
I _ _ _J .

XML-Based Visual Specification of Multidisciplinary Applications

Ahmed AI-Theneyan a Amol Jakatdar a Piyush Mehrotra b Mohammad Zubair a

aComputer Science Department, Old Dominion University, Norfolk, VA 23529 USA
and

ICASE, MS 132C, NASA Langley Research Center, Hampton, VA 23681 USA

[theneyan, ajakatda, zubair} @ cs.odu.edu

bNAS Division, M/S T27A-1, NASA Ames Research Center, Moffett Field, CA 94035 USA

pmehrotra @ arc.nasa, gov

Abstract

The advancements in the [nternet and Web

technologies have fueled a growing interest in developing
a web-based distributed computing environment. We have

designed and developed Arcade, a web-based

environment for designing, executing, monitoring, and
controlling distributed heterogeneous applications, which
is easy to use and access, portable, and provides support

through all phases of the application development and
exec,_tion. A r.zajor locus of the environmem is the

¢pecification of heterogeneous, multidisciplina.,y
applicattons. 1.! th's paper we focus on the vi.sual and

script-based speci_ca_'iLm interface of Arcade. The
web/browser-i;ased visual interface is designed to be

intuitive to use and can also be used for visual monitoring

Optimization (MDO) methods are being explored at

NASA Langley Research Center (LaRC) for the design
optimization of aerospace vehicles [12]. Typically the

modules in such applications are developed in different
disciplines and are optimized independently. The

traditional path for integrating these modules, through the
use of scripts, makes the process of specifying and

optimizing the overall design of such applications a long
and tedious process often taking several weeks. The

slowness of this process is mainly due to the absence of a
collaborative environment whe;'e (i) different modules

and their interactions can be specified, arid (ii) testing,
monitoring, and steering of the overall design can be done

by multiple users from different dlsciphnes concurrently.
The objective of Arcade is to design an environment,

which is easy to use, easily accessible, portable, and

during execution. The script specification is based on provides support through all phases of the application
XML to (a) make it portable across different frameworks,

and (b) make the development of our tools easier by using

the existh_g freely available XML parsers and editors.
There is a one-to-one correspondence between the visual
and script-based interfaces allowing users to go back and

forth between the two. To support this we have developed
translators that translate a script-based specification to a

visual-based specification, and vice-versa. These
translators are integrated with our tools and are

transparent to users.

1. Introduction

The advancements in the Internet and Web

technologies have fueled a growing interest in developing
a web-based distributed computing environment. We have

designed and developed Arcade [3], a web-based
environment for designing, executing, monitoring, and

controlling distributed heterogeneous applications. The
focus of Arcade is to support simulations and

computations that consist of multiple heterogeneous
modules interacting with each other to solve an overall

design problem. For example, Multidisciplinary Design

development and execution. We implement various parts

of the environment by leveraging off commodity
technologies, such as the Web, Java, and Jini along with

service layers such as Globus [5] being implemented by
various research groups. These technologies are capable

of seamlessly interconnecting disparate hardware
platforms running different operating systems across

diverse locations providing an ideal environment for
distributed simulation of complex systems. The problem

is that these technologies are relatively new and there is
not enough experience with them in building such a

framework for large-scale distributed applications. The
major issues that need to be considered for building such
an environment are:

• Design of a protocol over HTTP to support
communication between different components of
the environment that addresses the MDO-like

application requirement.

• A visual tool to enable users to specify a MDO-like

application. Also, related to this issue is the design
of a visual language specification that has one-to-

one correspondence with the visual representation.

• Application Programming Interfaces (APIs)

specification to allow different visualization and

i °

resource management tools to eaSily work with the
proposed environment.

• Collaboration support in the design, execution, and

monitoring phases of a distributed heterogeneous
application.

• Multi-domain support to allow users from different
domains to work together.

The focuses of this paper are the visual- and script-
based interfaces for the Arcade framework. To better

understand the requirements on these interfaces, consider

a use case scenario for developing and executing a
distributed application. A team of designers

collaboratively develops the application consisting of a
hierarchical set of modules. That is, individual members

are made responsible for specifying the submodules while
the project leader is responsible for the overall integration

of the application, i.e., connecting the outputs of one
module to the inputs of another. For this purpose,
members can use visual- or script-based specification.

Note that the modules can range from simple sequential

programs to data parallel programs capable of execution
on a multiprocessor or a network of workstations, to more
complex subsystems, which are defined hierarchically

through the use of submodules. Once developed, the

• application is executed in a distributed environment using
a heterogeneous network of workstations and

multiprocessor machines. During the execution, team
members sitting at their individual workstations

simultaneously monitor the flow of progress of the
application. That is, the team members can see the

currently executing modules at any level of the hierarchy.
They can also monitor the intermediate data between

different modules using visualization tools to view large

data sets. A team member responsible for a particular
subsystem can change data values under the control of the

subsystem in order to steer the computation in the right
direction. The team member can also dynamically alter
the control flow if necessary. For example, in a design

cycle, the responsible team member may decide that a
particular module is not affecting the optimization and

may bypass the module by using old values in each cycle.
Similarly, the team could replace a module with a plug-

compatible module, for example, to use another
algorithm. Once the execution is complete, team members

again can examine the final results using the visualization
tools.

In this paper we describe the visual- and script-based
specification interfaces of the Arcade system. The

web/browser-based visual interface is designed to be

intuitive to use. Once specified the same visual
representation of the application can also be used for

visual monitoring during execution. The script
specification is based on XML. Using XML allows us to

leverage off existing freely available XML parsers and
editors to develop our tools. Also, such an XML-based

script presents the potential of inter-framework

portability. Thus, if a piece of the overall application

needs to be executed by another framework, we could
translate that portion of the XML specification into the
framework specific representation. There is a one-to-one

correspondence between the visual- and script- based
interfaces allowing users to go back and forth between the

two. Thus, some users will specify the application

visually and then use the script representation to make
changes. On the other hand, other users may be more'

comfortable writing the XML script using an offline
editor and then using the visual representation for

execution. To support this we have developed translators
that translate a script-based specification to a visual-based
specification, and vice-versa. These translators are

integrated with our tools and are transparent to users.

The rest of this paper is organized as follows. In
Section 2, we present some of the related work. Section 3
describes the overall architecture of the Arcade system.

Section 4 focuses on the application specification
prototype in Arcade and, finally, in Section 5 we conclude

by summarizing the work that we have described in this

paper.

2. Related Work

Several software systems ha,,e been developed that
make distributed computing avai!able to .in application

programmer. These can be Jistinguished imo different
categories. rhe first categGry of environments includes

systems such as MPI [11], PVM [16], pPVM [10], and
JAVADC [4]. All these environments support distributed

computing in varying degrees of generality; however,
either they are not web based or they lack collaborative
features. Also, they are mostly suitable for running SPMD

programs.
The second category consists of environments that

focus on large distributed heterogeneous codes, but are
generally specific to a single application domain.
Examples of such environments include FIDO [18],

MIDAS [14], NetSoive [2], and Ninf [13]. However, both

systems are either hardwired to a specific problem area or
are too restrictive. The other major limitation is that they

lack a collaborative environment, which would permit
different members in a group to interact with the

application at various stages of its design and execution.
The third category of environments that includes IceT

[6], Programmer's Playground [7], PRE [15], VDCE [17],

HENCE [8], and WebFlow [1], supports heterogeneous
distributed applications in some form or other. For

example, the Grid Enabled Console COmponent
(GECCO) [9] is a graphical tool that has been built on top

of GIobus [5] to allow users to interactively specify and

monitor the execution of a set of tasks with dependencies
between them. GECCO enables the user to formulate job

execution as a task graph.

|
i

The front-end for most of these systems is generally

some variation of large-grained data flow graphs with
computational modules being triggered when their inputs
are available. In our experience, we have found that to

easily express heterogeneous applications requires more

control structure than provided by such data flow-based
systems. For example, in a multidisciplinary optimization

code, the optimization cycle would have to be embedded
within a module in a system that only supports data flow

rather than being explicit at the outer level. Also, these

systems mainly concentrate on different aspects of the
infrastructure required for managing the execution and

interaction of the modules making up the application
whereas the goal of the project described here is to build

an integrated framework for all phases of the design and
execution of distributed heterogeneous applications.

However, such collaborative systems do not provide any
support for the management and steering of the execution

of distributed applications.

3. Overview of Arcade

Arcade is a web-based integrated metacomputing

environment that is being built to provide support for a
team of discipline experts to collaboratively design,

execute, and monitor multidisciplinary applications on a
distributed heterogeneous network of workstations and

parallel machines. This framework is sui.table for

applications, which in general consist of multiple
heterogeneous modules interacting with each other to

solve the overall design problem, such as the
multidisciplinary design optimization of an aircraft. As
shown in Figure 1, Arcade is based on a three-tier

architecture. The first tier is a web-based, lightweight
client, which provides the user interface to the whole

system. It consists of applets, which allow users to design
an application, monitor and allocate resources, and

execute, monitor and steer the application in a
collaborative manner. It also has interfaces, which allow

the system administrator to manage the system including
resource registration and user management and
authentication. Most of the logic of the system is

contained in the Java-based middle tier. Among other
modules, the middle tier consists of the User Interface

Manager, which provides logic to process the user input
and coordinate between the other components; the

Execution Manager, which manages the overall execution

of the application; the Data Manager, which manages the
shared data; the Resource Manager, which manages the
distributed heterogeneous resources of the system; and the

Security Manager, which controls the access of the
system. The third tier consists of the distributed resources

that are used to actually execute the user modules and

application codes. A lightweight controller executes on
each resource providing a gateway to the resource.

IL_L rces]° °°] IBroWw%I

...Ja.ea-Appletx -_-__---_j.i-?-9--I------_-5.F-.--_]I.. :......
....... , First Tier-.,-. Internet -,J

I

__: Manager (DM) _ l _:Manag_ t_EM) : [Manager (SM) [::Manajler (RM) _!-M t 1 i '
I execua,,,, I I Mo,,it,,nn I Steenng I
I Controller I I Controller " "_ _ [_ontroiler I

[

..?.,'I-'_--_:7-'_............................-_..........................
".... - ---:_ Second Tier

..... Internet __

I ResourceControtter_C)-] I Resource[Controfler (RC) l
O O

I Appltcatio_: I [Application i]Module ' l [= Modul_:

Third Tier

Host 1 Host n

Figure 1. The ARCADE System Architecture

I +ForModule_
-low'; int
-high: int
-PwriteScript(): void

._ +WhileModule
-conditionPath: Strinq
+writeScript(): void

._ +ll1_lodule
-conditionPath: Strinq
+writeScript(): void

V
I

----[>

I +Project T

1_ +writeScript(): voidi __'_

Legends: ".-:_-_ _ _. :::I
_ _-_,gg_:egatlon ::::I

: Oeneraiizatlon :: I

II +Graph

+writeScript('): yoid

t

+Modul_
-name: String
-directory: String

+writeSc_(): void

+NormalModule
-machineName: String
-executable: String
-dataPath: Strin.q
+writeScript(): void

+ModulelO
-name: String
-fileName: String
+writeScript(): void

+ModulePararrl_
-name: String
-value: String
+writeScript(): void

t

I I +Edge I
-from:Module
I-to:Module
+writeScript(): void

t-
+ e endp_ Info
-input: String
-outout: String
+writeScript(): void

Figure 2: Representation of Project and associated objects using UML

4. Application Specification

In our framework, a distributed application consists
of a collection of heterogeneous modules (application

codes from different disciplines). We are targeting
applications where these modules are very coarse grained.
A typical distributed application requires these modules to

be executed in some order and possibly on different

machines. For certain problems, a set of modules may
need to be executed iteratively, for example, until a
desired optimization criterion is reached.

In Arcade, each application is internally represented

as a Java Project object. Figure 2 provides the description
of the Project and associated objects in UML. Here

aggregation means the contains relationship.
Generalization means the is-a relationship. The number
on the arrow specifies the number of instances contained.

For example, * on the aggregation between Project and

Module means a Project can contain 0 to arbitrarily many
Modules. The generalization between Module and
NormalModule implies that NonnalModule is a kind of
Module.

The Project object consists of a vector of Module

objects. This is the central object in our framework. All
the information related to the application, both static and

dynamic, is stored within this object. The Project object is
a complex object that is shared by all the processes of the

middle tier, (cf. Figure i) and supports methods that are
used by these processes.

To be able to support a wide variety of distributed
applications, we support different types of modules. All
these modules have a common set of properties and,

hence, are derived from a general Mod,de object. Some
common attributes of the Module object are:

• Module Name

• Module Directory

• Input/Output Names.
The following types of modules derive from the general
Module:

• Normal Module: This is the basic module in our

framework and is used to represent the executable
parts in the applications. A Normal Module is
identified by its executable code, command line,

arguments, resource requirements, and input/output

file requirements.

• Loop Modules: These modules allow a set of
"'internal" modules to be iteratively executed.

There are two kinds of looping modules: For
Module for a predetermined number of iterations
and the While Module, where the iteration

condition is tested at the beginning of the loop.
These modules have a Project object, which

represents the set of internal modules.

• If Module: This module provides a mechanism for
testing the value of a condition. The truth-value of
the condition determines whether the modules in

the then-block or the else-block (if present) will be
executed.

• Hierarchical Module: An abstract Module

representing a subgraph, i.e., a recursively defined
collection of modules.

In the current prototype there are two ways to specify

distributed applications: visual based and XML-script.
We describe these two approaches in the next two
subsections. The first subsection talks about the visual

specification of the project and how a user can visually

specify an application. The second subsection talks about
how an application can be represented using the script-
based XML format.

4.1. Visual Specification

The visual specification applet allows a user to

graphically specify a heterogeneous application. The
objective is to support a visual specification, which is

intuitive to build, can be used for visual monitoring, and
works with the Web.

We have implemented a Java applet, as shown in
Figure 2, that provides a visual specification interface and

addresses some of these issues. In the background of the
figure, we can see the Application Editor window where

the user can graphically specify the modules that
comprise the application and their intercommunications.

When a module is specified, a separate pop-up window
appears allowing the user to specify the properties of the

module. In the bottom left of the figure, we have the
module information window for the Normal Module MI.

The application can be seen as a graph where a node
represents a module and the arcs represent data flow. It is

easy to see how a data flow-based application can be

modeled using such a system. When the output port of a
module is connected to the input port of another module,

another pop-up window appears allowing the user to
specify the interconnection. In the upper right of the
figure, we have a dependency information window where

the user is specifying a data flow between MI and M2.

N GraphEditor: all

[Unsigned Java Applet Window

Figure 3. Snapshots of the visual specification in Arcade

It becomes a little trickier to accommodate control

structures such as conditionals and iterations, in particular
when we want to use the visual specification for

monitoring too. We accommodate If Modules and Loop

Mo&des by restricting their bodies to be Hierarchical
Modules, which are specified through a separate window.
Thus, the modules labeled Then-block and Else-block

represent Hierarchical Modules abstracting the then and

else part of the If Module construct, respectively.
Similarly, the module Body, represents the loop body of

the for loop. Restricting the bodies of control structures to
Hierarchical Modules eases the task of specification and

allows the application to be visually represented.

However, it does not provide an integrated view of the
whole application in a single window, i.e., the body of a
control structure is always shown in a separate window.

In the bottom right of Figure 3, we have the module
information window for the Loop Module Loopl along

with its body.
The visual representation of an application described

above can also be used to monitor an application during
execution. A monitoring applet uses a pre-determined

color-scheme to indicate modules, which are pending, are

currently executing, and have finished execution.

4.2. XML-script Specification

Arcade supports XML based specification of a

heterogeneous application. The syntax of the script is
simple and the DTD for XML specifications can be found

at http:/Iwww.icase.edu/arcade/pr_oject.dtd. The XML-
based project specification consists of two parts:

specification of different types of modules used in the
Project object, and the dependency graph between these
modules. We now give sample XML specifications for

the Project followed by different types of modules and
the dependency graph. For simplicity, only important
attributes are shown here. For detailed, functionally

correct, and specifications please refer to the DTD.

As explained earlier in this section, all the modules
are bundled in a Project. A sample Project object looks
like this in XML:

<Project name=-"PathFinder"owner="ajakatda">

<XModule ...> "_ n number of times.
J

_JXModule ...>

<Graph>

</Graph>
</Project>

Here, XModule can be one of Normal, For, While, or

If modules described below. The Graph describes the
dependency information about the modules that comprise
the Project. The Project also has a name and an owner.

As we described earlier, all the modules are inherited

from a general Mod,de object. A sample Module looks
like this:

<Module name=-"M1"directory="/homelahmed/Pa_Finder"
startx="260" starry=-"52"endx=-'260"endy=-"28">

<ModulelO type="lnput" nam_"lOFileO"
filename="in l " extemal=-"i"editable=-"Y"/>
<ModulelO type=-"Output"nam_'lOFilel"
filename=-"outl" extemal=-"i"editable=-"Y"l>

</Module>

Along with the basic information, Module also stores
information about its input and output, and some

graphical information required by the visual

specifications.
A Normal Module is the basic module in our

framework. A sample XML specification of the Normal
Module looks like this:

<NormalModule dataPath="/homelahmed/PathFinder"
commandLine=-"-c$A $B" machineName="rose"
machineNameEditable=-"false"execName="M1">

<Module name="M1"...>

_/Module>
<ModuleParam name="A" value="90"/>
<ModuleParam name="B" value="100"/>

</NormalModule>

As one can notice along with the basic information like
executable code, command line, argument, and resource

requirements, it also stores some administrative
information, like can a user edit the parameters, and some
functional information such as machine name to execute
the Normal Module.

A For Module is used for representing the loops of

fixed repetitions. A sample For Mo&de looks like this in
XML:

<ForModule low="1"high='10">
<Module name="Loopl " ...>
</Module>
<Project name=-"Loopl" owner= "ajakatda">
<NormalModule ...>

</NormalModule>

_JProject>
</ForModule>

IIVisual Specification

ProjectSaver

Calls writeScript

Project method of the
' Obiect Project, which in

_ turns calls the

writeScript method of
all the Modules

recursively.

--- I 1XML Specification
I

I

/

_ Visual Specification

__ ProjectLoader calls

parser, which then

generates an empty
Project, all the
modules, and the

_ script graph. Finally, the

Projects are generated
recursively for the

complex modules, and

then added to Proiect.
1

1

1

-" I XML Specification
/

I

/

(a) (b)

Figure 4: Storing and retrieving of the Project object in XML

An If Module is used for representing the decision
scenario. A sample lfModule looks like this in XML:

<lfModule conditionPath="lhomelPathFinder/If/cond" >
<Module name="lF" ...>

</Module>
<Project name=-"thenProject"owner= "zubair'>

_'JProject>
<Project name=-"elseProject"owner= "zubair">

_JProject>
</IfModule>

The If Module also has a child called Module, as it is also

a type of general Module. Notice that If Module may have
two Projects in it. These are separated from each other by

their order. The first one is always treated as a Then
Project and the second one, if exists, is treated as an Else

Project.

The dependency is implemented using files or
signals. Consider sample modules Ml and M2, where an

input of M2 depends on an output of MI, (cf. Figure 3).
The Graph specification will look like this:

<Graph>
<Edge From=-"Ml" To="M2">
<Deplnfo Output="outl" /nput=-"outl"/>
</Edge>

</Graph>

4.3 Storing and Retrieving of the Project object

The user can design the project online using the
visual tools provided, or he/she can write an XML script

specification offline. We have to provide support for
conversion between these two formats.

Storing the Project Object: The ProjectSaver Class
starts the process of saving the Project. Each Class,

extending from Mod,de class, implements a procedure to
write itself to the file in XML format. So all the

components write themselves recursively to the specified
file (see Figure 4(a)).

Retrieving the Project Object: The Project parser
class implements the XML parser, which reads the XML
file and generates a Project along with its visual

information. It does so by generating an empty Project
first and then adding individual Modules to it. As shown

in Figure 4(b), the Project loader class calls this parser.

5. Conclusion

In this paper, we have described the application
specification interfaces for Arcade, a web-based

environment for distributed heterogeneous applicatibns.
We describe two interfaces: visual and script based. The

visual interface has been designed to allow users to drag

and drop modules providing the information required for
each module. The dependencies between modules can

f

also be specified graphically. The system also supports

control dependencies using hierarchical modules to
specify the bodies of loops and the then and else blocks of
conditionals. Such an approach shows just the data

dependencies at each level, hiding the control structure in
the hierarchy. The visual representation is, thus, clean

with no cluttering of control and data dependencies.

However, this approach does not seem to provide an
overall view of the application in a single window forcing

users to look through multiple windows. We are currently
experimenting with other views.

The second interface is script based. We use an

XML-based script for offline specification of the
application. We can, thus, leverage off XML tools to

build the interfaces. The use of XML also provides a
more standard approach to specifying distributed

applications that presents the opportunity of inter-
framework portability of such specifications. We are
currently exploring the translations required for such

inter-operability.

Acknowledgment

This work was supported by the National Aeronautics and

Space Administration under NASA Contract No. NAS1-
97046 while the authors were in residence at ICASE,

NASA Langley Research Center, Hampton, VA 23681.

References

[1] D. Bhatia, V. Burzevski, M. Camuseva, G. Fox, W.
Furmanski, and G. Premchandran, "WebFlow: a

visual programming paradigm for Web/Java based

coarse grain distributed computing," Concurrency:
Practice and Experience, Java Special Issue, vol 9(6),
March 1997, pp. 555-578.

[2] H. Casanova and J. Dongarra, "NetSolve: A Network
Enabled Server, Examples and Users," Proceedings

of Heterogeneotls Computing Workshop, Orlando,
Florida, 1998.

[3] Z. Chen, K. Maly, P. Mehrotra, and M. Zubair,
"ARCADE: A Web-Java Based Framework for

Distributed Computing", WebNet 99, October 1999.

[4] Z. Chen, K. Maly, P. Mehrotra, P. Vangala and M.
Zubair. "Web-based Framework for Distributed

Computing," Concurrency: Practice and Experience,

Java Special Issue, vol 9(11), November 1997, pp.
1175-1180.

[5] I. Foster and C. Kesselman, "Globus: A

Metacomputing Infrastructure Toolkit," International
Journal of Supercomputer Applications, Volume

11(2), 1997, pp. 115-128.

[6] P. Gray and V. Sunderam. "IceT: Distributed
Computing and Java," Concurrency: Practice and

Experience, Java Special Issue, vol 9(11), November
1997, pp. 1161-1168.

[7] K. J. Goldman, B. Swaminathan, T. Paul McCartney,
M. D. Anderson, and R. Sethu-raman. "The

Programmers' Playground: I/O Abstraction for User-
Configurable Distributed Applications," IEEE

Transactions on Software Engineering, 21(9),
September 1995, pp. 735-746.

[8] HENCE (Heterogeneous Network Computing
Environment), http:llwww.netlib.orglhence/.

[9] G. Von Laszewski, I. Foster, "Grid Infrastructure to

Support Science Portals for Large Scale

Instruments," Proceedings of the Workshop

Distributed Computing on the Web (DCW), 1999.
[10]K. Maly, S. Kelkar and M. Zubair. "Scientific

Computing using pPVM," International Conference
on Parallel Processing, vol 2, August 1994, pp. 201 -
205.

[11] Message Passing Interface Forum. "MPI: A Message-

Passing Interface Standard Version 2.0 Technical
Report," Computer Science Department, University
of Tennessee, Knoxville, Tennessee, 1997.

[12]Multidisciplinary Optimization Branch (MDOB) at
NASA Langley Research Center, http://fmad-

www.larc.nasa.gov/mdob/MDOB/index.html.
[13]H. Nakada, M. Sato and S. Sekiguchi, "Design and

Implementations of Ninf: Towards a Global

Computing Infrastructure," Future Generation
Computing Systems, Metacomputing Issue, 1999.

[14]J. C. Peterson, "Multidisciplinary Integrated Design

Assistant For Spacecraft (MIDAS),'"
http://mishkin.jpl.nasa.gov/Midas Page.

[15] Product Realization Environment,

http:/Iwwwcollab.ca.sandia.govlpre.
[16]V. Sunderam. "PVM: A Framework for Parallel

Distributed Computing," Concurrency: Practice and

Experience, vol 2 No 4, December 1990.
[17]H. Topcuoglu, S. Hariri, D. Kim, Y. Kim, X. Bing, B.

Ye, I. Ra, and J. Valente, ''The Design and

Evaluation of a Virtual Distributed Computing
Environment," The Journal of Networks, Software

Tools and Applications, Cluster Computing, 1998.
[18]R. P. Weston, J. C. Townsend, T. M. Eidson, and R.

L. Gates. "A Distributed Computing Environment for
Multidisciplinary Design," 5th

AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, Panama
City, FL, AIAA 94-4372, September 7-9, 1994.

