

Year 11 IBDP Mathematics Analysis and Approaches SL – Paper 1

EXAMINATION

Semester 1 2020

An education for life.

Question and Answer Booklet

STUDENT NAME:		
TEACHER(S):	Mr. Biller Mr. Rodgers	
TIME ALLOWED:	Reading time 5 minutes	
	Writing time 90 minutes	

INSTRUCTIONS

- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all questions. Answers must be written within the answer boxes provided.
- Section B: answer all questions in the answer booklet provided. here
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A clean copy of the mathematics: analysis and approaches formula booklet is required for this paper.
- The maximum mark for this examination paper is [79 marks]. ions for the exam here

STRUCTURE OF BOOKLET / MARKING SCHEME

Exam Section	Number of questions to be	Total marks
2/0 5 5 5 5	answered	
Section A	ALL	55
Section B	ALL	24

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A

Answer all questions. Answers must be written within the answer boxes provided. Working may be continued below the lines, if necessary.

(a)	of the following equations, solve for x. Leave your answers as exact values. $x^2 - 7x = -12$	
(b)	$3^{x-2} = \frac{1}{81}$	[2 mar
		[3 mar
(c)	$\log_5\left(\frac{1}{25}\right) + \log_5(x-1) + 3 = 0$	[5
		[4 mar
(d)	$100^x - 11 \times 10^x + 10 = 0$	

2.	[Maximum	mark.	61
۷.	liviaxilliulli	IIIai N.	υJ

The following table shows four series of numbers.

(a) Complete the table by stating the type of series that is shown: arithmetic, geometric or neither.

Series		Type of series
(i)	1+11+121+1331+14641+	
(ii)	$\frac{1}{4} + \frac{1}{3} + \frac{5}{12} + \frac{1}{2} + \cdots$	
(iii)	$-\pi + 0 + \pi + 2\pi + \cdots$	
(iv)	10 + 5 + 2.5 + 1.25 +	

(b)	Can the sum to infinity be found for any of these series? If so, find its sum.	
(a)	ximum mark: 7] A series is generated by the following rule $\sum_{n=2}^{\infty} (3^{n-1})$. Write down the first four terms	-2 = 6 ma
(i)	write down the first four terms	[3 ma
(ii)	Show, using a test, that the series generated is either arithmetic, geometric or neit	
(b)	Write the following series in sigma notation form: $14+11+8+5+$	[2 ma

$=3x^2-6x-1$				
	•••••			••
				••
•••••	•••••			••
••••••	••••••	•••••	•••••	••
	•••••	•••••		••
				•••
				••
				••
		•••••		••
	2.2 6 4			
nd the x-intercepts of	y = 3x- – 6x – 1			
•••••	•••••	•••••		•••
				•••
•••••	•••••	•••••		•••

[3 marks]

[Maximum mark: 9]

4.

5. [Maximum mark: 12]

(a) On the grid below, sketch both the graph of $f(x) = 2^x - 1$ and $g(x) = \log_2(x + 1)$.

Show your working to find:

- (i) co-ordinates of any intercepts, and
- (ii) equations of asymptotes.

[10 marks]

(b)	Write down co-ordinates of where $f(x) = g(x)$.
	[2 marks]

(ii)			
	g(2)		
			[2 mark
) Fin	f₀g(x)		
••		 	
••		 	
			[4 marl

[2 marks]

[Maximum mark: 8]

6.

Section B

Answer all questions in the answer booklet provided. Please start each question on a new page.

7. [Maximum mark: 7]

Consider $h(x) = 18 + 2x^2 - 4mx$, for $m \ne 0$. The equation h(x) = 0 has two repeated roots.

(a) Find the value(s) of m.

[5 marks]

(b) What is the range of h(x) for your value(s) of m in part (a).

[2 marks]

8. [Maximum mark: 9]

Let
$$f(x) = \log_2(\sqrt[3]{x^2})$$
, for $x > 0$.

(a) Show that $f^{-1}(x) = (2^3)^{0.5x}$.

[4 marks]

(b) Write down the range of f^{-1} .

[1 mark]

Let $g(x) = \log_2 x$, for x > 0.

(c) Find the value of $(g \circ f^{-1})(4)$, giving your answer as an integer.

[4 marks]

- **9.** [Maximum mark: 8]
 - (a) Solve $x^2 5x + 2 = x 3$ for all $x \in R$.

[2 marks]

(b) Hence find the co-ordinates of the vertex of $f(x) = x^2 - 6x + 5$

[2 marks]

- (c) f(x) is transformed in order by the following transformations to become g(x):
 - (i) a translation 3 units to the left
 - (ii) a translation 3 units to the up
 - (iii) a horizontal reflection
 - (iv) a vertical dilation by factor of two

Show working to find an equation for g(x).

[4 marks]