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Abstract 

 
We propose to implement the XNOR Neural Networks 

(XNOR-Net) on FPGA where both the weight filters and 
the inputs of convolutional layers are binary. XNOR-Net is 
regarded simple, accurate, efficient, and work on 
challenging visual tasks with portable devices and 
embedded systems. We also evaluate the high order 
quantization method which is expected to solve the loss of 
accuracy issue on XNOR-net. 
 

1. Introduction 
Convolutional neural networks (CNN) has reliable 

outcomes on object recognition, detection, and 
classification, etc. However, CNN-based recognition 
frameworks require very high computational power and 
large amounts of memory. Deep neural networks suffer 
from over-parameterization and very high redundancy in 
their models, which results in inefficient computation and 
memory usage. While GPU-based machines have 
performed well on expensive, they are often not suitable 
for portable devices and embedded systems. Currently, 
power consumption has drawn massive attentions from 
mobile devices. Tasks like real-time text detection, object 
detection, environment emergency alerting on devices, 
like glasses, would drain its battery quickly. We evaluated 
different methods to solve this issue and chose to 
implement XNOR-Net on FPGA since it’s proved very 
efficient and resource saving. The input of our model is 
small datasets CIFAR-10 and MNIST for classifications. 
 

2. Related Work 
There are several approaches proposed to achieve 

efficient training and inference processing in deep neural 
works.  

2.1. Using shallow networks 

The most straightforward solution is using shallower 
model can reduce the size of network. [1] proves with 

CIFAR-10 that shallow nets are able to achieve the same 
function as deep nets. However, with a large dataset like 
SIFT feature classification on ImageNet, the shallow nets 
can’t perform so well [2-3]. 

2.2. Compressing pre-trained deep networks 

Cut-off or pruning extra, redundant, or non-informative 
weights in a trained network is able to reduce the size of 
the network while processing inference. Through pruning 
on some state-of-the-art networks, [4] is able decrease the 
number of parameters by an order of magnitude without 
affecting their accuracy by learning only the important 
connections. [5] reduces the number of activations for 
compression and acceleration. Also, deep compression [6] 
achieves less storage and energy to run inference on large 
networks which is able to be deployed on portable devices. 
As we can notice, this approach needs the network to be 
pre-trained and then pruning. 

2.3. Quantizing parameters 

According to researches, to achieve high performance 
in deep neural networks, it’s not required to use high 
precision parameters. [7] quantized the weights of fully 
connected layers (FCC) using vector quantization 
techniques. Through only thresholding the weight values 
at zero would only drop the top-1 accuracy by less than 10 
percent. [8] provided a new algorithm for training a sparse 
networks with only three (+1/0/-1) weights. [9] proposed a 
fixed-point implementation of 8-bit integer was compared 
with 32-bit floating point activations. Similarly, [10] also 
proposed another fixed-point network with ternary weights 
and 3-bits activations. [11] quantize a network with L2 
error minimization getting better accuracy on MNIST and 
CIFAR-10 datasets. [12] proposed a back-propagation 
flow via quantizing the representations at each layer of the 
network. 

2.4. Network binarization 

There are several approaches attempt to binarize the 
weights and the activation functions in the network. [13] 
proposed the expectation backpropagation (EBP), which is 
proved to have high performance achieving through a  

 
XNOR Neural Networks on FPGA 

 
Fang Lin  

flin4@stanford.edu 
 

 
 

 



 

226 

network with binary weights and binary activations. 
While, in EBP the binarized parameters were only used 
during inference. [14] presented a fully binary network 
running real-time using a similar approach as EBP, which 
has improved a lot in efficiency. Introducing the 
probabilistic idea within the EBP, [15] proposed 
BinaryConnect, which uses the real-valued version of the 
weights as a key reference for the binarization process. 
While it can perform well on small datasets (e.g. CIFAR-
10, SVHN), it can’t behave well on large-scale datasets 
(e.g., ImageNet). [16] propose an extension of 
BinaryConnect, BinaryNet, where both weights and 
activations are binarized. Similarly, [17] proposed XNOR-
Net, where both the filters and the input to convolutional 
layers are binary but has different binarization method and 
network architecture. It approximate convolutions using 
primarily binary operations which achieve 58x faster 
convolutional operations and 32x memory savings. 
Interestingly, [18] pointed out that the noise introduced by 
weight binarization provides a form of regularization, 
which can improve the accuracy. [20] combines the 
previously trained neural network with binary weights and 
binary inputs. It also replaces float multiplication with bit 
XNOR and float addition with bit counting. Specifically, 
we choose XNOR-Net which only need to do XNOR 
between inputs and weighs in one layer and the outpu to 
next layer is activated if the counts of 1s is greater than a 
threshold.  

2.5. Our approach 

Specifically, we choose XNOR-Net which only need to 
do XNOR between inputs and weighs in one layer and the 
outpu to next layer is activated if the counts of 1s is 
greater than a threshold. By this change, the workload 
pattern becomes very suitable and highly parallelizable for 
FPGA, at the expense of only a small decrease of 
accuracy.  

3. Methods 
Since we choose to implement XNOR-Net, the main 

reference is [20].  
For FPGA implementation, we refer to [22-28] with our 

own optimizations. 
The complexity of deep convolutional networks could 

be split into two major parts. First part, the convolutional 
layers which contain around 90% of the arithmetic 
operations. So, our target for the energy-efficient 
accelerator is 1) offer a large enough computational 
throughput and 2) offer a memory-bandwidth which is 
able to keep the processing elements running. First of all, 
we seek to decrease the number of interconnections of the 
fully-connected neural networks. The totally number of 
weights grows exponentially with the a number of nodes. 
If using traditional method, say our fully connected 

network layers have 1024 inner nodes for each hidden 
layer, which sums to more than a million interconnections 
in real hardware. This is definitely not acceptable and 
impractical. Thus, our first task is to reduce the number of 
interconnections. FCC layers and convolutional layers 
consist of additions and multiplications, while the latter 
needs a much larger chip area.  Motivated by the former 
experiences, through using integer power of two weights 
is able to  turn multiplications into bit shifts, which 
significantly decrease amount of energy. We choose the 
similar approach as [29], to use an indirect connection 
between two nodes instead of using direct connection. 
First rearrange the contribution of each node due to 
commutative property and then express computation 
procedure between different layers with a matrix 
multiplication operation. In this case, we can use shift and 
elementwise multiplication only instead of using matrix 
multiplication through rearranging the weights by 
diagonal. Though we choose limit the weights in positive, 
it’s quite easy to adapt the approximation process to 
positive and negative both. As we all know, the 
computation of convolutions plus FCC mainly consist of 
multiply-and-accumulate process.  

The methods are able to decrease the number of 
interconnections from more than a million to around 2K 
for each hidden layer, which can achieve 500 times 
resource saving similar as Song mentioned on the guest 
introduction of deep compression. Combining the 
optimization mentioned above with the XNOR-net 
mechanism provided by [20], our implementation on 
hardware is presented in Fig. 1, which inputs binary and 
outputs binary numbers.  

 

 
Figure 1: Hardware Implementation of XNOR-net FCC 
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Figure 2: Hardware Setup 

  

4. Dataset and Features 
We choose to use same architecture as in [11] Theano 

experiments. Applying shift-based AdaMax and BN (with 
a mini batch of size 200) instead of the vanilla 
implementations to reduce the number of multiplications. 
Likewise, we decay the learning rate by using a 1-bit right 
shift every 50 epochs. BC and BNN showed near  state-of-
the-art performance on CIFAR-10, MNIST. BWN and 
XNOR-Net on CIFAR-10 using the same network 
architecture as BC and BNN achieve the error rate of 
9.88% and 10.17%, respectively [20]. The prototype code 
is available on my github: 
https://github.com/PhoenixShield/XNOR-net.git 

5. Results and Comparisons 
For scientific comparing, we implemented the FCC 

version focusing on digit classification using MNIST 
dataset. The board we are using is Altera DE1-SoC which 
works on 50MHz clock. The standard development tool-
chain starts with a Python-Theano based implementation 
of the algorithm, which then undergoes tons of testing to 
make sure it’s function correctly. Based on the verified 
python prototype, we finished the hardware 
implementation using Verilog HDL. 

 
Although our scheme is fully parametrical, we fix the 

number of hidden layer nodes as 1024 the same as the 

state-of-the art counterparts. Also, after bottleneck 
analysis, we found that our scheme is bounded by the 
bandwidth. In order for minimize the cost of loading data, 
we choose the batch process trick. That is to duplicate the 
scheme as many times as it can use the chip pins as much 
as possible. On our board, we duplicate twice which 
achieves 3x faster. It turns out that our approach behave 
better (use less resources) than others who uses faster 
FPGAs. 

We also compare our results with the results from [30] 
who has the state-of-the-art approach similar as ours. It 
turns our that our optimized scheme performs better than 
theirs. Comparing our results on MNIST dataset, if regard 
to cycles instead of absolute time (since we want to avoid 
the difference between boards), our optimized scheme 
behave 3x more throughput than [30]. Remember that due 
to the parallel mechanism, we can always achieve higher 
through once more resources are available. 

 
Figure 3: Comparison between our design and baseline (a) 
 
Also, our design has a 25 times lower latency than [30].  
 

 
Figure 4: Comparison between our design and baseline (b) 
 
Regards to power consumption, [30] has the real power 

measurement at 1mJ per image, while our optimized 
scheme shows 0.78mJ cost per image according to the 
Altera power simulator. 
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Figure 5: Comparison between our design and baseline (c) 
 
According to the results shown above, our optimized 

implementation of neural networks saves the on-chip 
resources significantly through using XNOR-net and is 
able to achieve on-pair accuracy as non XNOR-net. Also, 
our optimized scheme cost less power than the state-of-
the-art design.  

 

6. Future Work 

6.1. Network Pruning 

Neural network pruning has been widely studied to 
compress CNN models [31] - tarting by learning the 
connectivity via normal network traning, and then prune 
the small-weight connections. As shown in [31], pruning 
is able to reduce the number of parameters by 9x and 13x 
for AlexNet and VGG-16 model. We believe combining 
with network pruning the XNOR-net, we can squeeze the 
network size much smaller into next level. 

6.2. Trained Tenary Quantization 

[21] proposed a trained tenary quantization (TTQ), 
which is able to reduce the precision of weights in neural 
networks to ternary values. It proves a very little accuracy 
degradation with a not much aggressive quantized weights 
than XNOR-Net. They claimed a 32x smaller model size 
improvement. We assume by applying a tenary 
quantization instead of binarization, we might be able to 
improve our model accuracy into next level. 
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