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Ziqian Zhang, BS 
 
 

University of Pittsburgh, 2020 
 
 
 

The YES-associated protein (YAP) and the transcriptional co-activator with PDZ-

binding motif (TAZ) are two important transcriptional co-activators in the Hippo 

signaling pathway, which play an essential role in organ size control, tumor suppression, 

tissue regeneration and stem cell self-renewal. However, aberrant activation of YAP and 

TAZ due to deregulation of the Hippo pathway or overexpression of YAP/TAZ and 

TEADs can promote cancer development. Hence, pharmacological inhibition of YAP 

and TAZ may be a useful approach to treat tumors with high YAP/TAZ activity. Here, 

we developed a YAP/TAZ-inhibitor (niflumic acid (NA))-based drug delivery system 

for enhanced cancer therapy. Through disrupting the interaction between the TEA 

domain transcription factors (TEADs) and YAP/TAZ, NA reduces the expression of 

downstream genes that promote tumor proliferation and migration. At the same time, 

other hydrophobic anti-cancer drug can be co-delivered to tumor site to improve the 

overall antitumor activity and decrease side effect. Our strategy may not only improve 

delivery of well-established anti-cancer drugs, but also further improve their efficacy 

through inhibiting YAP/TAZ activity.  
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1.0 Introduction 
 
 
 
 

1.1 The Hippo signaling pathway 
 

 

The Hippo signaling pathway is an evolutionarily conserved signaling pathway 

which plays an important function in organ size control, tissue regeneration, as well as 

tumor suppression[1-3]. Initially discovered in Drosophila melanogaster, the Hippo 

pathway was found to be an important regulator of tissue growth[4-6]. Later, the Hippo 

pathway was found to be highly conserved from Drosophila to mammals with similar 

function[4, 7]. In mammals, it is consisted of a serine/threonine kinase cascade and 

transcriptional co-activators Yes-associated protein (YAP) and its paralog 

transcriptional activator with PDZ-binding domain (TAZ). The core kinases involved 

in the kinase cascade include mammalian STE20-like kinases (MST1/2) and large 

tumor suppressor kinases (LATS1/2). When activated, MST1/2 form complexes with 

adaptor protein Salvador Homolog (SAV1) and phosphorylate LATS1/2 and their 

adaptor protein Mob1 Homolog (MOB1) for activation[8-10]. Then LATS1/2 form 

complexes with MOB1 and further phosphorylate YAP/TAZ, leading to their 

cytoplasmic sequestration via binding to 14-3-3 or ubiquitinoylation, and 

degradation[11-15]. As a result, YAP/TAZ are inhibited when the Hippo pathway is 

turned on. In contrast, when the Hippo pathway is not active, unphosphorylated 

YAP/TAZ accumulate in the nucleus and promote expression of target genes mainly 

with the help of TEAD family transcription factors[16, 17]. The transcriptional activity 

of YAP/TAZ is dependent on their interactions with TEAD since they do not contain a 

DNA-binding domain[18, 19]. 
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1.2 Hippo signaling and cancer 
 
 

Numerous evidences show that the Hippo pathway is highly related to development 

of a broad range of cancers[3]. At cellular level, the Hippo pathway responds to many 

cellular events including apicobasal polarity, mechanotransduction, cell-cell adhesion 

and contact inhibition to regulate the activity of YAP/TAZ, and thus the expression of 

genes involved in cell proliferation, cell survival, cell competition and stem cell 

maintenance[4]. It has been shown that disruption of the Hippo signaling or over-

activation of YAP/TAZ will cause this program to lose control, which is sufficient to 

drive tumorigenesis[2, 20]. For example, knockout of MST1 and MST2 in the mouse 

liver was shown to promote tumor formation in mice[20]. Furthermore, the 

overexpression of YAZ/TAZ has been shown to enhance anoikis resistance, epithelial-

to-mesenchymal transition (EMT), drug resistance and metastasis[2, 12, 21-24]. In 

summary, many studies strongly support an oncogenic role for YAP/TAZ and a tumor-

suppressive function for Hippo pathway upstream components. Moreover, it has been 

reported that the deregulation of the Hippo pathway happens frequently in a broad range 

of human cancers like lung cancer, ovarian cancer, liver cancer and breast cancer, 

correlating with poor patient prognosis[25]. All these researches suggest Hippo 

pathway as a promising target for cancer therapy.  

 
 
 
 

1.3 Pharmacologic manipulation of the Hippo signaling pathway by NA 
 
 

Although the important role of Hippo pathway in cancer has been well documented, 

targeting this pathway for cancer therapy still presents challenges. There are several 

upstream regulators in the Hippo signaling pathway. In addition, there are some 

crosstalk between Hippo and other signaling pathways, suggesting that disruption of 
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the Hippo pathway or its crosstalk with other signal pathways might be a possible 

strategy to regulate the activity of YAP/TAZ[26].  

However, as diverse cellular signals regulate YAP/TAZ nucleocytoplasmic 

transport, it is unclear whether these compounds could be effective in treating cancers 

caused by a defective Hippo pathway. And as these regulator proteins are also involved 

in other important cellular signaling networks, side effect is probably unavoidable. 

Therefore, drugs that directly regulate the Hippo pathway might represent a more 

promising approach. An ideal target for small molecule therapeutics is protein kinases 

that function as oncogenes. But unfortunately, the Hippo pathway kinases, MST1/2 and 

LATS 1/2 are tumor suppressors[11]. Because small molecule activators are hardly 

available, they are not suitable for drug targeting. Ruling out these possibilities, the 

most attractive therapeutic targets are the key transcriptional co-activators YAP/TAZ as 

the final common conduits of this pathway.  

Niflumic acid (NA), an inhibitor of YAP/TAZ, was reported to be able to bind to 

YAP-binding domain on TEAD with a high affinity[27]. Because YAP/TAZ relies on 

TEADs for activating gene expression, inhibiting the oncogenic activities of YAP/TAZ 

can be achieved by directly targeting TEAD-YAP protein-protein interactions[28]. 

Although NA does not affect the binding of TEAD to YAP peptide, significant reduction 

in the TEAD reporter activity was observed. And after NA treatment, proliferation and 

migration of cells decrease significantly[27]. These results indicated that NA is an 

effective inhibitor of YAP/TAZ. However, a short half-life of 2.5 h in blood and poor 

tumor distribution greatly limit its application for in vivo study[29]. 
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1.4 POEG-b-PNA is an ideal carrier to co-deliver NA and other anti-cancer 
drugs for targeted cancer therapy 

 
 

In order to investigate whether inhibition of YAP/TAZ could be a promising 

approach to treat tumors with high YAP/TAZ activity and enhance tumor therapy in 

combination with other anti-tumor drugs, we have developed a novel NA prodrug 

micellar formulation to co-deliver NA and other anti-tumor drugs. The prodrug 

nanocarrier is based on a well-defined poly-(oligo ethylene glycol)-co-poly-(niflumic 

acid (4-vinylbenzyl) ester) (POEG-b-PNA) di-block copolymer, which can self-

assemble to form micelles for drug delivery. We hypothesize that this nanoparticle can 

accumulate at tumor site and slowly release NA. In addition, POEG-b-PNA is capable 

of co-delivering another anticancer drug to improve the overall antitumor activity while 

reducing drug-associated side effect.  
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2.0 Methods 
 
 
 
 

2.1 Materials 
 
 

Dasatinib, gefitinib, sunitinib and doxorubicin·HCl were purchased from LC 

Laboratories. 4-Cyano-4-pentanoic acid, niflumic acid, vinylbenzyl chloride (VBC) 

monomer, potassium carbonate, oligo(ethylene glycol) methacrylate (average 

Mn = 500, OEG500), 2- Azobis(isobutyronitrile) (AIBN), trypsin-EDTA solution, 3-

(4,5-dimethylthiazol-2-yl)-2,5- diphenyl tetrazolium bromide (MTT) and Dulbecco's 

Modified Eagle's Medium (DMEM) were purchased from Sigma-Aldrich (MO, U.S.A). 

AIBN was purified by recrystallization in anhydrous ethanol. Fetal bovine serum (FBS), 

penicillin-streptomycin solution, Lipofectamine 2000 and TRIzol lysis reagent were 

purchased from Invitrogen (NY, U.S.A.). QuantiTect Reverse Transcription Kit was 

purchased from Qiagen (MD, U.S.A). All solvents used in this study were HPLC grade. 

Antibody against YAP was purchased from Cell Signaling Technology, Inc. (MA, USA). 

SuperSignalTM West Fento Maximum Sensitivity Substrate Kit and PierceTM RIPA 

buffer were purchased from Thermo Scientific (MA, USA). pCMV-β-galactosidase 

plasmid was obtained from Clontech (Mountain View, CA, USA). 

 
 
 
 
2.2 Synthesis of niflumic acid monomer 
 
 

4-vinylbenzyl chloride (0.60 g, 4 mmol), niflumic acid (1.13 g, 4 mmol), Potassium 

carbonate (2.76 g, 20 mmol) and were mixed in 20 ml N,N-Dimethylformamide and 

reacted at 50 ℃ under stirring. After 6 h, cooled down the mixture and added 200 ml 

dichloromethane to extract the product. Then centrifuged the mixture at 4500 rpm for 
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10 min. The participate was washed with methylene dichloride for two times and all the 

supernatant was collected, washed by water for three times. Anhydrous sodium sulphate 

was added later for dehydration. Niflumic acid monomer was purified by silica gel 

column chromatography using dichloromethane/hexane (v/v=1/3 to 1/1) as the elution 

buffer. 

 
 
 
 

2.3 Synthesis of POEG-b-PNA polymer 
 
 

Niflumic acid monomer (200 mg, 0.5 mmol), OEG500 monomer (450 mg, 0.9 

mmol), 4-Cyano-4-(thiobenzoylthio)pentanoic acid (8.4 mg, 0.03 mmol) and  

azobisisobutyronitrile (1.64 mg, 0.01 mmol) were dissolved in anhydrous 

tetrahydrofuran (2.0 ml) and added into a Schlenk tube. After three free-pump-thawing 

cycles, the mixture was filled with N2 and immersed into an oil bath thermostated at 

80 ℃ for polymerization. After 24 h, quenched the reaction by immersing the tube into 

liquid nitrogen and participated the mixture in diethyl ester for three times. The POEG-

b-PNA polymer was obtained after vacuum drying. Conversion of PNA monomer was 

85% and conversion of OEG500 monomer was 67%. 

 
 
 
 

2.4 Characterization of the synthesized monomer and polymer 
 
 
1H NMR spectrum was examined on a Varian-400 FT-NMR spectrometer at 400.0 

MHz with CDCl3 as the solvent.  
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2.5 Preparation and characterization of blank and drug-loaded POEG-b-
PNA micelles 

 
 

Dasatinib, doxorubicin, sunitinib or gefitinib solution (1mg/mL in methylene 

chloride/methanol (v/v=1/1)) was mixed with POEG-b-PNA polymers (20 mg/mL in 

methylene chloride) at different carrier/drug weight ratios. The solvent was removed 

by nitrogen flow to produce a thin film of carrier/drug mixture, which was further dried 

in vacuum for 2 h to remove any remaining solvent. Then the thin film was hydrated 

and gently vortexed in PBS to form dasatinib-loaded POEG-b-PNA micelles.  

The size distribution and zeta potential of blank and drug-loaded micelles were 

examined by dynamic light scattering (DLS) through a Malvern Zeta Nanosizer. 

 
 
 
 

2.6 Critical micelle concentration (CMC) of POEG-b-PNA micelles 
 
 

The CMC values of POEG-b-PNA micelles were determined by fluorescence 

measurement using Nile red as a fluorescence probe. Briefly, Nile red dissolved in 

DCM was added to test-tubes and the solvent was evaporated at room temperature. 

POEG-b-PNA micelles ranging from 1.0 × 10− 4 to 5 × 10− 1 mg/mL were then added 

into Nile red. The final concentration of Nile red was kept at 6.0 × 10− 7 M. The 

micelles were kept overnight to allow the solubilization equilibrium of Nile red. 

Excitation was carried out at 550 nm and emission spectra were recorded from 570 to 

720 nm. The CMC value was determined as the cross-point when extrapolating the 

intensity at low and high concentration regions. 
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2.7 Cell culture 
 
 

4T1.2 is a mouse metastatic breast cancer cell line. This type of cell was cultured 

in DMEM culture medium with 10% (v/v) fetal bovine serum and 100 IU/mL penicillin 

and 100 μg/mL streptomycin at 37 °C in a humidified 5% CO2-95% air atmosphere. 

4T1.2 cell line used in this work was obtained from ATCC (VA. U.S.A). 

 
 
 
 

2.8 Animals 
 
 

Female BALB/c mice, 6-8 weeks in age, were purchased from Charles River 

(Davis, CA). All animals were housed under pathogen-free conditions according to 

AAALAC guidelines. All animal-related experiments were performed in full 

compliance with institutional guidelines and approved by the Animal Use and Care 

Administrative Advisory Committee at the University of Pittsburgh. 

 
 
 
 

2.9 In vitro cytotoxicity assay 
 
 

Cytotoxicity assay was performed on 4T1.2 mouse breast cancer cell line. Cells 

were seeded in 96-well plates at a density of 1.5 × 103 cells/well and incubated 24 h as 

described previously to allow cell attachment.  

To evaluate the combinational effect of NA and other anti-cancer drugs, cells were 

treated with various concentrations of free NA, free dasatinib, and the combination of 

both respectively for 48 h. To examine the cytotoxicity of drug-loaded POEG-b-PNA 

micelles, free dasatinib, blank POEG-b-PNA and dasatinib/POEG-b-PNA (w/w ratio 
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POEG-b-PNA: dasatinib=40: 1) were incubated with cells for 48h before MTT assay 

was performed. 

MTT assay and the calculation of cell viability were performed as described before. 

The anti-proliferation data for single drug and combination treatment were fitted to an 

inhibitory, normalized dose-response model with variable slope (Y = 100/ (1 + 

10^((LogEC50-X) *Hillslope). (GraphPad Prism, San Diego, CA) 

 
 
 
 

2.10 Real-time PCR 
 
 

Real-time PCR studies were performed on 4T1.2 mouse breast cancer cell line. 

4T1.2 (2×104 cells/well) was seeded in 6-well plates followed by 24 h of incubation in 

DMEM containing 10% FBS and 1% streptomycin/penicillin. After 24 hours, medium 

was replaced with medium with 2% FBS containing free NA. After 48 hours, total 

cellular RNA was extracted using the TRIzol lysis reagent. cDNA was generated from 

the purified RNA using QuantiTect Reverse Transcription Kit following to the 

manufacturer’s instructions. The cDNAs corresponding to different genes examined 

were amplified by PCR using the specific primers respectively. (supplementary form) 

Quantitative real-time PCR was performed using SYBR Green Mix on a 7900HT Fast 

Real-time PCR System. Relative target mRNA levels were analyzed using delta-delta-

Ct calculations and normalized to GAPDH. 
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2.11 Western blot 
 
 

Western blotting was performed to evaluate the YAP level in MDA-MB 4T1.2 cell 

line. Cells grown in six-wells plates with 80% confluency were treated with free NA 

for 24 h. Cells were washed twice with pre-cooled PBS and lysed in PierceTM RIPA 

buffer for 40 min in 4℃. Protein concentrations were determined by BCA method, and 

equal amounts of total protein lysate were resolved on a 10% SDS-PAGE and 

subsequently transferred to a nitrocellulose membrane. Membranes were blocked with 

5% nonfat milk in PBS for 1 h prior to incubation with rabbit anti-YAP primary 

antibody dissolved in PBST (DPBS with 0.1% Tween 20) overnight at 4 °C. The blots 

were washed with PBST and then probed with goat antirabbit IgG for 1 h at room 

temperature followed by chemiluminescence detection by SuperSignalTM West Fento 

Maximum Sensitivity Substrate. GAPDH was used as a loading control. 

 
 
 
 

2.12 Cell transient transfection and luciferase reporter assay 
 
 

4T1.2 cells were cultured as previously described. TEAD activity reporter 

developed by Dupont et al. was used in the assay[30]. Cells in a 48-wells plate were 

transfected with 500 ng of TEAD firefly luciferase and 250 ng of CMV-β-galactosidase 

constructs using a Lipofectamine 2000-mediated method. After 24 h, the cells were 

incubated with different concentration of NA for another 24 h before luciferase or β-gal 

activity assay. The luciferase activity was determined using luciferin as substrate and 

was normalized against the co-transfected β-galactosidase activity.  
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2.13 In vivo biodistribution with near-infrared fluorescence imaging 
 
 

DiR-loaded POEG-b-PNA micelles were prepared similarly to dasatinib-loaded 

POEG-b-PNA micelles at a POEG-b-PNA to DiR ratio of 80/1 (w/w). DiR-loaded 

POEG-b-PNA micelles were injected to 4T1 tumor bearing mice at a DiR dose of 2.5 

mg/kg. At 1,6,12,24,48 and 72 hours, the mice were imaged by IVIS 200 system (Perkin 

Elmer, USA) at a 0.5s exposure time with excitation at 730 nm and emission at 835nm. 

The mice were then sacrificed and perfused. Then major organs were dissected and 

subjected to ex vivo imaging. 
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3.0 Results 
 
 
 
 

3.1 In vitro YAP inhibition effect of NA in 4T1.2 breast cancer cells 
 
 

The expression of YAP in 4T1.2 murine breast cancer cells was first confirmed by 

western blot (Fig. 1A). 4T1.2 showed a high YAP expression, which is consistent with 

previous report, indicating that YAP is highly activated in this cell line and 4T1.2 is an 

ideal model for YAP study. It has been previously reported that NA could inhibit TEAD-

YAP activity by targeting the YAP-binding pocket of TEAD in human HEK-293 cell 

line. However, this inhibition might be different in murine cells due to the difference in 

protein structure. Therefore, the inhibition effect of NA on 4T1.2 cell line was first 

investigated. After treated with NA, the protein level of YAP in 4T1.2 cells showed no 

significant difference compared to untreated cells (Fig. 1A). However, the mRNA 

expression levels of YAP target genes such as Ctgf, Cyr61 and Amolt2 genes [16] were 

dramatically decreased after NA treatment (Fig. 1C). These data suggest that NA 

inhibited the YAP activity though it had no significant effect on its expression at protein 

level. We then went on to examine the YAP activity after NA treatment using a YAP 

luciferase reporter assay (Fig. 1B). Briefly, 4T1.2 cells were first transfected with a 

luciferase reporter in which the luciferase expression is under the regulation of a YAP-

responsive promoter. Then, the luciferase activity was detected in 4T1.2 cells treated 

with free DMSO or various concentrations of NA. The signals were found to decrease 

in a dose-dependent manner after NA treatment, indicating that YAP activity was 

inhibited by NA. These data proved that NA can also serve as a YAP inhibitor on murine 

4T1.2 breast cancer cell line, possibly by binding to the YAP-binding pocket on TEAD 

to suppress the TEAD-YAP activity, a similar mechanism reported for HEK293 cell 

line[27]. 
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Figure 1 NA inhibit YAP activity in 4T1.2 breast cancer cells. 

4T1.2 cells were treated with DMSO or variant concentration of NA in DMSO. (A) YAP protein 

levels were investigated by western blot. (B) YAP activities were detected using a luciferase reporter. 

Before NA treatment, cells were co-transfected with luciferase reporter plasmid and CMV-β-

galactosidase plasmid. The fluorescent intensities were normalized by β-galactosidase activity. (C) 

Expression of three different YAP target genes- Ctgf, Cyr61 and Amotl2- were tested by qPCR and were 

normalized by expression level of GAPDH. Data are presented as the means ± SD for triplicate samples. 

P values were generated by student t-test for comparisons. *P < 0.05, **P < 0.01 (vs control). 

 
 
 
 

3.2 Synthesis and characterization of POEG-b-PNA polymer 
 
 

To improve the pharmacokinetics profile and the therapeutic effect of NA, a NA-

based polymer was developed. In addition to improved delivery of NA itself, POEG-b-

PNA can form a carrier to further facilitate codelivery of another anticancer drug. The 

POEG-b-PNA polymer was synthesized following the scheme depicted in Fig. 2. First, 
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NA monomer was synthesized via reaction of NA with 4-vinylbenzyl chloride. Then, 

POEG-b-PNA polymer was synthesized with NA monomer and OEG500 monomer via 

reversible addition-fragmentation transfer (RAFT) polymerization as reported 

previously[31].  

The structures of NA monomer and POEG-b-PNA polymer were confirmed by 

H1NMR (Fig. 3A-B). The average numbers of NA unit and OEG500 unit in each 

POEG-b-PNA molecule were about 14 and 16, respectively. The average molecular 

weight of POEG-b-PNA polymer was about 13350 g/mol, calculated by NMR.  

Blank POEG-b-PNA micelles and drug-loaded POEG-b-PNA were prepared by a 

film hydration method. The CMC value of POEG-b-PNA micelle was about 7.9 μg/ml 

(Fig. 4B), measured by using Nile red as a fluorescence probe. The relatively low CMC 

value of this polymer suggests a good stability following i.v. injection and dilution in 

blood, which can help to prevent the burst release of drug. The hydrodynamic size of 

POEG-b-PNA micelle was measured by dynamic light scattering method and the size 

distribution is shown in Fig. 4A. The size of POEG-b-PNA polymer is around 15.71 

nm, while loading of dasatinib, doxorubicin, sunitinib or gefitinib had minimal impact 

on the particle size (Table 1). All these drugs can be loaded into POEG-b-PNA micelles 

at a drug/carrier weight ratio up to 1/10, and these drug-loaded micelles were stable in 

room temperature for two days with unchanged size distribution and clear solution.  
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Figure 2 Synthesis Scheme of POEG-b-PNA Conjugate 

NA was first linked to vinylbenzyl chloride via an ester bond to build NA monomer. Then POEG-

b-PNA polymer was synthesized by NA monomer and OEG500 monomer via reversible addition-

fragmentation transfer (RAFT) polymerization. The molecular weight and numbers of monomer units 

were adjusted by controlling input ratio among RAFT chain transfer agent, NA monomer and OEG-MA 

monomer.  
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Figure 3 1H-NMR of NA monomer and POEG-b-PNA conjugate 

NA monomer (A) and POEG-b-PNA (B) were dissolved in CDCl3 for 1H-NMR and the structures 

were confirmed. The numbers of NA monomer units and POEG-b-PNA units were calculated according 

to the integration area of their exclusive peaks. The average numbers of NA unit and OEG500 unit in 

each POEG-b-PNA molecule were about 14 and 16, respectively. 
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Figure 4 Size distribution and critical micelle concentration of POEG-b-PNA micelles 

POEG-b-PNA micelles were prepared by simple film hydration method. POEG-b-PNA polymers 

were first dissolved in methylene chloride. The solvent was removed by nitrogen flow to produce a thin 

film. Then the thin film was hydrated and gently vortexed in PBS to form POEG-b-PNA micelles. The 

size distribution of these micelles was characterized by DLS, showing an average diameter size of 15.71 

nm (A). Tests were run for three times. Critical micelle concentration was measured using Nile red (B). 

POEG-b-PNA micelles solution was diluted to different concentration and incubated with hydrophobic 

nile red dye. Then the supernatants were tested for fluorescent signals. Two lines were fitted as shown. 

The cross point of these two lines indicates a CMC of 7.9 μg/ml. 

 

Table 1 Characterization of drug-loading POEG-b-PNA micelles 

Drugs 

Drug 

Loading 

Capacity (w/w) 

Size Stability (RT) 

Gefitinib 1/10 
Size=14.68 nm 

PDI=0.279 
Over 48 h 

Dasatinib 1/10 
Size=14.14 nm 

PDI=0.168 
Over 48 h 

Sunitinib 1/15 
Size=14.01 nm 

PDI=0.282 
Over 48 h 
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Doxorubicin 1/15 
Size=13.67 nm 

PDI=0.314 
Over 48 h 

 

Drugs were first mixed with POEG-b-PNA polymer in dichloromethane/methanol (v/v=1/1) in 

different weight ratio. Then drug-loading micelles were prepared by film hydration method and their 

size distribution were measured by DLS. Samples with clear solution, unobservable precipitate and 

stable size were considered to load drug well. All samples were kept in room temperature for 2 days to 

follow their changes. 

 
 
 
 

3.3 Synergistic effect of NA and other anti-cancer drugs on cancer cell 
proliferation 

 
 

Since YAP has been reported to be overexpressed in many kinds of cancer cells[25], 

including drug-resistant cancer cells[32-34], it would be interesting to test whether 

inhibition of YAP by NA can sensitize cancer cells to other therapies including 

chemotherapy. Here, doxorubicin, sunitinib, gefitinib and dasatinib were selected to 

investigate their synergistic effect with NA on YAP-overexpressing 4T1.2 cell line. The 

proliferation inhibitory activity of doxorubicin, sunitinib, gefitinib and dasatinib, alone 

or in combination with NA, was examined on 4T1.2 breast cancer cell line via MTT 

assay. As shown in Fig. 5A, dasatinib or NA alone showed a concentration-dependent 

inhibition of proliferation on 4T1.2 cells. Combination of both led to an improvement 

in efficacy. A similar improvement in inhibition of cell proliferation was observed when 

NA was combined with doxorubicin (Fig. 5B), sunitinib (Fig. 5C), or gefitinib (Fig. 

5D). To further assess the potential synergistic effect between NA and the four anti-

cancer drugs, combination index was then calculated through the equation: CI = 

(d1/IC501) +(d2/IC502). In this equation, d1 is the concentration of the first drug (NA) 
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required to achieve 50% inhibitory effect in combination treatment and IC501 is the IC50 

value of the first drug (NA), while d2 is the concentration of the second drug (dasatinib, 

doxorubicin, sunitinib or gefitinib, respectively) required to achieve 50% inhibitory 

effect in combination treatment and IC502 means the IC50 value of the second drug 

(dasatinib, doxorubicin, sunitinib or gefitinib, respectively). The CI values of all tested 

drugs were shown in Table 2. Dasatinib and gefitinib showed a CI value significantly 

less than 1, indicating that they have synergistic effect in combination with NA. No 

synergy was found between NA and sunitinib or doxorubicin, with a CI value close to 

1 or above 1.  

 

 

Figure 5 Synergistic effect between NA and dasatinib, doxorubicin, sunitinib or gefitinib in 

inhibiting the proliferation of 4T1.2 cancer cells 

4T1.2 cells were treated with various concentration of free dasatinib (A), doxorubicin (B), sunitinib 

(C) and gefitinib (D), alone or in combination with different concentration of free NA. After 48 h, the 

live cells were measured by MTT assay and cell viabilities were normalized by control group. Curves 
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were generated by simply connected all dots together and the proliferation inhibitory effect were 

determined. The experiments were performed in sextuplicate and repeated three times. Data are presented 

as means ± SD.  

 

Table 2 Synergistic antiproliferative activity of NA and other anti-cancer drugs in 4T1.2 cells 

Drug1 Drug2 
d1 

(μg/mL) 

IC501 

(μg/mL) 

d2 

(μg/mL) 

IC502 

(μg/mL) 
CI 

Niflumic 

Acid Dasatinib 20 50.55 0.0047 0.01389 0.73 

Niflumic 

Acid Doxorubicin 20 50.55 1.100 0.6184 2.17 

Niflumic 

Acid Gefitinib 20 50.55 1.845 7.185 0.65 

Niflumic 

Acid Sunitinib 20 50.55 1.206 2.126 0.96 

 

Combination Index (CI) of simultaneous treatment of NA and other anti-cancer drugs in 4T1.2 cells 

were calculated. Cells were treated as described in Fig. 5. The anti-proliferation data for single drug and 

combination treatment were fitted to an inhibitory, normalized dose-response model with variable slope 

(Y = 100/ (1 + 10^((LogEC50-X) *Hillslope) to calculate their IC50 value. Then the CI value was 

calculated by the formula: CI = (d1/IC501) +(d2/IC502). The CI values are interpreted as follows: <1.0, 

synergism; 1.0, additive; and >1.0, antagonism. 
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3.4 Biodistribution of POEG-b-PNA micelles 
 
 

The biodistribution of POEG-b-PNA micelles after systemic administration was 

investigated by in vivo biofluorescence imaging. A lipophilic near IR fluorescence dye, 

carbocyanine DiOC18(7) (DiR), was used for micelle tracing. DiR is weakly 

fluorescent in water but highly fluorescent in lipid environment, suggesting that it 

shows strong fluorescence when loaded in POEG-b-PNA micelles but becomes 

minimally fluorescent upon release into blood. Therefore, by loading DiR into POEG-

b-PNA micelles, the biodistribution of POEG-b-PNA micelles can be followed by near 

infrared imaging. As shown in Fig. 6A, strong fluorescence signal was observed for 

DiR loaded in POEG-b-PNA micelles while free DiR showed a minimal signal, 

validating the use of DIR to follow the fate of micelle in vivo. The DiR signal was 

observed at tumor site as early as 1 h after injection, and it remained in tumor even after 

72 h, suggesting its long-lasting tumor-targeting effect. After 72 h, mice were sacrificed, 

and tumors and other organs were taken for ex vivo imaging (Figure. 6B-C). In 

consistent with whole body imaging, signals observed in tumor tissues were 

significantly higher than those in other tissue and organs, further confirming the 

selective tumor accumulation of our micelles.  
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Figure 6 In vivo and ex vivo NIRF imaging of POEG-b-PNA micelles 

4T1.2 tumor bearing mice were intravenously injected with free DiR or DiR loaded POEG-b-PNA. 

After 1, 6, 12, 24, 48 and 72 h, the whole-body fluorescent images were taken (A). Then mice were 

sacrificed for ex vivo organ fluorescent images (B). Fluorescent intensities of different organs at 72 h 

after injection were quantified (C). Values reported are the means ± SEM, n = 3.  

 
 
 
 
3.5 In vivo tumor-inhibitory effect of anti-cancer drugs loaded POEG-b-PNA 

micelles 
 
 

Our POEG-b-PNA micelles are capable of formulating various anticancer agents 

including dasatinib, doxorubicin, sunitinib, and gefitinib. It is well known that the 

outcome of an in vitro study may not always well correlate with that of an in vivo assay 

with respect to the antitumor activity of a given therapeutics, particularly a combination 

therapy. To facilitate the identification of a promising POEG-b-PNA-based 

combination therapy that warrants more studies later on, a preliminary study was 

conducted to examine the antitumor activity of various POEG-b-PNA formulations 

each loaded with a different drug. To start, highly aggressive syngeneic 4T1.2 murine 

breast cancer cells were injected subcutaneously at mammary fat pad of female mice. 

Five days later, when solid tumors were noticeable, POEG-b-PNA micelles loaded with 

dasatinib, doxorubicin, sunitinib or gefitinib were administered intravenously. As 

shown in Fig. 7A, blank POEG-b-PNA micelles showed minimal anti-tumor activity, 

this might be due to the modest potency of NA and the limited dose of POEG-b-PNA 

that was used for codelivery. POEG-b-PNA micelles loaded with Gefitinib or sunitinib 

also showed no significant difference from control group, possibly because of 

insufficient cytotoxicity and lack of synergistic effect with NA in vivo. POEG-b-PNA 

loaded with DOX exhibited significant inhibition on tumor growth, despite lack of 
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synergy between NA and DOX in MTT assay. However, body weights of mice in this 

group decreased dramatically, suggesting significant toxicity (Fig. 7B). POEG-b-PNA 

loaded with dasatinib showed an antitumor activity that was comparable to that of 

DOX-loaded micelles. However, dasatinib-loaded POEG-b-PNA micelles were well 

tolerated in treated mice as shown by minimal changes in body weights.

 
Figure 7 Tumor suppression effect of drug loaded POEG-b-PNA polymers in vivo 

All mice were inoculated with 4T1.2 cells 5 days before treatment. Free POEG-b-PNA micelles or 

micelles loading dasatinib, gefitinib or sunitinib were injected intravenously on day 0, 3, 7, 10 and 14. 

Doxorubicin (Dox) loaded POEG-b-PNA micelles were given three times on day 0, 3 and 7 because of 

the decrease body weight. Tumor volume (A) and body weight of (B) mice were followed for 3 weeks. 
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Widths and lengths of tumors were measured, and tumor volumes were calculated according to the 

equation: Tumor Volume (mm3) =π*Length (mm)*Width (mm)*Width (mm)/6. Values reported are the 

means ± SEM, n = 3. P values were generated by student t-test for comparisons. *P < 0.05, **P < 0.01 

(vs control). 

 
 
 
 

3.6 In vitro cytotoxicity of dasatinib loaded POEG-b-PNA micelles 
 
 

Since dasatinib-loaded POEG-b-PNA showed a significant growth-inhibitory 

effect in 4T1.2 tumor, further study was conducted to investigate the pharmacokinetic 

and pharmacodynamic profile of this combination therapy. With the concerns that drugs 

may not be well released to achieve an effect as effectively as free drugs when they are 

loaded into micelles, an in vitro cytotoxicity of dasatinib-loaded POEG-b-PNA micelles 

was first tested on 4T1.2 cells and compared to free NA and dasatinib combination. As 

shown in Fig. 8, dasatinib inhibited the proliferation of 4T1.2 cancer cells in a 

concentration-dependent manner and the addition of free NA further enhanced this 

inhibitory activity. Compared with free drug combination, dasatinib-loaded POEG-b-

PNA micelles were found to achieve a similar level of cytotoxicity, suggesting that 

loading into POEG-b-PNA minimally impacted the cytotoxicity of dasatinib. In 

addition, POEG-b-PNA micelles displayed a reduced cytotoxicity compared with free 

NA, possibly due to the slow release of NA from micelles.  
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Figure 8 In vitro proliferation inhibitory effect of dasatinib loaded POEG-b-PNA micelles 

4T1.2 cells were treated with various concentration of free dasatinib, free NA, free POEG-b-PNA 

micelles, free dasatinib/NA combination or dasatinib loaded POEG-b-PNA micelles. A same maximum 

concentration of 1 μg/ml was shared in all dasatinib-including groups. A same maximum concentration 

of 40 μg/ml was shared in all NA-including groups. After 48 h, the live cells were measured by MTT 

assay and the proliferation inhibitory effect were determined. The experiments were performed in 

sextuplicate and repeated three times. Data are presented as means ± SD. 
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4.0 Discussion 
 
 
 
 

NA, a cyclooxygenase-2 (Cox-2) inhibitor, was first approved by FDA for joint and 

muscular pain treatment. Recently it was found to be a TEAD-YAP inhibitor targeting 

the central pocket in human TEAD[27]. Since few direct YAP/TAZ inhibitors have been 

developed[35], the discovery of NA is exciting because it provides the possibility for 

researchers to manipulate the Hippo signaling pathway in vivo by a small molecule and 

explore the therapeutic potential of targeting YAP/TAZ. Previously, numerous in vitro 

studies have revealed the important role of YAP/TAZ in cancer cell proliferation, cell 

survival, cell migration, drug resistance and other essential functions for cancer 

development. However, little progress was made in the advancement of these studies to 

in vivo evaluations due to the lack of a small molecule inhibitor with an ideal 

pharmacokinetics/pharmacodynamics profile. NA was found to have a significant 

inhibition of TEAD-YAP activity in HEK293 cell line[27], but its short half-life of 2.5 

h in blood hinders its application in vivo. In order to solve this problem, here we 

developed a NA-based prodrug polymer which shows efficient tumor accumulation for 

targeted drug delivery. With this polymer, a slow release of NA at tumor site is expected, 

which shall lead to a sustained inhibition of TEAD-YAP activity for a prolonged period 

of time. An in vitro release study that simulates the in vivo release of NA from the 

polymer and systematic pharmacokinetic study of the prodrug polymer in blood and 

tissues are underway.  

NA was reported to have a high affinity to human TEAD with a Kd of 28 μM [27]. 

However, a relatively high concentration was required to significantly reduce the 

expression of the TEAD-YAP target genes as well as the expression of a YAP-luciferase 

reporter in 4T1.2 cells, indicating an insufficient potency of NA. There are several 

possible reasons for this discrepancy: First, although the Hippo pathway is highly 
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conserved, the subtle differences between the structures of human and murine TEAD 

and YAP/TAZ might account for the discrepancy; Second, though NA decreases TEAD-

YAP activity by binding to the central pocket in TEAD, TEAD can still form complex 

with YAP/TAZ[27], indicating that the activity of this complex is not completely 

abolished with NA binding and that a concentration that is much higher than its Kd is 

required to inhibit the TEAD-YAP activity. Therefore, a considerably high 

concentration is required to inhibit TEAD-YAP activity using NA alone for cancer 

treatment, which is almost impossible to achieve and maintain in vivo. Taking this into 

account, our POEG-b-PNA polymer was developed for tumor-targeted delivery of NA 

to increase local drug concentration and other anti-cancer drugs were co-delivered with 

this system to improve the efficacy through a synergistic action. Interestingly, the in 

vitro MTT showed synergistic effect between dasatinib and NA even at relatively low 

NA concentrations. In addition, preliminary data showed that codelivery of NA and 

dasatinib via POEG-b-PNA polymer also led to a better overall antitumor activity in 

vivo compared to other combination therapies. As dasatinib also exhibited YAP-

inhibitory effect by indirectly phosphorylating YAP/TAZ thus reducing their nuclear 

localization[36], the cooperation between NA and dasatinib in YAP inhibition might 

explain the mechanism behind their synergistic effect.  

While YAP/TAZ activity is inhibited by NA, the function of several other cofactors 

sharing the same pocket in TEAD with YAP/TAZ may also be influenced. Studies 

showed that the Vestigial-like (VGLL) protein family proteins compete with YAP/TAZ 

for TEAD binding because of overlapped binding sites[37, 38]. Interestingly, though 

VGLL1 and VGLL4 both compete with YAP/TAZ, they displayed opposing effect on 

cell growth as VGLL4 overexpression suppresses tumor growth[37, 39] while VGLL1 

promotes anchorage-independent cell growth via a mechanism different from that of 

YAP/TAZ[38]. Considering the fact that NA does not prevent the formation of TEAD-

YAP complex, the effect of NA on YAP/TAZ activity is unexpectedly complex and 

profound. The selectivity of NA as a YAP inhibitor warrants more studies in the future.  
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5.0 Conclusion 
 
 
 
 

In 4T1.2 cells with a high expression level of YAP, NA significantly reduced YAP 

reporter activity and the expression of its target genes without affecting the YAP 

expression at protein level, which indicates its direct inhibition of YAP. Moreover, 

strong synergistic effect was observed when 4T1.2 cancer cells were treated with NA 

in combination with dasatinib or gefitinib.  

In addition, we have developed a well-characterized POEG-b-PNA prodrug-based 

micellar nanocarrier that consists of 13 units of PNA and 14 units of POEG for efficient 

delivery of water insoluble anticancer drugs. This micelle has a small size of about 10 

nm, which enables it to penetrate deeply into tumor. At the same time, the critical 

micelle concentration is very low, suggesting that it is stable and not easy to disassemble 

following i.v. administration. Furthermore, its ability to accumulate at tumor site was 

verified by biodistribution study, suggesting that NA and hydrophobic drug can be 

efficiently co-deliver to tumor. Last, this strategy was proved to significantly suppress 

tumor growth in 4T1.2 tumor-bearing mice.  
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