Preface

Introduction

It is an exciting time to develop embedded systems! Modern microcontrollers (MCUSs) offer
remarkable performance at a very low cost. The Internet provides an abundance of source code and
documentation. The combination of inexpensive hardware platforms (e.g., Arduino, Raspberry
Pi, and Beaglebone) with the right software (to abstract away details and guide users) has helped
lower the barriers to embedded system development, allowing experimentation without requiring
encyclopedic knowledge.

Unfortunately, these supports become shackles when trying to scale up to a larger, more com-
plex system with tighter constraints. Industrial designers of embedded systems draw from a large
toolbox of technical methods in order to meet requirements such as speed, responsiveness, cost,
weight, reliability, or energy use.

Many of the hardware tools are built into the MCU: a central processing unit (CPU) to execute
software, an efficient interrupt system enabling quick responses to events, fast memory to hold the
program and data, and specialized hardware peripheral circuits to reduce the need for a high-speed
CPU. Hardware peripherals can often signal and control each other, eliminating the need to
involve software on the CPU. MCU s offer a range of low-power modes so the designer can trade
off performance and power consumption as needed.

Other tools are provided by the software, which is typically written in C or C++ and compiled
to run in the processor’s native machine language. This avoids the run-time delays and memory
overhead of interpretation or scripting. Multitasking software is scheduled on the CPU using
interrupts and a scheduler, which may be cooperative (e.g., state machines) or preemptive (e.g.,
a real-time kernel).

To summarize, successful embedded system designs use peripherals and well-structured soft-
ware on the CPU with light-weight context switching to provide responsive concurrency. This
textbook aims to explain how to develop microcontroller-based embedded systems using these
industry-standard methods and practice these with the most widely used processor architecture in
embedded computing today: the ARM Architecture.

Challenges of Embedded Systems Education

There are several interesting challenges to learning (or teaching!) embedded systems in a college
or university. First, the field builds on concepts from several areas: computer engineering (CPE),
electrical engineering (EE), and computer science (CS). Some students will be able to study joint
degrees, or even double or triple major, but most will not. Second, these concepts and their solu-
tions must target embedded system design spaces, which are quite different from the mainstream

xvi Preface

general-purpose or high-performance computing design spaces covered by most courses. Third,
there are so many areas to cover that it is easy to concentrate on the familiar, which crowds out
the unfamiliar. Presenting the areas with just enough detail (but not too much) can be difficult.

Challenge 1: Spanning Electrical and Computer Engineering and
Computer Science

Successful embedded system designers need a variety of skills from CPE, EE, and CS, but not
too much, and the right version given the context. These skills are typically split across ECE
(electrical and computer engineering) and CS departments. To make things worse, CPE and CS
courses are constantly pulled toward higher performance computers and higher levels of abstrac-
tion (to manage the increased application complexity enabled by the increased performance).
This widens the gap with the embedded system design space.

The following areas in CPE and EE are the most critical for students in the field of embedded
systems:

e Computer organization and assembly language programming are fundamental to an under-
standing of the CPU, memory, peripherals, and interrupt system.

e Digital design is necessary to understand not only how the CPU works, but more import-
antly to understand how peripheral circuits work. These digital circuits (e.g., GPIO, timers,
DMA) provide cheap concurrency because they operate independently of the CPU. A good
design will offload computationally expensive software tasks to allow a relatively slow MCU
to provide precise timing and predictable performance at a low cost and with little power
consumption.

¢ Basic analog circuit design and analysis skills are needed for adding external circuits such as
LED:s, switches, and sensors. Knowing how to use an oscilloscope or logic analyzer to examine
and understand the timing of events within a system is essential for effective debugging.

The following areas in CS are the most critical for students in the field:

e C language programming is necessary because it is the dominant language for programming
embedded systems.

e Compilers and assembly language programming provide an understanding of how a CPU really
does the work specified by the source code. Knowing how the program is compiled and struc-
tured helps with avoiding errors (e.g., preemption), debugging, designing efficient systems, and
improving performance.

e Operating systems’ task scheduler concepts enable students to understand how to share a single
CPU among the multiple concurrent activities of the embedded system. These topics include
multitasking, preemption, and prioritization. Students need to understand how to design
multitasking systems using intertask communication and synchronization to avoid common
bugs such as data race hazards.

Preface xvii

Challenge 2: Targeting the ES Design Space

For each area mentioned, the practical solutions depend on the design space. The design spaces
for most embedded systems are quite different from those of general purpose and high-performance
computing, because of different drivers and constraints. For example:

e Computer Organization: Embedded processors typically do not need the raw speed sought in
general-purpose or high-performance computing systems. As a result, they don’t require high
clock speeds and the deep processor pipelines and multilayer memory systems to support them.

e Operating Systems: OS courses generally target a resource-rich Linux system that features
a preemptive scheduler, ample compute and memory resources, a virtual memory system
with hardware support, and user and supervisor modes. This type of system does not offer
the precise timing control needed for many embedded systems and is often too complex,
power-hungry, and expensive. Students must be able to apply the concepts of task schedul-
ing, synchronization, and communication to a system built on interrupts, peripherals, and
a simple scheduler (whether a preemptive real-time kernel or a cooperative scheduler).

¢ Programming: Embedded systems use compiled languages instead of scripted or interpreted lan-
guages for reasons of predictability, efficiency, and compactness. Because of this history there is a
large installed base of C/C++ development infrastructure. However, many programming curric-
ula target Java (or even a scripted language). This abstracts away low-level and implementation
issues that can make or break an embedded system.

Challenge 3: Providing Sufficient (but Not Excessive) Coverage

With all of these areas to cover, it is easy to emphasize the familiar, crowding out the unfamiliar.
Furthermore, the hands-on nature of embedded systems courses often slows down the progress
as the student or instructor tries to get a code example working to demonstrate an important
concept.

This book tries to present the areas with just enough detail (but not too much) and with practi-
cal solutions for the design space. This book does not try to present an exhaustive, complete edu-
cation of all possible ways to do something. Instead, it presents the most practical options given
the constraints.

Notes to the Instructor

Why Use This Book?

In this textbook, I have sought to present the most important topics for embedded systems using
a coherent, compelling, hands-on format.

First, the textbook uses a hands-on approach to get students excited and motivated. Each chap-
ter has illustrated, working examples based on a real MCU evaluation board. These activities start
early, with Chapter 2 showing how to read switches and light LEDs using GPIO and C code.

xviii Preface

Second, the textbook introduces concepts of concurrency and responsiveness early. Chapter 3
uses a running example of scanning LEDs according to switch positions to introduce concepts
important for creating modular, responsive, and efficient systems. By stepping through and
evaluating these improvements, the student is given a solid foundation on which to investigate
real-time kernels (in a later course). Concurrency and responsiveness are introduced using the
following sequence:

1. Starting with a simple program with software to poll switches, flash LEDs, and delay using
busy-waiting

2. Restructuring the software into tasks

Scheduling the tasks cooperatively

Improving the responsiveness of cooperatively scheduled tasks by using state machines to

break up long operations

Using interrupts and event-driven software to replace polling of switches

Replacing busy-waiting delay loops by using a timer peripheral

Prioritizing tasks

Scheduling tasks preemptively

&

® N o

Third, the textbook covers how to improve performance by using peripheral hardware in place
of software. An analog waveform generator is used as a running example. It is introduced as an
application of the digital-to-analog converter, with timing fully dependent on software execu-
tion speed. It reappears in the timer chapter, with a timer-driven periodic ISR updating the
DAC to improve timing stability. The final appearance is in the DMA chapter, in which
the DMA controller under timer control automatically copies data from a memory buffer to
the DAC.

Fourth, the textbook covers C code as implemented in assembly language by the compiler.
The main goals are to help students understand why their code is slow or large, how to make
it faster or smaller, to understand preemption risks for shared data, and to help debug pro-
grams by working at both the source and object code levels. This textbook does not expect
students to program in assembly language, although they may do so in a later course, given this
foundation.

Course Material Linkage

This textbook is designed to be used for a one- or two-semester course introducing students to
embedded systems. It complements the Efficient Embedded Systems Design and Programming
Education Kit from the ARM University Program. If you are an instructor, you can receive a dona-
tion of this Education Kit by emailing university@arm.com. The Education Kit includes lecture
materials and licenses to ARM’s Keil MDK-ARM professional software. Students need prerequi-
site knowledge in C programming, digital design, and basic circuit theory.

Preface xix

Target Platform

This textbook targets the ARM Cortex-MO+ processor, which executes the instructions of the
program. The processor is a component within the microcontroller, which adds circuits to clock
the processor, memory to hold the program and data, and peripheral devices that simplify pro-
grams and improve their performance. This processor is available in microcontrollers from a wide
range of manufacturers.

The target platform is the FRDM-KL25Z development board from NXP Semiconductor, with
a list price of under $20. It uses the NXP KL25Z128VLK4 microcontroller from the Kinetis L
ultra-low-power family. This device features a Cortex-MO+ processor capable of running at up to
48 MHz, and contains 128 kB of flash ROM, 16 kB of RAM, and a wide range of peripherals. The
development board adds a USB debug interface (OpenSDA)), power supplies, and input and out-
put devices. A three-axis accelerometer is used to detect acceleration. Because it also senses the
force of gravity, it can be used to determine the inclination (tilt) of the board. A touch-pad slider
can measure the position of a fingertip using a capacitive sensor. A three-in-one output device is
included: three high-brightness LEDs (red, green, and blue). These LEDs can be lit with varying
levels of brightness to produce a full range of colors.

The material in this textbook can be used with other Cortex-M0O+ platforms. Four of the first
five chapters are essentially independent of the MCU’s peripherals and apply to all Cortex-MO+
processors. The remaining chapters and the Appendix are closely integrated with the peripherals
by necessity. NXP’s other Kinetis MCUs use many of the same peripherals as the KL25Z, making
it easier to use those MCUs and their associated FRDM evaluation boards. Targeting an MCU
family from a different vendor will require porting the peripheral examples.

Software Development Environment

Software examples in this textbook are written in C and compiled to run without an operating
system. ARM’s Keil MDK-ARM integrated development environment is used throughout the
textbook. The free version of MDK-ARM supports all of the code examples in this textbook and
associated course materials. Note for instructors: If the object code size limitation of the free ver-

sion (currently 32 KB) is a constraint, please request a license donation from ARM for the full
professional version of MDK-ARM.

Organization

The textbook is organized as follows:

Chapter 1 introduces students to the concepts of MCU-based embedded systems, and how
they differ from general-purpose computers. It then introduces the ARM Cortex-M0+ CPU, the
Kinetis KL25Z MCU, and the FRDM-KL25Z MCU development board.

Chapter 2 presents the general purpose 1/O peripheral to provide an early, hands-on experience
with reading switches and lighting LEDs using C code. It also introduces the CMSIS hardware
abstraction layer, which simplifies software access to peripherals.

. Preface

Chapter 3 introduces multitasking on the CPU, with the goals of improving responsiveness and
software modularity while reducing CPU overhead. The interplay of interrupts, peripherals, and
schedulers (both cooperative and preemptive) is examined.

Chapter 4 presents the ARM Cortex-MO+ processor core, including organization, registers,
memory, and instruction set. It then discusses interrupts and exceptions, including CPU response
and hardware configuration. Designing software for a system with interrupts is discussed, including
program design (and partitioning work), interrupt configuration, writing handlers in C, and shar-
ing data safely given preemption.

Chapter 5 first gives an overview of toolchain, which translates a program from C source code
to executable object code. It then shows side by side the source code and the object code the tool-
chain has generated to implement it. Topics covered include functions, arguments, return values,
activation records, exception handlers, control flow constructs for loops and selection, memory
allocation and use, and accessing data in memory.

Chapter 6 presents analog interfacing, starting with theory and ending with practical imple-
mentations. Quantization and sampling are presented as a foundation for both digital-to-analog
conversion and analog-to-digital conversion. The DAC, ADC, and analog comparator peripher-
als are presented and used.

Chapter 7 presents timer peripherals and their use for generating a periodic interrupt or a pulse-
width modulated signal, or for measuring elapsed time or a signal’s frequency. Watchdog timers,
used to detect and reset an out-of-control program, are also discussed. The SysTick, PIT, TPM,
and COP timers are examined.

Chapter 8 discusses serial communication, starting with the fundamentals of data serialization,
framing, error detection, media access control, and addressing. Software queues are introduced to
show how to buffer data between communication ISRs and other parts of the program. Three pro-
tocols and their supporting peripherals are investigated next: SPI, asynchronous serial (UART),
and I’C. UART communication is demonstrated using the FRDM-KL257’s debug MCU as a serial
port bridge over USB to the PC. I?C communication is demonstrated using the FRDM-KL257’s
built-in 3-axis accelerometer with I?C interface.

Chapter 9 introduces the direct memory access peripheral and its ability to transfer data autono-
mously, offloading work from the CPU and offering dramatically improved performance. Examples
include using DMA for bulk data copying, and for DAC-based analog waveform generation with
precise timing.

An Appendix covers how to measure the power and energy use on the FRDM-KL25Z board,
including disconnecting the debug MCU to reduce power. Methods to measure energy consump-
tion using an ultracapacitor are highlighted.

