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ROUGH IDEALS BASED ON IDEAL DETERMINED VARIETIES

SAEED RASOULI

Abstract. The paper is devoted to concern a relationship between rough set theory and

universal algebra. Notions of lower and upper rough approximations on an algebraic structure

induced by an ideal are introduced and some of their properties are studied. Also, notions of

rough subalgebras and rough ideals with respect to an ideal of an algebraic structure, which

is an extended notion of subalgebras and ideals in an algebraic structure, are introduced and

investigated.

1. Introduction

Formal concept analysis (FCA) and rough set theory (RST), introduced in the early 80s by

Wille [44] and Pawlak [28], respectively. These theories have become pioneering of knowledge

acquisition from data tables. This fact has resulted in a rapid growth of interest in their

formal relationships and possible unifications. Generally, both theories are based on Galois

connections and cluster data into coherent and meaningful entities called concepts. These

theories are useful tools for qualitative data analysis.
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The theory of rough set was first introduced as a tool for dealing with granularity in knowl-

edge. Rough set theory is an extension of set theory. In the theory of rough set, it is important

to construct a pair of upper and lower approximation operators based on available information.

The Pawlak approximation operators are defined by an equivalence relation. The equivalence

classes are the building blocks for the construction of the lower and upper approximations.

Formal concept analysis is formulated based on the notion of a formal context, which is a

binary relation between a set of objects and a set of properties or attributes [15, 44]. The

binary relation induces set-theoretic operators from sets of objects to sets of properties, and

from sets of properties to sets of objects, respectively. A formal concept is defined as a pair of

a set of objects and a set of properties connected by the two set-theoretic operators.

The notion of formal contexts provides a common framework for the study of rough set

theory and formal concept analysis, if rough set theory is formulated based on two universes.

Dntsch and Gediga pointed out that the set-theoretic operators used in the two theories have

been considered in modal logics, and therefore referred to them as modal-style operators [16].

They have demonstrated that modal-style operators are useful in data analysis.

Some researches studied algebraic properties of rough sets. Iwinski [22] suggested a lattice

theoretic approach to rough set. Bonikowaski [5] studied some algebraic and set-theoretical

properties of rough sets. Pomykala [29] showed that the set of rough sets forms a Stone algebra.

A natural question is what will happen if we substitute an algebraic structure instead of the

universe set. Biswas and Nanda [3], applied the notion of rough sets to algebra and introduced

the notion of rough subgroups. Kuroki and Wang [24] gave some properties of the lower and

upper approximations with respect to the normal subgroups. Kuroki [25], introduced the

notion of a rough ideal in a semigroup. Davvaz [7] studied the properties of rough subring

with respect to ideals of ring. Rough modules [9] have been investigated by Davvaz and

Mahdavipour. Rasouli and Davvaz [33], introduced and studied the notion of a rough ideal in

an MV-algebra. Fuzzy rough sets were defined by Dubois and Prade [11]. Yao [47] introduced

the concept of generalized rough sets based on relations. Feng et al. proposed another type of

rough sets, in which lower and upper approximations of a subset are obtained with the help

of soft sets [12], also, see [8, 21, 30, 31, 32, 34, 35, 45, 46].

In many of the familiar classes of algebras, congruences can be adequately represented

by suitable subsets of the universes of the algebras. This is a desirable phenomenon that

considerably simplifies the study of congruences and homomorphisms in such classes. In a

group the representing sets are the normal subgroups of the group, in a ring the two-sided

ideals, and in algebras of logic such as residuated lattices, divisible residuated lattices, MTL-

algebras, BL-algebras, MV-algebras, Heyting algebras and Boolean algebras the lattice filters.

The sets are characterized by certain closure properties which ensure that they coincide with
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the congruence classes containing a given constant - the group identity in the case of groups and

rings, the top element in that of residuated lattices, divisible residuated lattices, MTL-algebras,

BL-algebras, MV-algebras, Heyting algebras and Boolean algebras. Classes of algebras in

which every congruence is uniquely determined by its classes are known as regular and classes

of algebras in which every congruence is uniquely determined by its class containing a fixed

constant are known as pointed regular (and 0-regular when the constant is denoted 0). Regular

and 0-regular classes of algebras have received a good deal of attention in universal algebra.

A Mal’cev condition for regular varieties were given in [4] and two distinct Mal’cev conditions

for 0-regular varieties were given in [13, 14].

The ideals in universal algebra introduced in the case of multi operator groups by P.J.

Higgins [20] and in the general case by R. Magari [27] and systematically studied in [41] and

subsequent papers [17, 42, 43]. A. Ursini proposed a notion of ideal in 0-classes of algebras

in [41]. His definition is a syntactic notion that abstracts the familiar closure properties of

normal subgroups, ring ideals, etc. Although the 0-classes of congruences are ideals, in general

not every ideal is the 0-class of a congruence, even in 0-regular varieties. In fact the 0-regular

varieties in which the ideals are precisely the 0-classes of congruences are just the subtractive

ones [17], i.e., those satisfying α(t, t) ≈ 0 and α(t, 0) ≈ t for some binary term α. More

generally, an elegant theory of ideals in subtractive varieties has been worked out in [1, 2] and

[43]. Our notation is, more or less, standard; for general background in Universal Algebra we

refer to [6, 19].

This paper is organized in four sections. In Section 2, we recall some definitions, properties

and results relative to universal algebra, ideal determined varieties and rough set theory which

will be used in the following sections of the paper. In Section 3, we introduce the notions of

rough approximation sets based on universal algebras and we study their properties. In section

4, we introduce the notion of rough subalgebras and rough ideals of an algebraic structure in

an ideal determined variety as a generalization of the notion of subalgebras and ideals.

2. A brief excursion into ideal determined varieties and rough set theory

In this section we recall some definitions, properties and results relative to universal algebra,

ideal determined varieties and rough set theory which will be used in the following sections of

the paper.

2.1. universal algebra and ideal determined varieties. In this section, we will recall

some definitions and results about ideals in universal algebras. A signature or language type

is a set Σ together with a mapping ρ : Σ −→ w. The elements of Σ are called operation

symbols. For each σ ∈ Σ, ρ(σ) is called the rank of σ. In the sequel, for each n ∈ w, let

Σn = {σ|ρ(σ) = n}.
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Let Σ be a signature. A Σ-algebraic structure (structure, for short) is an ordered couple

A = (A, (σA : σ ∈ Σ)) , where A is a nonempty set and σA is a map from Aρ(σ) to A, for

all σ ∈ Σ. The set A is called the universe of A and the σA’s are called the fundamental

operations of A. In the following, we prefer to write just σ for σA if this convention creates an

ambiguity which seldom causes a problem.

In this paper, we shall use the following abbreviated notations: the sequences xi, · · · , xj
and (xi, yi), · · · , (xj , yj) will be denoted by xji and (x, y)ji , respectively. For j < i is the empty

symbol. In this convention

σA(x1, · · · , xi, yi+1, · · · , yj , zj+1, · · · , zρ(σ))

will be written as σA(xi1, y
j
i+1, z

ρ(σ)
j+1 ).

Let A be a Σ-algebraic structure and B ⊆ A. Then B is called a subuniverse of A, if for all

σ ∈ Σ and b
ρ(σ)
1 ∈ B we have σA(b

ρ(σ)
1 ) ∈ B. The set of all subuniverses of A will be denoted

by Sub(A). It is well known that (A,Sub(A)) is an algebraic closed set system. In the sequel,

The closure operator associated with the closed set system (A,Sub(A)) is denoted by SgA.

Let A be a Σ-algebraic structure. A binary relation ℜ on A is called a congruence if it has

the substitution property with respect to each σ ∈ Σ. The set of all congruences of A will be

denoted by Con(A). It is well known that (A2, Con(A)) is an algebraic closed set system. In

the sequel, The closure operator associated with the closed set system (A2, Con(A)) is denoted

by ConA.

We will fix once and for all a class K of algebras of a fixed type, Σ, and assume that there

is a distinguished nullary operation or else a constant, equationally definable in all algebras of

K, which we denote by 0.

Definition 2.1. [41]

(1) A Σ-term α(tn1 , s
m
1 ) in K is said to be a K-ideal term in sm1 if α(tn1 ,

m
0) ≈ 0 is an identity

in K. Obviously, 0 is a K-ideal term.

(2) A non empty subset I of A in K is said to be a K-ideal of A if for each K-ideal term

α(tn1 , s
m
1 ) in sm1 , an1 ∈ A and im1 ∈ I we have α(an1 , i

m
1 ) ∈ I. The set of all K-ideals of

A is denoted by IdK(A). When there is no ambiguity we will drop the script K. It is

obvious that 0 = {0}, A ∈ Id(A).

Proposition 2.2. Let A be an algebraic structure in K. Then (A; Id(A)) is an algebraic closed

set system.

Proof. Let I be a non empty family of ideals of A and α(tn1 , s
m
1 ) be an ideal term in sm1 .

Consider an1 ∈ A and im1 ∈ ∩I. Then for each I ∈ I we have αA(an1 , i
m
1 ) ∈ I and it shows that

αA(an1 , i
m
1 ) ∈ ∩I. Hence, (A; Id(A)) is a closed set system.
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Now, assume that I is an upward directed non empty family of ideals of A and α(tn1 , s
m
1 )

be an ideal term in sm1 . Consider an1 ∈ A and im1 ∈ ∪I. Hence, there is I ∈ I such that

am1 ∈ I and it implies that αA(an1 , i
m
1 ) ∈ I ⊆ ∪I. Therefore, (A; Id(A)) is an algebraic closed

set system.

By Proposition 2.2 we obtain that Id(A) = (Id(A);⊆) is an algebraic lattice. Let A be

an algebraic structure in the class K. Let IdKA : P(A) −→ Id(A) be the closure operator

associated with the closed set system (A; Id(A)). When there is no ambiguity we will drop

the superscript K or the subscript A. For a given subset X of A, Id(X) are called the K-ideal

generated by X in A.

Theorem 2.3. [1] Let A be an algebraic structure in K. Then for each subset X of A we have

Id(X) = {αA(an1 , x
m
1 )|α(tn1 , sm1 ) is an ideal term in sm1 , an1 ∈ A, xm1 ∈ X}.

Lemma 2.4. Let A be an algebraic structure in K, I be an ideal and S be an subalgebra of A.

If S ∈ K then I ∩ S is an ideal of the algebraic structure S.

Proof. It is straightforward.

Let A and B be algebraic structures in 0-class K and h : A −→ B be a homomorphism.

The preimage of 0 is called the kernel of h and denoted by ker(h).

Proposition 2.5. Let A and B be algebraic structures in K and h : A −→ B be a homomor-

phism.

(1) If h is surjective and I ∈ Id(A) then h(I) ∈ Id(B).

(2) If I ∈ Id(B) then h←(I) ∈ Id(A) and ker(h) ⊆ h←(I). In particular, ker(h) ∈ Id(A).

(3) If h is surjective and X be a nonempty subset of A then we have h(Id(X)) = Id(h(X)).

Proof.

(1): Let α(tn1 , s
m
1 ) be an ideal term, bn1 ∈ B and jmi ∈ h(I). Thus there are an1 ∈ A and im1 ∈ I

such that h(ad) = bd for each 1 ≤ d ≤ n and h(id) = jd for each 1 ≤ d ≤ m. Therefore,

α(bn1 , j
m
1 ) = α(h(a1), · · · , h(an), h(i1), · · · , h(im))

= h(α(an1 , i
m
1 )) ∈ h(I).

It shows that h(I) is an ideal of B.

(2): Let α(tn1 , s
m
1 ) be an ideal term, an1 ∈ B and jmi ∈ h←(I). Then we have

h(α(an1 , j
m
1 )) = α(h(a1), · · · , h(an), h(j1), · · · , h(jm)) ∈ I.

So α(an1 , j
m
1 ) ∈ h←(I) and it shows that h←(I) is an ideal of A. Also, we have 0 ∈ I and it

implies that h←(0) ⊆ h←(I).
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(3): By Theorem 2.3, one can see that h(Id(X)) ⊆ Id(h(X)). Now, let b ∈ Id(h(X)). Hence,

there is an ideal term α(tn1 , s
m
1 ) and bn1 ∈ B and jmi ∈ h(X) such that b = α(bn1 , j

m
1 ). It implies

that there are an1 ∈ A and xm1 ∈ X such that h(ad) = bd for each 1 ≤ d ≤ n and h(xd) = jd

for each 1 ≤ d ≤ m. Therefore,

b = α(bn1 , j
m
1 ) = α(h(a1), · · · , h(an), h(x1), · · · , h(xm))

= h(α(an1 , x
m
1 )) ∈ h(Id(X)).

It shows that h(Id(X)) = Id(h(X)).

Corollary 2.6. Let A and B be algebraic structures in K and h : A −→ B be an epimorphism.

Then the mapping

hId : Id(A) −→ Id(B)

I 7−→ h(I)

is a complete join semilattice epimorphism.

Proof. Let I be an ideal of A. By Proposition 2.5(1) we conclude that h(I) is an ideal of B.

Assume J be an ideal of B. Thus by Proposition 2.5(2) we have h←(J) ∈ Id(A) and since h

is surjective then h(h←(J)) = J . It shows that hId is a surjection. Now, let I ⊆ Id(A). By

Proposition 2.5(3) we have

h(∨I) = h(Id(∪I)) = Id(h(∪I)) = ∪I∈IId(h(I)) = ∨I∈Ih(I).

It shows that hId is a complete join semilattice epimorphism.

Definition 2.7. A 0-class K is called ideal determined if for each A ∈ K there is an isomor-

phism, δA : Id(A) −→ Con(A), between the lattice of congruences of A and the lattice of ideals

of A. It means that each ideal I of A is a 0-class of a unique congruence relation IδA . It is

clear that 0δA = ∆A and AδA = ∇A. When there is no ambiguity we will drop the script A.

It is clear that a 0-class K is ideal determined if congruences of A ∈ K are uniquely deter-

mined by their 0-classes. A 0-class K is called 0-regular if congruences of algebras in K are

uniquely determined by their 0-classes.

Proposition 2.8. [14] Let V is a 0-variety. Then V is 0-regular if and only if there are an

integer n, binary terms d1, · · · , dn and quaternary terms q1, · · · , qn such that the following
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identities hold.

di(x, x) ≈ 0 for 1 ≤ i ≤ n

x ≈ q1(x, y, 0, d1(x, y))

qi(x, y, di(x, y), 0) ≈ qi+1(x, y, 0, di+1(x, y)) for 1 ≤ i ≤ n

qn(x, y, dn(x, y), 0) ≈ y

In the following we assume that V is a pointed variety which is ideal determined.

Lemma 2.9. [17] Let A be an algebraic structure in V and I be an ideal of A. Then

(a1, a2) ∈ Iδ if and only if di(a1, a2) ∈ I, for each 1 ≤ i ≤ n,

where d1, · · · , dn are terms from Proposition 2.8.

Proposition 2.10. Let A and B be algebraic structures in V and h : A −→ B be a ho-

momorphism. Then for each I ∈ Id(B) we have h←(IδB) = (h←(I))δA. In particular,

kerδA(h) = κ(h).

Proof. Let (a1, a2) ∈ h←(IδB). Therefore, (h(a1), h(a2)) ∈ IδB and by Lemma 2.9 we get

that di(h(a1), h(a2)) ∈ I, for each 1 ≤ i ≤ n. It implies that h(di(a1, a2)) ∈ I, for each

1 ≤ i ≤ n, and consequently we have di(a1, a2) ∈ h←(I), for each 1 ≤ i ≤ n. On the other

hand by Proposition 2.5(2) we have h←(I) ∈ Id(A). Hence, by Lemma 2.9 we obtain that

(a1, a2) ∈ (h←(I))δA .

Conversely, by Proposition 2.5(2) we know that h←(I) is an ideal of A so the congru-

ence relation (h←(I))δA exists. Now, assume that (a1, a2) ∈ (h←(I))δA . By Lemma 2.9 we

conclude that di(a1, a2) ∈ h←(I), for each 1 ≤ i ≤ n. It implies that h(di(a1, a2)) ∈ I.

So di(h(a1), h(a2)) ∈ I, for each 1 ≤ i ≤ n and it means that (h(a1), h(a2)) ∈ IδA . Thus

(a1, a2) ∈ h←(IδB).

In particular, we have kerδA(h) = (h←(0))δA = h←(0δB) = h←(∆B) = κ(h).

Corollary 2.11. Let A and B be algebraic structures in V and h : A −→ B be a homomor-

phism. Then h is injective if and only if ker(h) = 0.

Proof. If h is injective then by Proposition 2.10, kerδA(h) = ∆A and it implies that ker(h) = 0.

Conversely, if ker(h) = 0 then κ(h) = ∆A and it shows that h is injective.

Let A = (A;≤) be a poset. In the following, the interval {a ∈ A|a1 ≤ a ≤ a2} is denoted by

A[a1, a2].
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Corollary 2.12. (Ideal Correspondence Theorem) Let A and B be algebraic structures in V
and h : A −→ B be an epimorphism. Then the mapping

hId : Id(A)[ker(h), A] −→ Id(B)

I 7−→ h(I)

is a complete lattice isomorphism. (see Figure 1)

Figure 1. Ideal Correspondence Theorem

Proof. By Corollary 2.6, hId is a complete join semilattice epimorphism. Now, let I1 and I2

be ideals of A containing ker(h) such that hId(I1) = hId(I2). Assume that a1 ∈ h(I1). So

there is a2 ∈ I2 such that h(a1) = h(a2) and this states that (a1, a2) ∈ κ(h). By Proposition

2.10, we have κ(h) = kerδA(h) and it implies that (a1, a2) ∈ IδA2 . On the other hand, we have

(a2, 0) ∈ IδA2 and it implies that (a1, 0) ∈ IδA2 . Hence, a1 ∈ 0/IδA2 = I2 and it shows I1 ⊆ I2.

Similarly, I2 ⊆ I1 and it means that hId is an injection.

Now, let I ⊆ Id(A)[ker(h), A]. It is well known that hId(∩I) ⊆ ∩I∈Ih(I). Let b ∈ ∩I∈Ih(I).

Hence, there are aI ∈ I, for each I ∈ I such that b = h(aI). Fix J ∈ I and consider aJ . For

each I ∈ I we have (aI , aJ) ∈ κ(h) = kerδA(h) ⊆ IδA and it states that aJ ∈ I. Thus

b = h(aJ) ∈ ∩I and it means ∩I∈Ih(I) ⊆ hId(∩I). Therefore, hId is a complete lattice

isomorphism.

Theorem 2.13. (Congruence Correspondence Theorem) Let A and B be two Σ-algebraic

structures and h : A −→ B be an epimorphism. Then the mapping

hCon : Con(A)[κ(h),∇A] −→ Con(B)

ℜ 7−→ h(ℜ)

is a complete lattice isomorphism. (see Figure 2)

Proof. It is straightforward.
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Figure 2. Congruence Correspondence Theorem

Theorem 2.14. Let A and B be algebraic structures in V and h : A −→ B be an epimorphism.

Then for each ideal I of A containing ker(h) we have hCon(I
δA) = hδBId (I). i. e. the following

diagram is commutative.

Figure 3

Proof. Let I be an ideal of A containing ker(h) and consider (b1, b2) ∈ hδBId (I). So there are

a1, a2 ∈ A such that b1 = h(a1) and b2 = h(a2). By Lemma 2.9 we have h(di(a1, a2)) ∈ hId(I),

for each 1 ≤ i ≤ n. Hence, for each 1 ≤ i ≤ n there are ai ∈ I such that h(di(a1, a2)) = hId(ai).

By Proposition 2.10 we have (ai, di(a1, a2)) ∈ κ(h) = kerδA(h) and by hypothesis we get that

(ai, di(a1, a2)) ∈ IδA , for each 1 ≤ i ≤ n. Consequently, di(a1, a2) ∈ I for each 1 ≤ i ≤ n

and it shows that (a1, a2) ∈ IδA . Hence, (b1, b2) = (h(a1), h(a2)) ∈ h(IδA) and it states that

hδBId (I) ⊆ hCon(I
δA).

Conversely, let I be an ideal of A containing ker(h). By Proposition 2.10 we have κ(h) =

kerδA(h) ⊆ IδA and it means that hCon(I
δA) is well defined. Assume that (b1, b2) ∈ hCon(I

δA).

Thus there is (a1, a2) ∈ IδA such that (b1, b2) = (h(a1), h(a2)). It concludes that di(b1, b2) =

di(h(a1), h(a2)) = h(di(a1, a2)) ∈ h(I) = hId(I), for each 1 ≤ i ≤ n. So (b1, b2) ∈ hδBId (I) and

it means that hCon(I
δA) ⊆ hδBId (I).
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Let K be an ideal determined class of algebras, A ∈ K and I be an ideal of A. For each

a ∈ A, the equivalence class of a/Iδ is denoted by a/I and the set of all equivalence classes

A/Iδ is denoted by A/I. Also, the quotient algebra A/Iδ is denoted by A/I.

Lemma 2.15. Let A and B be two algebraic structures in V. If h : A −→ B is an epimorphism

and I is an ideal of A containing ker(h) then for any a ∈ A we have h(a/I) = h(a)/h(I).

Proof. Let b ∈ h(a/I). So there is a′ ∈ a/I such that b = h(a′). Therefore, (a, a′) ∈ IδA

and it implies that (h(a), b) ∈ h(IδA). Since, I contains ker(h) so by Theorem 2.14, we have

hCon(I
δA) = hδBId (I) and it implies that (h(a), b) ∈ hδBId (I). Thus b ∈ h(a)/h(I).

Now, let b ∈ h(a)/h(I). So (b, h(a)) ∈ hδBId (I) and by Theorem 2.14 we conclude that

(b, h(a)) ∈ hCon(I
δA). Therefore, exists (a1, a2) ∈ IδA such that (b, h(a)) = (h(a1), h(a2)).

This states that b = h(a1) and (a, a2) ∈ κ(h) = kerδA(h) ⊆ IδA . So (a1, a) ∈ IδA and this

means a1 ∈ a/I and sequently we obtain b ∈ h(a/I). It shows that h(a)/h(I) ⊆ h(a/I).

Lemma 2.16. Let A and B be two algebraic structures in V. If h : A −→ B is a homomor-

phism and I is an ideal of B then for each a ∈ A we have a/h←(I) = h←(h(a)/I). Moreover,

h(a/h←(I)) ⊆ h(a)/I.

Proof. According to Proposition 2.5(2) we know that h←(I) is an ideal of A. According to

Proposition 2.10, we have

x ∈ a/h←(I) ⇐⇒ (x, a) ∈ (h←(I))δA = h←(IδB)

⇐⇒ (h(x), h(a)) ∈ IδB

⇐⇒ h(x) ∈ h(a)/I

⇐⇒ x ∈ h←(h(a)/I).

It shows that the equality holds. Also, we can conclude that h(a/h←(I)) = h(h←(h(a)/I)) ⊆
h(a)/I, for each a ∈ A.

2.2. Rough set theory. We recall in this section some basic facts about the Galois connec-

tions and the rough set theory based on formal context.

Definition 2.17. Let A = (A;≤) and B = (B;4) be posets and f : A −→ B be a map

between posets.

(1) f is monotone if a1 ≤ a2 implies f(a1) 4 f(a2), for all a1, a2 ∈ A.

(2) f is antitone if a1 ≤ a2 implies f(a2) 4 f(a1), for all a1, a2 ∈ A.

In particular case which A = B,

(1) f is inflationary (also called extensive) if a ≤ f(a) for all a ∈ A.
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(2) f is deflationary if f(a) ≤ a for all a ∈ A.

(3) f is idempotent if f2 = f .

(4) f is a closure operator on A if it is inflationary, monotone and idempotent.

(5) f is a kernel operator (also called interior operator)on A if it is deflationary, monotone

and idempotent.

A fixpoint of a closure operator or a kernel operator f , i.e. an element a of A that

satisfies f(a) = a, is called a closed element of f . The set of closed elements of f will

be denoted by Cf .

Definition 2.18. Let A = (A;≤) and B = (B;4) be posets. Suppose that f : A −→ B

and g : B −→ A are functions. The pair (f, g) is called a covariant (or monotone) Galois

connection between A and B if for all a ∈ A and b ∈ B we have

a ≤ g(b) if and only if f(a) 4 b.

Proposition 2.19. [18] Let A and B be posets and f : A −→ B and g : B −→ A be two

functions. Then the following assertions are equivalent:

(1) (f, g) is a covariant Galois connection between A and B.

(2) f and g are monotone functions, gf is inflationary and fg is deflationary functions.

Proposition 2.20. [10] Let A and B be posets and (f, g) is a covariant Galois connection

between A and B. Then the following assertions hold:

(1) fgf = f and gfg = g.

(2) If ∨X exists for some X ⊆ A then ∨f(X) exists and ∨f(X) = f(∨X).

(3) If ∧Y exists for some Y ⊆ B then ∧g(Y ) exists and ∧g(Y ) = g(∧Y ).

(4) f(a) = min{b ∈ B|a ≤ g(b)}, g(b) = max{a ∈ A|f(a) 4 b}.
(5) gf is a closure operator on A and Cgf = g(B).

(6) fg is a kernel operator on B and Cfg = f(A).

Definition 2.21. A formal context is a triple (A,B;ℜ), where A and B are sets, ℜ ⊆ A×B

is a relation from A to B. In a formal context (A,B;ℜ), A is interpreted as the set of objects,

B the set of properties, and (a, b) ∈ ℜ reads as that the object a has property b.

An object a ∈ A has the set of properties:

aℜ = {b ∈ B|(a, b) ∈ ℜ}.

A property b ∈ B is possessed by the set of objects:

ℜb = {a ∈ A|(a, b) ∈ ℜ}.

It is clear that if A = B and ℜ is an equivalence relation on A then we have aℜ = ℜa = ℜ[a].
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Definition 2.22. [16] Let (A,B;ℜ) be a formal context. Define a pair of operators (ℜ∃,ℜ∀)
between the powersets of A and B as follows:

ℜ∃ : P(A) −→ P(B) ,ℜ∃(X) = {b ∈ B|∃x ∈ X, (x, b) ∈ ℜ}

= {b ∈ B|ℜb ∩X ̸= ∅}

= ∪x∈Xxℜ.

ℜ∀ : P(B) −→ P(A) ,ℜ∀(Y ) = {a ∈ A|∀b ∈ B, ((a, b) ∈ ℜ → b ∈ Y )}

= {a ∈ A|aℜ ⊆ Y }.

Proposition 2.23. Let (A,B;ℜ) be a formal context. Then the pair (ℜ∃,ℜ∀) is a covariant

Galois connection between the posets P(A) and P(B).

Proof. It is obvious that X ⊆ ℜ∀(Y ) if and only if ℜ∃(X) ⊆ Y and by Definition 2.18 it implies

that the pair (ℜ∃,ℜ∀) is a covariant Galois connection between the posets P(A) and P(B).

Corollary 2.24. Let (A,B;ℜ) be a formal context. Then the following assertions hold for

any family {X} ∪ {Xi}i∈I ⊆ P(A) and {Y } ∪ {Yi}i∈I ⊆ P(B):

(1) ℜ∃ and ℜ∀ are monotone functions.

(2) ℜ∃ℜ∀ℜ∃ = ℜ∃ and ℜ∀ℜ∃ℜ∀ = ℜ∀.
(3) ∪i∈Iℜ∃(Xi) = ℜ∃(∪i∈IXi).

(4) ∩i∈Iℜ∀(Yi) = ℜ∀(∩i∈IYi).

(5) ℜ∃(X) = ∩{Y ∈ P(B)|X ⊆ ℜ∀(Y )}.
(6) ℜ∀(Y ) = ∪{X ∈ P(B)|ℜ∃(X) ⊆ Y }.
(7) ℜ∀ℜ∃ is a closure operator on P(A) and Cℜ∀ℜ∃ = ℜ∀(P(B)).

(8) ℜ∃ℜ∀ is a kernel operator on P(B) and Cℜ∃ℜ∀ = ℜ∃(P(A)).

Proof. It is straightforward by Proposition 2.20 and 2.23.

Definition 2.25. [16] Let (A,B;ℜ) be a formal context. A pair (X,Y ) ∈ P(A) × P(B)

is called a property oriented concept (or, concepts based on rough set theory) of a context

(A,B;ℜ) if ℜ∃(X) = Y and ℜ∀(Y ) = X. The set of all property oriented concepts of a context

(A,B;ℜ) is denoted by OC(A,B;ℜ).

Proposition 2.26. Let (A,B;ℜ) be a formal context. The following assertion holds:

OC(A,B;ℜ) = {(X,ℜ∃(X))|X ∈ Cℜ∃ℜ∀}.
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Proof. Let (X,Y ) ∈ OC(A,B;ℜ). So ℜ∃(X) = Y and ℜ∀(Y ) = X and by Corollary 2.24(8)

it implies that X ∈ Cℜ∃ℜ∀ and (X,Y ) = (ℜ∀(Y ),ℜ∃(ℜ∀(Y ))). Conversely, it is obvious that

{(X,ℜ∃(X))|X ∈ Cℜ∃ℜ∀} ⊆ OC(A,B;ℜ) and it shows the equality.

Proposition 2.27. Let (A,A;ℜ) be a formal context. The following assertions hold:

(1) If ℜa = aℜ for each a ∈ A, then ℜ∀(X) ⊆ ℜ∃(X) for any X ⊆ A. In particular, if ℜ
is a symmetric relation then ℜ∀(X) ⊆ ℜ∃(X) for any X ⊆ A.

(2) If ℜ is a reflexive relation then ℜ∀(X) ⊆ X ⊆ ℜ∃(X).

(3) If ℜ is an equivalence relation then ℜ∀(X) = {a ∈ A|ℜ[a] ⊆ X} and ℜ∃(X) = {a ∈
A|ℜ[a] ∩X ̸= ∅}.

Proof.

(1) Let ℜa = aℜ for each a ∈ A. Assume that a ∈ ℜ∀(X). It implies that aℜ ⊆ X and it

means that ℜa ⊆ X. So a ∈ ℜ∃(X).

(2) Let ℜ be a reflexive relation and a ∈ ℜ∀(X). So we have (a, a) ∈ ℜ and it implies that

a ∈ X. If x ∈ X, then x ∈ ℜx ∩X and it shoes that x ∈ ℜ∃(X).

(3) It is straightforward.

In the theory of rough sets, presented by Pawlak, equivalence relations are very important.

Equivalence classes are basic building blocks for lower and upper approximations of a subset

of the universe set.

Let A be a non empty finite set called the universe set and let ℜ be an equivalence relation

on A. Then, (A,ℜ) is called an approximation space. By a rough approximation in (A,ℜ) we
mean a mapping AprAℜ : P(A) −→ P(A)×P(A) defined for every X ∈ P(A) by

AprAℜ(X) = (AprAℜ(X), Apr
A
ℜ(X)),

where AprAℜ(X) = ℜ∀(X) and Apr
A
ℜ(X) = ℜ∃(X). AprAℜ(X) and Apr

A
ℜ(X) are called the

lower rough approximation and the upper rough approximation of X in (A,ℜ), respectively.
When there is no ambiguity we will drop the superscript A. A subset X of A is called definable

with respect to ℜ if Apr
θ
(X) = Aprθ(X).

3. Rough approximation sets based on universal algebras

Let K be an ideal determined class and I be an ideal of A ∈ K. In the following, the

approximation space (A; Iδ) is denoted by (A; I) and it is named the approximation space

induced by I. Also, AprA
Iδ
(X) and Apr

A
Iδ(X) are denoted by AprA

I
(X) and Apr

A
I (X) and they

are called the lower rough and the upper rough approximation on A induced by I, respectively.

When there is no ambiguity we will drop the superscript A.
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By a rough approximation in (A; I) we mean a mapping AprI : P(A) −→ P(A) × P(A)

defined for every X ∈ P(A) by

AprI(X) = (Apr
I
(X), AprI(X)).

A subset X of A is called definable with respect to I if Apr
I
(X) = AprI(X).

Proposition 3.1. Let (A; I) be an approximation space. Then for any subsets X and Y of A

the following assertions hold:

(1) Apr
I
(X) ⊆ X ⊆ AprI(X),

(2) X is definable with respect to I if and only if X is the union of congruence classes of

Iδ. In particular, A, ∅, AprI(X), Apr
I
(X) and x/I are definable sets with respect to

I.

(3) X is definable with respect to I if and only if Apr
I
(X) = X or X = AprI(X).

(4) If X ⊆ Y , then Apr
I
(X) ⊆ Apr

I
(Y ) and AprI(X) ⊆ AprI(Y ).

(5) Apr
I
(X) = (AprI(X

c))c and AprI(X) = (Apr
I
(Xc))c.

(6) Apr
I
(X ∩ Y ) = Apr

I
(X) ∩Apr

I
(Y ).

(7) AprI(X ∩ Y ) ⊆ AprI(X) ∩AprI(Y ).

(8) Apr
I
(X ∪ Y ) ⊇ Apr

I
(X) ∪Apr

I
(Y ).

(9) AprI(X ∪ Y ) = AprI(X) ∪AprI(Y ).

(10) Apr0(X) = (∅, A).

(11) AprA(X) = (X,A).

Proof. It is straightforward.

Proposition 3.2. Let (A; I1) and (A; I2) be two approximation spaces and I1 ⊆ I2. Then for

each subset X of A the following conditions are satisfied.

(1) Apr
I2
(X) ⊆ Apr

I1
(X).

(2) AprI1(X) ⊆ AprI2(X).

Proof. It is straightforward by a/I1 ⊆ a/I2, for each a ∈ A.

Corollary 3.3. Let {(A; Ij)}j∈J be a non empty family of approximation spaces. Then for

any subset X of A the following condition holds:

∪j∈JAprIj
(X) ⊆ Apr∩j∈JIj

(X) ⊆ ∩j∈JAprIj (X).
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Proof. We have ∩j∈JIj ⊆ Ij , for each j ∈ J . Thus by Proposition 3.2(1) we obtain that

Apr
Ij
(X) ⊆ Apr∩j∈JIj

(X), for each j ∈ J and it implies that ∪j∈JApr
Ij
(X) ⊆ Apr∩j∈JIj

(X).

Similarly, we can show that Apr∩j∈JIj (X) ⊆ ∩j∈JAprIj (X) and it holds the result.

Proposition 3.4. Let {(A; Ii)}i∈I be a non empty family of approximation spaces. Then for

any subset X of A we have

Apr∨i∈IIi
(X) ⊆ ∩i∈IAprIi

(X).

Proof. We know that Ii ⊆ ∨i∈IIi, for each i ∈ I. So by Proposition 3.2(1), we conclude that

Apr∨i∈IIi
(X) ⊆ Apr

Ii
(X), for each i ∈ I and it holds the result.

Proposition 3.5. Let (A; I) be an approximation space. Then for any non empty subset X

of A the following assertions hold:

(1) X ⊆ I if and only if AprI(X) = I.

(2) I ⊆ X if and only if I ⊆ Apr
I
(X).

Proof.

Let X ⊆ I and a ∈ AprI(X). Hence, there is x ∈ X such that (a, x) ∈ Iδ. Since, X ⊆ I

we obtain that a ∈ I, that is, AprI(X) ⊆ I. Conversely, let a ∈ I. Then a/I ∩X = X ̸= ∅.
Therefore, a ∈ AprI(X), and hence AprI(X) = I. The converse follows from Proposition

3.1(1).

Let a ∈ I. Therefore, a/I = I ⊆ X and it shows that I ⊆ Apr
I
(X). Conversely, if a ∈ I then

I = a/I ⊆ X.

Proposition 3.6. Let (A; I) be an approximation space and J be an ideal of A. Then the

following assertions hold:

(1) I ⊆ J if and only if Apr
I
(J) = J .

(2) I ⊆ AprI(J).

Proof.

Let I ⊆ J . By Proposition 3.1(1), we have Apr
I
(J) ⊆ J ⊆ AprI(J). Now, let a ∈ AprI(J).

So a/I ∩ J ̸= ∅ and it implies that there is b ∈ J such that (a, b) ∈ Iδ ⊆ Jδ. Therefore,

a ∈ b/J = J and it shows J = AprI(J). Hence, by Proposition 3.1(3), we get the results.

Conversely, suppose that Apr
I
(J) = J = AprI(J). If a ∈ I then 0 ∈ a/I ∩ J and it means

that a ∈ AprI(J) = J .

Let a ∈ I. Then we have 0 ∈ a/I ∩ J and it shows that a ∈ AprI(J).
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Proposition 3.7. Let h : A −→ B be a homomorphism. Then for any subset X of A we have

h(Aprker(h)(X)) = h(X).

Proof. According to Proposition 3.1(1), it is obvious that h(X) ⊆ h(Aprker(h)(X)). Conversely,

if b ∈ h(Aprker(h)(X)) then exists a ∈ Aprker(h)(X) such that b = h(a). It shows that exists

x ∈ X such that (a, x) ∈ kerδA(h) = κ(h), by Proposition 2.10. So b = h(a) = h(x) and it

shows that b ∈ h(X).

Proposition 3.8. Let h : A −→ B be an epimorphism and I be an ideal of A containing

ker(h). Then for each subset X of A the following conditions hold:

(1) h(Apr
I
(X)) ⊆ Apr

h(I)
(h(X)).

(2) Apr
h(I)

(h(X)) ⊆ h(AprI(X)).

(3) h(AprI(X)) ⊆ Aprh(I)(h(X)).

Proof.

Let b ∈ h(Apr
I
(X)). So there is a ∈ Apr

I
(X) such that b = h(a). We have h(a/I) ⊆ h(X)

and by Lemma 2.15 we obtain that b = h(a) ∈ Apr
h(I)

(h(X)).

Let b ∈ Apr
h(I)

(h(X)). Therefore, b/h(I) ⊆ h(X) and it implies that there exists x ∈ X such

that b = h(x). Also, we have x/I ∩X ̸= ∅ and it shows that b ∈ h(AprI(X)).

Let b ∈ h(AprI(X)). Hence, there exists a ∈ AprI(X) such that b = h(a). We have a/I∩X ̸= ∅
and by using Lemma 2.15 it implies that

∅ ̸= h(a/I ∩X) ⊆ h(a/I) ∩ h(X) = h(a)/h(I) ∩ h(X).

Hence, b = h(a) ∈ Aprh(I)(h(X)).

Let K be an ideal determined class and I be an ideal of A ∈ K. The mapping πA
I : A −→ A/I

defined by πA
I (a) = a/I is called the natural homomorphism. It is obvious that the natural

map πA
I is an epimorphism and ker(πA

I ) = I. If X is a subset of A then πA
I (X) = X/I.

Corollary 3.9. Let (A, I1) and (A, I2) be two approximation spaces and I1 ⊆ I2. Then for

each subset X of A the following conditions hold:

(1) Apr
I2
(X)/I1 ⊆ Apr

I2/I1
(X/I1).

(2) Apr
I2/I1

(X/I1) ⊆ AprI2(X)/I1.

(3) AprI2(X)/I1 ⊆ AprI2/I1(X/I1).

Proof. It is enough to consider the natural homomorphism πA
I1

in Proposition 3.8.
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Proposition 3.10. Let h : A −→ B be a homomorphism and I be an ideal of B. Then for

each subset X of A and subset Y of B the following conditions are satisfied:

(1) h←(Apr
I
(Y )) ⊆ Apr

h←(I)
(h←(Y )). Moreover, the equality holds if h is surjective.

(2) Apr
h←(I)

(h←(Y )) ⊆ h←(AprI(Y )).

(3) If h is an epimorphism then h←(AprI(Y )) ⊆ Aprh←(I)(h
←(Y )).

(4) Aprh←(I)(X) ⊆ h←(AprI(h(X))).

Proof.

Let h←(Apr
I
(Y )) be a non-empty set. Consider, a ∈ f←(Apr

I
(Y )). Thus h(a) ∈ Apr

I
(Y )

and it means that h(a)/I ⊆ Y . By Lemma 2.16 we have h(a/h←(I)) ⊆ Y and it shows

that a/h←(I) ⊆ h←(Y ). Therefore, we obtain that a ∈ Apr
h←(I)

(h←(Y )). Now, let h be a

surjection. By Proposition 3.8(1) we have h(Apr
h←(I)

(h←(Y ))) ⊆ Apr
h(h←(I))

(h(h←(Y ))) =

Apr
I
(Y ) and it shows that the equality holds.

Let Apr
h←(I)

(h←(Y )) be a non-empty set. Let a ∈ Apr
h←(I)

(h←(Y )). So a/h←(I) ⊆ h←(Y )

and it concludes that h(a/h←(I)) ⊆ Y ∩ h(a)/I. Thus a ∈ h←(AprI(Y )).

Let h be a surjection and a ∈ h←(AprI(Y )). So h(a) ∈ AprI(Y ) and it concludes that

h(a)/I∩Y ̸= ∅. Thus we have h←(h(a)/I)∩h←(Y ) ̸= ∅ and it implies that a/h←(I)∩h←(Y ) ̸=
∅. It shows that a ∈ Aprh←(I)(h

←(Y )).

Let a ∈ Aprh←(I)(X). So a/h←(I) ∩X ̸= ∅ and it implies that h(a)/I ∩ h(X) ̸= ∅. It shows

that a ∈ h←(AprI(h(X))).

4. Rough subalgebras and rough ideals

In this section, we introduce the notion of rough subalgebras and rough ideals of an algebraic

structure in an ideal determined variety as a generalization of the notion of subalgebras and

ideals.

Definition 4.1. Let A be an algebraic structure in V and I be an ideal of A. A nonempty

subset X of A is called an upper (resp., a lower) rough subalgebra (or ideal) of A w.r.t I, if

the upper (resp., the lower) approximation of X w.r.t I is a subalgebra (or an ideal ) of A. If

X is both an upper and a lower rough subalgebra (or ideal) of A w.r.t I, we say X is a rough

subalgebra (or ideal) of A w.r.t I.

Proposition 4.2. Let A be an algebraic structure in V and I be an ideal of A. If S is a

subalgebra of A then S is an upper rough subalgebra of A w.r.t I.

Proof. Let S be a subalgebra of A, σ ∈ Σ and a
ρ(σ)
1 ∈ AprI(S). So there are si ∈ S ∩ ai/I

for each 1 ≤ i ≤ ρ(σ) such that (ai, si) ∈ Iδ. Since Iδ is a congruence relation then we
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have (σA(a
ρ(σ)
1 ), σA(s

ρ(σ)
1 )) ∈ Iδ. Therefore, σA(s

ρ(σ)
1 )) ∈ S ∩ σA(a

ρ(σ)
1 )/I and it shows that

σA(a
ρ(σ)
1 ) ∈ AprI(S).

Corollary 4.3. Let A be an algebraic structure in V and I be an ideal of A. Then for each

non empty subset of X of A we obtain

Sg(AprI(X)) ⊆ AprI(Sg(X)).

Proof. We have X ⊆ Sg(X). Also, by Proposition 3.1(4), we conclude that AprI(X) ⊆
AprI(Sg(X)). By Proposition 4.2, we know that AprI(Sg(X)) is a subalgebra of A and it

means that Sg(AprF (X)) ⊆ AprF (Sg(X)).

Proposition 4.4. (Third Isomorphism Theorem) Let A be an algebraic structure in V and I

be an ideal of A. Then for any subalgebra S of A we have

S/I ∩ S ∼= AprI(S)/I ∩AprI(S).

Proof. By Lemma 2.4, I ∩S is an ideal of S and I ∩AprI(S) is an ideal of AprI(S). We define

the map h : S −→ AprI(S)/I ∩AprI(S) by h(s) = s/I ∩AprI(S), for any s ∈ S. It is easy to

check that h is a homomorphism of residuated lattices. Consider a/I∩AprI(S) ∈ AprI(S)/I∩
AprI(S). So there is s ∈ S such that a/I = s/I. One can check that h(s) = a/I ∩ AprI(S)

and it implies that h is an epimorphism. So by the first isomorphism theorem we have

S/ ker(h) ∼= AprI(S)/I ∩AprI(S).

If s ∈ ker(h) then s/I ∩ AprI(S) = 0/I ∩ AprI(S). Since, V is a variety it implies that

di(s, 0) ∈ (I ∩ AprI(S))
δS , for each 1 ≤ i ≤ n. Thus s ∈ I ∩ AprI(S)) and it means s ∈ I.

Therefore, ker(h) ⊆ I ∩S. On the other hand, I ∩S ⊆ ker(h) and it shows that ker(h) = I ∩S.

Proposition 4.5. Let A be an algebraic structure in V and I be an ideal of A. Then for any

ideal J of A, AprI(J) is an ideal of A.

Proof. Let α(tn1 , s
m
1 ) be an ideal term, an1 ∈ A and bm1 ∈ AprI(J). Hence, there are jm1 ∈ J

such that (bi, ji) ∈ Iδ, for each 1 ≤ i ≤ m. It implies that (α(an1 , b
m
1 ), α(an1 , j

m
1 )) ∈ Iδ and so

α(an1 , j
m
1 ) ∈ α(an1 , b

m
1 ))/Iδ. On the other hand, since J is an ideal of A then α(an1 , j

m
1 ) ∈ J and

it shows that α(an1 , b
m
1 ))/Iδ ∩ J ̸= ∅. Therefore, α(an1 , b

m
1 )) ∈ AprI(J) and it results AprI(J)

is an ideal of A.
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Corollary 4.6. Let A be an algebraic structure in V and I be an ideal of A. Then for each

non empty subset X of A we have

Id(AprI(X)) ⊆ AprI(Id(X)).

Proof. We have X ⊆ Id(X). Also, by Proposition 3.1(4), we conclude that AprI(X) ⊆
AprI(Id(X)). By Proposition 4.5, we know that AprI(Id(X)) is an ideal of A and it shows

that Id(AprI(X)) ⊆ AprI(Id(X)).
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[4] R. Belohlávek and I. chajda, Congruence classes in regular varieties, Acta Math. Univ. Comenianae 68(1)

(1999), 71–75.

[5] Z. Bonikowski, Algebraic structures of rough sets, Rough sets, fuzzy sets and Knowledge discovery. Springer,

London, (1994), 242–247.

[6] S. Burris and H. A. Sankappanavar, A Course in Universal Algebra, Springer, Berlin, 1981.

[7] B. Davvaz, Roughness in rings, Inf. Sci. 164 (2004) 147–163.

[8] B. Davvaz, A short note on algebraic T-rough sets, Inf. Sci. 178 (2008) 3247–3252.

[9] B. Davvaz and M. Mahdavipour, Roughness in modules, Inf. Sci. 176 (2006) 3658–3674.
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