MISR problem when given a rect-
angular domain D, each of the n rectangles of the
input has at least one side contained in the boundary
of D, solving the problem exactly in O(n4) time. We
consider Question 1 in this setting. That is, we have n
pairwise disjoint rectangles, each having at least one
side contained in the boundary of the domain D. We
call such a set a boundary set of rectangles (see Fig-
ure 2a). First, we observe that Question 1 is true for
c = 1/4. Namely, there always exists one of the four
sides of D such that at least n/4 of the rectangles
have a side contained in that side of D. This sub-
set of k ≥ n/4 rectangles is guillotine-separable by
the guillotine partition induced by k− 1 parallel lines
separating the k rectangles. Unless otherwise speci-
fied, all lines in this paper are considered axis-parallel.
Second, we prove in Section 2 that there always ex-
ists a subset of at least 3

4n−O(1) rectangles that are
guillotine-separable, and that this bound is tight.

2 Boundary rectangles

Let D be a rectangular domain, and letR be a bound-
ary set of n rectangles in D. Let Rt (resp. Rb, R`,
and Rr) be the subset of R with the rectangles whose
top (resp. bottom, left, and right) side is contained in
the top (resp. bottom, left, and right) side of D. Note
that Rt, Rb, R`, and Rr are all guillotine-separable
by taking the guillotine partition induced by parallel
lines separating the rectangles. For every rectangle R,
let top(R), bottom(R), left(R), and right(R) denote
the lines through the top, bottom, left, and right sides
of R, respectively.

We say that R is a corner set of rectangles if each
rectangle of R has a side contained in the union of
two fixed adjacent sides of D. We say that R is a
parallel set of rectangles if each rectangle of R has a
side contained in the union of two parallel sides of D.

Lemma 2 If R is a corner set of rectangles, then R
is guillotine-separable.

Proof. Assume w.l.o.g. that R = R` ∪ Rt. We pro-
ceed by induction. If |R`| = 0 or |Rt| = 0, then all
rectangles of R are trivially guillotine-separable. So,

D

(a)

A

(b)

A

B

(c)

Figure 2: (a) 8 guillotine-separable boundary rectangles.
(b-c) Proof of Lemma 2.

consider that |R`| ≥ 1 and |Rt| ≥ 1. Let A be the
bottommost rectangle of R`. If top(A) does not cut
(the interior of) any rectangle of Rt (see Figure 2b),
then by the induction hypothesis we can assume that
R\{A} is guillotine-separable by some guillotine par-
tition G. Since top(A) separates A from all rectangles
in R\{A}, by combining top(A) with G we can create
a guillotine partition that separatesR. Otherwise, as-
sume that top(A) does cut some rectangle of Rt, and
let B be the leftmost rectangle of Rt cut by top(A)
(see Figure 2c). Let R′ ⊆ Rt be the set of the rect-
angles (including B) to the right of left(B). By the
induction hypothesis, we have that R \ (R′ ∪ {A}) is
guillotine-separable by some guillotine partition G′.
Since left(B) separates all rectangles in R′ from all
in R \ R′, and also top(A) separates A from all rect-
angles in R \ (R′ ∪ {A}), by combining left(B), the
part of top(A) to the left of left(B), and G′ we can
create a guillotine partition that separates R. �

Lemma 3 If R is a parallel set of rectangles, then
R has a guillotine-separable subset of cardinality at
least 3

4 |R|. Furthermore, this lower bound is tight.

Proof. Assume w.l.o.g. that R = Rt ∪ Rb. We pro-
ceed by induction, based on the idea of sweeping
the elements of R from left to right. If |Rt| = 0
or |Rb| = 0, then all rectangles of R are trivially
guillotine-separable. So, consider that |Rt| ≥ 1 and
|Rb| ≥ 1. Let A ∈ R be the rectangle such that
right(A) is leftmost among all rectangles of R, and
assume w.l.o.g. that A ∈ Rb. Let n = |R|. The
proof follows into the following seven disjoint cases,
enumerated from (a) to (g) (see Figure 3):

(a) right(A) does not cut any rectangle in Rt (see
Figure 3a): All rectangles in R\ {A} are to the right
of right(A). Then, by the inductive hypothesis, we
have that R\{A} has a guillotine-separable subset R′
such that |R′| ≥ 3

4 |R \ {A}| = 3
4 (n − 1). Combining

right(A) with the guillotine partition that separates
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Figure 3: Proof of Lemma 3.

R′, we have that {A}∪R′ is guillotine-separable, and
|{A} ∪ R′| = 1 + |R′| ≥ 1 + 3

4 (n− 1) ≥ 3
4n.

(b) right(A) cuts a rectangle B ∈ Rt, and right(B)
does not cut any rectangle in Rb (see Figure 3b): Let
R′ ⊆ R denote the rectangles to the left of right(B),
which includes A and B. Let t = |R′| ≥ 2. Observe
that B must be the leftmost rectangle in Rt, and also
the unique rectangle ofRt that is inR′. Furthermore,
bottom(B) separates B from all rectangles inR′\{B}.
Hence, the t rectangles of R′ are guillotine-separable.
By the inductive hypothesis, the n − t rectangles of
R \ R′ have a guillotine-separable subset R2 of at
least 3

4 (n − t) rectangles. Combining right(B) with
the guillotine partitions of R′ and R2, respectively,
we obtain that R′ ∪ R2 is guillotine-separable, and
satisfies |R′ ∪R2| = |R′|+ |R2| ≥ t + 3

4 (n− t) ≥ 3
4n.

(c) right(A) cuts a rectangle B ∈ Rt, right(B)
cuts a rectangle C ∈ Rb, and there is a rectangle
R ∈ Rb located between right(A) and left(C) (see
Figure 3c): Let R′ ⊂ R be the set of the rectangles
to the left of right(B), which satisfies A,B,R ∈ R′
and are guillotine-separable (using arguments similar
to those of previous cases), and let t = |R′| ≥ 3. By
the inductive hypothesis, the n − t − 1 rectangles to
the right of right(B) has a guillotine-separable subset
Rc such that |Rc| ≥ 3

4 (n − t − 1). Note that R′ ∪
Rc is guillotine-separable, since right(B) separates
all rectangles in R′ from all rectangles in Rc, and
satisfies |R′ ∪Rc| = |R′|+ |Rc| ≥ t + 3

4 (n− t− 1) =
3
4n + t/4− 3/4 ≥ 3

4n.

(d) right(A) cuts a rectangle B ∈ Rt, right(B) cuts
a rectangle C ∈ Rb, and A,B,C are the only rect-
angles of R to the left of right(C) (see Figure 3d):

{A,B,C} is guillotine-separable, and by the induc-
tive hypothesis the n − 3 rectangles to the right of
right(C) have a guillotine-separable subset Rd such
that |Rd| ≥ 3

4 (n−3). We have that {A,B,C}∪Rd is
guillotine-separable and satisfies |{A,B,C} ∪ Rd| ≥
3 + 3

4 (n− 3) ≥ 3
4n.

(e) right(A) cuts a rectangle B ∈ Rt, right(B) cuts
a rectangle C ∈ Rb, there is no rectangle inRb located
between A and C from left to right, right(C) does
not cut any rectangle in Rt, and there exists at least
a rectangle R ∈ Rt located between right(B) and
right(C) (see Figure 3e): LetR′ ⊆ R be the set of the
rectangles to the left of right(C) without including
C, and let t = |R′|. We have that A,B,R ∈ R′, thus
t ≥ 3. Furthermore, R′ is guillotine-separable. By
the inductive hypothesis, the n − t − 1 rectangles of
R to the right of right(C) have a guillotine-separable
subset Re such that |Re| ≥ 3

4 (n − t − 1). We finally
have that R′ ∪Re is guillotine-separable and satisfies
|R′ ∪Re| ≥ t + 3

4 (n− t− 1) = 3
4n + t/4− 3/4 ≥ 3

4n.
(f) right(A) cuts a rectangle B ∈ Rt, right(B) cuts

a rectangle C ∈ Rb, right(C) cuts a rectangle D ∈ Rt,
and A,B,C are the only rectangles of R to the left
of right(C) (see Figure 3f): {A,B,C} is guillotine-
separable, and by the inductive hypothesis, the n− 4
rectangles to the right of right(C) have a guillotine-
separable subset Rf such that |Rf | ≥ 3

4 (n − 4). We
have that {A,B,C} ∪ Rf is guillotine-separable and
satisfies |{A,B,C} ∪ Rf | ≥ 3 + 3

4 (n− 4) = 3
4n.

(g) right(A) cuts a rectangle B ∈ Rt, right(B)
cuts a rectangle C ∈ Rb, right(C) cuts a rectangle
D ∈ Rt, there is no rectangle of Rb located between
right(A) and left(C), and there is at least a rectangle
R ∈ Rt located between right(B) and left(D) (see
Figure 3g): Let R′ ⊂ R be the set of rectangles to the
left of left(D), and let t = |R′|. Since A,B,R ∈ R′,
we have t ≥ 3. Using right(B) as the first cut, we
have that R′ is guillotine-separable. Furthermore, by
the inductive hypothesis, the n−t−1 rectangles to the
right of left(D) have a guillotine-separable subset Rg

such that |Rg| ≥ 3
4 (n− t− 1). We have that R′ ∪Rg

is guillotine-separable, and satisfies |R′ ∪ Rg| ≥ t +
3
4 (n− t− 1) ≥ 3

4n.
Hence, the first part of the lemma follows. To see

that the bound 3
4n is tight, refer to Figure 4. We

have n/4 groups of 4 rectangles each. In each group,
at most 3 rectangles are separated by any guillotine
partition. Thus, any guillotine partition will separate
at most 3

4n rectangles. �

Theorem 4 If R is a boundary set of rectangles,
then R has a guillotine-separable subset of size at
least 3

4 |R| − O(1). Furthermore, this lower bound in
the cardinality is tight, up to the additive term O(1).

Proof. Assume w.l.o.g. that none of the sets Rt, Rb,
R`, and Rr is empty. So, let L and R be the rectan-
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1 2 n/4

Figure 4: Proof of Lemma 3.

gles of maximum width in R` and Rr, respectively.
Similarly, let T and B be the rectangles of maximum
height in Rt and Rb, respectively. Further assume
w.l.o.g. that L 6= R and T 6= B. The proof is divided
into the following two disjoint cases:

(a) right(L) is to the left of left(R), or bottom(T )
is above top(B): By symmetry, assume w.l.o.g. that
right(L) is to the left of left(R) (see Figure 5a).
Note that this case generalizes the cases in which Rt,
Rb, R`, or Rr is empty, L = R or T = B. Let
R1 ⊂ R be the rectangles to the left of right(L),
where L ∈ R1. The rectangles of R1 above L are
a corner set of rectangles, then guillotine-separable
by Lemma 2. Similarly, the rest of the rectangles
of R1, those below L, are a corner set of rectangles,
then guillotine-separable. Hence, R1 is guillotine-
separable. Similarly, R3 is guillotine-separable, where
R3 ⊂ R is the set of the rectangles to the right of
left(R). Let R2 be the set of rectangles between
right(L) and left(R), which is a parallel set of rectan-
gles, and then has a guillotine-separable subset R′2 of
cardinality at least 3

4 |R2|, by Lemma 3. By the lines
right(L) and left(R), we have that R1 ∪ R′2 ∪ R3 is
guillotine-separable. Let t = |R1∪R3| ≥ 2. Note that
|R2| ≥ n− t− 4, since lines right(L) and left(R) cut
at most four rectangles of R. We then obtain that
|R1 ∪ R′2 ∪ R3| = |R1 ∪ R3| + |R′2| ≥ t + 3

4 |R2| ≥
t + 3

4 (n− t− 4) = 3
4n + t/4− 3 ≥ 3

4n− 5/2.

(b) right(L) is to the right of left(R), and
bottom(T ) is below top(B) (see Figure 5b): The main
observation is that there are at most 4 rectangles of
R which can be cut by more than one line among
right(L), left(R), bottom(T ), and top(B) (the rect-
angles denoted L′, R′, T ′, and B′ in the figure). Fur-
thermore, each of these lines cuts at most two rect-
angles among L′, R′, T ′, and B′. Hence, there must
be a line among these four ones that cuts at most
2 + (n − 4)/4 = n/4 + 1 rectangles of R. Assume
w.l.o.g. that this line is right(L), and let R′ ⊂ R
be the rectangles not cut by right(L), which satisfies
|R′| ≥ 3

4n− 1. Using arguments similar to those used
in case (a), we have that the rectangles of R′ to the
left of right(L) are guillotine-separable (since L ∈ R′
separates two corner sets of rectangles), and the rect-
angles of R′ to the right of left(R) are also guillotine-
separable (since R /∈ R′ separates two corner sets of
rectangles). Hence, R′ is guillotine-separable.

L R

(a)

L

RT

B

L′
R′

T ′

B′

(b)

Figure 5: Proof of Theorem 4.

The tightness of the bound follows from the second
part of Lemma 3. �
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A point p ∈ R2 dominates a point q ∈ R2 if
x(p) ≥ x(q) and y(p) ≥ y(q). For a set of points
P ⊂ R2, its skyline is the subset of points of P that
are not dominated by any other point of P . We denote
by sky(P ) the set of skyline points of P . It is well-
known [4] that sky(P ) can be computed in O(n log h)
time, where n = |P | and h = | sky(P )|.

For each subset of points Q ⊆ sky(P ) we define

ψ(Q,P ) := max
p∈sky(P )

min
q∈Q

d(p, q),

where d(p, q) denotes the Euclidean distance be-
tween p and q. An alternative point of view for
ψ(Q,P ) is the following: it is the smallest value λ
such that disks centered at the points of Q with ra-
dius λ cover the whole sky(P ).

Our aim is to obtain efficient algorithms for the
following optimization problem: for a given point set
P in the plane and a positive integer k, compute

opt(P, k) := min{ψ(Q,P ) | Q ⊆ sky(P ) and |Q| ≤ k}.

The problem of computing opt(P, k), and an op-
timal solution, was introduced in the context of
databases by Tao et al. [5] under the name of distance-
based representative of sky(P ). They showed that the
problem can be solved in O(kh2) time assuming that
the skyline is available and sorted by x-coordinate.
Thus, it takes O(n log h + kh2) time. In the unpub-
lished, full version of their work, they improved the
time bound of the second phase to O(kh), which im-
plies a time bound of O(n log h+ kh).

The very same problem was considered in the con-
text of optimization by Dupin, Nielsen and Talbi [3],
who noted the connection to clustering, multiobjec-
tive optimization and decision analysis. They no-
ticed that opt(P, k) is the (discrete) k-center prob-
lem for sky(P ) and solved the opt(P, k) problem in
O(kh log2 h) time, again assuming that the skyline is
available and sorted. Thus, starting from P , the time
bound is O(n log h + kh log2 h). They also provide a
linear-time algorithm for opt(P, 1) and an algorithm

∗Email: sergio.cabello@fmf.uni-lj.si. Research supported by
the Slovenian Research Agency (P1-0297, J1-9109, J1-1693, J1-
2452).

with running time O(h log h) for opt(P, 2), again as-
suming that the skyline is available and sorted by x-
coordinate.

Our contribution. We provide a quite simple al-
gorithm for computing opt(P, k) in O(n log h) time.
This improves all previous results.

At first, this may seem optimal because comput-
ing the skyline of P takes Ω(n log h) time [4]. How-
ever, do we really need to compute the skyline? After
all, we only need to select a (particular) subset of k
points from the skyline, and this has a lower bound
of Ω(n log k) time. We show that the decision prob-
lem for opt(P, k) can be solved in O(n log k) time,
which is asymptotically optimal if we want to find a
solution. The algorithm uses the technique employed
by Chan [2] for the convex hull in the plane: split P
into t sets, compute the skyline of each of them sep-
arately, and use this to compute certain points along
the skyline as needed merging information from the t
skylines.

We further combine the decision problem with
parametric search and selection in sorted arrays to
show that opt(P, k) can be computed in O(n log k +
n loglog n) time. This is asymptotically optimal when
log k = Ω(loglog n), if we also want to have an optimal
solution. We also show that opt(P, 1) can be solved
in linear time without computing sky(P ).

The full version of this work is available at [1].
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Abstract

We formulate an Erdős-Szekeres problem for sets of
points in the plane, replacing usual convexity by recti-
linear convexity. We observe that the minimum num-
ber of connected rectilinear convex k-gons is zero. We
then prove that the maximum number of connected
rectilinear convex 4-gons in a set of n points in the
plane is at least A(n− 3), where A(n) is the sequence
A096338 in the OEIS. We conjecture that this is the
exact maximum number of such 4-gons in a set of n
points.

1 Introduction

Let P = {p1, . . . , pn} be a set of n points in general
(orthogonal) position in the plane, that is, no two
points are in the same vertical/horizontal line. The
convex hull of P , denoted as CH(P ), is the intersec-
tion of all convex subsets of the plane which contain P .

It can be computed as R2 \
⋃

H∈H
H, where H is the set

of all half-planes of R2 that pass through two points
of P and do not contain any point of P in their inte-
rior [2]. The convex hull of a subset S ⊆ P is called a
convex k-gon if CH(S) has exactly k ≤ n points of S
as vertices, and hence those k points are the vertices
of a convex polygon.

Classical Erdős-Szekeres problems deal with the ex-
istence and number of convex k-gons in a set of n
points [7]. One of the main questions in this area is
to find the minimum number of convex k-gons that
can be determined by a set of n points [3].

Here we study a variation of this problem in which
convexity is replaced by rectilinear convexity or ortho-
convexity, where the rectilinear convex sets are those
sets whose intersection with any vertical or horizon-
tal line is connected [1, 4]. A related algorithmical
problem has been recently studied in [5].

∗Email: alejandra.martinezm@uah.es. Research sup-
ported by Project PID2019-104129GB-I00 / AEI /
10.13039/501100011033 of the Spanish Ministry of Science and
Innovation.

†Email: david.orden@uah.es. Research sup-
ported by Project PID2019-104129GB-I00 / AEI /
10.13039/501100011033 of the Spanish Ministry of Science and
Innovation.

An open quadrant of the plane is the intersection
of two open half-planes, whose supporting lines are
parallel to the x- and y- axes. A quadrant is P -free
if it does not contain any point of P . Let Q be the
set of all P -free open quadrants of the plane. The
rectilinear convex hull of P is the set

RH(P ) = R2 \
⋃

Q∈Q
Q,

Note that a rectilinear convex hull is a closed set
that might be disconnected or have no area, see Fig-
ure 1. Also note that the rectilinear convex hull is a
subset of the usual convex hull. Thus,

RH(P ) = CH(P ) \
⋃

Q∈Q
Q.

With this definition, it is easy to see that it is enough
to remove the P -free open quadrants that are defined
by two points of P , that is, the four quadrants Qi

pq

of the form {u ∈ R2 : ux ≶ px, uy ≶ qy} for p, q ∈ P ,
numbered according to the usual numbering of quad-
rants in the cartesian plane. Then

RH(P ) = CH(P ) \
⋃

p,q∈P
i∈{1,...,4}

Qi
pq is P -free

Qi
pq.

(a) (b) (c)

Figure 1: Three examples of rectilinear hulls.

The rectilinear convex hull of a subset S ⊆ P is
a rectilinear convex k-gon if the boundary of RH(S)
contains exactly k ≤ n points of S. Although a rec-
tilinear convex k-gon might be disconnected or have
no area, it is natural to be interested in those which
are connected, what also implies that they have pos-
itive area. See Figure 2. In this framework, one can
consider the next Erdős-Szekeres question:
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(a) (b) (c)

Figure 2: Examples of a connected rectilinear convex
4-gon (a), 5-gon (b), and 8-gon (c).

Problem 1 What is the minimum number of con-
nected rectilinear convex k-gons that can be deter-
mined by a set of n points in general position in the
plane?

However, for every natural number n and k ≥ 4,
there exist sets of n points in general position, in the
spirit of Figure 1c, that contain no connected rectilin-
ear convex k-gon. Note that for k ∈ {2, 3}, connected
rectilinear convex k-gons do not exist. Therefore, we
address the problem of finding the maximum number
of connected rectilinear convex k-gons instead.

Problem 2 What is the maximum number of con-
nected rectilinear convex k-gons, k ≥ 4, that can be
determined by a set of n points in general position in
the plane?

This was a trivial problem in the classic framework,
as it is now the minimum problem in the rectilinear
convex setting. But this maximum problem in the
rectilinear convex setting is non trivial even for k = 4.

2 The maximum number of connected rectilinear
convex 4-gons

Hereforth, the term “k-gon” must be interpreted as
“connected rectilinear convex k-gon”. As an initial
step, we study the case k = 4.

Notation 3 For a set of points in the plane, we call
N (north) the point with the largest y-coordinate in
the set. S (south), E (east) and W (west) are defined
similarly. Note that a point may have two such labels.
As usual, qx and qy denote, respectively, the x- and
the y-coordinate of a point q.

Lemma 4 Let P = {p1, p2, p3, p4} be a set of 4 points
in general orthogonal position. Then area(RH(P )) >
0 if, and only if, there exists a point q such that the
vertical and horizontal lines through q separate the
points in P in 4 different regions.

Proof. See Figure 3. If area(RH(P )) > 0,
take as q any point in the interior of RH(P ).
For the other implication, take 0 < ε <

min
i∈{1,...,4}

min{d(qx, pix), d(qy, piy )}. Then the ball

B(q, ε) with center q and radius ε does not contain
the apex of any P -free quadrant. Hence B(q, ε) ⊂
RH(P ). �

q

Figure 3: The vertical and horizontal lines through q
separate the four red points into different regions.

Proposition 5 Let P be a set of four points in the
plane. RH(P ) is a 4-gon if and only if the cardinality
of the set {N,S,E,W} is exactly 4 and either {Nx >
Sx and Wy > Ey} or {Nx < Sx and Wy < Ey}.

Proof. Let P = {p, q, r, s} be a set of 4 points in gen-
eral orthogonal position in the plane. Suppose with-
out loss of generality that there is one point, say p,
such that N = E = p (the other cases are symmet-
ric). Consider the points E′ and N ′ that maximize,
respectively, the x- and y-coordinates in the set P \p.
If again N ′ = E′ = q, then the quadrants {u ∈ R2 :
ux < px, uy > qy} and {u ∈ R2 : ux > qx, uy < py}
are P -free and overlap, disconnecting point p from the
rest of points in RH(P ). Hence RH(P ) cannot be a
connected 4-gon. If N ′ = q and E′ = r, then the
argument is the same, see Figure 4.

p

q

r

s

Figure 4: The overlapping of the purple and the green
quadrants disconnects point p = N = E from the rest
of the rectilinear convex hull of the set {p, q, r, s}.

The definitions of N , S, E, and W completely de-
termine the relative positions of these four points ex-
cept for two aspects: W might be above or below
E and N might be to the left or to the right of S.
Suppose Wy > Ey. Then, among the two possibilities
Nx ≶ Sx, only the option Nx > Sx holds by Lemma 4.
It is easy to check that this option produces a 4-gon.
The case Wy < Ey is analogous. See Figure 5. �

From Proposition 5, there are 2 types of 4-gons,
which can be seen as clockwise and counterclockwise
windmills, see Figure 5. Let Gk(n) denote the max-
imum number of connected rectilinear convex k-gons
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(a) (b)

Figure 5: The two types of 4-gons considered.

over all sets of n points in the plane, n ≥ 4. We
checked that G4(4) = 1 and G4(5) = 2.

Let A(i) be defined, for i ≥ 1, as

A(i) =



i
2∑

j=1

2

(
j + 2

3

)
if i is even,

i−1
2∑

j=1

2

(
j + 2

3

)
+

( i+1
2 + 2

3

)
if i is odd.

These A(i) form the sequence A096338 in the
OEIS [6], with initial terms 1, 2, 6, 10, 20, 30 . . .

Theorem 6 G4(n) ≥ A(n− 3) for every n ≥ 4.

Proof. Let P be a set of n points placed on the ver-
tices of an n-sided regular polygon after a tiny clock-
wise rotation of angle ε so that no two points are on
a common horizontal/vertical line, see Figure 6. We
prove that such a P determines A(n − 3) different
4-gons.

N

E

W

S

ε

N or W

N or E

S or ES or W

N̂

Ŝ

Figure 6: A configuration of n = 16 points containing
A(13) = 336 connected rectilinear convex 4-gons.

Suppose that n ≡ 0 (mod 4), the cases n ≡ 1, 2, 3
(mod 4) are analogous. Observe that the points N , S,
E, and W divide in cyclic order the remaining points
of P into four sets of n−4

4 points. Also note that the
points in the north-west set can only act either as the
north or the west of a 4-gon. Equivalent properties
hold for the three remaining sets of n−4

4 points. When

a point of P , not necessarily the point N , acts as the
north of a subset of P , for example a 4-gon, we denote
it as N̂ . We proceed analogously for Ŝ, Ŵ , and Ê.

The process of enumeration of 4-gons in P will
work as follows: We consider all the possible
pairs N̂ -Ŝ, where N̂ must be one of the upper
half n−2

2 points different from W and Ŝ must be
one of the remaining lower half points different
from E; see Figure 6. For every such pair, the
only feasible choices for Ŵ and Ê are the points{
u ∈ P : Ŝy < uy < N̂y , ux < min{N̂x, Ŝx}

}
and{

u ∈ P : Ŝy < uy < N̂y , ux > max{N̂x, Ŝx}
}

, re-

spectively. In Figure 6, for the two points N̂ and Ŝ,
these two sets are determined by the blue dashed
lines: The possible choices for Ŵ are the points in the
left-middle region and the possible choices for Ê are
in the right-middle region. But not all the possible
pairs Ŵ -Ê that we obtain this way determine a 4-gon
with the pair N̂ -Ŝ, because we still need the 4 points
to fulfill Proposition 5.

Consider first N̂ = N and Ŝ = S. Since Nx > Sx,
then we need to look for the pairs Ŵ -Ê such that
Ŵy > Êy. There are n−2

2 possibilities for Ŵ . We
start considering the closest one to S and continue
clockwise until the closest to N . For the first choice
of Ŵ , there is only one Ê below. In the next steps,
because of the nature of the point configuration P ,
every time we switch to the next Ŵ , we gain one
choice of Ê (with Êy between the previous and the

current Ŵy) and we do not lose the choices from the

previous steps. For the last step, the Ŵ closest to N ,
we have n−2

2 choices of Ê. Then the total number of

pairs Ŵ -Ê that form a 4-gon with N and S is

1 + 2 + 3 + · · ·+ n− 2

2
. (1)

Next, fix N̂ = N and make Ŝ vary among the points
in the lower half of P . For the choices of Ŝ in the
south-west set, N̂x > Ŝx. There are n−4

4 such choices.
Starting from the closest one to S and moving clock-
wise, in every step we lose 2 choices of Ŵ , one because
it becomes the new Ŝ and the other because a point
in the north-west set that was a suitable choice for Ŵ ,
becomes now to the right of the new Ŝ and hence it
is not a suitable choice anymore. We obtain

(1)︸︷︷︸
Ŝ closest to W

+ (1 + 2 + 3) + · · ·

+

(
1 + 2 + · · ·+ n− 2

2
− 4

)
+

(
1 + 2 + · · ·+ n− 2

2
− 2

)
︸ ︷︷ ︸

Ŝ closest to S

(2)
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4-gons, where each parenthesized summand in Equa-
tion (2) corresponds to a choice of Ŝ and is obtained
as explained above for Equation (1). With an analo-
gous procedure for the possibilities of Ŝ to the right
of S, we obtain

(1 + 2)︸ ︷︷ ︸
Ŝ closest to E

+ (1 + 2 + 3 + 4) + · · ·

+

(
1 + 2 + · · ·+ n− 2

2
− 3

)
+

(
1 + 2 + · · ·+ n− 2

2
− 1

)
︸ ︷︷ ︸

Ŝ closest to S

(3)

additional 4-gons.
Similar arguments work in the cases where Ŝ = S

and we move N̂ k positions clockwise from N . Ob-
serve that when doing so we lose 2k choices of Ê. By
Proposition 5, we obtain

n−4
4∑

k=1

n−2
2 −2k∑
i=1

i (4)

4-gons. On the other hand, when we move N̂ k posi-
tions counterclockwise from N we lose 2k − 1 choices
of W . The number of 4-gons obtained is

n−4
4∑

k=1

n−2
2 −2k+1∑

i=1

i. (5)

If we move both N̂ k positions clockwise and Ŝ j
positions counterclockwise, there are two possibilities:
j ≤ k and j > k. The number of 4-gons obtained in
the first case is

n−4
4∑

k=1

k∑
j=1

n−2
2 −2k∑
i=1

i, (6)

and in the second case it is

n−4
4∑

k=1

n−4
4∑

j=k+1

n−2
2 −2j+1∑

i=1

i. (7)

Similarly, if we move N̂ and Ŝ clockwise, k positions
for N̂ and j positions for Ŝ, there are two possibilities.
If j ≤ k the number of 4-gons obtained is

n−4
4∑

k=1

k∑
j=1

n−2
2 −2k∑
i=1

i, (8)

and if j > k it is

n−4
4∑

k=1

n−4
4∑

j=k+1

n−2
2 −2j∑
i=1

i. (9)

when we move N̂ and Ŝ counterclockwise, k positions
for N̂ and j positions for Ŝ, if j < k we have

n−4
4∑

k=1

k−1∑
j=1

n−2
2 −2k+1∑

i=1

i. (10)

4-gons; and if j ≥ k we have
n−4
4∑

k=1

n−4
4∑

j=k

n−2
2 −2j+1∑

i=1

i (11)

Finally, if N̂ is moved k counterclockwise and Ŝ is
moved j clockwise with j < k, we get

n−4
4∑

k=1

k−1∑
j=1

n−2
2 −2k+1∑

i=1

i (12)

4-gons; and if j ≥ k we get
n−4
4∑

k=1

n−4
4∑

j=k

n−2
2 −2j∑
i=1

i. (13)

Summing up equations (1)-(13) gives A(n − 3) as
total number of 4-gons in P . �

3 Concluding comments

Based on computer simulations, we conjecture that
G4(n) = A(n−3) for every n ≥ 4. It would be nice to
find a correspondence between the maximum number
of connected rectilinear convex k-gons and other ob-
jects counted by the sequence A(n). In addition, we
want to study Gk(n) for k > 4.
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No selection lemma for empty triangles∗
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Let S be a set of n points in general position in
the plane. A triangle of S is a triangle whose vertices
are points of S. We consider the following question:
Given an n-point set S and a family F of triangles of
S, how many triangles of F contain a common point
of the plane in their interiors? Boros and Füredi [3]
showed that if F is the family of all

(
n
3

)
triangles of

S, then Θ(n3) of them have a common point in their
interiors. Bárány, Füredi and Lovász [1] extended
this to any family F of size Θ(n3), a result known as
Second Selection Lemma.

Among several results for families of smaller size,
Eppstein [4] constructed point sets S and families of
n3−α triangles of S such that every point of the plane
is in at most n3−α/(2n− 5) triangles for α ≥ 1 and in
at most n3−2α triangles for 0 ≤ α ≤ 1. He also showed
lower bounds for any family of n3−α triangles.

In this work we study the above question for the
family of all empty triangles of S. A triangle of S is
empty if it does not contain any points of S in its inte-
rior. While Eppstein’s lower bounds carry over to our
setting, his upper bound constructions do not apply
(as they are about different families). Surprisingly, we
can still show the same upper bounds.

Theorem 1 For every integer n and every 0 ≤ α ≤ 1,
there exist sets S of n points with Θ(n3−α) empty
triangles where every point of the plane lies in the
interior of at most Θ(n3−2α) empty triangles of S.

We prove Theorem 1 by constructing point sets with
these properties. Our construction is based on Horton
sets and squared Horton sets.
Horton sets were first studied by Horton [5] and

later generalized by Valtr [6]. They are recursively
defined as follows. A single point is always a Horton
set. Further, if H0 and H1 are Horton sets of same
cardinality such that any line spanned by two points
of H0 is below H1 and any line spanned by two points
of H1 is above H0, then H0 ∪H1 is also a Horton set.

An ε-perturbation of G is a perturbation of G where
every point p of G is replaced by a point at distance at

∗Supports: FWF grant I 3340-N35; EU H2020 grant 734922.
†Email: ruyfabila@math.cinvestav.edu.mx
‡Email: cmhidalgo@math.cinvestav.mx
§Emails: {daperz, bvogt}@ist.tugraz.at

most ε to p. A squared Horton set H, first defined by
Valtr [6], is a specific ε-perturbation of an integer grid
G such that triples of non-collinear points in G keep
their orientations in H and such that points along each
line in G are perturbed to points forming a Horton
set in H. Bárány and Valtr [2] showed that squared
Horton sets of size n span only Θ(n2) empty triangles.
For squared Horton sets we show the following results.

Theorem 2 Let H be a squared Horton set of n
points. i) Every point of the plane is in the inte-
rior of O(n) empty triangles of H. ii) Every point of
H is incident to O(n) empty triangles of H.

Construction for Theorem 1. We denote by 5 a
point set which is obtained by placing four points on
the corners of a square and adding further points along
four slightly concave arcs between adjacent corners,
such that on each arc there is almost the same number
of points. A 5-squared Horton set H5 is the set we
obtain by replacing every point of a squared Horton
set H with m points by a small 5 with k points. Thus,
H5 has n = km points. We show that the number
of empty triangles in H5 is Θ(m2k3). On the other
hand, using Theorem 2, we prove that every point of
the plane is in the interior of O(mk3) empty triangles
of H5. Theorem 1 then follows from those two results
and by setting m = nα and k = n1−α.
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On (α, k)-sets and (α, k)-hulls in the plane
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Abstract

This abstract reports first the study of upper and
lower bounds for the maximum number of all the com-
binatorially different (α, k)-sets of an n-point set P in
the plane, 0 < α ≤ π and 0 < 2k < n, depending on
the (fixed/variable) values of α and k, relating them
with the known bounds for the maximum number of
k-sets: the O(n 3

√
k) upper bound from Dey [5] and the

neΩ(
√

log k) lower bound from Tóth [7]; and showing
also efficient algorithms for generating all of them.

Second we study the depth of a point p ∈ P ac-
cording to the (α, k)-set criterion (instead of the k-set
criterion). We compute the depths of all the points of
P for a given angle α, and also design a data structure
for reporting the angle-interval(s) of a given depth for
a point of P in O(log n) time (if it exists).

Finally, we define the (α, k)-hull of P for fixed val-
ues of α and k, and design an algorithm for computing
the (α, k)-hull of P for given values of α and k. To do
that, we follow the relevant ideas and techniques from
Cole et al. [4]. Unfortunately, the algorithm is still no
so efficient as we wish, and we believe that their com-
plexities strong depends on the fixed values for the
parameters α and k; more concretely, as α is closer to
π the time complexity is close to the optimal.

1 Preliminaries

Let P be a set of n points in the plane in general po-
sition, i.e., no three points are colinear. A wedge is
the convex region bounded by two rays with common
origin with aperture angle α, 0 < α ≤ π and denoted
by an α-wedge. An (α, k)-set of P is a k-subset K of
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PID2019-104128GB-I00/ AEI/ 10.13039/501100011033, Gen.
Cat. DGR2017SGR1640.
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P inside an α-wedge which contain no other point of
P , and this α-wedge is denoted by (α, k)-wedge. Each
(α, k)-set K has (a not-unique and directed) associ-
ated line defined by a point of CH(K) and a point
of P , and which contains a ray of the α-wedge. The
associated line facilitates the counting of the number
of combinatorially different (α, k)-sets of P .

To study all the different cases for the parameters α
and k, we use the notation α0 when α is fixed, and k0

when k is fixed. When these parameters are variable,
we simply use α and k. By fα0

k0
(n) we denote the

maximum number of (α0, k0)-set of P overall n-point
sets; and analogously for fα0

k (n), fαk0(n), and fαk (n).
Related works: The first study of the (α, k)-sets
was done by Claverol [1, 2] by determining upper and
lower bounds on the number of (α, k)-sets for P . Here,
we reproduce part of the results. Later, Erickson et
al. [6] considered generalizations of the Centerpoint
Theorem in which the half-spaces are replaced with
wedges (or cones) of angle α. There are other papers
in the literature focusing in this topic [5, 7].

2 Upper and lower bounds

The results presented here about the upper and lower
bounds for fαk (n) are summarized in Figure 1 and
classified into the four cases for the values (fixed or
variable) of α and k. Almost all of them were obtained
in [1, 2]. Due to the lack of space, we only illustrate
the lower bound for α0 and k0.

α k Upper bound Lower bound
α0 k0 O(n2) fα0

k0
(n)

α0 k O(n3) Ω(n3)
α k0 O(n3 3

√
k0) Ω(n2k0)

α k O(n4) Ω(n4)

Figure 1: Upper and lower bounds for fαk (n), with
fα0

k0
(n) being a function of α0 and k0.

Theorem 1

fα0

k0
(n) ∈ Ω

(
(
π

2α0
− 1)

(
n(k0 − 1)− π

2α0
(k0 − 1)2

))
.

Proof. We construct a set P of n points in convex po-
sition as follows. First, put m+1 points s0, s1, . . . , sm
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in counterclockwise order on the unit circle C (red
points in Figure 2), where m + 1 = b π

2α0
c. These

points are equally spaced on C such that the chord
sisi+1 subtends the angle α0, for i = 0, 1, . . . ,m− 1.

We add to P the sets Si, i = 0, 1, . . . ,m, each
formed by si together with k0 − 2 points of P , all
of them equally spaced, and close enough to the point
si, i.e., the distance between consecutive points, in-
cluding si, is ε, for a small enough ε > 0. Notice
that the length of the arc of the unit circle subtended
by a central angle 2α0 is exactly 2α0, so we can take
ε small enough such that all the points in Si are in
an arc of C of length less than α0. In total, we are
adding (m+ 1)(k0− 1) points to P . Finally, add to P
a set T of n− (m+ 1)(k0 − 1) equally spaced points,
close enough between them to complete the total of
n points (see Figure 2). Notice that this construction
works for small angles α0 such that m + 1 ≥ 2 and
thus, π

2α0
≥ 2, i.e, α0 ≤ π

4 .
Thus, we have α0-wedges containing one point from

T and k0− 1 points from P \T , i.e., k0− 1−u points
from Si and u points from Si+1, for some 0 ≤ i ≤ m−1
and 0 ≤ u ≤ k0 − 2 (see Figure 2). Notice that we
are not selecting the (k0 − 1)-subset Sm when u = 0.
Then, for the set P , we know that the total number
of combinatorially different (α0, k0)-sets is

Ω

(
(
π

2α0
− 1)

(
n(k0 − 1)− π

2α0
(k0 − 1)2

))
.

As π
2α0

is constant, fα0

k0
(n) grows up with k0. Thus,

for k0 = n
4 + 1, fα0

n/4+1(n) ∈ Ω(n2), which is almost

the obtained upper bound. We assume that k0 ≥ 3
since for k0 = 2 we have

(
n
2

)
combinatorially different

(α0, 2)-sets for some small value of α0. �

3 The α-wedge depth with respect to P

The α0-wedge depth of x ∈ R2 with respect to P with
the (α0, k)-set criterion, α0-depth for short, denoted
by DepthPα0

(x), is defined as follows:

DepthPα0
(x) = min

1≤k≤n/2
{k = |P ∩W |},

for any possible closed α0-wedge W with apex at x.
This definition is an extension of the depth with

the k-set criterion, where the k-line passes through
point x. In fact, if α0 = π, we obtain the depth with
the k-set criterion. Thus, for any pi ∈ P and α0,
0 < α0 ≤ π, DepthPα0

(pi) ≤ n/2. The points pi ∈ P
in the boundary of the convex hull of P , CH(P ), have
DepthPα0

(pi) = 1. By the definition, if x is either in
the exterior of CH(P ) or it belongs to the boundary of
CH(P ) but x /∈ P and α0 < π, then DepthPα0

(x) = 0.
Moreover, for α0 small enough, all the points pi ∈ P
have DepthPα0

(pi) = 1, and there are no points x with
DepthPα0

(x) ≥ 2.

k0 − 1

k0 − 1 k0 − 1

k0 − 1

α0

α0

sm

|T | = n− (m + 1)(k0 − 1)

α0

α0

s0

s1

C

k0 − 1

T

Figure 2: Equally spaced groups of points Si on C.

Theorem 2 Given P and α0, the sorted list of the
values DepthPα0

(pi), i = 1, . . . , n, can be computed in
O(n2 log n) time and O(n) space. Then, DepthPα0

(pi)
can be computed in O(log n) time.

3.1 Report α such that DepthPα (pi) = k

We consider the problem: Pre-compute a data struc-
ture such that given pi ∈ P and k, 1 ≤ k ≤ n/2, then
the angular interval (αi1, α

i
2) ⊆ [0, 2π) such that for

any α ∈ (αi1, α
i
2) the DepthPα (pi) = k can be reported

in O(log n) time.

Theorem 3 In O(n2 log n) time and O(n2) space we
can compute a data structure such that for a given
pi ∈ P and k, 1 ≤ k ≤ n/2, in O(log n) time we

can reported the angular interval (δki , δ
(k+1)
i ) ⊆ [0, 2π)

such that for any α ∈ (δki , δ
(k+1)
i ) the DepthPα (pi) = k.

4 The (α0, k0)-hulls

A point x inside CH(P ) can be characterized by the
property that any line through x has at least a point
of P in each of the closed half-planes determined by
the line. Generalizing this definition, Cole et al. [4]
defined the k-hull of P , for positive k, as the set of
points x such that for any line through x there are
at least k points of P in each closed half-plane. It
is clear that the k-hull contains the (k + 1)-hull, and
if k is greater than dn/2e then the k-hull is empty.
We extend this definition to the (α0, k0)-hull(P ) for
0 < α0 ≤ π and 1 ≤ k0 ≤ n/2, as follows.
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Definition 4 The (α0, k0)-hull(P ) is the set of points
x ∈ R2 such that any closed α0-wedge with apex at x
contains at least k0 points of P .

Notice that x has to be inside CH(P ), and then, the
(α0, k0)-hull(P ) is contained in CH(P ). For α0 = π,
Definition 4 is equivalent to the k0-hull of P . From
the same definition, we can easily conclude that the
(α0, k0)-hull(P ) contains the (α0, (k0 + 1))-hull(P ).

4.1 The (α0, k0)-hulls for points in convex position

For points in convex position, we select n consecu-
tive sets of k0 consecutive points in CH(P ), say K,
and compute the corresponding arcs, ai,j , of adjoint
circles defined by apices of the α0-wedges containing
K supported in two points, pi and pj , of CH(K).
The endpoints of the arcs occurs when a ray of the
α0-wedge bumps a point of CH(K). There are O(n)
arcs, and the number of intersections between those
arcs is at most O(n2). Doing a sweep-line we compute
the (α0, k0)-hull(P ). If α0 is close to π, the number of
intersections between the arcs is O(n), and the com-
plexities decrease accordingly. See Figure 3.

Theorem 5 The (α0, k0)-hull(P ) can be computed
in O(n2 log n) time and O(n2) space.

Figure 3: Left: (90, i)-hull(P ) contains (90, i + 1)-
hull(P ), i = 1, 2, 3, 4, and (90, 5)-hull(P ) is an empty;
Right: the (90, 3)-hull(P ) as the intersection of re-
gions defined by the three cycles.

4.2 Computing the (α0, 1)-hull(P )

Let ei = pipi+1 be the edges of the boundary of
CH(P ). By Definition 4, the vertices CH(P ) belong
to the (α0, 1)-hull(P ). The two rays of any α0-wedge
with apex at x inside CH(P ) which containing ex-
actly one point of P not in CH(P ) has to intersect
the same edge ei of CH(P ). Thus, we have the next
fact about the (α0, 1)-hull(P ).

Fact 1 The apices of the α0-wedges containing ex-
actly one point which rays cross the edge ei define a
polygonal-curve fi from pi to pi+1. By definition, fi

is not self-intersecting. We call Ri the (closed) re-
gion defined by ei and fi, where Ri = CH(P ) \ Ri
(see Figure 4 Up). The (α0, 1)-hull(P ) is the region⋂
i=1,...,mRi (see Figure 4 Down).

pi
pi+1

ei

ei

fi

pi

pi+1

Figure 4: Up: Region Ri in red, α0 = 90. Down:
(90, 1)-hull(P )=

⋂
i=1,...,mRi in red. In blue the

polygonal-curve fi

The (α0, 1)-hull(P ) can have disconnected regions,
as the points in CH(P ) ∩ P in Figure 4. In fact, if
α0 < π and p ∈ CH(P ) ∩ P , p is an isolated point of
(α0, 1)-hull(P ). Any p ∈ P belongs to (α0, 1)-hull(P )
because a α0-wedge with apex at p always contains at
least p. Based on Fact 1, we describe the steps of an
algorithm for computing (α0, 1)-hull(P ) for a set P of
n points in general position.

1. If π
2 ≤ α0 < π, in O(n log n) time and O(n)

space we compute the (α0, 1)-hull(P ) as follows:
compute the α0-maximal points of P and the
polygonal-curves fi for the edges ei (see Fig-
ure 4 Right). Alegŕıa-Galicia et al. [3] showed
the algorithm for computing the sequence ofO(n)
arcs forming all the fi, i = 1 . . . ,m, where m
is the number of edges of CH(P ). Then, in
O(n log n) time and O(n) space we can do a line-
sweep of the arrangement of all fi, and com-
pute (α0, 1)-hull(P ) formed by a (possible dis-
connected) region defined by the intersection of
all Ri, i = 1 . . . ,m and CH(P ). See Figure 4.

2. If 0 < α0 < π
2 , the computation of all the fi,

i = 1 . . . ,m can be done in O( nα0
log n) time and

O( nα0
) space. But the the computation of (α0, 1)-

hull(P ) can be done in O(n2) time and space be-
cause we compute the (at most) O(n2) intersec-
tion points inside CH(P ) between all the fi.

Theorem 6 If π/2 ≤ α0 ≤ π, the (α0, 1)-hull(P )
can be computed in O(n log n) time and O(n) space.
If 0 < α0 < π/2, the (α0, 1)-hull(P ) can be computed
in O(n2) time and space.
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4.3 The (α0, k0)-hulls for points in general position

We adapt ideas in [4] to the (α0, k0)-hull(P ) concept
as follows. A (directed) line ` is a k0-divider for P if `
has at most k0−1 points of P strictly to its right and
at most n− k0 points of P strictly to its left. For any
orientation θ ∈ [0, 2π) of `, there is a unique k0-divider
denoted by `θ. A special k0-divider is a k0-divider that
contains at least two points. The half-space to the left
of a k0-divider is a special half-space. The k0-hull is
the intersection of the special half-spaces.

The direction of an α0-wedge with apex at x ∈ R2

is defined by the direction of its right ray (in the clock-
wise rotation from its apex x); and it is given by the
angle θ formed by X-axis with the line containing the
right ray. Let W θ

α0
denote a directed α0-wedge.

Definition 7 A directed α0-wedge W θ
α0

is a directed
(α0, k0)-divider for P , if W θ

α0
contains at most k0 − 2

points of P strictly in its interior, and at most n− k0

points of P strictly in its exterior. The boundary of
W θ
α0

must contain at least two points of P . A spe-
cial (α0, k0)-divider is an (α0, k0)-divider for P that
contains at least three points on the boundary.

Given θ ∈ [0, 2π), there are at most O(n) different
directed (α0, k0)-dividers W θ

α0
, e.g., a set P with O(n)

points on the (almost vertical) right chain of CH(P ),
k0 = 4, α0 = π/4, and θ = 0, see Figure 5. For α0 = π
and fixed θ, there are only two (π, k0)-dividers.

1

2

3

4

∅

∅

∅

∅∅

∅
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x

y

Figure 5: Different directed (α0, k0)-dividers W θ
α0

.

Rotation process: An (α0, k0)-divider passing through
pi and pj can be rotated anchored at pi and pj while
its apex traces an arc ai,j on the adjoint circle defined
by α0 and segment pipj , until the wedge bumps a
point pk, see Figure 6. The poly-curve defined by arcs,
rays, and segments from the wedges at the endpoints
define an unbounded region denoted by Ai,j . The
region Ai,j has the property that for any point x in its
interior there always exists an α0-wedge with apex at
x and direction in the rank between the directions of
the extreme wedges which contains at most k0 points,
see Figure 6. Starting with an orientation, say θ = 0,

the rotation process end at the initial (α0, k0)-divider,
and the apices of the α0-wedges trace a cycle, which
interior is the intersection of the complementary of
the union of all the regions Ai,j .

pi

pj

Ai,j ∪Aj,k ∪Ak,l

Figure 6: Three consecutive (colored) arcs.

Sketch of the algorithm: First, take the orientation
θ = 0, and compute the list L of the (α0, k0)-dividers
with this orientation. For each (α0, k0)-divider, apply
the rotation process above and compute the corre-
sponding cycle, checking the used (α0, k0)-dividers in
L. There are at most O(n) different cycles, formed
by sets of arcs ai,j . The total number of arcs ai,j is
bounded by the number of (α0, k0)-sets, together with
their rotations. The still no fixed question is the up-
per bound of the number of intersection between those
arcs depending on α0. In any case there are at most
O(n4k0

2). We do a line-sweep of the arrangement of
cycles and compute the region(s) of (α0, k0)-hull(P ).

Theorem 8 The (α0, k0)-hull(P ) can be computed
in O(n4k0

2 log n) time and O(n2k0) space.
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Abstract

In this talk we revisit the problem of constructing a
developable surface patch bounded by two rational or
NURBS (Non-Uniform Rational B-spline) curves [1].
NURBS curves are curves which are piecewise ra-

tional. That is, they are a generalisation of spline
curves, which are piecewise polynomial curves. Simi-
larly we define NURBS surfaces and solids. NURBS
curves are the standard in Computer Aided Design.
Developable surfaces are ruled surfaces with null

Gaussian curvature. This implies that they can be
constructed from planar surfaces by just cutting,
rolling and folding, so that metric properties such as
lengths and angles between curves and areas are pre-
served. These geometric properties are of great inter-
est for steel and textile industry, since there are pieces
designed in the plane and then curved into space.
This problem has been addressed in several ways,

but the key drawback is that when we require the
developable surface to be NURBS and bounded by
NURBS curves, the possibilities are restricted [2].
For this reason our proposal is to consider devel-

opable surface patches which are not NURBS, though
bounded by NURBS curves [1]. In fact, we are able to
obtain every possible solution to this problem in our
framework.
We start with a ruled surface parametrised by

b(t, v) and bounded by two parametrised curves, c(t),
d(t),

b(t, v) = (1− v)c(t) + vd(t), t, v ∈ [0, 1].

For given c(t) and d(t), this ruled surface will not be
developable in general. Our contribution to deal with
this problem is based on reparametrisation of one of
the bounding curves by a function T (t),

b̃(t, v) = (1− v)c(t) + vd(T (t))

and require b̃(t, v) to satisfy the null Gaussian cur-
vature condition. This condition can be seen to be
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algebraic in T (t), since the dependence on the deriva-
tive T ′(t) is factored out,

det
(

c′(t), ḋ(T ), d(T )− c(t)
)

= 0,

and is of degree 2n − 2 if the bounding curves c(t),
d(t) are of degree n. The dot and the comma stand
for derivation with respect to T and t.
The price to pay is that solutions of this algebraic

equation will not be rational or polynomial in general
and b̃(t, v) will no longer be NURBS.
There is an important case which is even simpler to

handle. If the bounding curves c(t), d(t) are not ratio-
nal or piecewise rational (just polynomial or piecewise
polynomial) and lie on parallel planes, the degree may
be seen to decrease to n− 1.
Since the condition on the reparametrisation is al-

gebraic, the number of possible solutions is finite, but
not all of them are geometrically acceptable. For be-
ing a reparametrisation, T (t) must be a monotonically
increasing function. This can be checked with the help
of

T ′(t) =
det

(

c′′(t), ḋ(T ), d(T )− c(t)
)

det
(

d̈(T ), c′(t), d(T )− c(t)
)

∣

∣

∣

∣

∣

∣

T=T (t)

,

which we derive from the null Gaussian curvature con-
dition.
This implies that monotonicity is granted if

sgn (c′′(t) · ν(t)) = sgn
(

d̈(T ) · ν(t)
)
∣

∣

∣

T=T (t)
,

where ν(t) is the unitary normal to the ruled surface
along the segment at t. This means that the normal
curvatures of both curves must have the same sign for
each value of t.
Hence, acceptable solutions just appear if both

curves are qualitatively similar regarding their cur-
vature.

References

[1] L. Fernández-Jambrina, F. Pérez-Arribas, Devel-
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Figure 1: An aesthetic typical curve.

Abstract

In Geometric Design, it is of interest the represen-
tation of curves and surfaces that are aesthetically
pleasing. In order to have a notion amenable to im-
plementation in CAGD, there have been defined aes-
thetic curves as those with monotonic curvature and,
for spatial curves, monotonic torsion. There are sev-
eral approaches to obtain aesthetic Bézier curves, but
we will follow the lead of [4] and [3].

In [4], Mineur, Lichah, Castelain and Giaume ob-
tain the edges of the control polygon of a planar Bézier
spiral by a rotation and a dilation of the previous
edge in the control polygon of the curve, what the au-
thors name typical curve. Certain relations between
the scaling factor and the rotation angle give rise to
aesthetic Bézier spirals starting with any initial edge
of the control polygon and for any degree of the Bézier
curve (see Figure 1).

Inspired by this work, in [3] Farin extends the
method by considering Bézier curves whose control
polygon is obtained by the action of a given matrix
on the previous edge of the control polygon. His in-
sight is to exploit the invariance of the curvature and
torsion under subdivision to give some conditions on
the matrix and its singular values that give rise to
aesthetic Bézier curves for any initial edge, what he
calls Class A matrices and Class A Bézier curves.
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Figure 2: An aesthetic curve generated by a symmet-
ric matrix.

However, counterexamples to Farin’s conditions
have been produced (see [2] and [5]), that is, matrices
for which these conditions hold but they do not gener-
ate curves with monotonic curvature. Moreover in [2],
Cao and Wang give conditions on the eigenvalues of
a (2× 2 or 3× 3) symmetric matrix that generates an
aesthetic (planar or spatial) Bézier curve (see Figure
2).

In this talk, we present a simple explicit formula
for the curvature of planar Bézier curves generated
by Farin’s method. This formula is easily obtained by
the invariance under subdivision property and from
it there can be derived conditions on the eigenvalues
of a general matrix and the initial edge of the con-
trol polygon that give rise to aesthetic Bézier curves.
This approach gives a common framework to the pre-
vious works and recovers the results in [4] and [2] as
particular cases. For more details we refer to [1].
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[3] G. Farin, Class A Bézier curves, Computer Aided Ge-
ometric Design 23 (7) (2006) 573–581.

[4] Y. Mineur, T. Lichah, H. Castelain, J.M. Giaume,
A shape controlled fitting method for Bézier curves,
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Figure 1: a) Maximizing the covering b) Maximizing the minimum distance c) Minimizing interactions

Abstract

Many problems, in location theory, deal with the
placement of desirable facilities (hospitals, fire sta-
tions, cellular antennas, etc.) in a region domain,
trying to minimize some objective function usually re-
lated to the distances between the facilities and some
elements also placed in the region. However, there
are situations in which proximity between facilities
is undesirable, and the facilities must be located by
trying to maximize an objective function related to
the distances between them. These location problems
are named dispersion problems, and the facilities are
called obnoxious [3]. Examples of this type of facility
are nuclear power plants or garbage dumps. More-
over, the pandemic turned the location of several peo-
ple in a closed room into a location problem. People
can be seen as ”obnoxious facilities” as they have to
keep far enough from the other. In general, the ele-
ments to be located, both people or facilities, occupy
a specific space in the region, and a simple discrete
set of points cannot model them.

In [1] we presented an approach, based on simu-
lating annealing on GPUs, to determine where to lo-
cate k disks of fixed-radius so that they globally cover
as much area of a polygonal domain as possible (see
Figure 1(a)). In this work, we extend that approach
to the two following continuous dispersion problems
dealing with obnoxious elements represented by disks
of radius r that, in these cases, have to be fully con-
tained in the polygonal domain.
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†Email: mfort@imae.udg.edu. Research supported by
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1. The classic continuous k-dispersion problem [2]
considering that the elements to be located are
disk-shaped. That is, place k disks within a
polygonal domain maximizing the minimum dis-
tance between any pair (see Figure 1(b)).

2. Obtain the best location for k elements occupy-
ing a specific space (disk of radius r) in a closed
environment trying to minimize possible interac-
tions within a radius R > r. That is, to place
k disks inside a polygonal domain such that the
total overlap between the disks expanded to the
radius R is minimized (see Figure 1(c)).

To solve these problems, we pre-compute a uniform
grid covering the polygon bounding box. Its cells store
whether an r-radius disk centered in the cell center
is contained, or not, in the polygon. The simulated
annealing perturbation tries to randomly move each
disk away from its nearest disk using the information
pre-stored in the grid. The strategy, whose two stages
run in parallel, provides a good enough location for
the disks and can be easily extended to maximize the
sum of the distances between them.
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Abstract

Given a set P of 2n points in R2, we are interested
in matching them with line segments. We consider
perfect (all points are matched) non-crossing (all line
segments are pairwise disjoint) matchings. We study
both the monochromatic setting, i.e., all points are
allowed to match, and the bichromatic, i.e., P is par-
titioned into sets B and R, with |B| = |R| = n, and
only points of different sets are allowed to be matched.

In the above settings, a perfect non-crossing match-
ing can always be found in O(n log n) time using ham-
sandwich cuts. Often though, not any matching is suf-
ficient and the interest lies in finding a matching with
respect to some optimization criterion. Many criteria
have been considered; a popular one is the MinMax,
or bottleneck, matching where the goal is to minimize
the length of the longest edge, see e.g., [1, 2, 4, 5].

We extend work by looking into three new optimiza-
tion criteria, namely MaxMin, MinMin and Max-
Max, defined analogously to MinMax. We consider
the input P in different configurations. Our results,
together with prior work, are summarized in Table 1.

a) b)

c) d)

Figure: Optimal monochromatic a) MinMin, b)
MaxMax, c) MinMax, and d) MaxMin matchings.
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General Position Convex Circle

MinMin1 O(nh + n log n), O(n) O(n)

MaxMax1 O(n1+ε + n2/3h4/3 log3 n) O(n) O(n)
MinMax1 NP-hard [1] O(n2) [4] O(n)
MaxMin1 ? O(n3) O(n)

MinMin2 ? O(n) O(n)
MaxMax2 ? O(n) O(n)
MinMax2 NP-hard [2] O(n2) [5] O(n) [5]
MaxMin2 ? O(n3) O(n3)

Table 1: Time needed to find a matching in different vari-
ants. Index 1, e.g., MaxMax1, refers to the monochro-
matic variant and index 2 to the bichromatic. h is the
size of the convex hull of P . ε > 0 is an arbitrarily small
constant. Results without reference are given in this work.

Results. When P is monochromatic, we identify
an edge feasibility criterion, verifiable in O(1) time.
Using this criterion, we give two algorithms for
MinMin1 and MaxMax1, one based on weak radial
orderings and one on halfplane range queries.

If P is convex, all variants can be solved in O(n3)
time using dynamic programming, see e.g., [2]. For
MinMin1, resp. MaxMax1, we reduce the prob-
lem to finding the shortest, resp. longest, edge be-
tween two convex polygons, leading to O(n)-time al-
gorithms. We extend this algorithm to MinMin2,
resp. MaxMax2, using the notion of orbits [5].

Finally, in the special case that P lies on a circle,
we provide an O(n)-time algorithm for MaxMin1.
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Abstract

Huemer et al. (Discrete Math., 2019) proved that for
any two point sets R and B with |R| = |B|, the per-
fect matching that matches points of R with points
of B, and maximizes the total squared Euclidean dis-
tance of the matched pairs, has the property that all
the disks induced by the matching have a common
point. In this work we study the perfect matching
that maximizes the total Euclidean distance. First,
we prove that this setting does not always ensure the
common intersection property of the disks. Second,
we extend the study for sets of 2n uncolored points.
As the main result, we prove that in this case all disks
of the matching do have a common point.

1 Introduction

Let R and B be two disjoint point sets in the plane
with |R| = |B| = n, n ≥ 2. The points in R are red,
and those in B are blue. A matching of R ∪ B is a
partition of R∪B into n pairs such that each pair con-
sists of a red and a blue point. A point p ∈ R and a
point q ∈ B are matched if and only if the (unordered)
pair (p, q) is in the matching. For every p, q ∈ R2, we
use pq to denote the segment connecting p and q, and
‖p − q‖ to denote its length, which is the Euclidean
norm of the vector p−q. Let Dpq denote the disk with
diameter equal to ‖p−q‖, that is centered at the mid-
point p+q

2 of the segment pq. For any matchingM, we
use DM to denote the set of the disks associated with
the matching, that is, DM = {Dpq : (p, q) ∈M}.

Huemer et al. [4] proved that if M is any match-
ing that maximizes the total squared Euclidean dis-
tance of the matched points, i.e., it maximizes∑

(p,q)∈M ‖p− q‖2, then all disks of DM have a point
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in common.
In this article, we consider the max-sum matching

E , as the matching that maximizes the total Euclidean
distance of the matched points. For any matchingM,
let cost(M) denote

∑
(p,q)∈M ‖p−q‖. Thus, E is such

that cost(E) is maximum among all matchings. As
our first result, we prove in Section 3, that every pair
of disks in E have a common point, but it cannot be
guaranteed that all disks have a common point.

We also consider max-sum matchings of sets of 2n
uncolored points in the plane, where a matching is
just a partition of the points into n pairs. As the main
result, we prove in Section 4 that for any point set P
of 2n uncolored points in the plane and a max-sum
matching M of P , all disks in DM have a common
intersection. We use Helly’s theorem, that is, we prove
the claim for n = 3.

Theorem 1 (Helly, 1923) Let F be a finite family
of closed convex sets in Rn such that every subfamily
of n + 1 sets of F has nonempty intersection. Then
all sets in F have nonempty intersection.

The extended version of this article can be found
in [1]. Any omitted proof and further details can be
found there.

2 Related works

Fingerhut [2], motivated by a problem in designing
communication networks [3], conjectured that given a
set P of 2n uncolored points in the plane and a max-
sum matching {(ai, bi), i = 1, . . . , n} of P , there exists
a point o of the plane, not necessarily a point of P ,
such that

‖ai − o‖+ ‖bi − o‖ ≤ (2/
√

3) · ‖ai − bi‖ (1)

for all i ∈ {1, . . . , n}. The statement of equa-
tion (1) is equivalent to stating that the intersection
Ea1b1 ∩ Ea2b2 ∩ · · · ∩ Eanbn is not empty, where Epq

is the region bounded by the ellipse with foci p and
q, and semimajor axis length (1/

√
3) · ‖p − q‖ [2].

Then, by Helly’s Theorem, it is sufficient to prove
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equation (1) for n ≤ 3. The factor 2/
√

3 is the min-
imum possible [2]: it is enough to consider an equi-
lateral triangle, where at each vertex two points are
located. The max-sum matching of the six points is
made of pairs of vertex-opposed points, and the re-
gions defined by the three ellipses have exactly one
point in common, which is the center of the triangle.

Eppstein [2] proved that the result holds with 2.5
instead of 2/

√
3. Let o be the midpoint of the shortest

edge in the matching. Namely, for all i ∈ {1, . . . , n},

‖ai − o‖+ ‖bi − o‖ ≤ 2.5 · ‖ai − bi‖. (2)

Our main result, stating that for any point set P
of 2n uncolored points in the plane and a max-sum
matching E = {(ai, bi), i = 1, . . . , n} of P , all disks
in DE have a common intersection, implies that any
point o in the common intersection satisfies

‖ai − o‖+ ‖bi − o‖ ≤
√

2 · ‖ai − bi‖

for all i ∈ {1, . . . , n}.

3 Common intersection might fail for red-blue
matchings

Lemma 2 Every pair of disks in DE have a non-
empty intersection.

Theorem 3 There exist disjoint point sets R ∪ B,
with |R| = |B| = 3, such that, for any max-sum
matching E of R and B, the intersection of the disks
of DE is the empty set.

Proof. Let R = {a, b, c} and B = {a′, b′, c′}, with
a = (−1, 0), b = (1, 0), c = (0,

√
3), c′ = (0, 3),

and a′ ∈ bc and b′ ∈ ac such that ‖c − a′‖ =
‖c − b′‖ = ε, for a parameter ε > 0 that ensures
that E = {(a, a′), (b, b′), (c, c′)} is the only maximum
matching of R ∪B (see Figure 1).

Note that

‖a− b′‖+ ‖b− c′‖+ ‖c− a′‖
= ‖a− c′‖+ ‖b− a′‖+ ‖c− b′‖
=
√

10 + (2− ε) + ε

= 2 +
√

10,

and we need to ensure that

2 +
√

10 < ‖a− a′‖+ ‖b− b′‖+ ‖c− c′‖ = cost(E).

That is, the matching {(a, a′), (b, b′), (c, c′)} has larger
total Euclidean distance than {(a, b′), (b, c′), (c, a′)}
and {(a, c′), (b, a′), (c, b′)}. Since

‖a− a′‖+ ‖b− b′‖+ ‖c− c′‖
= 2‖a− a′‖+ ‖c− c′‖
= 2‖a− a′‖+ (3−

√
3)

> 2(‖a− c‖ − ε) + (3−
√

3)

= 7−
√

3− 2ε,

a(−1, 0) b(1, 0)

c(0,
√
3)

c′(0, 3)

b′ a′

Dcc′

Daa′ Dbb′

Figure 1: Proof of Theorem 3.

it suffices to ensure

2 +
√

10 < 7−
√

3− 2ε;

that is,

ε < (5−
√

10−
√

3)/2 ≈ 0.0528. (3)

Furthermore, since

‖a− c′‖+ ‖b− b′‖+ ‖c− a′‖
= ‖a− a′‖+ ‖b− c′‖+ ‖c− b′‖
< (2 + ε) +

√
10 + ε

= 2 +
√

10 + 2ε,

to ensure that {(a, a′), (b, b′), (c, c′)} has larger to-
tal Euclidean distance than {(a, c′), (b, b′), (c, a′)} and
{(a, a′), (b, c′), (c, b′)}, it suffices to guarantee that

2 +
√

10 + 2ε < 7−
√

3− 2ε;

that is,

ε < (5−
√

10−
√

3)/4 ≈ 0.0264. (4)

Hence, any ε > 0 satisfying (4) (and then also (3)) is
such that E = {(a, a′), (b, b′), (c, c′)} is the only max-
imum matching of R ∪ B. It remains to show that
Daa′ ∩Dbb′ ∩Dcc′ = ∅. To see that, it is straightfor-
ward to show (based on the fact that c /∈ Daa′ and
c /∈ Dbb′) that all points of Daa′ ∩ Dcc′ have nega-
tive x-coordinates, and all points of Dbb′ ∩Dcc′ have
positive x-coordinates. �

Theorem 4 For any n ≥ 4, there exist disjoint point
sets R ∪ B, with |R| = |B| = n, such that, for any
max-sum matching E of R and B, the intersection of
the disks of DE is the empty set.
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(A) (B) (C) (D)

(E) (F) (G)

(H) (I) (J)

Figure 2: The ten different relative positions.

4 Common intersection on monochromatic
matchings

It is not difficult to show that from Lemma 2 it fol-
lows that the constant 2.5 can be improved to

√
5

for bichromatic maximum-sum matchings. For the
monochromatic case, this bound can be further im-
proved to

√
2, as we now show.

Lemma 5 Let {a, b, c, d} be a set of four points
such that {(a, b), (c, d)} is a max-sum matching of
{a, b, c, d} and d is in the interior of ∆abc. Then,

d is in the interior of disk Dab, i.e. ~cd points to ab.

Since every pair of segments of a max-sum match-
ing cross, or one of them points to the other one, we
identify ten cases of relative position of the three seg-
ments, as shown in Figure 2, listed from (A) to (J).

Lemma 6 If the segments of a max-sum matching of
six points fall in one of the cases from (A) to (G),
then the three disks of the matching have a common
intersection.

Proof. Let {a, b, c, a′, b′, c′} be a 6-point set, and let
M = {(a, a′), (b, b′), (c, c′)} be a max-sum matching.

Case (A): At least one altitude of the triangle T
bounded by the three segments goes through the in-
terior of T . Let u be the vertex of such an altitude
in a side of T . By Thales’ theorem, each of the three
disks Daa′ , Dbb′ , and Dcc′ contains u.

Case (B): Let u be the intersection point between
bb′ and cc′. If Dbb′ contains a, then we are done
since a ∈ Dcc′ because ~a′a points to cc′ (Lemma 5).
Similarly, if Dcc′ contains a′, then we are done since
a′ ∈ Dbb′ because ~aa′ points to bb′. Otherwise, if
a /∈ Dbb′ and a′ /∈ Dcc′ , then the triangle ∆aa′u is
such that the interior angles at a and a′, respectively,
are both acute. Hence, the altitude h from vertex u
goes through the interior of ∆aa′u, and let v ∈ aa′

be the other vertex of h. Since ~a′a points to cc′, and
~aa′ points to bb′, each of the disks Daa′ , Dbb′ , and
Dcc′ contains v, by Thales’ theorem. The proof for
Case (C) is both similar and simpler.

a b

c

z

a′

b′

c′

Figure 3: Lemma 8.

Case (D): If Dbb′ contains c′, then we are done

since c′ ∈ Daa′ because ~cc′ points to aa′ (Lemma 5).
Similarly, if Dcc′ contains b, then we are done since b ∈
Daa′ because ~b′b points to aa′. Otherwise, if c′ /∈ Dbb′

and b /∈ Dcc′ , then the triangle ∆c′bu is such that the
interior angles at c′ and b, respectively, are both acute.
Hence, the altitude h from vertex u goes through the
interior of ∆c′bu, and let v ∈ c′b be the other vertex
of h. We have v ∈ Dbb′ ∩ Dcc′ , by Thales’ theorem.
Furthermore, since c′, b ∈ Daa′ , we have that segment
c′b is contained in Daa′ . Hence, v ∈ Daa′∩Dbb′∩Dcc′ .

Cases (E), (F), and (G): In each of these cases,
the same oriented segment points to each of the other
two ones: Say, segment ~aa′ points to both bb′ and cc′.
Then, we have that a′ ∈ Dbb′ ∩ Dcc′ , by Lemma 5.
Hence, a′ ∈ Daa′ ∩Dbb′ ∩Dcc′ . �

The following lemma guarantees that if we extend
one segment by moving one of the points, then the re-
sulting segments correspond to a max-sum matching
of the resulting point set.

Lemma 7 LetM = {(ai, bi), i = 1, . . . , n} be a max-
sum matching of the set P of 2n uncolored points, and
let c /∈ P be a point such that b1 belongs to the interior
of the segment a1c. Then, M∗ = (M\ {(a1, b1)}) ∪
{(a1, c)} is a max-sum matching of (P \ {b1}) ∪ {c}.

Lemma 8 Let a, b, c, a′, b′, c′, and z be seven points
such that: c is to the left of line `(a, b); segments ~aa′,
~bb′, and ~cc′ point to bb′, cc′, and aa′, respectively;
and for each u ∈ {a, b, c}, point z is to the left of line
`(u, u′), and vectors u− z and u′ − z are orthogonal.
Refer to Figure 3. Then, {(a, a′), (b, b′), (c, c′)} is not
a max-sum matching of point set {a, b, c, a′, b′, c′}.

Lemma 9 Let a, b, c, a′, b′, c′, and z be seven points
such that: c is to the left of line `(a, b); segments ~aa′

and ~bb′ point to bb′ and cc′, respectively; segments
aa′ and cc′ have a common point with a and a′ to
the right and left of line `(c, c′), respectively; and for
each u ∈ {a, b, c}, point z is to the left of line `(u, u′),
and vectors u− z and u′ − z are orthogonal. Refer to
Figure 4. Then, {(a, a′), (b, b′), (c, c′)} is not a max-
sum matching of point set {a, b, c, a′, b′, c′}.
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Figure 4: Lemma 9.

Lemma 10 Let a, b, c, a′, b′, c′, and z be seven
points such that: none of them is to the right of
line `(a, a′); segments ~b′b, ~bb′, and ~cc′ point to aa′,
cc′, and aa′, respectively; and for each u ∈ {a, b, c},
point z is to the left of line `(u, u′), and vectors u− z
and u′ − z are orthogonal. Refer to Figure 5. Then,
{(a, a′), (b, b′), (c, c′)} is not a max-sum matching of
{a, b, c, a′, b′, c′}.

Lemma 11 If the segments of a max-sum matching
of six points fall in one of the cases from (H) to (J),
then the three disks of the matching have a common
intersection.

Proof. Suppose by contradiction that the three
disks, denoted D1, D2, and D3, intersect pairwise,
but without a common intersection. Let u1,2, u2,3,
and u3,1 be the vertices of the pairwise disjoint lenses
D1 ∩D2, D2 ∩D3, and D3 ∩D1, respectively, located
in the triangle with vertices the centers of D1, D2,
and D3, respectively.

The idea is to use Lemma 7, in combination with
Lemmas 8, 9, and 10, such that the point z of these
lemmas is among u1,2, u2,3, and u3,1. To this end,
we need to guarantee that point z is not an extreme
point of some segment of the matching.

Note that two vertices among u1,2, u2,3, and u3,1

cannot be the extreme points of a same segment of the
matching. Furthermore, if each of the three vertices
is an extreme point of some segment of the matching,
then at least one pair of disjoint segments violates
Lemma 5. That is, the extreme point of one segment,
in the interior of the convex hull of the four involved
points, is not in the interior of the disk corresponding
to the other segment. Hence, we can assume that at
least one vertex among u1,2, u2,3, and u3,1 is not an
extreme point of a segment of the matching: say ver-
tex u1,2. This implies that we can extend the segment
of disk D3 by moving one of its extreme points such
that the new three matching disks have a singleton
common intersection at u1,2. Let z = u1,2, where z is
distinct from all the new six points.

Let the new six points be denoted as a, b, c,
a′, b′, and c′, in such a way that the new seg-

b

a

c′

b′

a′

z

c

o

Figure 5: Lemma 10.

ments are precisely aa′, bb′, and cc′, and for each
u ∈ {a, b, c} point z is to the left of line `(u, u′). By
Lemma 7, {(a, a′), (b, b′), (c, c′)} is a max-sum match-
ing of {a, b, c, a′, b′, c′}.

If aa′, bb′, and cc′ fall in Case (H), then by
Lemma 8 {(a, a′), (b, b′), (c, c′)} is not max-sum.
If they are in in Case (I), then by Lemma 9
{(a, a′), (b, b′), (c, c′)} is not max-sum. Otherwise, if
they are in in Case (J), then by Lemma 10 we have
that {(a, a′), (b, b′), (c, c′)} is not max-sum. There ex-
ists a contradiction in each of the cases, thus the orig-
inal three disks must have a common intersection. �

Theorem 12 Let P be a set of 2n (uncolored) points
in the plane. Any max-sum matchingM of P is such
that all disks of DM have a common intersection.

Theorem 13 Let P be a set of 2n (uncolored) points
in the plane, and let {(ai, bi), i = 1, . . . , n} be a max-
sum matching of P . Then, there exists a point o of
the plane such that for all i ∈ {1, . . . , n} we have:

‖ai − o‖+ ‖bi − o‖ ≤
√

2 · ‖ai − bi‖.
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Abstract

Let R be a set of n colored imprecise points, where
each point is colored by one of k colors. Each im-
precise point is specified by a unit disk in which the
point lies. We study the problem of computing the
smallest and the largest possible minimum color span-
ning circle, among all possible choices of points inside
their corresponding disks. We present an O(nk log n)
time algorithm to compute a smallest minimum color
spanning circle. Regarding the largest minimum color
spanning circle, we show that the problem is NP-Hard
and present a 1

3 -factor approximation algorithm. We
improve the approximation factor to 1

2 for the case
where no two disks of distinct color intersect.

1 Introduction

Recognition of color spanning objects of optimum
size, in the classical (precise) setting, is a well-studied
problem in the literature [1, 2, 3, 5]. The simplest
type of two-dimensional problem considered in this
setup is the minimum color spanning circle (MCSC)
problem, defined as follows. Given a colored point set
P in the plane, such that each point in P is colored
with one of k possible colors, compute a circle of min-
imum radius that contains at least one point of each
color (see Figure 1a). The minimum color spanning
circle can be computed in O(nk log n) time using the
upper envelope of Voronoi surfaces [5].

In this work, the exact coordinates of the input
points in P are unknown. Instead, we are given a
set R = {R1, R2, . . . , Rn} of n unit disks of diame-
ter 1 in the plane, where each disk is colored with
one of k possible colors. A colored point set P is a
realization of R if there exists a color-preserving bi-
jection between P and R such that each point in P is
contained in the corresponding disk in R. Each real-
ization of R gives a MCSC of certain radius. We are
interested in finding realizations of R such that the
corresponding MCSC has the smallest (S-MCSC) and
largest (L-MCSC) possible radius (see Figure 1b,c).

Related work. The motivation of the problem stems
from many real-life situations where the locations of
the points are subject to errors and their exact coor-
dinates are unknown. Such a set of points is known as
an imprecise or uncertain point set and the set of all
possible locations of a point is called its region [8, 10].
In the literature, different variations have been con-
sidered where the regions are modelled as simple ge-
ometric objects such as disks or squares. In particu-
lar, when the regions are modelled as disks, Jadav et
al. [6] proposed an algorithm to compute the small-
est enclosing circle that contains at least one point
from each region. Robert and Toussaint [9] studied
the problem of computing the smallest width corri-
dor intersecting a set of convex regions. Löffler and
van Kreveld [8] considered the problem of computing
the smallest and largest possible axis-parallel bound-
ing box and circle of a set of regions modelled as cir-
cles or squares. Colored variations of other geometric
problems have also been studied in the context of im-
precise points [4]. To the best of our knowledge there
is no prior result on the minimum color spanning cir-
cle problem for imprecise point sets.

2 The smallest MCSC (S-MCSC) problem

Given a set R of n imprecise points modeled as unit
disks, we present an algorithm that finds a S-MCSC,
denoted by Copt, and the realization of R achieving
it. Let ropt be the radius of Copt.

Let C = {c1, . . . , cn} be the set of center points of
the disks in R. Let Cc be a MCSC of the colored set C,
and let rc be its radius. The following relation holds:

Lemma 1 If rc >
1
2 , then rc = ropt + 1

2 .

We compute rc. If rc >
1
2 , ropt = rc− 1

2 . Otherwise,
the center of Cc lies in the intersection of k distinct
colored disks, resulting in a MCSC of “zero” radius.

Theorem 2 A smallest minimum color spanning cir-
cle of R can be computed in O(nk log n) time.
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(a) (b) (c)

Figure 1: (a) MCSC for precise colored point set, (b-c) S-MCSC and L-MCSC for imprecise colored point set.

3 The largest MCSC (L-MCSC) problem

In this section, we consider the L-MCSC problem,
where for the given set R the goal is to find a realiza-
tion such that any MCSC is as large as possible. We
show that the problem is NP-Hard using a reduction
from planar 3-SAT [7].

Given a planar 3-SAT instance, we construct a set of
colored unit disks with the following property: There
exists a realization such that any MCSC has diameter
c if and only if the 3-SAT instance is satisfiable, where
c = 9

8 . We use disks of only two colors: red and blue.
Thus, a point set having any MCSC of diameter at
least c is equivalent to saying that there is no red-
blue pair of points at distance less than c. We denote
the family of realizations with this property by Pc.

cc

c c
(a) (b) (c)

3
8

3
8

Figure 2: (a) A stack of disks, (b-c) the placements
of points with red-blue distances equal to c.

A stack of disks is a set of three vertically aligned
disks of alternating colors. As shown in Figure 2a, for
a blue-red-blue stack of disks, the distance between
the centers of the blue disks and the center of the red
disk is 3

8 . For a realization of the stack of disks in
Pc, it is easy to see that the following holds: The red
point can only be placed at one of the left or right
extreme positions of the red disk (see Figure 2b,c),
and such a placement forces the placement of points
in the blue disks at distance c. Thus, there exists only
two possible valid placements, shown in Figure 2b,c.

Variable Gadget. Our variable gadget (see Figure 3)
is an alternating chain of red and blue disks placed on
a hexagonal tiling of the plane. The distance between
the centers of two consecutive red and blue disks along
the same edge of the hexagon is c. Each edge of
the hexagon contains two stacks of disks placed near
the endpoints, and every pair of consecutive edges is
joined by a blue disk. In the following description,
we say that pi and p′i are the leftmost and rightmost
points of disk Ri if they are its leftmost and right-
most points after the hexagon has rotated so that the

edge containing the center of Ri is horizontal and the
center of the hexagon is below the edge.

At the top-left corner of the variable gadgets, the
disks are placed as follows (the other corners are con-
structed similarly). Let Ri be the last disk in clock-
wise order along the top-left edge of the hexagon, and
let Rj and Rk be the first and second disks along the
top edge (see Figure 3). The placements of Rj and
Rk are fixed because their centers are at distance c.
Regarding Ri, it is placed in such a way that the lower
blue disk of its stack contains a point z which is at
distance c from both pk and pi (see Figure 3). Notice
that, if a realization in Pc chooses p′i, the choice for
Rj is not unique; however, none of the points in Rj
at distance at least c from p′i is compatible with the
choice of pk for Rk. Therefore, the choice of p′i forces
the choice of p′k, and clearly the choice of pk forces
the choice of pi.

c

Ri

Rj

pi

pj p′kpk

z

120◦

Rk

p′i

p′j

Figure 3: A variable gadget with zoomed in view for
the top-left corner.

For a realization in Pc of a variable gadget, the
following holds: The stack containing Rk is con-
strained to choose either pk or p′k. Let us assume
that it chooses p′k. This choice propagates to the right
through the chain of disks in the top edge. The red
disk of the stack on the right of the edge also chooses
its rightmost point, and this forces the red disk of the
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Ri

Rj

Rk

tRi

tRj

fRj

fRi
fRk

tRk

c0

RjRi

Rk

xi

Figure 4: A clause gadget (left). Connection gadget
for a positive variable in a clause with truth value T
(right).

first stack of the top right edge to choose its right-
most point too. Therefore, the choice of p′k propa-
gates through the whole hexagon. If Rk chooses pk,
the same phenomenon occurs. We conclude:

Lemma 3 For any realization in Pc of a variable
gadget, either all disks centered at the edges of the
hexagon, except for the corners of the hexagon, choose
their rightmost point, or they all choose their leftmost
point.

Clause gadget. Clause gadgets are illustrated in
Figure 4 (left). We consider an equilateral triangle
of side 3.5 and center c0, and we place one red disk
at every corner of the triangle in such a way that the
center of the disk is aligned with c0 and its nearest
corner of the triangle. Then we place a blue disk
centered at c0. Each red disk of a clause gadget is as-
sociated to one of the literals occurring in the clause,
and is connected to the corresponding variable gadget
via a connection gadget. Intuitively, to decide if there
exists any realization in Pc, each red disk Rτ of the
clause gadget has essentially two relevant placements,
called tRτ

and fRτ
(see Figure 4 (left)). As we will

see, when the associated literal is set to true, we can
choose the placement tRτ

, and when it is set to false,
we are forced to choose fRτ . It is easy to see that
there exists a realization in Pc of the clause gadget if
and only if tRτ

is chosen for at least one of the disks
Rτ .

Connection gadget. A variable gadget is connected
to each of its corresponding clause gadgets with the
help of a connection gadget. A connection gadget con-
sists of an alternating chain of red and blue disks to-
gether with some stacks of disks (see Figure 4 (right)).

The location of a connection (between a variable
gadget and its associated clause gadget) depends on
whether the variable in the clause is positive or neg-
ative. For a positive variable, the connection is es-
tablished through a pair of a red disk Ri and a blue

RjRi

Rk

(a) positive

(b) negative

Rk

Ri Rj

Figure 5: Point-placements corresponding to (a) posi-
tive and (b) negative variable in a clause, at the inter-
section of a connection gadget and a variable gadget.

disk Rj which appear consecutive along an edge of
the hexagon, and such that none of them is a corner
of the hexagon, and Ri comes before Rj in clockwise
order (see Figure 5a). Let Rk be the first red disk of
the connection gadget. The top-most point of Rk is
at distance 9

8 from pj , and its bottom-most point is at
distance 9

8 from p′j . For a negative variable, the con-
nection is established through a pair of blue-red disks
in the variable gadget. The placement of the first red
disk of the connection gadget is analogous to the one
in the red-blue configuration (see Figure 5b).

The truth value T of a variable is associated with
the choice of the rightmost points of the disks in the
variable gadget. If the variable appears positive at
a clause, this allows the choice of the bottom-most
point of Rk, and this propagates through the connec-
tion gadget and eventually allows the choice of the
associated point tRτ

in the clause gadget. If the truth
value is F , pj is selected, which forces the choice of a
point in a close vicinity of the top-most point of Rk,
and eventually of fRτ

. The analysis of the other cases
are similar.

The chain in a connection gadget might be bent
by 120◦ (in standard coordinate system), maintain-
ing the planarity and the distance constraint c. The
placement of disks at each bend of a connection gad-
get is similar to the placements at the corners of a
variable gadget. Stacks of disks are used around the
bends and next to the first disk Rk.

In summary, for a given planar 3-SAT instance, we
embed its dependency graph into a hexagonal grid,
and then replace the vertices by variable and clause
gadgets which are connected using the connection
gadgets as described above. Thus we have the fol-
lowing:

Lemma 4 The planar 3-SAT formula has a satisfying
assignment if and only if there exists a realization of
the disks in Pc.

Theorem 5 The problem of finding the largest min-
imum color spanning circle of R is NP-Hard.
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Ri

pi
ci

Q

Figure 6: The tilted grid. We choose pi as the red
corner of Q contained in Ri.

4 Approximation algorithms

In this section, we provide approximation algorithms
for the L-MCSC problem. Let r̃opt denote the radius
of a largest possible minimum color spanning circle of
R. We first prove bounds on r̃opt.

Lemma 6 r̃opt ≥ 1/4.

Proof. It is easy to see that it is enough to prove the
result for the case where k = 2. We show that the
bound holds when k = 2 by providing a realization P
whose MCSC achieves the bound. Consider a regular
square grid rotated by π/4 such that the side of every
cell of the grid has length 1/2. We color the corners of
the cells in red or blue in such a way that all corners
lying in some vertical line are colored red, all corners
lying in the next vertical line are colored blue, and so
on (see Figure 6). Now let Ri ∈ R have red color, and
let Q be the cell of the grid containing the center of
Ri (if the center of Ri lies on an edge or vertex of the
grid, we assign it to any of the adjacent cells). Notice
that at least one of the two red corners of Q lies inside
Ri. We choose such a corner as pi ∈ P . Similarly, for
every Rj ∈ R of blue color, P contains one of the
blue corners of a cell containing the center of Rj . We
obtain that P is a subset of the grid corners. Since
the distance between any pair of red and blue corners
is at least 1/2, the radius of any MCSC is at least
1/4. �

Lemma 7 r̃opt ≤ rc + 1
2 .

Input: A set R of n unit disks
Output: A MCSC of a realization of R with
radius at least r̃opt/3
compute Cc;
if rc ≥ 1/4 then

return Cc;
else

return a MCSC of P g;

Algorithm 1: 1
3 -factor approximation algo-

rithm for the L-MCSC problem

Let P g denote the realization of R described in the
proof of Lemma 6. Our algorithm to compute the
approximate L-MCSC is presented in Algorithm 1.

Theorem 8 A 1
3 -factor approximation for the

L-MCSC problem can be computed in O(nk log n)
time. If no two distinct colored disks of R intersect,
the approximation factor becomes 1

2 .
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A discrete isoperimetric inequality
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Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain§

1 Introduction

The isoperimetric inequality in its classical form dates
back to antiquity, and states that circles are the only
closed plane curves minimizing the length for a pre-
scribed enclosed area. This can be succinctly ex-
pressed as L2 ≥ 4πA, where L is the length of the
curve and A is the enclosed area.

This result was eventually generalized to arbitrary
dimension in the 19th century. Its form for convex
bodies in Rn can be stated by saying that the volume
vol(·) and surface area S(·) (Minkowski content) of
any n-dimensional convex body K satisfy(

S(K)

S(Bn)

)n

≥
(

vol(K)

vol(Bn)

)n−1

, (1)

where Bn denotes the Euclidean (closed) unit ball.

2 Discretizing the isoperimetric inequality

In order to discretize the isoperimetric inequality we
may consider the following “neighbourhood form”: for
any n-dimensional convex bodies K,E ⊂ Rn, and all
t ≥ 0, we have

vol(K + tE) ≥ vol(rE + tE) (2)

where r > 0 is such that vol(rE) = vol(K). The
isoperimetric inequality (1) is equivalent to (2) for
E = Bn. The advantage of using the volume of a
neighbourhood of K, instead of its surface area, is
that it can be extended to other spaces in which the
latter notion makes no sense.

Recently, in [2], a discrete isoperimetric inequality
has been derived for the integer lattice Zn endowed
with the L∞ norm and the cardinality measure | · |.
To this aim, a suitable extension of lattice cubes (i.e.,
the intersection of cubes [a, b]n with Zn) is consid-
ered: they define a well-order in Zn which essentially
concentrates the points around the origin, and con-
sider the initial segments in that order, i.e., the first
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Figure 1: The extended lattice cube I23 in Z2

(left) and the corresponding extended cube C23 in R2

(right).

r points in the order. We will call these sets extended
lattice cubes, Ir. A certain modificaction of these sets,
the so-called extended cubes Cr (cf. Figure 1), will play
a crucial role.

3 Main results

In this talk we study an analogue of the discrete
isoperimetric inequality obtained in [2, Theorem 1]
in the setting of arbitrary non-empty bounded sets in
Rn endowed with (the L∞ norm and) the lattice point
enumerator Gn(K) = |K ∩ Zn|. In this way, one may
consider neighbourhoods of a given set at any distance
t ≥ 0, not necessarily integer.

Theorem 1 ([1, Theorem 1.2]) Let K ⊂ Rn be a
bounded set with Gn(K) > 0 and let r ∈ N be such
that Gn(Cr) = Gn(K). Then, for all t ≥ 0,

Gn

(
K + t[−1, 1]n

)
≥ Gn

(
Cr + t[−1, 1]n

)
. (3)

Theorem 2 ([1, Theorem 1.4]) The discrete iso-
perimetric inequality (3) implies the isoperimetric in-
equality (2), with E = [−1, 1]n, for non-empty com-
pact sets.
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Algorithmic geometry with infinite time computation
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This abstract reports results of the fourth author’s
Master Thesis [4]. We present an algorithmic study of
problems from computational geometry with count-
ably infinite input, especially countable sets in Rn.
To do so, we use the infinite time Blum-Shub-Smale
(ITBSS) machine, due to Koepke and Seyfferth [2],
which is an extension of the classical Blum-Shub-
Smale (BSS) machine [1] to transfinite ordinal time.
A BSS-machine works with a finite number of regis-
ters each holding a real number; computation steps
update these reals by applying a rational function or
test the positivity of some register, see [1] for details.
Equivalently, BSS-machines can be seen as unit-cost
Turing machines over R as an ordered field in the sense
of [3]. An ITBSS machine extends the computations
to transfinite time: at a limit ordinal time each reg-
ister content is updated to the limit of the register
contents. The computation breaks if the contents of
some register do not converge. We refer to [2] for
details. We remark that ITBSS machines model ‘fea-
sible’ or ‘efficient’ computations and refer to [5] for a
discussion.
In order to treat geometric problems with the ITBSS
machine, one needs to verify that basic operations,
such as storage, access and modifications of count-
able point sets, can be done. One way of handling
this is explained in the thesis [4]. We also refer the
reader to [4] for the detailed exposition of the follow-
ing problems.
• The accumulation points problem. Accumula-
tion points, as limit points of a set in Rn, are a proper
problem of infinite input computation. The accumu-
lation points problem that we study is how to find the
accumulation points of a set in Rn. The main diffi-
culty that emerges from this problem is that the ac-
cumulation points of a set do not need to be elements
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in the set, otherwise an easy computation could check
for each point in the set if it is an accumulation point
and give the solution. We propose a solution for this
problem when the input set contains a finite number
of accumulation points.

Theorem 1 There is an ITBSS machine that, given
as input an at most countable set of points in R2 with
finitely many accumulation points, computes these ac-
cumulation points.

• The convex hull problem. The convex hull
problem studies how to find the intersection of all
convex sets containing a given input point set. It is
not always possible to report all the points on the
boundary of the convex hull with the ITBSS machine
because this boundary can be uncountable. To over-
pass this limitation we use a countable family of half-
spaces, with common intersection the solution set, as
a method to report the closure of the convex hull. A
rational halfspace in Rn can be represented by a point
in Qn+1. By computing a set of halfspaces of Rn we
mean computing a set of their representations.

Theorem 2 There is an ITBSS-machine that, given
as input an at most countable set X ⊆ Rn, computes
an at most countable set of rational halfspaces whose
intersection is the closure of the convex hull of X.
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Abstract

In 2007, Dimitrova and Markovski described a graph-
ical representation of quasigroups by means of fractal
image patterns. It is based on the construction of
pseudo-random sequences arising from the multipli-
cation table of a quasigroup; that is, from a Latin
square. In particular, isomorphic quasigroups give
rise to the same fractal image pattern, up to permu-
tation of underlying colors. This possible difference
may be avoided by homogenizing the standard sets
related to these patterns. Based on the differential
box-counting method, the mean fractal dimension of
homogenized standard sets constitutes a Latin square
isomorphism invariant which is analyzed in this paper
in order to distribute Latin squares of the same order
into isomorphism classes.

1 Introduction

A Latin square of order n is an n×n array with entries
chosen from a set of n distinct symbols so that no
repetition of symbol exists in the same row or in the
same column. From here on, let Ln denote the set of
Latin squares of order n based on the set of symbols
[n] := {1, . . . , n}. Every Latin square L = (li,j) ∈ Ln
is uniquely identified with its set of entries

Ent(L) := {(i, j, li,j) : 1 ≤ i, j ≤ n}.

Let Sn be the symmetric group on the set [n]. Every
permutation π ∈ Sn acts on the Latin square L by
giving rise to its isomorphic Latin square Lπ ∈ Ln,
where Ent(Lπ) = {(π(i), π(j), π(li,j)) : 1 ≤ i, j ≤ n}.
As such, the permutation π is a Latin square isomor-
phism. To be isomorphic is an equivalence relation
among Latin squares. Currently, the distribution of
Latin squares into isomorphism classes is only known
[7] for order n ≤ 11. In order to deal with higher
orders, new Latin square isomorphism invariants are
being introduced in the recent literature [2, 6, 14].
This paper delves into this topic by focusing on the
mean fractal dimension of the homogenized standard
set of image patterns associated to any given Latin
square.

∗Email: rafalgan@us.es

Every Latin square in Ln constitutes the multiplica-
tion table of a quasigroup ([n], ·), where · is a binary
operation on the set [n] so that both left and right
divisions are feasible. Two quasigroups are isomor-
phic if and only if their associated Latin squares are.
In 1997, Markovski et al. [9] (see also [10, 11] pro-
posed the construction of pseudo-random sequences
arising from a quasigroup ([n], ·) and a plaintext T =
t1 . . . tm, with m ∈ N, and ti ∈ [n], for all i ≤ m.
More specifically, for each s ∈ [n], it is defined as the
encrypted string Es(T ) := e1 . . . em−1, where

ei :=

{
s · t1, if i = 1,

ei−1 · ti, otherwise.

In 2007, Dimitrova and Markovski [3] realized that an
iterative implementation of this encryption describes
a graphical representation of quasigroups by means of
image patterns with a certain fractal character. More
specifically, if r ≥ 2 is a positive integer and S =
(s1, . . . , sr−1) is an (r − 1)-tuple of positive integers
in the set [n], then the r×m image pattern based on
the multiplication table L of a quasigroup ([n], ·) is
the r ×m array (pi,j) such that, for each j ≤ m,

pi,j :=


tj , if i = 1,

si−1 · pi−1,1, if i > 0 and j = 1,

pi,j−1 · pi−1,j , otherwise.

Each one of its cells constitutes a pixel of the im-
age pattern under consideration. The symbol within
each pixel may uniquely be identified with a color of a
given palette of n colors. Further, the image pattern
just described is called s-standard [4], with s ∈ [n],
if S is the constant (r − 1)-tuple (s, . . . , s) and T is
the constant plaintext s . . . s of length m. From here
on, let Pr,m;s(L) denote this array. (It is denoted
Pr;s(L) when r = m.) The standard set of r × m
image patterns associated to the Latin square L is
the set {Pr,m;s(L) : s ∈ [n]}. It is so that isomorphic
quasigroups give rise to the same standard set of r×m
image patterns, up to permutation of underlying col-
ors. Due to it, the recognition and analysis of image
patterns based on quasigroups have recently arising as
an efficient new approach for classifying quasigroups
and related structures into isomorphism classes [4, 5].
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Furthermore, the computational analysis of these
patterns enables the distribution of quasigroups into
fractal and non-fractal classes. Particularly, fractal
quasigroups have turned out to play a relevant role
for designing error detecting codes [8], whereas non-
fractal quasigroups are recommended for designing
cryptographic primitives [1, 12].

The paper is organized as follows. Section 2 deals
with the concept of homogenized standard sets of
r × m image patterns, which enables one to avoid
the possible difference of colors in standard sets based
on isomorphic quasigroups. Based on the differen-
tial box-counting method, and in order to distinguish
homogenized standard sets of image patterns arising
from non-isomorphic quasigroups, it is introduced the
notion of mean fractal dimension of any given homog-
enized standard set.

2 Homogenized standard sets of image patterns

Let L ∈ Ln be the Cayley table of a quasigroup. In
addition, let Pn = {c1, . . . , cn} be a palette of n dis-
tinct colors so that the gray-level intensity of the color
ci is i/n. (In this way, the color cn is always white.)
Then, an s-standard r×m image pattern Pr,m;s(L) is
said to be homogenized if the colors of the palette Pn

appear in natural order (according to their intensity)
when the image pixels are read row by row then col-
umn by column. In addition, a standard set of r ×m
image patterns based on L is said to be homogenized
if all its r × m image patterns are homogenized. In
this way, isomorphic Latin squares give rise to exactly
the same homogenized standard set of r × m image
patterns with respect to a given palette.

Example 1 Let us consider the quasigroups having
as respective multiplication tables the following three
Latin squares in L4.

1 2 3 4
2 1 4 3
4 3 1 2
3 4 2 1

1 2 4 3
2 1 3 4
3 4 1 2
4 3 2 1

1 2 3 4
3 1 4 2
4 3 2 1
2 4 1 3

L1 L2 L3

The 3×4 collage in Figure 1 shows their homogenized
standard sets of 90×90 image patterns. The cell (i, j)
represents the j-standard 90×90 image pattern of the
Latin square Li, for all i ≤ 3 and j ≤ 4. C

Figure 1 enables us to ensure visually that L3 is iso-
morphic neither to L1 nor to L2. However, it is not so
obvious that the homogenized standard sets of L1 and
L2 are distinct. In order to distinguish homogenized
standard sets, we study the fractal dimension of their
image patterns.

Figure 1: Homogenized standard sets of 90 × 90 im-
age patterns of the Latin squares L1 (upper row), L2

(second row) and L3 (lower row).

Let Hr,m(L) denote the homogenized standard set
of r×m image patterns of a Latin square L ∈ Ln. (It
is denotedHr(L) when r = m.) Further, let Div(r,m)
be the set of common divisors of both parameters r
and m. Since each positive integer k ∈ Div(r,m) is
in compliance with the image dimensions of every im-
age pattern Pr,m;s(L) ∈ Hr,m(L), with s ∈ [n], it is
always possible to cover the latter by an r

k ×
m
k grid

formed by two-dimensional boxes of side length k. Let
Ii,j,k(Pr,m;s(L)) denote the range of gray-level inten-
sities within the region of Pr,m;s(L) bounded by the
cell (i, j) of that grid. Then, we consider the value

Ik(Pr,m;s(L)) :=
∑

(i,j)∈[ r
k ]×[m

k ]

(1 + Ii,j,k(Pr,m;s(L))).

Based on the differential box-counting method [13] for
determining the fractal dimension of a given grayscale
image, let us define the differential box-counting frac-
tal dimension DB(Pr,m;s(L)) of the image pattern
Pr,m;s(L) as the slope of the linear regression line of
the set of points

{(ln(Ik(Pr,m;s(L))), ln(1/k)) : k ∈ Div(r,m)} .

In addition, let DB(Hr,m(L)) denote the mean value
of this fractal dimension, averaged over all the positive
integers k ∈ Div(r,m). It constitutes the mean fractal
dimension of the homogenized standard set Hr,m(L).
The following result follows straightforwardly.

Proposition 2 Let L1 and L2 be two Latin squares
in Ln. If DB(Hr,m(L1)) 6= DB(Hr,m(L2)), for some
positive integers r and m, then L1 and L2 are not
isomorphic.

Table 1 enumerates both the differential box-
counting dimension and the mean fractal dimension of
each one of the three homogenized standard sets de-
scribed in Example 1. Notice in particular that their
mean fractal dimensions are pairwise distinct, which
enables one to ensure that the Latin squares L1, L2

and L3 correspond to different isomorphism classes.

56



XIX Spanish Meeting on Computational Geometry, Madrid, July 5-7, 2021

L
L1 L2 L3

DB(P90;1(L)) 2.00000 2.00000 2.00000
DB(P90;2(L)) 1.95165 1.95165 1.92136
DB(P90;3(L)) 1.8877 1.88873 1.92331
DB(P90;4(L)) 1.8877 1.88873 1.90088
DB(H90(L)) 1.9317625 1.9322775 1.9363875

Table 1: Differential box-counting and mean fractal
dimensions of the homogenized standard sets of 90×
90 image patterns described in Example 1.

It is readily verified that all the isomorphism classes
of Latin squares of order n ≤ 4 are indeed character-
ized by their corresponding mean fractal dimension
of homogenized standard sets of 90 × 90 image pat-
terns. Figure 2 illustrates their values in increasing
order for the five isomorphism classes of the set L3

and the 35 isomorphism classes of the set L4. (No-
tice the existence of only one isomorphism class for
all n ∈ {1, 2}.)

Figure 2: Mean fractal dimensions of the homogenized
standard sets of 90 × 90 image patterns of each iso-
morphism class of Latin squares of order n ∈ {3, 4}.

Notice in particular the existence of exactly one
isomorphism class associated to the maximum mean
fractal dimension 2 in each one of the sets L3 and L4.
Their representatives are the Latin squares

1 3 2
3 2 1
2 1 3

and

1 3 4 2
4 2 1 3
2 4 3 1
3 1 2 4

.

Both of them are multiplication tables of idempotent
quasigroups. That is, the cell (i, i) contains the sym-
bol i, for all i ∈ [n]. In fact, the following result is
readily verified.

Proposition 3 The mean fractal dimension of the
homogenized standard set of r × m image patterns
based on the multiplication table of an idempotent
quasigroup is 2, for every pair of positive integers r
and m.

The existence of non-isomorphic idempotent quasi-
groups of order five implies, therefore, that the mean
fractal dimension is not definitive for characterizing
isomorphism classes of Latin squares of higher or-
ders. It is the case of the following two non-isomorphic
Latin squares in L5.

1 3 2 5 4
4 2 5 1 3
5 4 3 2 1
3 5 1 4 2
2 1 4 3 5

1 3 4 5 2
5 2 1 3 4
4 5 3 2 1
2 1 5 4 3
3 4 2 1 5

Concerning the computational efficiency of using
the mean fractal dimension as Latin square isomor-
phism invariant, notice that the maximum running
time that is required to compute any of the mean frac-
tal dimensions associated to Figure 2 is less than one
second in an Intel Core i7-8750H CPU (6 cores), with
a 2.2 GHz processor and 8 GB of RAM. In the same
computer system, the mean fractal dimension of the
homogenized standard sets of 90× 90 image patterns
associated to the Latin square of order 256 described
in [4] is obtained in 81, 63 seconds. Its mean fractal di-
mension is 1, 88926. It is, therefore, computationally
feasible to make use of this new invariant to deal with
the possible characterization of isomorphism classes
of Latin squares of order n = 256, which are the most
commonly used in the literature for designing codes
and cryptographic primitives.

3 Image patterns arising from random Latin
squares

Let us focus now on the problem of distributing ran-
dom Latin squares into isomorphism classes by mak-
ing use of the mean fractal dimension described in
the previous section. To this end, we choose the ran-
domization method described in [2], which consists
of sequentially adding a set of feasible random en-
tries to an empty n × n array until a Latin square is
reached. The computation of the mean fractal dimen-
sion of the homogenized set of 90×90 image patterns
of each one of these random Latin squares allows to
distinguish non-isomorphic classes among them. By
means of this procedure, the five isomorphism classes
of L3 have been obtained after six attempts. Fur-
thermore, the 35 isomorphism classes of L4 have been
obtained after 326 attempts. Figure 3 illustrates the
computational progression for obtaining such classes
in this last case. In a similar way, Figure 4 illustrates
the case n = 5. After 20, 000 attempts, 1, 404 of the
1, 411 isomorphism classes have been distinguished.
All the mean fractal dimensions under consideration
have been obtained in less than one second by our
computer system.
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Figure 3: Computational progression for obtaining
the 35 isomorphism classes of L4.

Figure 4: Computational progression concerning the
obtention of isomorphism classes of L5.

4 Conclusion and further work

The recognition and analysis of standard sets of im-
age patterns associated to Latin squares has recently
arising as an efficient way for distinguishing, even vi-
sually, distinct isomorphism classes of Latin squares.
This paper has dealt with the concept of homoge-
nized standard sets, which avoids possible discrepan-
cies concerning the underlying colors of these images.
Based on the differential box-counting method, the
mean fractal dimension of these homogenized stan-
dard sets turns out to be an efficient invariant for
distributing Latin squares into isomorphism classes.
It has been shown to be computationally feasible for
dealing with Latin squares of order n = 256, which
are of particular interest in Cryptography. The study
of these Latin squares is a subject of future work. As a
preliminary stage, the computational progression for
obtaining the isomorphism classes of Latin squares of
order n ≤ 5 has been shown by computing the mean
fractal dimension of random Latin squares. Computa-
tional experiments concerning higher orders are cur-
rently in progress. Finally, the study of algebraic and
combinatorial properties of those isomorphism classes
of Latin square whose standard sets of image patterns
are associated to the same mean fractal dimension is
subject of future work.
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Coll, Narcis 43

de Las Heras Parrilla, Andrea 23

Esteban, Guillermo 7

Fabila-Monroy, Ruy 36
Falcón, Raúl 55
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Pérez-Lantero, Pablo 27, 37, 45
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