The logarithmic function is the inverse of the exponential function.
Remember, to find the inverse of a function we switch the x and y values and then solve for y.

$$
\begin{array}{cc}
\text { Exponential function } & \text { Inverse function } \\
y=b^{x} & x=b^{y}
\end{array}
$$

Notice that the y-value is now an exponent.
In order to isolate and manipulate exponents, we must use something called the logarithm function.

$$
\begin{aligned}
y=\log _{b} x: \quad \text { where } \quad & b \rightarrow \text { base of the log } \\
& y \rightarrow \text { the logarithm (the answer) } \\
& x \rightarrow \text { the argument }
\end{aligned}
$$

Ex: Sketch the graph of $y=2^{x}$ and its inverse.

$$
\left.\begin{gathered}
y=2^{x} \\
x \\
x
\end{gathered} \right\rvert\, y .
$$

$$
\text { inverse } \rightarrow \text { switch } x+y
$$

Note: The equation of the graph of the inverse is $y=\log _{2} x$.

$$
\begin{aligned}
& x \\
& \hline 4 \\
& 2 \\
& 1 \\
& 1 \\
& 1 / 2 \\
& 1 / 4 \\
& \hline x .
\end{aligned}
$$

Ex2: Express $m=4^{n}$ in logarithmic form.

$$
\log _{4} m=n
$$

Ex: Express $\log _{2} 8=3$ in exponential form.

$$
\begin{aligned}
& 2^{3}=8 \text { we know this to } \\
& \text { be a true statement }
\end{aligned}
$$

Ex: Evaluate the following expressions:
a) $\log _{2} 16=x$

$$
2^{x}=16 \quad 2^{4}=16 \therefore x=4
$$

b) $\log _{2}\left(\frac{1}{4}\right) \underbrace{=x}_{\text {add in if }} \quad 2^{x}=\frac{1}{4}$ add in if $2^{x}=\frac{1}{2^{2}}=2^{-2} \quad \therefore x=-2$
c) $\log _{3}(-27)=x \quad 3^{x}=-27$
not passible to get as

- ve value
\therefore no sol'n

Thus, $\log _{B} A=C$ where $A>0, B>0$, and $B \neq 1$
Note: The base of a logarithms cannot be negative. The argument (A) of a logarithm is always positive.

Ex5: Solve the following equations:
a) $\log _{x} 5=\frac{1}{2}$
b) $\log x=-3$

$$
\begin{gathered}
x^{1 / 2}=5 \\
\left(x^{1 / 2}\right)^{\frac{2}{1}}=5^{2}
\end{gathered}
$$

$$
\begin{aligned}
10^{-3} & =x \\
\frac{1}{1000} & =x
\end{aligned}
$$

$$
x=25
$$

Note: When the base is not indicated, this means that there is a base of 10 .

$$
\log x=\log _{10} x
$$

Some Basic Logs to Remember: "Quicksnappers"
a) $\log _{c} 1=$

$$
\begin{aligned}
\log _{c} 1 & =x \\
c^{x} & =1 \quad x=0
\end{aligned}
$$

b) $\log _{c} c=$

$$
\begin{gathered}
\log _{c} c=x \\
c x=c
\end{gathered}
$$

c) $\log _{c} c^{y}=y$

$$
\begin{gathered}
\log _{c} c^{y}=x \\
c^{x}=c^{y}
\end{gathered}
$$

d) $c^{\log _{c} y}=$
let $\log y=a$
then $\quad c^{a}=x$
change to log form

$$
\begin{aligned}
\log _{c} x & =a \\
\log _{c} x & =\log _{c} y \\
x & =y
\end{aligned}
$$

Try these; Evaluate
i) $\log _{2} 16$
$\log _{2} 2^{4}$
$=4$
iii) $\quad \log 10$

$$
\log _{10} 10=1
$$

Ex6: Estimate the following value:

$$
\begin{array}{r}
\log _{2} 30=x \\
2^{x}=30
\end{array}
$$

Since $2^{5}=32$ and. $24=16$
The value of x is chosen to 5

$$
\therefore \quad \log _{2} 30 \approx 4.8
$$

Homework: Page 380 \#1-5, 7-10, 13-15

8.2 Transformations of Logarithmic Functions

Ex1: Sketch the graphs of the functions $y=3^{x}$ and $y=\log _{3} x$.

Note: The graph of $y=\log _{3} x$ has a vertical asymptote at $x=0$ because $x>0$ is a restriction of the argument.

Ex2: Sketch the graphs of the following functions on the same Cartesian plane.
a) $y=\log _{2} x$
b) $y=\log _{4} x$
c) $y=\log x$ base 10
d) $y=\ln x$ base e $e \approx 2.7 .8$

base graph
Ex: Sketch the graph of the function $y=\log _{5}(x+2)-1$. (cf te, down 1

State the domain: $\{x>-2\}$ or $(-2, \infty)$ Note: $\log _{5}(\underbrace{(x+2})-1$ must be the

$$
\begin{aligned}
\therefore x+2 & >0 \\
x & >-2 .
\end{aligned}
$$

Determine the y-intercept:

$$
\begin{aligned}
& y=\log _{5}(0+2)-1 \\
& y=\log _{5} 2-1 \quad O B B^{\prime} \text { law } \rightarrow \text { change of bate theory } \\
& y=0.43-1 \\
& y=-0.57 \\
& \log _{5} 24=\frac{\log 2}{\log 5}=0,43 .
\end{aligned}
$$

Ex. Sketch $\begin{gathered}(-x+3)\end{gathered} \rightarrow(-(x-3)$
Ex: Sketch the graph of the function $y=\log _{3}(3-x)+1$ reflect night 3

Determine the following characteristics of the graph:
Domain: $\{x \in R \mid x<3\}$ or $(-\infty, 3)$
Range: $\{y \in \mathbb{R}\}$ oR $(-\infty, \infty)$

$$
\begin{array}{ccc}
x \text {-intercept: } 0=\log _{3}(3-x)+1 & y \text {-intercept } \\
-1=\log _{3}(3-x) & y=\log _{3}(3-0) \\
& 3^{-1}=3-x & y=\log _{3} 3+1 \\
y \text {-intercept: } & 3^{-1}-3=-x & \frac{1}{3}-3=-x \\
& -2^{2 / 3}=-x & y=2 . \\
& x=-2^{2 / 3} &
\end{array}
$$

Equation of the asymptote:

$$
x=3
$$

Homework: Page 389 \#1, 3-9, 15

Homework: Graph each of the following and find the
intercepts: of the x int must always be included

1) $y=-\log _{2}(x)+3$
2) $y=2 \log (x+1)-1$

$$
\begin{aligned}
& (x, y) \rightarrow(x-1,2 y) \\
& (1,0) \rightarrow(0,-1) \\
& (1,1) \rightarrow(9,1) \\
& x=0 \quad x=-1
\end{aligned}
$$

3) $y=\ln (x-1)$
4) $y=2^{x-1}+3$
5)

$(x, y) \quad(x,-y+3)$
int:
$(1,0)(1,3)$
$0=-\log _{2}(x)+3$
$(2,1) \quad(2,2)$
$-3=-\log _{2} x$
$3=\log _{2} x$
$x=0 \quad x=0$
$2^{3}=x$
$x=8$

$$
\begin{aligned}
& (x, y) \rightarrow(x+1, y) \\
& (1,0) \rightarrow(2,0) \\
& (c, 1) \rightarrow(c+1,1) \\
& x=0 \quad x=1
\end{aligned}
$$

2)

$$
\frac{1}{a}=\log (x+1)
$$

$$
10^{1 / 2}=x+1
$$

$\sqrt{10}-1=x$
$2.1622=x$

8.3 Laws of Logarithms

1. $\log _{a} M N=\log _{a} M+\log _{a} N$

$$
\text { ex: } \log _{2} 6=\log _{2}(2)(3)=\log _{2} 2+\log _{2} 3
$$

2. $\log _{a} \frac{M}{N}=\log _{a} M-\log _{a} N$
ex: $\log _{x} \frac{8}{3}=\log _{x} 8-\log _{x} 3$
3. $\log _{a} M^{x}=x \log _{a} M$
ex: $\log _{3} \sqrt{6}=\log _{3} 6^{(1 / 3)}=1 / 3 \log _{3} 6$
4. $\log _{a} x=\frac{\log x}{\log a}$

$$
\text { ex: } \log _{2} 7=\frac{\log 7}{\log 2}=2.807 \quad \begin{aligned}
& \text { OBB's law } \\
& \text { Old base bottom }
\end{aligned}
$$

The \log button on a calculator is of base 10 . Therefore, this button can only be used to find solutions to questions with base 10 .

For example, $\log _{2} 7$ cannot be entered into the calculator.
We must use the 'change of base' law to convert this expression to base 10 and then a calculator can be used to solve it.

$$
\log _{2} 7=\frac{\log 7}{\log 2}
$$

Ext: Simplify the expression $2 \log x-\left(\log y-\frac{1}{\log z}\right)$.

$$
\begin{aligned}
& 2 \log x-\log y+\frac{1}{3} \log z \\
& \log x^{2}-\log y+\log z^{1 / 3} \\
& \log \frac{x^{2} \sqrt[3]{z}}{y}
\end{aligned}
$$

Ex2: Expand the expression $\log _{a}\left(\frac{A \sqrt{C}}{B^{2} D}\right)$.

$$
\log _{a} A+\frac{1}{2} \log _{a} C-2 \log _{a} B-\log _{a} D
$$

Ex: Simplify and evaluate the following expressions using laws of logarithms.
a) $\log _{6} 8+\log _{6} 9-\log _{6} 2$
$\log _{6}\left(\frac{8(9)}{2}\right)$
b) $2 \log _{2} 12-\left(\log _{2} 6+\frac{1}{3} \log _{2} 27\right)$
$\log _{6} 36$
${ }^{K} \log _{6} 6^{2}$
$2 \log _{6} 6$
$2(1)$
2

$$
\begin{aligned}
& \log _{2} 12^{2}-\log _{2} 6-\log _{2} 27^{1 / 3} \\
& \log _{2} \frac{12^{2}}{6\left(27^{1 / 3}\right)} \\
& \log _{2} \frac{144}{6(3)} \\
& \log _{2} 8 \\
& \log _{2} 2^{3} \\
& =3
\end{aligned}
$$

Ex4: If $\log _{a} 2=0.30, \log _{a} 3=0.48$ and $\log _{a} 5=0.70$, evaluate

$$
\begin{aligned}
& \left.\log _{a} 150\right\} 15.10 \\
& \log _{a} 3.5 .2 .5 \\
& \log _{a} 3(5)^{2}(2) \\
& \log _{a} 3+\log _{a} 5^{2}+\log _{a} 2 \\
& \log _{a} 3+2 \log _{a} 5+\log _{a} 2 \\
& 0.48+2(0.7)+0.3 \\
& 2.18
\end{aligned}
$$

Homework: Page 400 \#1-3, 5-10

ExT: Solve: $\log _{2}(x-2)-\log _{2} x=\log _{2} 3$

$$
\begin{aligned}
\log _{2} \frac{(x-2)}{x} & =\log _{2} 3 \\
(x) \frac{x-2}{x} & =3(x) \\
x-2 & =3 x \\
-x & -x \\
\frac{-2}{2} & =\frac{2 x}{2} \\
-1 & =x
\end{aligned}
$$

plug in to verify

$$
\begin{aligned}
& \log _{2}(-1-2)=\log _{2}(-3) \\
& L \text { argument } \\
& \therefore \text { no colin }
\end{aligned}
$$

Ex: Solve: $\log _{4}(11-x)+\log _{4}(x+6)=2$
(ABE): $\log m+\log m=+$

$$
\begin{gathered}
\log _{4}(11-x)(x+6)=2 \\
4^{2}=(11-x)(x+6) \\
16=11 x+66-x^{2}-6 x \\
x^{2}-5 x-50=0 \\
(x-10)(x+5)=0 \\
x=10 x=-5
\end{gathered}
$$

(1) Simplify logs where passible
(2) Once you get $\log w=1$
change to expmental
(3) Solve for
(4) vent.

Check::

$$
\begin{array}{ll}
11-10=1 \mathrm{~V} & 11-(-5)=16 \mathrm{~V} \\
10+6=16 \mathrm{~V} & -5+6=1 \mathrm{~V}
\end{array}
$$

Your turn

$$
\frac{x>0}{x+2>0}
$$

Solve: $\log _{6}(x+3)=1-\log _{6}(x+4)$

$$
\begin{array}{rl}
x+3>0 & x+4>0 \\
x>-3 & x>-4
\end{array}
$$

$$
\begin{gathered}
\log _{6}(x+3)+\log _{6}(x+4)=1 \\
\log _{6}(x+3)(x+4)=1 \\
6^{1}=x^{2}+7 x+12 \\
0=x^{2}+7 x+6 \\
0=(x+1 x x+7) \\
x=-1 x=-7-
\end{gathered}
$$

 of will give $=-4 x$

$$
\begin{aligned}
& \text { Solve: } 2 \log x-\log (x+2)=\log (2 x-3) \\
& \overrightarrow{\log x^{2}-\log (x+2)=\log (2 x-3)} \\
& \log \frac{x^{2}}{x+2}=\log (2 x-3) \\
& \text { (} x+2 \text {) } \\
& \frac{x^{2}}{x+2}=2 x-3(x+2) \\
& x>-2 \\
& 2 x-3>0 \\
& 2 x>3 \\
& x>\frac{3}{2} \text {. } \\
& \therefore x>-2 \\
& x^{2}=2 x^{2}+4 x-3 x-6 \\
& 0=x^{2}+x-6 \\
& 0=(x+3)(x-2) \\
& x=-3 \quad x=2 \rightarrow \underbrace{2,2+2=4,2(2)-3=1}_{a 11 \text { the arguments }} \\
& \text { this will give a -ie argument } \\
& \therefore x=2 \text { is } a \text { sol' } n \text {. } \\
& \therefore \text { not a solon }
\end{aligned}
$$

Solving Exponential Equations With Different Bases
When the bases of exponents cannot be changed to the same value we must use logarithms to solve the equation.

Ex1: Solve: $3^{x}=8$
Note: Although we do not know the value of x, we can estimate that $x \approx 1.9$.

To access the exponent (the variable), take the "log" of both sides. This will allow the exponent to drop down in front of the "log" and become accessible.

$$
\begin{aligned}
& 3^{x}=8 \\
& \begin{array}{l}
\log \left(3^{(x)}\right)=\log (8) \\
x \log 3=\frac{\log 8}{\log 3} \\
x=\frac{\log 8}{\log 3} \quad \text { Now isolate }
\end{array} \quad \begin{array}{l}
\text { Now use colaslator } \\
x=1.893
\end{array} \quad \text { evaluate } x
\end{aligned}
$$

Ex2: Solve the following equation below
Express the answer correct to 3 decimal places.
STEPS

$$
\begin{aligned}
& \text { a) } 19^{x-5}=3^{2 x+1} \\
& \log 19^{x-5}=\log 3^{2 x+1} \\
& (x-5) \log 19=(2 x+1) \log 3 \\
& x \log 19-5 \log 19=2 x \log 3+\log 3 \\
& x \log 19-2 x \log 3=\log 3+5 \log 19 \\
& x(\log 19-2 \log 3)=\frac{\log 3+5 \log 19}{\log 19-2 \log 3} 19-2 \log 3 \\
& x=\frac{\log 3+5 \log 19}{\log 19-2 \log 3} \quad x=21.173
\end{aligned}
$$

(1) Log both sides
(2) Drop down exponents * if binomial, be sure to use brackets!
(3) Distribute/ Expand
(4) Collect x 's on one side, \#'s on the other side.
(5) Isolate x by factoring
(6) Evaluate x using the calculator.
b) $2(3)^{x}=6^{3 x-1}$

Note: $2(3)^{x} \neq 6^{x}$

* use log laws to expand!

$$
\begin{aligned}
& \log 2(3)^{x}=\log 6^{3 x-1} \\
& \log 2+\log 3^{x}=\log 6^{3 x-1} \\
& \log 2+x \log 3=(3 x-1) \log 6 \\
& \log 2+x \log 3=3 x \log 6-\log 6 \\
& x \log 3-3 x \log 6=-\log 6-\log 2 \\
& x(\log 3-3 \log 6)=-\log 6-\log 2 \\
& x=-\log 6-\log 2 \\
& x=0.581
\end{aligned}
$$

Homework: Page 412 \#1-6, 7(a \& d), 8(a \& b), 20b), C1, C4b)

Ext: The Richter magnitude, M, of an earthquake is defined as $M=\log \left(\frac{A}{A_{0}}\right)$ where A is the amplitude of the ground motion and A_{0} is the amplitude associated with a "standard" earthquake.
a) In 1946, in Haida Gwaii, British Columbia, an earthquake with an amplitude measuring $10^{7.7}$ times A_{0} struck. Determine the magnitude of this earthquake on the Richter scale.

$$
\begin{aligned}
& M=\log \left(\frac{10^{7.7} x_{0}}{A_{0}}\right) \\
& M=\log ^{10} 7.7 \\
& M=7.7 \log ^{10} \\
& M=7.7
\end{aligned}
$$

b) The strongest recorded earthquake in Haida Gwaii was in 1949 and had a magnitude of 8.1 on the Richter scale. Determine how many times stronger this earthquake was than the one in 1946.

$$
\begin{aligned}
& 8.1=\log \left(\frac{A_{1}}{A_{0}}\right) \\
& 10^{8.1}=\frac{A_{1}}{A_{0}} \quad 10^{7.7}=\frac{A_{2}}{A_{0}} \\
& A_{0} 10^{8.1}=A_{1} \\
& A_{0} 10^{7 . \%}=A_{2} \\
& \frac{A_{1}}{A_{2}}=\frac{A_{6} 10^{8 \cdot 1}}{A_{0} 10^{7 \cdot 7}} \\
& \frac{A_{1}}{A_{2}}=10^{8.1-7.7} \\
& \begin{array}{ll}
A_{1} & 10^{0.4} \quad \text { The } 1949 \text { quale was } \\
& 2.512 \text { ines greater }
\end{array} \\
& \text { Short at } \\
& 10^{8.6-7.7} \\
& 10^{0.4} \\
& 2.512 \\
& \text { The } 1949 \text { quatre } \\
& \text { was } 2.512 \\
& \text { trues } \\
& \text { stronger }
\end{aligned}
$$

Ex2: The pH scale is used to measure the acidity or alkalinity of a solution. it is defined as $p H=-\log \left(H^{+}\right)$where H^{+}is the concentration of hydrogen ions measured in moles per litre ($\mathrm{mol} / \mathrm{L}$). A neutral solution, such as pure water, has a pH of 7 . The closer the solution is to 0 , the more acidic the solution. The closer the solution is to 14 , the more alkaline the solution.
a) A cola drink has a pH of 2.5 whereas milk has a pH of 6.6 . How many times as acidic as milk is a cola drink? This is calculated by comparing the number of ions in each substance.

$$
\begin{aligned}
& \text { Col: } \frac{2.5}{-1}=\frac{-\log \left(H^{+}\right)}{-1} \quad \text { Milk: } 6.6=-\log \left(H^{+}\right) \\
& -2.5=\log \left(H^{+}\right) \quad 10^{-6.6}=H^{+} \\
& 10^{-2,5}=H^{+} \\
& \text {comparison: } \frac{10^{-2.5}}{10^{-6.6}}=12589 \text { times more }
\end{aligned}
$$

b) An apple is 5 times as acidic as a pear. If a pear has a pH of 3.8, determine the pH of an apple.

$$
\left.\begin{array}{rl}
\text { Pear: } & 3.8=-\log \left(H^{+}\right) \\
- & 3.8=\log \left(H^{+}\right) \\
10^{-3.8}=H^{+}
\end{array}\right\} \begin{aligned}
\text { Apple: } & 5 \times 10^{-3.8}=H^{+} \\
p H & =-\log \left(5 \times 10^{-3.8}\right) \\
p H & =3.101
\end{aligned}
$$

Ex: The human ear is able to detect sounds of different intensities. Sound intensity, β, in decibels, is defined as $\beta=10 \log \frac{I}{I_{0}}$ where I is the intensity of the sound measured in watts per square metre $\left(\mathrm{W} / \mathrm{m}^{2}\right)$, and I_{o} is 10^{-12} $\mathrm{W} / \mathrm{m}^{2}$ which is the threshold of hearing.
β of recommended
a) It is recommended a person wears protective ear gear when the sound intensity is 85 dB or greater. The MTS Centre measures 110 dB when the Jets score a goal. How many times louder is the MTS Centre than the recommended maximum sound intensity?

Recommended:

$$
\begin{aligned}
& \frac{85}{10}=\frac{10 \log \left(\frac{I}{I_{0}}\right)}{10} \\
& 8.5=\log \left(\frac{I}{I_{0}}\right) \\
& 10^{8.5}=\frac{I}{I_{0}} \\
& 10^{8.5}\left(I_{0}\right)=I
\end{aligned}
$$

MTS Centre:

$$
\begin{aligned}
& \left.\frac{110}{10}=\frac{\log \left(\frac{x}{I_{0}}\right.}{10}\right) \\
& 11=\log \left(\frac{I}{I_{0}}\right) \\
& 10^{\prime \prime}=\frac{I}{I_{0}} \\
& 10^{\prime \prime}\left(I_{0}\right)=I
\end{aligned}
$$

Comparison:

$$
\begin{aligned}
& \frac{10^{11}\left(x_{0}\right)}{10^{8.5}(50)} \\
= & 10^{11-8.5} \\
= & 10^{2.5}
\end{aligned}
$$

$\simeq 316$ stronger than the reommen de d level.
b) A truck emits a sound intensity of $0.001 \mathrm{~W} / \mathrm{m}^{2}$. Determine its decibel level.

The value of e and the Natural Logarithm
Like π, e is a symbol used to represent the number 2.718281828... .

$$
e=2.718281828 \ldots
$$

It has its own special logarithm called the natural logarithm.
« $\ln »$ is used to represent the natural logarithm and thus has a base of « e » "l" "n" (no ti/I/I)
Ex: Sketch the graph of $y=e^{x}$ and its inverse $y=\ln x$.

$$
y=e^{x}=2.718 . . . x^{x}
$$

$$
y=\ln e \text { is the }
$$

same as

$$
\begin{aligned}
& y=\underbrace{\log _{e} e}_{1} \\
& \therefore \ln e=1
\end{aligned}
$$

Note: « $\ln »$ has exactly the same properties as « $\log »$.
Ext: Evaluate the following expressions:
a) $\ln \frac{5}{3}=\ln 5-\ln 3$
b) $\ln e^{33}=$
(use calculator)

$$
=0.511
$$

$$
=3(1)
$$

$$
=3
$$

c) $10^{\log 5}=x$
d) $e^{\ln 7}=x$
quicksneppen!

$$
x=5
$$

$$
x=7
$$

Ex2: Solve the following equations.

$$
\ln e=1
$$

a) $e^{2 t-1}=5$

$$
\begin{aligned}
\ln ^{2 t-1} & =\ln 5 \\
2 t-1 & =\ln 5 \\
2 t & =\ln 5+1 \\
t & =\frac{\ln 5+1}{2}
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
& e^{x}=2^{x+1} \\
& \ln ^{x}=\ln 2^{x+1} \\
& x=(x+1) \ln 2 \\
& x=x \ln 2+\ln 2 \\
& x-x \ln 2=\ln 2 \\
& x(1-\ln 2)=\ln 2 \\
& x=\frac{\ln 2}{1-\ln 2}
\end{aligned}
$$

b) $e^{\ln (2 y-1)}=5$

$$
2 y-1=5
$$

$$
2 y=6
$$

$$
y=3
$$

$$
\begin{aligned}
& \text { d) } \ln (x+1)=1+\ln x \\
& \ln (x+1)-\ln x=1 \\
& \ln \left(\frac{x+1)}{x}=1\right. \\
& e^{\prime}=\frac{x+1}{x} \\
& e x=x+1 \\
& e x-x=1 \\
& x\left(e^{-1}\right)=1 \\
& x=\frac{1}{e-1}
\end{aligned}
$$

The value of e is often used to solve exponential application problems.
Ex: There are 500 mice found in a field on June 1. On June 20, 800 mice are counted. If the population of mice continues to increase at the same rate, determine how many mice there will be on June 28.
Use $A=P e^{r t}$ where $P=$ initial value
$A=$ final value
$t=$ time, in days
$r=$ rate of increase or decrease
Note: If $r>0$, then the function increases exponentially If $r<0$, then the function decreases exponentially

$$
\begin{array}{ll}
800 & =500 e^{r(19)} \\
\frac{800}{500}=e^{19 r} \\
\frac{8}{5} & =e^{19 r} \\
\ln (815) & =h^{19 e^{19 r}} \\
\ln (815)=19 r & A=500 e^{27(r)} \\
\frac{\ln (815)}{19}=r & A=9756068
\end{array}
$$

1. A radioactive substance is decaying according to the following formula $y=A e^{-0.2 x}$ where $\mathrm{A}=$ original amount and $\mathrm{y}=$ amount remaining after x years.
a) If we started with 80 grams of material, how much is left after 3 years?
b) Find the half-life.
2. A $\$ 5000$ investment earns interest at the annual rate of 8.4% compounded monthly.
$A=P\left(1+\frac{r}{n}\right)^{n t}$
a) What is it worth after 1 year?
b) What is it worth after 10 years?
c) How much interest is earned after 10 years?
3. At the present time there are 5000 type A bacteria. The rate of increase per hour is 0.025 . How many bacteria can you expect in 24 hours? $A=P e^{r t}$
4. A radioactive substance decays at a daily rate of 0.13 .

How long does it take for this substance to decompose to half its size? $A=P e^{r t}$
5. If you invest any amount of money at 11.25% compounded quarterly, how long will it take for the investment to double? $A=P\left(1+\frac{r}{n}\right)^{n t}$
6. Craig invests $\$ 1000$ in a mutual fund which is supposed to grow at 10% compounded annually. Laura has concerns about the stock market so she buys $\$ 2000$ worth of bonds paying 5% compounded annually. After how many years will Craig's investment be equal in value to Laura's? $A=P\left(1+\frac{r}{n}\right)^{n t}$
7. Determine how many monthly investments of $\$ 200$ would have to be made into an account that pays 6% annual interest, compounded monthly, for the future value to be $\$ 100,000$.
$A=P\left(1+\frac{r}{n}\right)^{n t}$
*\#8 is missing :
9. The population of a certain country is 28 million and grows continuously at a rate of 3% annually. How many years will it take for the population to reach 40 million? $A=P e^{r t}$
10. A radioactive substance decays so that the amount present is "P" grams after "t" years according to the following: $\mathrm{P}=50 \mathrm{e}^{-0.135 t}$. What is the half-life of the substance?
11. The most intense earthquake ever recorded was in Chile in May 1960, with magnitude 9.5. In January 2010, Haiti experienced an earthquake with magnitude 7.0.
a) Calculate the intensity of the Haiti earthquake in terms of a standard earthquake.
b) Calculate the intensity of the Chile earthquake in terms of a standard earthquake.
c) How many times as intense as the Haiti earthquake was the Chile earthquake?

Give answer to the nearest whole number.

$$
M=\log \left(\frac{A}{A_{0}}\right)
$$

1. A radioactive substance is decaying according to the following formula $y=A e^{-0.2 x}$ where $\mathrm{A}=$ original amount and $\mathrm{y}=$ amount remaining after x years.
a) If we started with 80 grams of material, how much is left after 3 years?
b) Find the half-life.
2. A $\$ 5000$ investment earns interest at the annual rate of 8.4% compounded monthly.
a) What is it worth after 1 year?
b) What is it worth after 10 years?
c) How much interest is earned after 10 years?
3. At the present time there are 5000 type A bacteria. The rate of increase per hour is 0.025 . How many bacteria can you expect in 24 hours?
4. A radioactive substance decays at a daily rate of 0.13 .

How long does it take for this substance to decompose to half its size?
5. If you invest any amount of money at 11.25% compounded quarterly, how long will it take for the investment to double?
6. Craig invests $\$ 1000$ in a mutual fund which is supposed to grow at 10% compounded annually. Laura has concerns about the stock market so she buys $\$ 2000$ worth of bonds paying 5% compounded annually. After how many years will Craig's investment be equal in value to Laura's?
7. Determine how many monthily investments of $\$ 200$ would have to be made into an account that pays 6% annual interest, compounded monthly, for the future value to be $\$ 100,000$.
8. A person borrows $\$ 15000$ to buy a car. The person can afford to pay $\$ 300$ a month.

The loan will be repaid with equal monthly payments at 6% annual interest, compounded monthly. How many monthly payments will the person make?
9. The population of a certain country is 28 million and grows continuously at a rate of 3% annually. How many years will it take for the population to reach 40 million?
10. A radioactive substance decays so that the amount present is " P " grams after " t " years according to the following: $\mathrm{P}=50 \mathrm{e}^{-0.135 t}$. What is the half-life of the substance?
11. The most intense earthquake ever recorded was in Chile in May 1960, with magnitude 9.5. In January 2010, Haiti experienced an earthquake with magnitude 7.0.
a) Calculate the intensity of the Haiti earthquake in terms of a standard earthquake.
b) Calculate the intensity of the Chile earthquake in terms of a standard earthquake.
c) How many times as intense as the Haiti earthquake was the Chile earthquake? Give answer to the nearest whole number.
(1) $y=A e^{0 x^{2} x}$
a)

$$
\begin{aligned}
& y=80 e^{02 x} \\
& y=80 e^{-02(3)} \\
& y=80 e^{-6}
\end{aligned}
$$

$$
y=43.905 \mathrm{gn}-43 \text { colgimstuel0 }
$$

b) $40=80 e^{-0.2 x}$ remain in 3 y cs

$$
\begin{aligned}
& \frac{40}{80}=e^{-0.2 x} \\
& .5=e^{-0.2 x} \\
& \ln (5)=\ln e^{0.2 x} \\
& \ln (5)=1-0.2 x \cdot \ln e \\
& \ln .5 \\
& -0.2 \\
& x=3
\end{aligned}
$$

$\therefore \frac{3.466}{3.4657}$ un w the halflife
(2)

$$
\begin{aligned}
A & =P\left(\left(t \frac{t}{2}\right)^{n t}\right. \\
& =\$ 000\left(1+\frac{084}{12}\right)^{12(1)} \\
& =\$ 5436.53
\end{aligned}
$$

b)

$$
\begin{aligned}
A & =5000\left(1+\frac{1054}{12}\right)^{12(0)} \\
& =\$ 11547.99
\end{aligned}
$$

c)

$$
\begin{aligned}
& 1154799-1000.00 \\
= & \$ 654799 \text { interext }
\end{aligned}
$$

3

$$
\begin{aligned}
A & =\rho e^{r t} \\
& =5000 e^{0.025(24)} \\
& =9110 \text { bateria. }
\end{aligned}
$$

4)

$$
\begin{aligned}
& \operatorname{hafl}^{\operatorname{lf} s} \frac{1}{2}=e^{-0.13 t} \\
& \ln \left(\frac{1}{2}\right)=\ln e^{-0.13 t} \\
& \ln \left(\frac{1}{2}\right)=-0.13 t-\ln C \\
& \frac{\ln \left(\frac{1}{2}\right)}{-0.13}=t \quad t=5.33 \operatorname{cig} 5
\end{aligned}
$$

(5)

Duble

$$
\begin{aligned}
& \frac{12}{2}=\left(1+\frac{1125}{4}\right)^{4 t} \\
& \log 2=\log \left(1+\frac{.125}{4}\right)^{4 t} \\
& \log t=4 t\left(\log \left(1+\frac{7125}{4}\right)\right) \\
& \log \frac{2}{4\left(\log \left(1+\frac{.125}{4}\right)\right)} t t \\
& t=6.24755 \\
& t=6.25 \text { yrs }
\end{aligned}
$$

b)

$$
\begin{aligned}
& (11)^{t}=2(1.05)^{t} \\
& \log (1.1)^{t}=\log \left(2(1.05)^{t}\right) \\
& t \log (11)=\log 2+\log (1.05)^{t} \\
& t \log (11)=\log 2+t \log (1.05) \\
& t \log (11)-t \log (1.05)=\log 2 \\
& t(\log (11)-\log (1.05))=\log 2 \\
& t=\frac{\log 2}{(\log 11+\log 1.0)} \quad t=14899 \\
& t=149455
\end{aligned}
$$

(7)

$$
\begin{aligned}
& 100000=200\left(1+\frac{.06}{12}\right)^{12 t} \\
& 500=\left(1+\frac{.06}{12}\right)^{12 t} \\
& \log 500=\log \left(1+\frac{.06}{12}\right)^{12 t} \\
& \log 500=12 t \log \left(1 t \frac{.06}{12}\right) \\
& \frac{\log 500}{12 \log \left(1+\frac{06}{12}\right)}=t \\
& t=103.8355 \text { yrs } \\
& t=1246 \text { or } 1247 \text { granths }
\end{aligned}
$$

(8) omit
(9)

$$
\begin{aligned}
& 40=28 e^{.03 t} \\
& \frac{40}{28}=e^{.03 t} \\
& \ln \frac{40}{28}=\ln e^{.03 t} \\
& \ln \frac{40}{28}=\frac{03 t \ln e}{t=\frac{\ln \frac{40}{28}}{103} \quad t=1189 y r s}
\end{aligned}
$$

(10)
(11)

$$
\begin{aligned}
& 25=50 e^{-0.13 t} \\
& 5=e^{-0.3 t} \\
& \ln 5=\ln e^{-0.13 t} \\
& \ln 5=-0.13 t \ln e \\
& \ln 5=t \\
& -0.13=533 \text { yrs } \\
& t=5 .
\end{aligned}
$$

$$
\begin{aligned}
& c_{1}-\frac{10^{25} \cdot A_{0}}{10^{70} \cdot A_{0}} \\
& =316 \text { twoo greater }
\end{aligned}
$$

