
Tensilica Datasheet

Cadence provides system-on-chip (SoC) designers with the world’s first and only configurable and extensible processor cores
fully supported by automatic hardware and software generation. Cadence® Tensilica® Xtensa® processors, such as the Xtensa
LX6 dataplane processing units (DPUs), enable SoC designers to add flexibility and longevity to their designs through software
programmability as well as differentiation through processor implementations tailored for the specific application.

Xtensa LX6 Customizable DPU
High performance with flexible I/Os and wide data fetches

Features
• Highly efficient, small, low-power 32-bit base architecture

• Configurable over a wide range of pre-verified options
including 10 different digital signal processing (DSP)
choices

• Extend with designer-defined, application-specific
instructions, execution units, register files, and I/Os

• Virtually unlimited I/O bandwidth with multiple, wide,
designer-defined FIFO, GPIO, and lookup interfaces

• Selectable 5- or 7-stage pipeline depth for core instruction
set architecture (ISA), plus extended DSP pipelines up to 11
stages

• Local memories configurable up to 8MB with option for
memory parity or ECC

• Up to 128b-wide flexible-length instruction extensions
(FLIX) instructions

• Multi-core on-chip debug (OCD) with break-in/break-out

• Dual-load/stores each up to wide with data cache support
and multi-bank RAM support

• Power domains for power shut-off

• Semantic and memory data gating

• Compatible interfaces for ARM® CoreSight™ debug and
trace technology

• IEEE 754-compliant single-/double-precision scalar
floating-point unit

• Complete matching software development tool chain
automatically generated for each core

Benefits
• Develop hardware for complex dataplane processing

significantly faster compared to pure RTL methods

• High-bandwidth data flow through processor with flexible
I/O interfaces that are independent of the system bus

• Quickly and easily scale hardware architecture with
task-customized processors

• Lower verification effort with pre-verified, correct-by-
construction RTL generation

• Post-silicon programmability

• Accurate high-speed processor and system simulation
models automatically created for software development

• Simplified multi-core debugging

• Huge bandwidth, more parallelism to reduce cycle counts

• Low-leakage power design

• Dynamic power savings

• Easy integration into an ARM CoreSight interface-based
debug and trace infrastructure

• Single-/double-precision scalar floating-point options to
match the exact application requirements

• Mature, highly optimizing C/C++ compiler means you can
work at the ‘C’ level for most applications

2

Xtensa LX6 Customizable DPU

www.cadence.com

Processors for the Challenges of the SoC
Dataplane

DPU
Xtensa LX6

RTL

System Blocks

System Bus

RTL
RAM, Cache

Scratchpad,
Lookup Memory

RTL,
Peripherals

Figure 1. Xtensa LX6 DPU: Flexible direct connections
allow RTL-like throughput

Inside today’s complex systems on chips (SoCs), you can find many
different processors from general-purpose processors to function-
specific offload engines that add programmability and flexibility.
Although general-purpose embedded processors can handle
most of the control tasks well, they lack the bandwidth needed to
perform complex, data-processing tasks such as network packet
processing, video processing, and digital cryptography. Chip
designers have long turned to hardwired logic (blocks of RTL) to
implement these key functions. The problem with the RTL blocks
is that they take too long to design, take even longer to verify, and
are not programmable.

Xtensa LX6 DPUs are configurable and extensible and ideal for
handling complex compute-intensive digital signal processing (DSP)
applications where a register-transfer level (RTL) implementation
may be the only other option.

Configurable

You are offered a menu of pre-verified checkbox and drop-down
options ranging from memory size and width to complex DSP
functions.

Extensible

You can use the Tensilica Instruction Extension (TIE) methodology,
based on the Verilog language, to implement datapath elements in
the processor pipeline and add more I/Os. The control finite state
machine (FSM) for datapath elements is implemented as software
running on the processor. Just specify the functional behavior of
the datapath and the RTL is automatically generated, along with
the full matching software tool chain and models.

Feature Overview
• Modern ISA with true multi-generational compatibility

• Xtensa ISA fundamentally architected for extensibility

• Base instruction set of 80 RISC instructions for compatibility
across every Xtensa core

• Dozens of available optional blocks

• Any differentiating designer-defined instructions written since
1998 can still be re-used today

Optional pre-defined execution units

• 32-bit multiplier and/or 16-bit multiplier and MAC

• IEEE 754-compliant single-/double-precision scalar
floating-point unit

• Double-precision scalar floating-point acceleration

• 3-way 64-bit FLIX (FLIX3) for interleaved very long instruction
word (VLIW) and regular instructions

• Pre-defined 32-bit GPIO and FIFO-like queue interfaces

Optional execution units (additional licensing)

• ConnX D2 DSP engine

• ConnX Vectra LX DSP engine

• ConnX Vectra VMB for baseband acceleration

• ConnX BBE16, BBE32-EP, and BBE64-EP baseband engines

• HiFi-3, HiFi EP, HiFi-2, and HiFi Mini Audio/Voice DSPs

• IVP-EP 32-way SIMD Imaging/Video DSP

Differentiate with designer-defined instructions

• Make your specific algorithm run even more efficiently by
adding the instructions it needs

• Development tools automatically adapt for full support

Natural connectivity with RTL blocks

• Multiple custom-width I/O ports for peripheral control and
monitoring

• Multiple custom-width queue interfaces to FIFOs for data
streaming into and out of the processor

• Co-simulation with RTL down to the pin level in SystemC

Highly configurable interfaces

• Optional processor interface (PIF) to system bus, choice of 32-,
64-, or 128-bit width with in-bound slave DMA option

• Optional ARM AMBA® AXI and AHB-Lite interfaces with
synchronous or asynchronous clocking

• Write buffer, selectable from 1 to 32 entries

• Up to 128b-wide instructions and up to two 512b-wide load/
stores and hardware prefetch unit

• Optional second data load/store unit with data cache support

• Choice of 1-, 2-, or 4-way cache and local memories

• Up to 32 interrupts

Multi-core design style support

• Multi-core system creation, modeling, and SystemC
co-simulation out-of-the-box, fully supported within the Xtensa
Xplorer™ integrated design environment (IDE)

• Homogenous and heterogeneous subsystems supported

• Inter-core OCD with break-in/out control

• Optional 16-bit processor ID, supporting massively parallel array
architectures

• Conditional store instruction option and synchronization library
provide shared memory semaphore operations and the “release
consistency model” of memory access ordering

3

Xtensa LX6 Customizable DPU

www.cadence.com

Complete hardware implementation and verification
flow support

• Automatic generation of RTL and tailored EDA scripts for
leading-edge process technologies, including physical synthesis
and 3D extraction tools

• Auto-insertion of fine-grained clock gating for low power

• Hardware emulation support including automated FPGA netlist
generation for rapid SoC prototyping

• Comprehensive diagnostic test bench to verify connectivity

• Formal verification support for designer-defined instructions

High-speed, high-accuracy system simulation models
automatically created

• High-speed instruction-accurate simulator for software
development

• Pipeline-modeling, cycle-accurate Xtensa instruction set
simulator (ISS)

• Xtensa SystemC (XTSC) transaction-level modeling support,
including out-of-the-box multi-core simulation

• Hardware co-simulation with RTL in SystemC with
pin-level XTSC

IDE

• Create, simulate, debug, and profile whole designs in one tool,
the high-productivity Xtensa Xplorer IDE

• Tenth-generation software development tools target each
processor. The advanced Xtensa C/C++ compiler includes
optimizations for base, optional, and designer-defined
instructions

• Vectorization Assistant directs the programmer to areas of the
application that can benefit most from modifications to enable
better vectorization

• Multi-core subsystem design and simulation support

• Custom data display formatting for easy debug of vector and
fixed-point data types as well as bit-mapped status and control

• Automatic Xtensa Overlay Manager (AXOM) provides run-time
management of large programs in small memories

Multi-core debug and ease of use

• Interfaces to support CoreSight infrastructure

• OCD hardware widely supported by third-party JTAG
debug probes

• DebugStall feature allows Xtensa processors to be stopped and
started together using a hardware signal and to be debugged
while in the stalled state

• Optional performance counters for real-time system analysis

• XMON software debug monitor for real-time applications

• Multi-core OCD support

• Multi-core debug improvement including sharing single-trace
memory across multiple TRAX modules, hardware/software
support for synchronous restart/resume, cross triggering, etc.

Dynamic and leakage power improvements

• Power shut off (PSO) feature allows Xtensa DPUs to be
completely powered off. To help achieve low leakage, Xtensa
DPUs can now be divided into multiple “power domains” and
each power domain operates at the same voltage and can be
shut down and powered up individually

• Dynamic power-saving features including semantic and data
power gating

• Software cache way usage control allows a programmer to
adjust cache dynamic power on the fly

Robust real-time operating system support

• Use Mentor Graphics Nucleus+, Express Logic’s ThreadX,
Micrium’s uC/OS-II, or the embedded Linux operating systems

Efficient Base Architecture

The Xtensa LX6 32-bit architecture features a compact instruction
set optimized for embedded designs. The base architecture has a
32-bit ALU, up to 64 general-purpose physical registers, 6 special-
purpose registers, and 80 base instructions, including 16- and
24-bit (rather than 32-bit) RISC instruction encoding. Key features
include:

• A wide range of configurable options to ensure you get just
the logic you need to meet your functional and performance
requirements

• Modelessly intermixed standard 16- and 24-bit instructions, as
well as designer-defined FLIX instructions of any size from 4 to
16 bytes, resulting in highly efficient code that is optimal for
both memory size and performance

• Selectable 5-or-7-stage core ISA pipeline to accommodate
different memory speeds, plus extended DSP execution
pipelines up to 11 stages, and designer-defined instruction
pipeline depths up to 23 stages

• Virtually unlimited I/O bandwidth with optional queue (FIFO),
port (GPIO), and lookup interfaces for data transfers that are
not dependent on the limited system bus bandwidth

• One or two 32-/64-/128-/256-/512-bit-wide load/store units

• Local memories configurable up to 8MB with optional parity
or ECC

• Optional hardware prefetch reduces memory latencies

• Automated fine-grained clock gating throughout processor for
ultra-low power solutions

• Can be multi-issue VLIW architecture for parallel instruction
execution with FLIX

Base ISA compatibility

Configurability of an Xtensa processor core builds on the
underlying base Xtensa ISA, thereby ensuring availability of
a robust ecosystem of third-party application software and
development tools. All configurable, extensible Xtensa processors
are compatible with major operating systems, debug probes, and
ICE solutions. For each processor, the automatically generated
complete software-development tool chain includes an advanced
IDE based on the ECLIPSE framework, a world-class C/C++

4

Xtensa LX6 Customizable DPU

www.cadence.com

compiler, a cycle-accurate SystemC-compatible ISS, and the full
industry-standard GNU tool chain.

Xtensa processors use an ISA that has been backwards compatible
since its introduction in 1998. It uses a base instruction set of 80
instructions and was fundamentally architected for extensibility.
Designers can run application code written back in 1998 and it
will run on the Xtensa LX6 processor today. Any differentiating
designer-defined instructions from earlier designs can be re-used
today.

Powerful base ISA

The Xtensa ISA includes powerful compare-and-branch
instructions and zero-overhead loops, which allow the compiler to
generate tight, optimized loops. It also provides bit manipulations,
including funnel shifts and field-extract operations that are critical
for applications such as networking that process the fields in
packet headers and perform rule-based checks.

Extensible ISA

One of the fundamental technology innovations in the Xtensa
processor is the ability to easily and seamlessly add instructions
into the processor’s datapath. Any associated C data types, the
software tool chain support, and the EDA scripts required to
synthesize the processor are all generated automatically, just as
if they had been there from the start. The specification of this

datapath and associated instructions and C data types is written
in the TIE language, which is explained in more detail in a later
section.

Highly configurable functionality

Xtensa DPUs offer pre-verified options that you can add to your
designs when they are needed. Configurable ISA options include:

• Single 16-bit MAC (multiply accumulator)

• 16- or 32-bit multipliers

• IEEE 754-compliant single-/double-precision scalar
floating-point option

• Double-precision scalar floating-point acceleration

• A pair of 32-bit direct GPIO interfaces (GPIO32)

• A pair of 32-bit FIFO-like queue direct interfaces (QIF32)

• 3-way 64-bit VLIW (FLIX3)

Select from click-box options to add functionality to your processor
and evaluate performance improvements quickly.

Basic interface options include:

• Designer-defined queues, ports, and lookups

• PIF, AMBA AXI, and AMBA AHB-Lite protocol options with
synchronous or asynchronous clocking

• Width of 32-/64-/128-bit

Base ALU

Data RAMs

System
Bus

Base ISA
Execution
Pipeline

Base
Register File

Processor Controls

On-Chip Debug

Data-Address
Watch Registers

Instruction-Address
Watch Registers

Exception Support

Exception Handling
Registers

Instruction
ROM

Instruction
RAM

Instruction
Cache

External Interface

Processor
Interface
Control

Write
Buffer

Interrupt Control

Data Cache

Data ROMs

Timers

Trace Port

Optional Functional Units

. . . .

Se
le

ct
ab

le
 B

us
 In

te
rfa

ce
PI

F/
AX

I/A
HB

RAM

Devic
e

Devic
e

Device

DMARegister Files
Processor State

Register Files
Processor State

GPIO 32

QIF 32

Prefetch

RTL, FIFO,
Memory

Designer-Defined Functional Units

Designer-Defined
Data Load/Store Unit

Data Load/
StoreUnit

Instruction Fetch / Decode

VLIW (FLIX) Parallel
Execution Pipelines

"N" Wide

Designer-Defined
Queues, Ports,
and Lookups

Standard Block

Optional Block

Designer-Defined Block

XLMI (High Speed Interface)

Inst. Memory
Management

and Error
ProtectionCoreSight

Performance Monitors

Data Memory
Management and

Error Protection

Configurable Block

Configurable Option

External Block

Figure 2: Xtensa LX6 DPU showing standard, optional, and designer-defined blocks

5

Xtensa LX6 Customizable DPU

www.cadence.com

• Optional “no PIF” configuration

• Inbound DMA

• XLMI high-speed local interface

• Big-Endian/Little-Endian byte ordering

• Choice of one or two general-purpose load/store units, each
32-,64-, 128-, 256-, or 512-bits wide

• OCD port (IEEE 1149.1 or CoreSight-compatible debug APB
interface)

• Trace port signals

• Up to 32 interrupts with up to seven levels of priority, plus a
separate non-maskable interrupt level

• Write buffer, selectable from 1 to 32 entries

• Multiple custom-width GPIO ports for direct control and
monitoring of peripherals

• Multiple custom-width queue interfaces for streaming data into
and out of the processor via FIFOs

• 16-bit processor ID

• Support of FLIX instructions in widths of up to 128 bits

Memory subsystem options include:

• Dual load/store with data cache support

• Multibank RAM support

• Single-cycle or dual-cycle access speeds

• Local data and instruction caches
– Up to 4-way set associative
– Up to 128 KB
– Write-back and write-through cache write policy

• Memory management unit (MMU) with translation look-aside
buffers (TLBs), includes no-execute bit security support

• Memory management options including
– Region protection
– Region protection with translation
– MMU for the Linux operating system

• Up to six local memory banks can be connected for instruction
and data accesses (up to 12 in total). Memory banks may be
local ROM, RAM, or cache ways

• Hardware prefetch for reducing long memory latencies

• Optional parity or ECC for all local memories

In addition to these options, there are several pre-configured
major functional blocks that are licensed in addition to Xtensa LX6
DPUs:

• HiFi Audio/Voice DSP cores—The industry’s most popular
audio subsystems with a library of over 100 audio-, voice-, and
sound-enhancement software packages

• IVP Imaging and Video DSP core—Ultra-high performance DSP
core for demanding imaging and video applications

• ConnX BBE16 DSP core—For LTE baseband processors in cellular
radios and multi-standard broadcast receivers

• ConnX BBE32EP DSP core—A very-low-power 32-MAC DSP
core designed for LTE-Advanced and HSPA+ handsets

• ConnX BBE64EP DSP core—The most powerful DSP core
Cadence offers, with up to 128 MACs for use in LTE-Advanced
baseband

• ConnX D2 DSP engine—For 16-bit communications DSP
functions, delivers outstanding performance from ‘C’ code

Base ALU

Data RAMs

System
Bus

Base ISA
Execution
Pipeline

Base
Register File

Processor Controls

On-Chip Debug

Data-Address
Watch Registers

Instruction-Address
Watch Registers

Exception Support

Exception Handling
Registers

Instruction
ROM

Instruction
RAM

Instruction
Cache

External Interface

Processor
Interface
Control

Write
Buffer

Interrupt Control

Data Cache

Data ROMs

Timers

Trace Port

Optional Functional Units

. . . .

Se
le

ct
ab

le
 B

us
 In

te
rfa

ce
PI

F/
AX

I/A
HB

RAM

Devic
e

Devic
e

Device

DMARegister Files
Processor State

Register Files
Processor State

GPIO 32

QIF 32

Prefetch

RTL, FIFO,
Memory

Designer-Defined Functional Units

Designer-Defined
Data Load/Store Unit

Data Load/
StoreUnit

Instruction Fetch / Decode

VLIW (FLIX) Parallel
Execution Pipelines

"N" Wide

Designer-Defined
Queues, Ports,
and Lookups

XLMI (High Speed Interface)

Inst. Memory
Management

and Error
ProtectionCoreSight

Performance Monitors

Data Memory
Management and

Error Protection

RAM

Devic
e

Devic
e

Device

DMA

Integer Divider

Single-/Double-
Precision Floating

Point (FP)

Double-Precision
Floating-Point
 Acceleration

Options

Register Files
Processor State

32-bit GPIO (GPIO32)

32-bit Queue
Interface (QIF32)

Choose pre-verified functionality.

Click-box options and side-by-
side profiling allow easy
“what-if” assessments

VLIW (FLIX) Options

MAC 16 DSP

MUL 16/32

HiFi , Hifi Mini Family Audio Engines

IVPEP Imaging Engines

ConnX D2 and Vectra DSP Engines

BBE16/32/64 Baseband DSP Engines

FLIX3 (3-way FLIX Configuration)

Figure 3. Widest range of configurable functional units for the Xtensa LX6 DPU

6

Xtensa LX6 Customizable DPU

www.cadence.com

• ConnX Vectra DSP engine—For medium-performance 16-bit
communications DSP functions, uses 64-bit instruction words
containing three issue slots for ALU, multiply-accumulate, and
load/store operations

Add Flexibility and Extensibility to SoC Designs
with Xtensa DPUs

General-purpose processors offer fixed options for memory
size, cache size, and bus interface. Performance is generally
proportional to the clock speed. Beyond that, application code
optimization or a move to the next-generation processor is
required to get incremental performance benefits.

Cadence offers SoC designers the unique ability to add flexibility
and longevity to their designs through software programmability
as well as differentiation through processor implementations
tailored for the specific application. You can now design a
processor whose functions, especially its instruction set, can be
extended to include features never considered or imagined by
designers of the original processor, all using the TIE language.

The TIE language can be used to describe instructions, registers,
execution units, and I/Os that are then automatically added to
the processor. The TIE language is a Verilog-like language used
to describe desired instruction mnemonics, operands, encoding,
and execution semantics. TIE files are inputs to the Xtensa
Processor Generator. The generator automatically builds the
processor and the complete software tool chain that incorporates
all configuration options and new TIE instructions. The base
instruction set remains for maximum compatibility with third-party
development tools and operating systems.

The TIE language unlocks the true power of the Xtensa DPU.
It lets you get orders of magnitude performance increases for
your applications and create differentiation. Extensibility with
Xtensa DPUs allows features to be added or adapted in any

form that optimizes the processor’s cost, power, and application
performance.

Flexibility—Add just what you need

Just as you can choose from a set of predefined functional
options to improve processor performance, you can now create
instructions that can speed up standard or proprietary algorithms,
and scale data interfaces for greater bandwidth. Using the tools
provided, application hot spots can be identified and additional
instructions created to process these hot spots more efficiently,
without the need to increase the clock frequency or re-write a lot
of the software.

Differentiate—Make a processor that’s uniquely your
own

With fixed-function general-purpose processors, differentiation
is often limited to the algorithm implementation itself. General-
purpose processors are good at general-purpose computing,
but not so good at any specific algorithm. Xtensa DPUs give you
the opportunity to differentiate by implementing algorithms
more efficiently with hardware that accelerates your particular
algorithm. This means that your design will be almost impossible
to copy, as only your custom processor will reach the performance
required on the same software implementation.

FLIX for parallel execution

Many of the major pre-configured functional blocks take
advantage of Xtensa LX6 DPU’s FLIX capabilities.

The FLIX architecture makes the Xtensa LX6 DPU into a VLIW
processor that executes 2 to 30 parallel execution units when
needed. FLIX instructions can be as small as 4 bytes, as large
as 16 bytes, or any size in between. These variable-width FLIX
instructions are seamlessly intermixed with the base Xtensa
16-/24-bit instructions, so there is no mode switch penalty when
using FLIX.

Base ALU

Data RAMs

System
Bus

Base ISA
Execution
Pipeline

Base
Register File

Processor Controls

On-Chip Debug

Data-Address
Watch Registers

Instruction-Address
Watch Registers

Exception Support

Exception Handling
Registers

Instruction
ROM

Instruction
RAM

Instruction
Cache

External Interface

Processor
Interface
Control

Write
Buffer

Interrupt Control

Data Cache

Data ROMs

Timers

Trace Port

Optional Functional Units

. . . .

Se
le

ct
ab

le
 B

us
 In

te
rfa

ce
PI

F/
AX

I/A
HB

RAM

Devic
e

Devic
e

Device

DMARegister Files
Processor State

Register Files
Processor State

GPIO 32

QIF 32

Prefetch

RTL, FIFO,
Memory

Interfaces for
Ports, Queues, Lookups

Designer-Defined Functional Units

Designer-Defined
Data Load/Store Unit

Data Load/
StoreUnit

Instruction Fetch / Decode

VLIW (FLIX) Parallel
Execution Pipelines

"N" Wide

Designer-Defined
Queues, Ports,
and Lookups

XLMI (High Speed Interface)

Inst. Memory
Management

and Error
ProtectionCoreSight

Performance Monitors

Data Memory
Management and

Error Protection

Designer Defined

Register Files
+

Processor State

+
Single-Issue Functional

Units Using ALU

Designer-Defined Functional Units
Using Multi-Issue VLIW (FLIX)

Add logic that optimizes
and differentiates your solution.

Hardware and software development
tools are fully compatible.

Figure 4. Xtensa LX6 DPU offers a proven method of adding designer-defined functional units and interfaces

7

Xtensa LX6 Customizable DPU

www.cadence.com

With FLIX, the Xtensa LX6 processor can deliver the ultra-high
performance characteristics of a specialty ultra-wide instruction
word processor without the negative code size implications
typically found in such VLIW or ultra-long instruction word (ULIW)
processors. In fact, Xtensa LX6 processors with FLIX can often
deliver higher performance and smaller code size at the same time.
This performance comes with very little overhead—adding only
2,000 gates to the size of the processor for instruction decode and
control.

The Xtensa C/C++ Compiler automatically extracts parallelism
from source code and bundles multiple operations into FLIX
instructions so the benefits can be realized without additional
software development. In this way, a 3-issue Xtensa LX6 processor
running at a lower frequency can deliver the performance that’s
equivalent to that of a significantly higher clocked processor.
Additionally, the compiler can bundle the branch and load/
store instructions in parallel with compute instructions to gain a
performance boost over straight-line code.

Designers can add additional capabilities in the major
pre-configured functional blocks by using the FLIX capabilities in
their own design to specify exactly what’s needed.

Designer-Defined FLIX Instruction Formats
with Designer-Defined Number of Operations

Operation 1 Operation 2 Operation 3

Operation 1 Operation 2 Operation 5Op 3 Op 4

1 1 1 0Op 2 Op 3 Op 4

1 1 1 0

1 1 1 0

Op 1

Example 3 – Operation, 64b-Instruction Format

Example 5 – Operation, 64b-Instruction Format

Example 4 – Operation, 32b-Instruction Format

0

0

0

63

63

31

Figure 5. Designers can use FLIX to create VLIW instructions up to 128 bits
wide to execute 2 to 30 parallel execution units

Designer-defined I/Os bypass the system bus for
maximum data throughput

Xtensa processors bring another fundamental breakthrough
in embedded processor designs—the ability to define direct
data interfaces into and out of the processor for maximum data
throughput. This ability is a key reason that Xtensa DPUs are ideal
for the SoC dataplane. Xtensa processors provide three direct
interface capabilities:

• TIE ports provide direct (GPIO) connection to other logic within
an SoC or to other Xtensa processors, and are created with
simple one-line declarations in a TIE file

• TIE queues function like FIFO interfaces, with a familiar pop/
empty/data interface to external logic while TIE output queues
present a similar push/pull/data interface. All interactions with
the Xtensa processor pipeline are automatically implemented by
the Xtensa Processor Generator

• TIE lookups let you connect RAMs or external devices to Xtensa
processors. These external memories or devices can be accessed
directly from the processor’s datapath without using load/store
instructions. These interfaces are useful for connecting table
lookup RAMs, for example in networking applications, or for
connecting long-latency hardware computation units.

Port connections can be up to 1024 wires wide, allowing wide
data types to be transferred easily without the need for multiple
load/store operations. As many as one million signals (1000
1024-bit-wide ports) can be used. While this number far exceeds
the performance demands of real systems today, this clearly
demonstrates that the conventional I/O bottlenecks inherent in a
system-bus-based solution do not apply to Xtensa processors.

While ports are ideal to quickly convey control and status
information, queues provide a high-speed/low-latency mechanism
to transfer streaming data with buffering. Input queues and
output queues operate, to the programmer’s viewpoint, like
traditional processor registers—without the bandwidth limitations
of local and system memory accesses.

TIE port and queue wizard

The Xtensa Xplorer IDE provides a wizard for quickly generating
ports and queues without the need to write any TIE code.

DPU
Xtensa LX6

RTL

System Blocks

System Bus

RTL
RAM, Cache

Scratchpad,
Lookup Memory

RTL,
Peripherals

FIFO FIFO

FIFO
FIFO

Figure 6. Example of direct FIFO and port connections
using TIE queues and TIE ports

Xtensa
LX6
DPU

Data

Address

Data

Address

Tie Lookup
Interfaces

Fixed-Length
Computation

RAM/ROM
Table

Figure 7. Example of TIE lookups showing connections to memory and logic

Xtensa LX6 DPU as an RTL Companion

RTL verification has become the most resource- and
time-consuming aspect of SoC design. Xtensa processors offer
unique advantages to SoC designers where they can use a
pre-verified IP core as a foundation and add custom extensions
through correct-by-construction design techniques. This design
approach significantly reduces the need for the long verification
times required when designing custom RTL. Xtensa processors can
connect directly to your RTL with dedicated high bandwidth data
and control interfaces.

8

Xtensa LX6 Customizable DPU

www.cadence.com

Bandwidth of hard-wired logic and performance without
hand-coded state machines

The Xtensa processor can achieve virtually the same levels of inter-
block I/O bandwidth and intra-block computational parallelism
as hard-wired logic designed with traditional RTL design
methodologies. How? By using a combination of TIE ports and
queues, parallel FLIX execution units, and some TIE instructions.

Unlike RTL-based designs, Xtensa processors are pre-verified,
and do not require hard-wired implementation of complex state
machines. Instead of state machines, the datapaths are sequenced
and controlled by the processor’s instruction stream. That means
the “control logic” is fully programmable and can be debugged
using software development methodologies, thereby reducing
verification time and risk for the entire SoC.

Lower verification effort and time

Designing hardwired RTL blocks has become more about
verification than about design. Design teams typically spend twice
the number of resources and person months on verification than
on design. Design changes made late in the project cycle are often
limited by the verification effort.

Typically, 90% of the RTL block’s area lies in the datapath and
only 10% in the control logic, yet most (perhaps 90%) of the bugs
are found in the control logic. The ability to extend the Xtensa
processor using TIE specifications enables designers to create
datapaths inside the processor without the need to generate
and verify the associated control logic. Instead the control logic
is expressed in software as instructions that execute on the
processor.

It is easier to verify TIE specifications made to the Xtensa processor
than it is to verify an equivalent RTL datapath, since only the
I/O relationship and functional behavior of the operations
specified in TIE code have to be verified. The TIE Compiler and
Xtensa Processor Generator take care of converting the TIE
specification into data path elements in the processor pipeline
and implementing the control, decode, and bypass logic in the
processor control units.

Reuse of the same hardware for multiple tasks

Complex SoCs consist of millions of gates of logic and are
designed to perform multiple tasks. Often these multiple tasks
do not need to be performed at the same time. This provides
an opportunity for multiple tasks to share the same hardware
units. Processors are particularly amenable to enabling this type
of sharing.

Designers can specify a datapath in the TIE specification that
consists of a set of execution units that can be used by multiple
tasks and then use the programmability of the processor to
determine which tasks are executed. For example, an audio engine
can be designed to implement a range of audio codecs, such as
MP3, AC-3, WMA, etc.

Flexibility to fix and upgrade algorithms post-silicon

An Xtensa processor implementation of an algorithm lets the
designer fix, enhance, and tweak the algorithm even after the
SoC has taped out. In particular, post-silicon bugs now have a
chance of being worked around. Algorithms that are a subject to
continuous research, such as half-toning in printers and image and
video post-processing, are ideal candidates for implementation in
an Xtensa processor.

Using Xtensa DPUs, you can easily add functionality to an existing
design, or upgrade parts of it to support the latest standard, with
limited development effort.

Co-simulation at the RTL pin level

Connect directly to your RTL wires using pin-level XTSC SystemC
model interfaces without the need to purchase additional EDA
vendor tools. This enhancement to transaction-level XTSC
models allows designers to interchange SystemC and RTL blocks
for co-simulation. This works with all of the major EDA vendor
simulation tools.

Extending the Life of an Existing RTL Design

Using Xtensa DPUs, you can easily add functionality to an existing
design, or upgrade parts of it to support the latest standard, with
modest development effort.

Conventional processor SoC with RTL

With any other 32-bit processor core, all communication is through the system bus, which must have the available data bandwidth and
must keep bus latency manageable.

DataPath DataPathDataPath

System Bus

DataPath

Xtensa LX6

Bus I/F Bus I/F Bus I/F Bus I/F
Control, Status, DataControl, Status, DataControl, Status, Data

 Figure 8. All communication through the system bus

9

Xtensa LX6 Customizable DPU

www.cadence.com

Rapid Design Development, Simulation, Debug,
and Profiling

The Xtensa Xplorer IDE serves as the graphical user interface
(GUI) for the entire design experience. From the Xtensa Xplorer
IDE, designers with existing application software can profile their
application, identify hot spots, decide on configuration options,
add instructions and execution units to optimize performance,
and then generate a new processor—all within a matter of hours.
No other IP provider puts such flexibility directly into the hands of
the designer with a tool that integrates software development,
processor optimization, and multi-processor SoC architecture in
one IDE.

Hardware designers now have creative options for implementing
algorithms. Interfaces can be added to the processor to
offer direct, deterministic connectivity to SoC logic. With the
customizable port and queue interfaces, designers can stream data
into or out of the processor. This direct connectivity with the rest
of the SoC offers great control and predictable bandwidth. The
simple ‘C’ programs needed to control the Xtensa processor can
be written and debugged within the Xtensa Xplorer IDE.

The Xtensa Processor Generator creates a complete hardware
design with matching software tools, including a mature, world-
class compiler, a cycle-accurate SystemC-compatible ISS, and the
full industry-standard GNU tool chain.

Add functionality with Xtensa DPUs

With Xtensa DPUs, data can be kept off the system bus by using direct connectivity to RTL through ports and queues. These provide
almost unlimited bandwidth with precise latencies.

DataPath DataPathDataPath

System Bus
Bus I/F Bus I/F Bus I/F Bus I/F

Control, Status, DataControl, Status, DataControl, Status, Data

DataPath

Xtensa LX6 • Add new functionality

• Direct RTL connectivity

 Figure 9. Direct connectivity to RTL through ports and queues

When extending the functionality of existing RTL blocks, the control logic parts can be brought into the processor to make the FSM easier
to debug and verify.

DataPath DataPathDataPath

System Bus

Bus I/F Bus I/F Bus I/F
Control, Status, DataControl, Status, Data

DataPath

Xtensa LX6
• Extend existing functionality

• Move control into processor
Control, Status, Data

 Figure 10. Control logic parts brought into the processor make FSM easier to debug and verify

The datapath of the existing RTL module can also be brought into the processor as a datapath extension to create a highly optimized
solution. Both the control and datapath of the RTL block are brought into the processor

DataPath DataPath

System Bus

Bus I/F Bus I/F Bus I/F
Control, Status, DataControl, Status, Data

DataPath

Xtensa LX6
• Extend existing functionality

• Move control and datapath
 into processorControl, Status, Data

Figure 11. Both the control and datapath of the RTL block are brought into the processor

10

Xtensa LX6 Customizable DPU

www.cadence.com

Hardware Development

Hardware designers can profile, compare, and save many different
processor configurations. Use the ISS to simulate a single processor
or, for multi-processor subsystems, choose Cadence’s XTensa
Modeling Protocol (XTMP) or XTSC modeling tools.

Xtensa Xplorer IDE serves as the gateway to the Xtensa Processor
Generator. Once a processor configuration is finalized, the Xtensa
Processor Generator creates the automatically verified Xtensa
processor to match all of the configuration options and extensions
you have defined, in about an hour. The full software tool chain
is also created that matches all processor modifications made.
See the Processor Developer’s Toolkit product brief for more
information.

Complete hardware implementation and verification flow support

• Automatic generation of RTL and tailored EDA scripts for
leading-edge process technologies, including physical synthesis
and 3D extraction tools

• Auto-insertion of fine-grained clock gating delivers ultra-low
power

• Hardware emulation support including automated FPGA netlist
generation

• Comprehensive diagnostic test bench to verify connectivity

• Format verification support for designer-defined functions

• Pipeline-modeling, cycle-by-cycle-accurate Xtensa ISS

• System-modeling capabilities with optional XTMP and XTSC
simulation environments

• Multiple-processor OCD-capable with break-in/-out control

• Hardware co-simulation in SystemC with Xtensa’s pin-level
XTSC connectivity to RTL

• XTSC transaction-level modeling support, including out-of-
the-box multi-core co-simulation

Software Development

The Xtensa Software Developer’s Toolkit (SDK) provides a
comprehensive collection of code generation and analysis tools
that speed the software application development process. The
Eclipse-based Xtensa Xplorer GUI serves as the cockpit for the
entire development experience and also provides powerful
visualization tools to aid application optimization.

The entire Xtensa software development tool chain, along with
simulation models, RTOS ports, optimized C libraries, etc., are
automatically generated by the Xtensa Processor Generator. This
also ensures that all the software tools—such as the compiler,
linker, assembler, debugger, and ISS—always match and are tuned
exactly to any custom processor hardware.

Complete software development tools

• Mature, highly optimizing Xtensa C/C++ compiler that rivals
hand-coded assembly applications on other processors

• GNU-based assembler and linker

• Pipeline-modeled, cycle-accurate ISS

• High-speed (40-80X faster than ISS) instruction-accurate
TurboXim simulator speeds software development

• XTMP and XTSC for multi-processor simulation and modeling

EDA
Scripts

RTL

Application
Source C/C++

Compile

Executable

Profile Using
ISS

XTMP
C-Based
System

Modeling
C Software Libraries

Operating Systems

Designer-Defined
Instructions (optional)

Xtensa® Processor Generator

Synthesis

Verification

SoC Integration

To Fab/FPGA System Development Software Development

Processor Generator Outputs

Hardware Software Tools

Set/Choose
Configuration Options

Xtensa C/C++ (XCC)
Compiler

GNU Software Toolkit
(Assembler, Linker,
Debugger, Profiler)

Xplorer IDE
GUI

to All Tools

System Modeling/Design

ISS

Fast Function
Simulator (TurboXim)

XTSC
SystemC
System

Modeling

Pin-Level
Cosimulation

Block Place and Route

Choose Different
Configuration or

Develop New
Instructions

 Figure 12. This proven methodology automates the creation of customized processors and matching software tools

11

Xtensa LX6 Customizable DPU

www.cadence.com

• Debug offers full GUI and command-line support for single- and
multiple-processor designs

• Supported by many third-party JTAG probes

• XMON software debug monitor for real-time debugging

• Profiling views of the processor pipeline utilization as well as
time spent in functions across multiple processors, allows “what
if” comparisons

• Vectorization Assistant discovers and locates code that could
not be vectorized along with an explanation that can help the
programmer modify the code so that it can be vectorized

• Support for major operating systems including Mentor Graphics’
Nucleus Plus, Express Logic’s ThreadX, Micrium’s µC/OS-II, and
open-source Linux

• Extensive set of low-level functions and macros for core and
system-level initialization and control

• AXOM run-time utility that customers can include in their
source code to help manage swapping sections of code in and
out of memory in applications with large code base and small
memories

Ideal for applications where low power is critical

Power often is the key issue in a SoC design. Many techniques
are employed to reduce power consumption, both built in to the
base hardware and into the configuration options, allowing more
control over system and memory resources. Xtensa processors
consistently consume less power than other licensable embedded
CPUs at equivalent gate counts.

Insertion of fine-grained clock gating for every functional element
is automated, including those defined by the designer. This
automation gives the Xtensa DPUs a significant advantage over
RTL design where manual, error-prone post-layout tuning of clock
circuits is often required.

Accessing local memories is one of the highest power-consuming
activities. Xtensa LX6 processors eliminate any unnecessary
local memory interface activation if that memory is not directly
addressed by the processor. With Xtensa LX6 DPUs, you can now
do semantic and memory data gating to save dynamic power.

Caches are other blocks that may consume significant power.
Xtensa LX6 processors allow caches to be implemented at
configuration time, and provide a way to shut down parts of the
cache to match the operating load on the processor.

 Figure 13. The Xtensa Xplorer IDE can display valuable information including performance comparisons,
instruction sizes, and processor size, area, and power

12

Xtensa LX6 Customizable DPU

www.cadence.com

A programmer can turn off one, two, three, or all four of the
cache “ways” to reduce dynamic power usage during idle or
low-load periods, and turn them on again when they are needed.

As process geometries shrink, leakage power consumes a larger
portion of the total power budget. To substantially reduce leakage
power, Xtensa LX6 DPUs give you options during processor
configuration. Implementation of the following energy-saving
techniques is automated by the Xtensa Processor Generator:

• Instantiate a power control module (PCM) in the Xtmem level of
design hierarchy

• Specify the number of power domains within the design and
their operation via industry-standard power format files

The designer can configure the external data bus width and
internal local memory data widths independently. This allows
system-level power optimizations depending on whether the
processor is constrained by external or internal instruction and
data access.

Multi-processor features and debug options

Placing multiple processors on the same IC die introduces
significant complexity in SoC software debugging. All versions
of the Xtensa processor have certain optional PIF operations that
enhance support for multi-processor systems.

The Xtensa processor’s debug features include:

• Interfaces to support CoreSight infrastructure

• Multi-core OCD support

• Multi-core debug improvement including sharing single trace
memory across multiple TRAX modules

• Hardware/software support for synchronous restart/resume,
cross triggering, etc.

• DebugStall feature allows Xtensa processors to be debugged
while in the stalled state

Access to these debug functions is:

• Via JTAG

• Via APB

• From the Xtensa core itself

Some SoC designs use multiple Xtensa processors that execute
from the same instruction space. The processor ID option helps
software distinguish one processor from another via a PRID special
register.

The break-in/break-out option for the Xtensa Debug Module
simplifies multi-core debugging. This capability enables one Xtensa
processor to selectively communicate a break to other Xtensa
processors in a multiple-processor system. A DebugStall feature
allows Xtensa processors to be stopped and started together using
a hardware signal and to be debugged while in the stalled state.

In addition to multi-processor debug, it is also possible to
non-intrusively trace multiple processors if they are configured
with the trace extraction and analysis tool, TRAX. TRAX, which
is detailed in the Debug Guide, is a collection of hardware and
software components that provides visibility into the activity of
running processors using compressed execution traces. The ability
to capture real-time activity in a deployed device or prototype is
particularly valuable for multi-processor systems where there are a
large number of interactions between hardware and software.

When multiple processors are used in a system, some sort of
communication and synchronization between processors is
required. The Xtensa Multiprocessor Synchronization configuration
option provides ISA support for shared-memory communication
protocols.

 Figure 14. Xtensa Xplorer IDE shows debug/trace, profiling of pipeline utilization, and a cycle comparison for a multiple core simulation

Cadence Design Systems enables global electronic design innovation and plays an essential role in the
creation of today’s electronics. Customers use Cadence software, hardware, IP, and expertise to design
and verify today’s mobile, cloud, and connectivity applications. www.cadence.com

© 2014 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, Tensilica, and Xtensa are registered trademarks
and Xplorer is a trademark of Cadence Design Systems, Inc. in the United States and other countries. ARM and AMBA are registered trademarks
of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. CoreSight is a trademark of ARM Limited (or its subsidiaries) in the EU and/or
elsewhere. All rights reserved. All other trademarks are the property of their respective owners.. 08/14 2725 SA/DM/PDF

Xtensa LX6 Customizable DPU

The Performance Monitor module is used to count performance-
related events, such as cache misses. Accessing the counts through
JTAG or APB is non-intrusive, but it is also possible to configure an
interrupt to software running on an Xtensa DPU.

Specifications

Because it is highly customizable, an Xtensa DPU can run very
efficiently at low MHz and very fast at clock frequencies over
1GHz. Maximum achievable clock speeds vary with the choice of
process technology, cell library, feature set, and EDA optimization
techniques.

The latest EDA tools, process flows, and other input are tracked
to provide detailed performance information. For the latest data,
please contact your local representative at ip.cadence.com/about/
contact.

