GCSE MATHEMATICS

Great Academy Ashton
Inspining Greatness

Y10 Higher

 Home Learning PackName: \qquad
Class: \qquad
Teacher:

Contents Page

Number Unit:

- Standard Form
- Laws of indices
- Calculations with fractions
- Compound Interest
- Reverse Percentages
- Estimations
- Bounds
- Surds

Algebra Unit:

- Expanding and factorising Quadratics
- Algebraic fractions - simplifying
- Solving inequalities
- Rearranging equations
- Simultaneous equations
- Parallel and perpendicular lines

Shape Unit:

- Angles in parallel lines and polygons
- Pythagoras

Edexcel GCSE Practice Exam Papers

1H - Non Calculator paper, 2H - Calculator paper, 3H - Calculator Paper

Useful websites to use at home:

- Mathswatch
- Onmaths
- GCSE Pod
- Genie Maths
- Mr Barton Maths
- www.methodmaths.com
- www.hegartymaths.com
- www.bbc.co.uk/schools/gcsebitesize

Number Unit

Standard Form

Things to remember:

- $a \times 10^{b}$

1. A floppy disk can store 1440000 bytes of data.
(a) Write the number 1440000 in standard form.

A hard disk can store 2.4×10^{9} bytes of data.
(b) Calculate the number of floppy disks needed to store the 2.4×10^{9} bytes of data.
2. A nanosecond is 0.000000001 second.
(a) Write the number 0.000000001 in standard form.

A computer does a calculation in 5 nanoseconds.
(b) How many of these calculations can the computer do in 1 second?

Give your answer in standard form.
3. (a) (i) Write 40000000 in standard form.
(ii) Write 3×10^{-5} as an ordinary number.
(b) Work out the value of
$3 \times 10^{-5} \times 40000000$
Give your answer in standard form.
4. Work out $\left(3.2 \times 10^{5}\right) \times\left(4.5 \times 10^{4}\right)$

Give your answer in standard form correct to 2 significant figures.
5. (a) Write the number 40000000 in standard form.
(b) Write 1.4×10^{-5} as an ordinary number.
(c) Work out
$\left(5 \times 10^{4}\right) \times\left(6 \times 10^{9}\right)$
Give your answer in standard form.
6. Write in standard form
(a) 456000
(b) 0.00034
(c) 16×10^{7}
7. (a) Write 5.7×10^{-4} as an ordinary number.
(b) Work out the value of $\left(7 \times 10^{4}\right) \times\left(3 \times 10^{5}\right)$

Give your answer in standard form.
8. (a) Write 30000000 in standard form.
(b) Write 2×10^{-3} as an ordinary number.
9. (a) (i) Write 7900 in standard form.
(ii) Write 0.00035 in standard form.
(b) Work out $\frac{4 \times 10^{3}}{8 \times 10^{-5}}$

Give your answer in standard form.
10. Work out
$\frac{2 \times 2.2 \times 10^{12} \times 1.5 \times 10^{12}}{2.2 \times 10^{12}-1.5 \times 10^{12}}$
Give your answer in standard form correct to 3 significant figures.
11. (a) Write 6.4×10^{4} as an ordinary number.
(b) Write 0.0039 in standard form.
(c) Write 0.25×10^{7} in standard form.

Laws of Indices

Things to remember:
$a^{m} \times a^{n}=a^{m+n}$
$a^{-n}=\frac{1}{a^{n}}$
$a^{m} \div a^{n}=a^{m-n}$
$\left(a^{m}\right)^{n}=a^{m n}$
$a^{0}=1$
$a^{\frac{m}{n}}=\sqrt[n]{a^{m}}$

Questions:

1. (a) Simplify $m^{5} \div m^{3}$
(b) Simplify $5 x^{4} y^{3} \times x^{2} y$
2. Write these numbers in order of size.

Start with the smallest number.
5^{-1}
0.5
-5
5^{0}
3. Write down the value of $125^{\frac{2}{3}}$
4. (a) Write down the value of 10^{-1}
\qquad
(b) Find the value of $27^{\frac{2}{3}}$
5.
(a) Find the value of 5°
(b) Find the value of $27^{1 / 3}$
(c) Find the value of 2^{-3}
6. (a) Write down the value of $27^{1 / 3}$
(b) Find the value of $27^{-1 / 3}$
7. (a) Write down the value of $64^{\frac{1}{2}}$
(b) Find the value of $\left(\frac{8}{125}\right)^{-\frac{2}{3}}$
8. (a) Write down the value of 6^{0}
(b) Work out $64^{-\frac{2}{3}}$

Calculating with Fractions

Things to remember:

- If you have a mixed number, start by converting it to an improper fraction.
- Multiply fractions is easy - just multiply the numerators and multiply the denominators.
- To divide fractions, flip the second fraction upside-down and multiply instead.
- If you need to add or subtract fractions, you will need to start by finding equivalent fractions with a common denominator.
- Make sure you leave your answer in its simplest form.
- To convert a recurring decimal to a fraction you will need to multiply by 10^{n}, where n is the number of recurring digits. Then subtract the original number from the new one. Rearrange to find the fraction.

Questions:

1. (a) Work out $1 \frac{3}{4}+3 \frac{1}{2}$
(b) Work out $\frac{3}{7} \times £ 28$
2. Work out $3 \frac{4}{5}+\frac{3}{7}$

Give your answer as a mixed number in its simplest form.
3. The diagram shows three identical shapes A, B and C. $\frac{3}{5}$ of shape A is shaded. $\frac{7}{8}$ of shape C is shaded.

What fraction of shape B is shaded?
4. Express the recurring decimal $0.1 \dot{5}$ as a fraction.

Give your answer in its simplest form.
5. Work out $3 \frac{1}{3} \times 4 \frac{2}{5}$

Give your answer as a mixed number in its simplest form.

(Total for question = 3 marks)

6. Work out $3 / 8+1 / 3$
(Total for Question is 2 marks)
7. Express the recurring decimal $0.7 \dot{50}$ as a fraction.
8. Express the recurring decimal 0.281 as a fraction in its simplest form.
9. Work out $31 / 3 \div 43 / 4$
10. On a farm, $4 \frac{1}{2}$ out of every 15 acres of the land are used to grow crops.

Wheat is grown on $\frac{5}{8}$ of the land used to grow crops.
What percentage of the total area of the land on the farm is used to grow wheat?

Percentages - compound interest

Things to remember:

- New amount $=$ original amount x multiplier ${ }^{n}$

Questions:

1. Henry invests $£ 4500$ at a compound interest rate of 5% per annum.

At the end of n complete years the investment has grown to £5469.78.
Find the value of n.
2. Bill buys a new machine.

The value of the machine depreciates by 20% each year.
(a) Bill says 'after 5 years the machine will have no value'.

Bill is wrong. Explain why.
\qquad
\qquad
\qquad
Bill wants to work out the value of the machine after 2 years.
(b) By what single decimal number should Bill multiply the value of the machine when new?
\qquad
3. Gwen bought a new car. Each year, the value of her car depreciated by 9%.

Calculate the number of years after which the value of her car was 47% of its value when new.
4. The value of a car depreciates by 35% each year.

At the end of 2007 the value of the car was $£ 5460$
Work out the value of the car at the end of 2006
5. Toby invested $£ 4500$ for 2 years in a savings account.

He was paid 4% per annum compound interest.
(a) How much did Toby have in his savings account after 2 years?
£

Jaspir invested £2400 for n years in a savings account.
He was paid 7.5% per annum compound interest.
At the end of the n years he had $£ 3445.51$ in the savings account.
(a) Work out the value of n.
6. Mario invests $£ 2000$ for 3 years at 5% per annum compound interest.

Calculate the value of the investment at the end of 3 years.
£
(Total 3 marks)
7. Toby invested $£ 4500$ for 2 years in a savings account.

He was paid 4% per annum compound interest.
How much did Toby have in his savings account after 2 years?
£

Percentages - reverse

Things to remember:

- Work out what the multiplier would have been;

Questions:

1. Loft insulation reduces annual heating costs by 20%.

After he insulated his loft, Curtley's annual heating cost was $£ 520$.
Work out Curtley's annual heating cost would have been, if he had not insulated his loft.
$£$ \qquad
(Total 3 marks)
2. In a sale, normal prices are reduced by 20\%.

SALE
 20\% OFF

Andrew bought a saddle for his horse in the sale.
The sale price of the saddle was £220.
Calculate the normal price of the saddle.
\qquad
3. Hajra's weekly pay this year is $£ 240$

This is 20% more than her weekly pay last year.
Bill says 'This means Hajra’s weekly pay last year was $£ 192$ '.
Bill is wrong,
(a) Explain why.
\qquad
\qquad
(b) Work out Hajra's weekly pay last year.
4. The price of all rail season tickets to London increased by 4%.
(a) The price of a rail season ticket from Cambridge to London increased by £121.60 Work out the price before this increase.
$£$
(b) After the increase, the price of a rail season ticket from Brighton to London was £2828.80
Work out the price before this increase.
£
5. In a sale, normal prices are reduced by 25%.

The sale price of a saw is $£ 12.75$
Calculate the normal price of the saw.
£
6. In a sale, normal prices are reduced by 12%.

The sale price of a DVD player is $£ 242$.
Work out the normal price of the DVD player.
£ \qquad
(Total 3 marks)
7. A garage sells cars.

It offers a discount of 20% off the normal price for cash.
Dave pays $£ 5200$ cash for a car.
Calculate the normal price of the car.

Estimating Calculations

Things to remember:

- Round each number to one significant figure first (e.g. nearest whole number, nearest ten, nearest one decimal place) - this earns you one mark.
- Don't forget to use the correct order of operations.

Questions:

1. Work out an estimate for $\frac{3.1 \times 9.87}{0.509}$
2. Margaret has some goats.

The goats produce an average total of 21.7 litres of milk per day for 280 days.
Margaret sells the milk in $1 / 2$ litre bottles.
Work out an estimate for the total number of bottles that Margaret will be able to fill with the milk.
You must show clearly how you got your estimate.
3. Work out an estimate for the value of $\frac{89.3 \times 0.51}{4.8}$

Bounds

Things to remember:

- Calculating bounds is the opposite of rounding - they are the limits at which you would round up instead of down, and vice versa.

Questions:

1. A piece of wood has a length of 65 centimetres to the nearest centimetre.
(a) What is the least possible length of the piece of wood?
(b) What is the greatest possible length of the piece of wood?
2. Chelsea's height is 168 cm to the nearest cm .
(a) What is Chelsea's minimum possible height?
cm
(b) What is Chelsea's maximum possible height?
3. Dionne has 60 golf balls.

Each of these golf balls weighs 42 grams to the nearest gram.
Work out the greatest possible total weight of all 60 golf balls.
Give your answer in kilograms.
4. The length, $L \mathrm{~cm}$, of a line is measured as 13 cm correct to the nearest centimetre.

Complete the following statement to show the range of possible values of L

Surds

Things to remember:

- V means square root;
- To simplify surds, find all its factors;
- To rationalise the denominator, find an equivalent fraction where the denominator is rational.

Questions:

1. Work out

$$
\frac{(5+\sqrt{3})(5-\sqrt{3})}{\sqrt{22}}
$$

Give your answer in its simplest form.
2. (a) Rationalise the denominator of $\frac{1}{\sqrt{3}}$
\qquad
(b) Expand $(2+\sqrt{3})(1+\sqrt{3})$

Give your answer in the form $a+b \sqrt{3}$ where a and b are integers.

Algebra Unit
 Expand and Factorise Quadratics

Things to remember:

- Use FOIL (first, outside, inside, last) or the grid method (for multiplication) to expand brackets.
- For any quadratic $a x^{2}+b x+c=0$, find a pair of numbers with a sum of b and a product of ac to factorise.

Questions:

1. Expand and simplify $(m+7)(m+3)$
2. (a) Factorise $6+9 x$ \qquad
(b) Factorise $y^{2}-16$
\qquad
(c) Factorise $2 p^{2}-p-10$
3. Solve, by factorising, the equation $8 x^{2}-30 x-27=0$
4. Factorise $x^{2}+3 x-4$
5. Write $x^{2}+2 x-8$ in the form $(x+m)^{2}+n$ where m and n are integers.
6. (a) Expand $4(3 x+5)$
(b) Expand and simplify $2(x-4)+3(x+5)$
(c) Expand and simplify $(x+4)(x+6)$
7. (a) Factorise $x^{2}+5 x+4$
(b) Expand and simplify $(3 x-1)(2 x+5)$
8. (a) Expand $3(2+t)$
(b) Expand $3 x(2 x+5)$
(c) Expand and simplify $(m+3)(m+10)$
9.

(a) Factorise $x^{2}+7 x$
\qquad
(b) Factorise
$y^{2}-10 y+16$

$$
y^{2}-10 y+16
$$

Algebraic Fractions - Simplifying

Things to remember:

- Factorise the numerator and denominator;
- Cancel common factors;
- Then add/subtract/multiply divide if necessary.

Questions:

1. Simplify $\frac{p^{2}-9}{2 p+6}$
2. Simplify fully $\frac{6 x^{2}+3 x}{4 x^{2}-1}$
3. Simplify $\frac{x^{2}+2 x+1}{x^{2}+3 x+2}$
4. Simplify fully $\frac{x^{2}+x-6}{x^{2}-7 x+10}$
5. Simplify fully $\frac{x^{2}-8 x+15}{2 x^{2}-7 x-15}$
6. Simplify fully $\frac{2 x^{2}+3 x+1}{x^{2}-3 x-4}$

Solving Quadratic Inequalities

Things to remember:

- Start by solving the quadratic to find the values of x, then sketch the graph to determine the inequality.

Questions:

1. Solve $x^{2}>3 x+4$
2. Solve the inequality $x^{2}>3(x+6)$
3. Solve the inequality $x^{2}+5 x>6$

Rearranging Formulae

Things to remember:

- Firstly decide what needs to be on its own.
- Secondly move all terms that contain that letter to one side. Remember to move all terms if it appears in more than one.
- Thirdly separate out the required letter on its own.

Questions:

1. Make u the subject of the formula

$$
D=u t+k t^{2}
$$

$$
u=
$$

\qquad
2. (a) Solve $4(x+3)=6$

$$
x=
$$

\qquad
(b) Make t the subject of the formula $v=u+5 t$

$$
t=
$$

\qquad
3. (a) Expand and simplify
$(x-y)^{2}$
(b) Rearrange $a(q-c)=d$ to make q the subject.
4. Make x the subject of $5(x-3)=y(4-3 x)$

$$
x=
$$

(Total 4 marks)
5. $P=\frac{n^{2}+a}{n+a}$

Rearrange the formula to make a the subject.

$$
a=
$$

(Total 4 marks)
$\frac{x}{x+c}=\frac{p}{q}$
6. Make x the subject of the formula.

$$
X=.
$$

Linear Simultaneous Equations

Things to remember:

1. Scale up (if necessary)
2. Add or subtract (to eliminate)
3. Solve (to find x)
4. Substitute (to find y) (or the other way around)

Questions:

*1. The Singh family and the Peterson family go to the cinema.
The Singh family buy 2 adult tickets and 3 child tickets.
They pay £28.20 for the tickets.
The Peterson family buy 3 adult tickets and 5 child tickets.
They pay $£ 44.75$ for the tickets.
Find the cost of each adult ticket and each child ticket.
2. Solve the simultaneous equations
$3 x+4 y=5$
$2 x-3 y=9$
3. Solve the simultaneous equations
$4 x+7 y=1$
$3 x+10 y=15$

$$
\begin{gathered}
x= \\
y=
\end{gathered}
$$

(Total for Question is 4 marks)
4. Solve
$2 x+3 y=\frac{2}{3}$
$3 x-4 y=18$

Parallel and Perpendicular Graphs

Things to remember:

- The general equation of a linear graph is given by $y=m x+c$, where m is the gradient and c is the y-intercept.
- Parallel graphs have the same gradient.
- Gradients of perpendicular graphs have a product of -1.

Questions:

1. The diagram shows a straight line, L_{1}, drawn on a grid.

A straight line, L_{2}, is parallel to the straight line L_{1} and passes through the point $(0,-5)$. Find an equation of the straight line L2.
2. The straight line \mathbf{L} has equation $y=2 x-5$

Find an equation of the straight line perpendicular to L which passes through $(-2,3)$.
3. In the diagram, $A B C$ is the line with equation $y=-\frac{1}{2} x+5$
$A B=B C$
D is the point with coordinates $(-13,0)$

Find an equation of the line through A and D.
4. Here are the graphs of 6 straight lines.

Graph A

Graph C

Graph \mathbf{E}

Graph B

Graph D

Graph F

Match each of the graphs $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}$ and \mathbf{F} to the equations in the table.

Equation	$y=\frac{1}{2} x+2$	$y=2 x-2$	$y=-\frac{1}{2} x+2$	$y=-2 x-2$	$y=2 x+2$	$y=-\frac{1}{2} x-2$
Graph						

Shape Unit

Angles in parallel lines and polygons

Things to remember:

- Angles in a triangle sum to 180°
- Angles on a straight line sum to 180°
- Angles around a point sum to 360°
- Vertically opposite angles are equal
- Alternate angles are equal
- Corresponding angles are equal
- Supplementary angles sum to 180°
- An exterior and an interior angle of a polygon sum to 180°
- An exterior angle $=360^{\circ} \div$ number of sides

Questions:

1. $P Q$ is a straight line.

Diagram NOT accurately drawn
(a) Work out the size of the angle marked x°.
(b) (i) Work out the size of the angle marked y°.
(ii) Give reasons for your answer.
\qquad
\qquad
2. Triangle $A B C$ is isosceles, with $A C=B C$.

Angle $A C D=62^{\circ}$.
$B C D$ is a straight line.

Diagram NOT accurately drawn
(a) Work out the size of angle x.

$$
x=\ldots \ldots \ldots \ldots \ldots \ldots . .^{\circ}
$$

Diagram NOT
accurately drawn
The diagram shows part of a regular octagon.
(b) Work out the size of angle x.

$$
x=
$$

(Total 5 marks)
3.

(a) Work out the size of an exterior angle of a regular pentagon.
4. $\quad A B C D$ is a quadrilateral.

Diagram NOT

Work out the size of the largest angle in the quadrilateral.
5.

Diagram NOT
accurately drawn

Calculate the size of the exterior angle of a regular hexagon.
\qquad
...
(Total 2 marks)
6. $D E$ is parallel to $F G$.

Find the size of the angle marked y°.
(Total 1 mark)
7. $B E G$ and $C F G$ are straight lines.
$A B C$ is parallel to $D E F$.
Angle $A B E=48^{\circ}$.
Angle $B C F=30^{\circ}$.
Diagram NOT
accurately drawn

(a) (i) Write down the size of the angle marked x.

$$
x=
$$

\qquad
(ii) Give a reason for your answer.
\qquad
(b) (i) Write down the size of the angle marked y.

$$
y=
$$

\qquad
(ii) Give a reason for your answer.
\qquad

Pythagoras' Theorem

Things to remember:

- $a^{2}+b^{2}=c^{2}$
- First you've got to square both sides of the triangle.
- Then decide whether to add or subtract.
- Finish off with a square root.
- Make sure you round your answer correctly.

Questions:

1. $A B C D$ is a trapezium.

Diagram NOT accurately drawn
$A D=10 \mathrm{~cm}$
$A B=9 \mathrm{~cm}$
$D C=3 \mathrm{~cm}$
Angle $A B C=$ angle $B C D=90^{\circ}$
Calculate the length of $A C$.
Give your answer correct to 3 significant figures.

(Total for Question is 5 marks)

2. Diagram NOT accurately drawn

Calculate the length of $A B$.
Give your answer correct to 1 decimal place.

3. Here is a right-angled triangle.

Diagram NOT accurately drawn

Work out the length of $A C$.
Give your answer correct to 1 decimal place.
4. $\quad A B C$ is a right-angled triangle.
$A C=6 \mathrm{~cm}$
$A B=13 \mathrm{~cm}$

Diagram NOT
accurately drawn

Work out the length of $B C$.
Give your answer correct to 3 significant figures.

