

225

Abstract

We propose to implement the XNOR Neural Networks

(XNOR-Net) on FPGA where both the weight filters and
the inputs of convolutional layers are binary. XNOR-Net is
regarded simple, accurate, efficient, and work on
challenging visual tasks with portable devices and
embedded systems. We also evaluate the high order
quantization method which is expected to solve the loss of
accuracy issue on XNOR-net.

1. Introduction
Convolutional neural networks (CNN) has reliable

outcomes on object recognition, detection, and
classification, etc. However, CNN-based recognition
frameworks require very high computational power and
large amounts of memory. Deep neural networks suffer
from over-parameterization and very high redundancy in
their models, which results in inefficient computation and
memory usage. While GPU-based machines have
performed well on expensive, they are often not suitable
for portable devices and embedded systems. Currently,
power consumption has drawn massive attentions from
mobile devices. Tasks like real-time text detection, object
detection, environment emergency alerting on devices,
like glasses, would drain its battery quickly. We evaluated
different methods to solve this issue and chose to
implement XNOR-Net on FPGA since it’s proved very
efficient and resource saving. The input of our model is
small datasets CIFAR-10 and MNIST for classifications.

2. Related Work
There are several approaches proposed to achieve

efficient training and inference processing in deep neural
works.

2.1. Using shallow networks

The most straightforward solution is using shallower
model can reduce the size of network. [1] proves with

CIFAR-10 that shallow nets are able to achieve the same
function as deep nets. However, with a large dataset like
SIFT feature classification on ImageNet, the shallow nets
can’t perform so well [2-3].

2.2. Compressing pre-trained deep networks

Cut-off or pruning extra, redundant, or non-informative
weights in a trained network is able to reduce the size of
the network while processing inference. Through pruning
on some state-of-the-art networks, [4] is able decrease the
number of parameters by an order of magnitude without
affecting their accuracy by learning only the important
connections. [5] reduces the number of activations for
compression and acceleration. Also, deep compression [6]
achieves less storage and energy to run inference on large
networks which is able to be deployed on portable devices.
As we can notice, this approach needs the network to be
pre-trained and then pruning.

2.3. Quantizing parameters

According to researches, to achieve high performance
in deep neural networks, it’s not required to use high
precision parameters. [7] quantized the weights of fully
connected layers (FCC) using vector quantization
techniques. Through only thresholding the weight values
at zero would only drop the top-1 accuracy by less than 10
percent. [8] provided a new algorithm for training a sparse
networks with only three (+1/0/-1) weights. [9] proposed a
fixed-point implementation of 8-bit integer was compared
with 32-bit floating point activations. Similarly, [10] also
proposed another fixed-point network with ternary weights
and 3-bits activations. [11] quantize a network with L2
error minimization getting better accuracy on MNIST and
CIFAR-10 datasets. [12] proposed a back-propagation
flow via quantizing the representations at each layer of the
network.

2.4. Network binarization

There are several approaches attempt to binarize the
weights and the activation functions in the network. [13]
proposed the expectation backpropagation (EBP), which is
proved to have high performance achieving through a

XNOR Neural Networks on FPGA

Fang Lin

flin4@stanford.edu

226

network with binary weights and binary activations.
While, in EBP the binarized parameters were only used
during inference. [14] presented a fully binary network
running real-time using a similar approach as EBP, which
has improved a lot in efficiency. Introducing the
probabilistic idea within the EBP, [15] proposed
BinaryConnect, which uses the real-valued version of the
weights as a key reference for the binarization process.
While it can perform well on small datasets (e.g. CIFAR-
10, SVHN), it can’t behave well on large-scale datasets
(e.g., ImageNet). [16] propose an extension of
BinaryConnect, BinaryNet, where both weights and
activations are binarized. Similarly, [17] proposed XNOR-
Net, where both the filters and the input to convolutional
layers are binary but has different binarization method and
network architecture. It approximate convolutions using
primarily binary operations which achieve 58x faster
convolutional operations and 32x memory savings.
Interestingly, [18] pointed out that the noise introduced by
weight binarization provides a form of regularization,
which can improve the accuracy. [20] combines the
previously trained neural network with binary weights and
binary inputs. It also replaces float multiplication with bit
XNOR and float addition with bit counting. Specifically,
we choose XNOR-Net which only need to do XNOR
between inputs and weighs in one layer and the outpu to
next layer is activated if the counts of 1s is greater than a
threshold.

2.5. Our approach

Specifically, we choose XNOR-Net which only need to
do XNOR between inputs and weighs in one layer and the
outpu to next layer is activated if the counts of 1s is
greater than a threshold. By this change, the workload
pattern becomes very suitable and highly parallelizable for
FPGA, at the expense of only a small decrease of
accuracy.

3. Methods
Since we choose to implement XNOR-Net, the main

reference is [20].
For FPGA implementation, we refer to [22-28] with our

own optimizations.
The complexity of deep convolutional networks could

be split into two major parts. First part, the convolutional
layers which contain around 90% of the arithmetic
operations. So, our target for the energy-efficient
accelerator is 1) offer a large enough computational
throughput and 2) offer a memory-bandwidth which is
able to keep the processing elements running. First of all,
we seek to decrease the number of interconnections of the
fully-connected neural networks. The totally number of
weights grows exponentially with the a number of nodes.
If using traditional method, say our fully connected

network layers have 1024 inner nodes for each hidden
layer, which sums to more than a million interconnections
in real hardware. This is definitely not acceptable and
impractical. Thus, our first task is to reduce the number of
interconnections. FCC layers and convolutional layers
consist of additions and multiplications, while the latter
needs a much larger chip area. Motivated by the former
experiences, through using integer power of two weights
is able to turn multiplications into bit shifts, which
significantly decrease amount of energy. We choose the
similar approach as [29], to use an indirect connection
between two nodes instead of using direct connection.
First rearrange the contribution of each node due to
commutative property and then express computation
procedure between different layers with a matrix
multiplication operation. In this case, we can use shift and
elementwise multiplication only instead of using matrix
multiplication through rearranging the weights by
diagonal. Though we choose limit the weights in positive,
it’s quite easy to adapt the approximation process to
positive and negative both. As we all know, the
computation of convolutions plus FCC mainly consist of
multiply-and-accumulate process.

The methods are able to decrease the number of
interconnections from more than a million to around 2K
for each hidden layer, which can achieve 500 times
resource saving similar as Song mentioned on the guest
introduction of deep compression. Combining the
optimization mentioned above with the XNOR-net
mechanism provided by [20], our implementation on
hardware is presented in Fig. 1, which inputs binary and
outputs binary numbers.

Figure 1: Hardware Implementation of XNOR-net FCC

227

Figure 2: Hardware Setup

4. Dataset and Features
We choose to use same architecture as in [11] Theano

experiments. Applying shift-based AdaMax and BN (with
a mini batch of size 200) instead of the vanilla
implementations to reduce the number of multiplications.
Likewise, we decay the learning rate by using a 1-bit right
shift every 50 epochs. BC and BNN showed near state-of-
the-art performance on CIFAR-10, MNIST. BWN and
XNOR-Net on CIFAR-10 using the same network
architecture as BC and BNN achieve the error rate of
9.88% and 10.17%, respectively [20]. The prototype code
is available on my github:
https://github.com/PhoenixShield/XNOR-net.git

5. Results and Comparisons
For scientific comparing, we implemented the FCC

version focusing on digit classification using MNIST
dataset. The board we are using is Altera DE1-SoC which
works on 50MHz clock. The standard development tool-
chain starts with a Python-Theano based implementation
of the algorithm, which then undergoes tons of testing to
make sure it’s function correctly. Based on the verified
python prototype, we finished the hardware
implementation using Verilog HDL.

Although our scheme is fully parametrical, we fix the

number of hidden layer nodes as 1024 the same as the

state-of-the art counterparts. Also, after bottleneck
analysis, we found that our scheme is bounded by the
bandwidth. In order for minimize the cost of loading data,
we choose the batch process trick. That is to duplicate the
scheme as many times as it can use the chip pins as much
as possible. On our board, we duplicate twice which
achieves 3x faster. It turns out that our approach behave
better (use less resources) than others who uses faster
FPGAs.

We also compare our results with the results from [30]
who has the state-of-the-art approach similar as ours. It
turns our that our optimized scheme performs better than
theirs. Comparing our results on MNIST dataset, if regard
to cycles instead of absolute time (since we want to avoid
the difference between boards), our optimized scheme
behave 3x more throughput than [30]. Remember that due
to the parallel mechanism, we can always achieve higher
through once more resources are available.

Figure 3: Comparison between our design and baseline (a)

Also, our design has a 25 times lower latency than [30].

Figure 4: Comparison between our design and baseline (b)

Regards to power consumption, [30] has the real power

measurement at 1mJ per image, while our optimized
scheme shows 0.78mJ cost per image according to the
Altera power simulator.

228

Figure 5: Comparison between our design and baseline (c)

According to the results shown above, our optimized

implementation of neural networks saves the on-chip
resources significantly through using XNOR-net and is
able to achieve on-pair accuracy as non XNOR-net. Also,
our optimized scheme cost less power than the state-of-
the-art design.

6. Future Work

6.1. Network Pruning

Neural network pruning has been widely studied to
compress CNN models [31] - tarting by learning the
connectivity via normal network traning, and then prune
the small-weight connections. As shown in [31], pruning
is able to reduce the number of parameters by 9x and 13x
for AlexNet and VGG-16 model. We believe combining
with network pruning the XNOR-net, we can squeeze the
network size much smaller into next level.

6.2. Trained Tenary Quantization

[21] proposed a trained tenary quantization (TTQ),
which is able to reduce the precision of weights in neural
networks to ternary values. It proves a very little accuracy
degradation with a not much aggressive quantized weights
than XNOR-Net. They claimed a 32x smaller model size
improvement. We assume by applying a tenary
quantization instead of binarization, we might be able to
improve our model accuracy into next level.

References
[1] Ba, J., Caruana, R.: Do deep nets really need to be deep?.

Advances in neural information processing systems. 2654–
2662, 2014.

[2] Seide, F., Li, G., Yu, D. Conversational speech transcription
using context-dependent deep neural networks.
Interspeech,437–440, 2011.

[3] Dauphin, Y.N., Bengio, Y. Big neural networks waste
capacity. arXiv preprint arXiv, 1301–3583, 2013.

[4] Han, S., Pool, J., Tran, J., Dally, W., Learning both weights
and connections for efficient neural network., Advances in
Neural Information Processing Systems, 1135-1143, 2015.

[5] Van Nguyen, H., Zhou, K., Vemulapalli, R., Cross-domain
synthesis of medical images using efficient location-
sensitive deep network., Medical Image Computing and
Computer-Assisted Intervention-MICCAI, 677-684, 2015.

[6] Han, S., Mao, H., Dally, W.J., Deep compression:
Compressing deep neural networks with pruning, trained
quantization and Huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[7] Gong, Y., Liu, L., Yang, M., Bourdev, L., Compressing
deep convolutional networks using vector quantization.,
arXiv preprint arXiv:1412.6115, 2014.

[8] Arora, S., Bhaskara, A., Ge, R., Ma, T.: Provable bounds
for learning some deep representations. arXiv preprint
arXiv:1310.6343, 2013.

[9] Vanhoucke, V., Senior, A., Mao, M.Z.: Improving the speed
of neural networks on cpus. In: Proc. Deep Learning and
Unsupervised Feature Learning NIPS Workshop. Volume
1., 2011

[10] Hwang, K., Sung, W.: Fixed-point feedforward deep neural
network design using weights+ 1, 0, and- 1. In: Signal
Processing Systems (SiPS), 2014 IEEE Workshop on, IEEE
(2014) 1–6

[11] Anwar, S., Hwang, K., Sung, W.: Fixed point optimization
of deep convolutional neural networks for object
recognition. In: Acoustics, Speech and Signal Processing
(ICASSP), 2015 IEEE International Conference on, IEEE
(2015) 1131–1135

[12] Lin, Z., Courbariaux, M., Memisevic, R., Bengio, Y.:
Neural networks with few multiplica- tions. arXiv preprint
arXiv:1510.03009, 2015

[13] Soudry, D., Hubara, I., Meir, R.: Expectation
backpropagation: parameter-free training of multilayer
neural networks with continuous or discrete weights. In:
Advances in Neural Information Processing Systems. 963–
971, 2014.

[14] Esser, S.K., Appuswamy, R., Merolla, P., Arthur, J.V.,
Modha, D.S.: Backpropagation for energy-efficient
neuromorphic computing. In: Advances in Neural
Information Processing Systems., 1117–1125, 2015.

[15] Courbariaux, M., Bengio, Y., David, J.P.: Binaryconnect:
Training deep neural networks with binary weights during
propagations. In: Advances in Neural Information
Processing Systems. 3105–311, 2015.

[16] Courbariaux, M., Bengio, Y.: Binarynet: Training deep
neural networks with weights and activations constrained to
+1 or -1. CoRR, 2016.

[17] Mohammad R., Vicente O., Joseph R., XNOR-Net:
ImageNet Classification Using Binary Convolutional
Neural Networks, arXiv:1603.05279, 2016.

[18] Wan, L., Zeiler, M., Zhang, S., Cun, Y.L., Fergus, R.:
Regularization of neural networks us- ing dropconnect. In:
Proceedings of the 30th International Conference on
Machine Learning (ICML-13).,1058–1066, 2013.

[19] Kim, M., Smaragdis, P.: Bitwise neural networks. arXiv
preprint arXiv:1601.06071, 2016.

229

[20] Mohammad R., Vicente O., Joseph R., XNOR-Net:
ImageNet Classification Using Binary Convolutional
Neural Networks, arXiv, 1603.05279, 2016.

[21] Chenzhuo Z., Song H., Huizi M., Trained Ternary
Quantization,. arXiv: 1612.01064, 2017.

[22] Andri, R., Cavigelli, L., Rossi, D., & Benini, L. (2016).
YodaNN: An Ultra-Low Power Convolutional Neural
Network Accelerator Based on Binary Weights. arXiv
preprint arXiv:1606.05487.

[23] Lukas Cavigelli, David Gschwend, Christoph Mayer,
Samuel Willi, Beat Muheim, Luca Benini, "Origami: A
Convolutional Network Accelerator", Proc. ACM/IEEE
GLS-VLSI'15

[24] F. Conti, L. Benini, "A Ultra-Low-Energy Convolution
Engine for Fast Brain-Inspired Vision in Multicore
Clusters", Proc. ACM/IEEE DATE'15

[25] Yu-Hsin Chen, Tushar Krishna, Joel Emer, Vivienne Sze,
"Eyeriss: An Energy-Efficient Reconfigurable Accelerator
for Deep Convolutional Neural Networks", Proc. ISSCC'16.

[26] C. Farabet, B. Martini, B. Corda, P. Akselrod, E.
Culurciello and Y. LeCun, "NeuFlow: A Runtime
Reconfigurable Dataflow Processor for Vision", Proc. IEEE
ECV'11@CVPR'11

[27] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun
Xiao, Jason Cong, "Optimizing FPGA-based Accelerator
Design for Deep Convolutional Neural Networks", Proc.
FPGA'15

[28] L. Cavigelli, M. Magno, L. Benini, "Accelerating real-time
embedded scene labeling with convolutional networks",
Proc. ACM/IEEE/EDAC DAC'15

[29] Y, Yunfan, Huang, Yayun, http://arainhyy.github.io
[30] P. Jinhwan, S. Wongyong, Fpga Based Implementation of

Deep Neural Network Using On-chip Memory Only, arXiv
preprint arXiv: 1602.01616, 2016

[31] H., Song, M. Huizi, J. D Wiliam, Deep Compression:
Compressing Deep Neural Networks With Pruning, Tained
Quantization And Huffman Coding, arXiv: 1510.00149,
2016

