Year 2 Learning and Progression Steps for Mathematics ### What are Learning and Progression Steps (LAPS)? The Learning and Progression Steps are designed to scaffold the learning required in order to meet the expectations of the National Curriculum. Statements in the Lancashire Key Learning for Mathematics document have been broken down into smaller steps to support teachers in planning appropriate learning opportunities. These key pieces of learning will support pupils in becoming fluent in the knowledge and skills of the curriculum and ensure that the learning is effective and sustained. The number of steps is dependent on the learning and do **not** constitute expectations for the end of each term. The final step in the progression for each strand of learning is the end of year expectation. The steps are **not** of equal size and different amounts of time may be required for children to move between individual steps. For example, Some learning within the same end of year expectation has been split and designed to run concurrently alongside each other. For example, | Read and write numbers
up to 1000 in numerals | Read multiples of 1000 to 10 000 in numerals and in words | Read multiples of 100 to 10 000 in
numerals and in words | Read numbers to 10 000 where 0 is
not used as a place holder | Read numbers to 10 000 where 0 is used as a place holder | Read and write | |--|--|--|---|---|----------------| | and in words | Write multiples of 1000 to 10 000 in numerals and in words | Write multiples of 100 to 10 000 in
numerals and in words | Write numbers to 10 000 where 0 is not used as a place holder | Write numbers to 10 000 where 0 is used as a place holder | 10 000 | Some LAPS may need to be completed before another can be started. ## Where have they come from? The Learning and Progression Steps (LAPS) have been derived from the Lancashire Key Learning in Mathematics statements, identified primarily from the National Curriculum 2014 programmes of study. ## How are they different from the Key Learning Statements? The Learning and Progression Steps (LAPS) are smaller, progressive steps which support learning towards the Key Learning in Mathematics expectations. ## How are they different from the Key Learning Indicators of Performance (KLIPs)? The Key Learning Indicators of Performance (KLIPs) document is an assessment tool. The Learning and Progression Steps (LAPS) document is a planning tool and is not intended to be used for summative assessment purposes. However, they may support teachers in judging whether children are on track to meet the end of year expectations at different points throughout the year. The terms 'entering', 'developing' and 'secure' are used in Lancashire's assessment approach, KLIPs, as summative judgements in relation to age related expectations. Definitions for these terms can be found in the introduction to the KLIPs document. ### How might Learning and Progression Steps (LAPS) in Mathematics be useful? Learning and Progression Steps (LAPS) may be used in a number of ways. For whole class teaching, LAPS may be used to support differentiation. When planning, it may be appropriate to use LAPS statements to inform learning objectives for a session or number of sessions. Learning and Progression Steps (LAPS) in Mathematics should be selected according to the learning needs of the individual or group. Emphasis however, should always be on developing breadth and depth of learning to ensure skills, knowledge and understanding are sufficiently embedded before moving on. The LAPS should **not** be used as an assessment tool, but they can inform teachers about children's progress towards the end of year expectations at the end of each term. #### Are LAPS consistent with the other resources from the Lancashire Mathematics Team? Yes, the LAPS are related to the content of the Mathematics Planning Support Disc and also the Progression Towards Written Calculation Policies and the Progression in Mental Calculation Strategies. These can be found on the website: www.lancsngfl.ac.uk/curriculum/primarymaths These Learning and Progression Statements (LAPS) are designed to show the necessary steps in learning to make effective and sustainable progress within a single year. They begin with the 'end of year' expectation from the previous year and build up to the 'end of year expectation' of the current year. The number of steps is dependent on the learning and do **not** constitute expectations for the end of each term. The steps are **not** of equal size and different amounts of time may be required for children to move between individual steps. | | End of Year 1
expectation | | | Lea | arning and Pro | gression Statem | ents | | | End of Year 2
expectation | |------------------------|--|---|--|---|--|--|--|--|---|---| | | Count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number Count in multiples of twos, fives and tens | Count in steps of 10
forwards and
backwards from any
number using base 10
equipment | Count in steps of 10
forwards and
backwards from any
number using a 100
square | pattern
square w
in s
2 or 5 fro | and discuss
ns on a 100
then counting
steps of
om 0 and tens
ny number | Count in ste
from 0 using p
equipment s
counters / o
arranged in a | oractical
such as
cubes | Count in steps of 3
using a fully labelle
number line | Count in stens of 3 | Count in steps of 2, 3,
and 5 from 0, and in
tens from any
number, forward and
backward | | ā | Read and write
numbers to 100 in
numerals | Write numbers up to 100 | e words for the multiple
in words using a word lis | es of 10)
st (giving n | | | | ad numbers up to 100
ite numbers up to 100 | | Read and write
numbers to at least
100 in numerals and
in words | | Number and Place Value | Begin to recognise
the place value of
numbers beyond 20
(tens and ones) | Make and identify a two digit number up to 50 usin concrete materials e.g. bundles of straws, base 10 apparatus and match thes to arrow cards | digit number up to
concrete materials
place value cou | Make and digit numl using concurrence, e.g. bundles | | dentify a two
er up to 100
ete materials
of straws, base
paratus | digit n
using c
such | and identify a two
umber up to 100
oncrete materials
as place value
s, abacus and arrow
cards | Say what each digit represents in a two digit number | Recognise the place
value of each digit in
a two-digit number
(tens, ones) | | Nun | Identify and represent numbers using objects and pictorial representations including the number line | 24.14.00 0. 50.41.0) | Make and identify a
two digit number up
to 50 using concrete
materials such as place
value counters, abacus
and arrow cards | two digi
to 100 u
material
apparatu | nd identify a
t number up
sing concrete
s e.g. base 10
us, bundles of
traws | Make and ide
two digit nun
to 100 us
equipment s
place value co
abacus and
cards | nber up
sing
such as
ounters,
arrow | Correctly place a
number from 1 to 1
on a number line w
multiples of 10 label | th multiples of 10 marked | Identify, represent and estimate numbers using different representations, including the number line | | | No equivalent
objective in Year 1 | Make a two-digit number using concrete materials e.g. base 10 apparatus, bundles of straws, place value counters | s (represented using base apparatus) into tens an | | (represented
apparatus) in
in different v | vo-digit number
d using base 10
nto two groups
vays where one
multiple of 10 | Partition a two-digit number (represented using base 10 apparatus) into two groups in different ways e.g. 43 = 40 + 3 or 31 + 12 | | Partition a two-digit number (represented using base 10 apparatus) in different ways e.g. 43 = 40 + 3 or 20 + 23 or 20 + 21 + 2 | Partition numbers in different ways (e.g. 23 = 20 + 3 and 23 = 10 + 13) | | Use the language of:
equal to, more than,
less than (fewer),
most, least | Compare two 2-digit amore represented using the practical equipment say amount has more and for Pay particular attention to that have the same diginal and 43 | e same
ring which
ewer/less
to numbers | amounts with a saying saying more/r | e three or more 2-digit
when represented using
e practical equipment
which amounts have
most and fewer/less/
fewest/least
ular attention
to numbers
the same digits e.g. 34
and 43 | Order three or more
amounts when represe
the same practical eq
Pay particular attention
that have the same dig
and 43 | nted using
uipment
to numbers | compar
Pay particu | <, > and = signs when ing one and two-digit numbers lar attention to numbers the same digits e.g. 34 and 43 | Compare and order
numbers from 0 up to
100; use <, > and =
signs | |---|---|--|-------------------------------------|--|--|---|--------------------------------------|---|--| | Given a number,
identify one more
and one less | Identify the number 1 m
less than a given number
tens digit stays the | , where the | less than a | e number 1 more and 1
given number where the
digit might change | Identify the number 10
less than a given nu | | stays the sa | what changes and what
ame when 10 is added or
rom a two-digit number | Find 1 or 10 more or
less than a given
number | | No equivalent
objective in Year 1 | Identify the multiples of or after a giv | | ely before | and after a given numbe to each of these multip | f 10 immediately before
or (not ending in 5), count
oles of 10 and say which
10 is closest | between t | wo multiples | nber is exactly half way
of 10, then the number
her multiple of 10 | Round numbers to at
least 100 to the
nearest 10 | | Recognise and create
repeating patterns
with numbers, objects
and shapes | each digi | system is org
t represents i
l6 is 4 groups | n a two-digit | • | Recognise the co | 6 on | e between or
es = 6
s = 60 | nes and tens, e.g. | Understand the
connection between
the 10 multiplication
table and place value | | Identify odd and even
numbers linked to
counting in twos from
0 and 1 | Describe the rule in a
number sequence
counting on and back
in twos from any
number | Extend sequences of and back in any nu | counting on twos from | Describe the rule in a number sequence counting on and back in tens or twos from any number | Extend number sequences counting on and back in tens or twos from any number | Describe the number so counting o in fives, te from any | sequence
n and back
ns or twos | Extend number sequences counting on and back in fives, tens or twos from any number | Describe and extend simple sequences involving counting on or back in different steps | | Solve problems and
practical problems
involving all of the
above | See Usir | Children need frequent access to a range
See Using and Applying, Contextual Learning and Asse | | | <u>-</u> | | | ng Disc. | Use place value and number facts to solve problems | | | End of Year 1 expectation | | | | Lea | arning ar | nd Progr | ession Statem | ents | | | End of Year 2
expectation | |-----------------------------------|--|---|--|--------------------------------|--|--|----------------------|---|--|--|---|--| | | No equivalent
objective in Year 1 | 7 | | | | | | | gies from the range th
sed on their confiden | - | | Choose an appropriate strategy to solve a calculation based upon the numbers involved (recall a known fact, calculate mentally, use a jotting) | | | | These | steps fit t | the Lancashir | e Progression Tow | ards Wri | itten Ca | lculation Polici | es and Progression in | | Iculations Policies hise calculations that require | | | Number – Addition and Subtraction | No equivalent
objective in Year 1 | Recognise and solve
calculations that
involve known facts
e.g. 6 + 12 | terricient e.g. 4 + 33 becomes 33 + 4 and use this strategy where appropriate (This should be supported by concrete materials, pictures or jottings) (Counting back in tens) and use this strategy where appropriate (This should be supported by concrete materials, pictures or jottings) (Counting back in tens) and use this strategy where appropriate (This should be supported by concrete materials, pictures or jottings) (Counting back in tens) and use this strategy where appropriate (This should be supported by concrete materials, pictures or jottings) (Counting back in tens) and use this strategy where appropriate (This should be supported by concrete materials, pictures or jottings) (This should be supported by concrete materials, pictures or jottings) | | | | | | | | | | | Number – A | Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs | Model addition nur
sentences using
concrete materia | mber | Recognise
two or mo | that addition of
re numbers can
in any order | two d | or more
done in a | nat addition of
numbers can
any order to
culations for
ency | Model subtraction
sentences us
concrete mate | ing | Recognise that (in practical situations) the subtraction of one number from another cannot be done in any order | Show that addition of
two numbers can be
done in any order
(commutative) and
subtraction of one
number from another
cannot | | | Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs | Know that 'take away an amount from another am Identify subtraction as different contexts by and interpreting the | m within
ount.
s 'take av
understa
ne langua | Kno
way' in two
unding r | amounts and find | in difference is comparing number sentences using understanding a understanding a number sentences using understanding a | | | | inise subtraction as 'difference'
in different contexts by
rstanding and interpreting the
language involved | Understand subtraction as take away and difference (how many more, how many less/fewer) | | | | Represent and use
number bonds and
related subtraction
facts within 20 | Recall and use addition and subtraction facts totalling 10 | | | | | ction fac | e addition and
cts totalling 20
nd subtraction | Derive and use add
subtraction fac
multiples of 10 total | cts of | Use ten frames to explore
addition and subtraction
facts for all numbers up to
20 | Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 | | | Represent and use
number bonds and
related subtraction
facts within 20 | Derive and use ad | dition a | nd subtraction | on facts of mul | Itiples | of 10 totalling 60 | Derive and use a | ddition a | ind subtract | ion facts of mult | iples of 5 totalling 60 | Recall and use number bonds for multiples of 5 totalling 60 (to support telling time to nearest 5 minutes) | |---|--|--|---
---|---------------------------|---|---|--|--|--|--|---|---| | | Add and subtract one-digit and two-digit numbers to 20, including zero (using concrete objects and pictorial representations) | Partition and combine multiples of tens and ones (Practically then pictorially then mentally) | subtr
digit
to/fro
digit
(not
tens l | Add and tract a one- git number from a two- git number ot crossing s boundary) actically then torially then mentally) Add three sing digit number including bridging throu 10 and/or 20 | | ers
bugh
20
then | Add and subtract a multiple of 10 to/from a two-digit number (not crossing hundreds boundary) (Practically then pictorially then mentally) | Add and subtract a one-digit number to/from a two-digit number including crossing a tens boundary (Practically then pictorially then mentally) | subtra
digit
to/froi
tw
num
cros
bou | Id and act a two- number m another o-digit ber (not sing any ndaries) ically then intally then | Add and subtract a two digit number two-digit number including crossing a ter boundary (Practically) | another two- digit number including crossing the hundreds boundary | Add and subtract numbers using concrete objects, pictorial representations, and mentally, including: - a two-digit number and ones - a two-digit number and tens - two two-digit numbers - adding three one-digit numbers | | - | Solve one-step | The | se steps fit the Lancashire Progress | | ression Towards Written C | | culation Policies ar | nd Progre | ession in Me | ental Calculation | ns Policies | | | | | problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as 7 = \$\square\$ - 9 | Recognise and us
knowledge that
4 + 5 = 9 can be
checked by using
inverse operati
9 - 4 = 5 or
9 - 5 = 4 | et
e
the | 12 – 4 = 8 can be
checked by using the
inverse operation
8 + 4 = 12 or | | Recognise that 4 + ? = 9 can be solved by calculating 9 – 4 = ? because 9 is the whole which is made of two parts one of which is 4 | | Recognise to the second | e solved
2 – 8 = ?
e whole
of two | ? + 3 = 11
by calcula
because 1
which is | gnise that can be solved iting 11 – 3 = ? 1 is the whole made of two e of which is 3 | Recognise that ? – 5 = 9 can be solved by calculating 9 + 5 = ? because two parts which are 9 and 5 go together to create the whole | Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems | | | Solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as 7 = □ - 9 | · | | e a problem
materials | using | R | | problem using pict
s of the items in
ontext | torial | | • | oblem using structured
such as the bar model | Solve problems with addition and subtraction including with missing numbers: - using concrete objects and pictorial representations, including those involving numbers, quantities and measures - applying their increasing knowledge of mental and written methods | | | End of Year 1 expectation | | | | Lea | arning and Prog | ression Stateme | nts | | | | End of Year 2
expectation | |--------------------------------------|--|--|---|---|--|--|---|--|---|--------|---|--| | | No equivalent
objective in Year 1 | Represent doubling using concrete materials Understand that doubling is ac number to
itself and multiplyir | dding a | sente
doul | wo different
ences to rep
bling situat
6 + 6 = 12 a
6 x 2 = 1 | oresent a
ion e.g.
and
2 | concrete m
groups and th
form as ar | more times
aterials arr | s using
ranged in
structured
link this | | rite two different number ences to represent repeated addition situations e.g. $5+5+5=15 \text{ and}$ $5 \times 3=15$ | Understand
multiplication as
repeated addition
and arrays | | | No equivalent
objective in Year 1 | Share an amount equally acros
where there is no remainder
share 20 sweets between 5 ch | e.g. | amount ed
there is a
pencils beto
pencils on | qually acro
remainder
ween 3 tab | s, share an ss sets where e.g. share 23 lles results in 7 and 2 pencils shared | Make equal
amount where
e.g. make tear
30 ch | e there is n | o remainder
n a group of | amou | e equal sized groups from an
nt where there is a remainder
e.g. give 3 buttons to each
bread man when there are 23
buttons in total; 26 ÷ 5 | Understand division
as sharing and
grouping and that a
division calculation
can have a remainder | | Number – Multiplication and Division | No equivalent
objective in Year 1 | Model multiplication
number sentences using
concrete materials | the
sta
repre
mu | reate an array and identify the two multiplication statements that are represented to show that multiplication of two numbers can be done in any order Use the multiplication order to multiplicati from anoth know what t are but I known are eight | | | eract that ention of two be done in any derive one on statement er e.g. 'I don't wo lots of four ow four lots of ent so it is the me.' Model division nur sentences usin concrete materi | | | | Recognise that (in practical situations) the division of one number from another cannot be done in any order because they give different answers | Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot | | Number – N | Count in multiples
of twos, fives and
tens | I | call and use multiplication and ivision facts for the 10x table | | | plication and
he 5x table | Recall and u
division fa | se multiplicts for the | | lookin | ify odd and even numbers by
g at the ones digit and relating
n numbers to multiples of 2 | Recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers | | | Recall and use
doubles of all
numbers to 10 and
corresponding
halves | the relationship between t
doubling of a single digit num
the doubling of its related mu
of 10 e.g. double 3 is 6 and do | ubling of a single digit number to e doubling of its related multiple 10 e.g. double 3 is 6 and double 3 tens is 6 tens which is 60 | | | Use the previously identified relationship to recall and use doubles of all multiples of 10 up to 50 | | reviously id
ip to recall
I multiples
100 | and use | two | partitioning to double simple
o-digit numbers (numbers in
h the ones total less than 10) | Derive and use doubles of simple two-digit numbers (numbers in which the ones total less than 10) | | | Recall and use
doubles of all
numbers to 10 and
corresponding
halves | Use base 10 equipment to explore the relationship between the halving of a single d even number to the halving of its related mult of 10 e.g. half of 6 is 3 and half of 6 tens is 3 t which is 30 | | | ngle digit Use the previously identified re and use halves of all multiple | | | | | | | Derive and use halves of simple two-digit even numbers (numbers in which the tens are even) | | No equivalent | Represent adding the same n
more times using concret | | C | reate an array to
multiplic | o represent a give | en | Write t | repres | rent number sentences to
sent an array e.g.
5 + 5 = 15 and
5 x 3 = 15 | Calculate
mathematical
statements for
multiplication (using
repeated addition)
and division within | |---|---|--|--|--|---|------------------------------------|---|---------------------------|---|---| | objective in Year 1 | Use concrete materials to | Write a number s represent the am grouped, the nu each group and b groups are created 20 ÷ 5 = | ount being
mber in
ow many
ted e.g. | many groups
can be made | ay, show how
of a given size
from the total
vs or columns) | represent number 20 ÷ 5 = 3 as how | number sente
nt the total ar
of groups of a
size e.g.
? understandi
many groups
e made out of | nd the given ng this of 5 | Select from grouping or
sharing strategies depending
on the context e.g. sharing
should be used when
dividing by 2 and finding
fractions | the multiplication
tables and write them
using the
multiplication (×),
division (÷) and
equals (=) signs | | Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher | Represent and solve a problem of concrete materials | pictoria | | problem using
ations of the
ontext | Represent and structured pice. | • | esentations | mear | derstand what a remainder
ns in the context of a problem
ow this may affect the answer | Solve problems involving multiplication and division (including those with remainders), using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts | | | End of Year 1 expectation | | | Learnin | g and Prog | ression Stat | ements | | | End of Year 2
expectation | | | | | |--------------------|--|---|--|---|--------------|--------------|--|------------------------|----|--|--|--|--|--| | | Understand that a fraction can describe part of a whole Understand that a unit fraction represents one equal part of a whole | | | presentations to explorence of equal parts into split | | | concrete materials and
se that the numerator is | | | Understand and use
the terms numerator
and denominator | | | | | | suc | Understand that a fraction can describe part of a whole Understand that a unit fraction represents one equal part of a whole | Re | cognise that one 'whol | e' could be one whole န | group of ite | ms e.g. a gr | oup of 12 teddy bears (| could be one whole gro | up | Understand that a
fraction can
describe
part of a set | | | | | | Number – Fractions | No equivalent
objective in Year 1 | Split the s | Split the same shape or set into different numbers of equal parts and compare the sizes of the denominators e.g. a half and a quarter | | | | | | | | | | | | | | Recognise, find and name a half as one of two equal parts of an object, shape or quantity (including measure) Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity (including measure) | Find $\frac{1}{4}$ of a shape, object, set of objects / quantity and length and write the fraction $\frac{1}{4}$ | et of of four equal parts of an object or and write of an object or of an object or of an object or other and write of sand write of sand write or change and are change and write or change and write or change are change and write or change and write or change are are change and write or change are change and write or change are change are change are change are change and write or change are change are change are change are change a | | | | | | | | | | | | | | No equivalent objective in Year 1 | Use equations to | se equations to represent the fractions of amounts being calculated $\frac{3}{4} \text{ of } 8 = 6$ Find $\frac{1}{2}$ and $\frac{2}{4}$ of an object, set of objects / quantity and length and recognise that these are the same | | | | | | | | | | | | | | No equivalent
objective in Year 1 | Count on in steps of $\frac{1}{2}$ in the form $\frac{1}{2}, \frac{2}{2}, \frac{3}{2}, \frac{4}{2}$, $\frac{5}{2}$ | Count back in steps of $\frac{1}{2}$ in the form $\frac{5}{2}, \frac{4}{2}, \frac{3}{2}, \frac{2}{2}, \frac{1}{2}$ | Use concrete materials or pictorial representations to change the counting sequence from $\frac{1}{2}$, $\frac{2}{2}$, $\frac{3}{2}$, $\frac{4}{2}$, $\frac{5}{2}$ to $\frac{1}{2}$, 1, 1 $\frac{1}{2}$, 2, 2 $\frac{1}{2}$ | Count on in steps of $\frac{1}{4}$ in the form $\frac{1}{4}$, $\frac{2}{4}$, $\frac{3}{4}$, $\frac{4}{4}$, | Count back in steps of $\frac{1}{4}$ in the form $\frac{5}{4}$, $\frac{4}{4}$, $\frac{3}{4}$, $\frac{2}{4}$, $\frac{1}{4}$ | Use concrete materials or pictorial representations to change the counting sequence from $\frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{4}{4}, \frac{5}{4} \text{ to }$ $\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1, 1, \frac{1}{4}$ | Count on and back in steps of $\frac{1}{2}$ and $\frac{1}{4}$ | |--|--------------------------------------|---|--|---|--|--|---|---| |--|--------------------------------------|---|--|---|--|--|---|---| | | End of Year 1
expectation | | Lea | arning and Progression Stateme | nts | | End of Year 2
expectation | |----------------------------|--|--|--|--|--|--|---| | Shapes | Recognise and name common 2-D shapes, including rectangles (including squares), circles and triangles | Know that a vertex in a 2-D shape is where two sides meet (and the plural is vertices) | Identify the number of sides
and vertices of 2-D shapes
and recognise that this is the
basis for naming them, e.g.
any shape with five sides is a
pentagon | Describe 2-D shapes according to the number of sides and vertices, and whether any of the sides or vertices are the same size as each other, e.g. oblong and regular hexagon | Identify a vertical line of symmetry in a shape | From a set of shapes,
identify those with a vertical
line of symmetry and those
without | Identify and describe
the properties of 2-D
shapes, including the
number of sides and
line symmetry in a
vertical line | | Geometry – Properties of S | Recognise and
name common 3-D
shapes, including
cuboids (including
cubes), pyramids
and spheres | Know that a face is a flat surface of a 3-D shape | Identify the number and shape of the faces or curved surfaces of 3-D shapes and recognise that this is the basis for naming them, e.g. a triangular prism has three rectangular faces and two identical (congruent) triangular faces which can be any type of triangle | Know that an edge on a 3-D shape is where two faces / curved surfaces meet Know that a vertex on a 3-D shape is where three or more edges meet | Describe 3-D shapes according to the number and shape of the faces, the number of edges and vertices and whether any of the faces are the same as each other | Identify similarities and
differences between pairs /
sets of 3-D shapes | Identify and describe
the properties of 3-D
shapes, including the
number of edges,
vertices and faces | | | Recognise and name common 2-D shapes, including rectangles (including squares), circles and triangles | Find the | face on a 3-D shape that is a sp | ecified 2-D shape, e.g. find the so | quare face on this square based | pyramid | Identify 2-D shapes
on the surface of 3-D
shapes, [for example,
a circle on a cylinder
and a triangle on a
pyramid] | | | End of Year 1
expectation | | Lea | arning and Progression Stateme | nts | | End of Year 2
expectation | |------------------------------|---|---|--|--|---|---|--| | ection | Recognise and create repeating patterns with objects and shapes | This is | consolidation of Year 1 learning | and therefore there are no step | s towards this end of year expe | ctation | Order/arrange combinations of mathematical objects in patterns /sequences | | Geometry – Position and Dire | Describe position
and direction
Describe
movement,
including whole,
half, quarter and
three-quarter turns | Know that a full turn is the
same as a turn through four
right angles | Know that a half turn is the same as a turn through two right angles | Know that a quarter turn is
the same as a turn through
one right angle | Know that a three-quarter
turn is the same as a turn
through three right angles | Understand and use the
language clockwise and anti-
clockwise | Use mathematical vocabulary to describe position, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anticlockwise) | | | End of Year 1 expectation | | | | | Lear | ning and Progr | ession State | ements | | | | | End of Year 2
expectation |
------------|--|--|---|--|--------|---|---|--|--|---|---|-------------------------------|--|---| | | Sort objects,
numbers and
shapes to a given
criterion and their
own | Use everyday langua
compare two objectidentifying propertie
they both share a
properties that make
different | to compare two notes by fying properties that by both share and they both share them different to compare two notes that make them different to compare two notes to compare two notes that the properties that make them different to compare two notes that the properties that make them different to compare two notes the properties that make them different to compare two notes the properties that make them different to compare two notes the properties that make them different to compare two notes the properties that make them different to compare two notes the properties that make them different to compare two notes the properties that make them different to compare two notes the properties that make them different to compare two notes the properties that make them different to compare two notes the properties that make them different to compare two notes the properties that make them different to compare the properties that make them different to compare the properties that make them different to compare the properties that make the properties that make the properties that | | | | Use mathema
to compare to
identifying pr
they both
properties that
diffe | wo shapes be
operties that
share and | y Sort
numbers
range | or shape of mat | objects,
pes using the
hematical
t they know | proper
object: | ntify the property /
rties by which a set of
s, numbers or shapes
has been sorted | Compare and sort objects, numbers and common 2-D and 3-D shapes and everyday objects | | Statistics | Present and interpret data in block diagrams using practical equipment | Use given data to Construct and interpret simple interpret a block | | | | given data to
nstruct and
nterpret a
gram in which
h symbol is
worth 1 | construction construction collect da tally ch interpr | ta using a
art and | Construct
interpret dat
pictogram in
each symb
worth 1 | ta as a
which
ool is | Constructinterpret data pictogram in each sym | ata as a
n which
bol is | Construct and interpret data as a pictogram in which each symbol is worth 2 | Interpret and construct simple pictograms, tally charts, block diagrams and simple tables | | .S. | Ask and answer
simple questions by
counting the
number of objects
in each category | | wer questions which ask 'How many…?' in a given data category | | ' in a | Understand and use the language of most and least common / popular | | | | d Order the amounts for each category in a data set | | | | Ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity | | | Ask and answer
questions by
comparing
categorical data | Answer questions which ask 'How many more paring when comparing two categories | | | | | y fewer?' | e.g. How | many children | n walk o | r cycle to scho | ol? (tota | given data categories
Iling two categories)
alling all categories) | Ask and answer
questions about
totalling and
comparing categorical
data | | | End of Year 1
expectation | Learning and Progression Statements | | | | | | | | End of Year 2
expectation | |-------------|---|--|--|---|---|--|--|---|--|---| | | Measure and begin to record: - lengths and heights, using nonstandard and then manageable standard units (m/cm) - mass/weight, using non-standard and then manageable standard units (kg/g) - capacity and volume using nonstandard and then manageable standard units (litres/ml) - time (hours/minutes/seconds) within children's range of counting competence | measure length and height (m/cm) | | Choose and correctly use the appropriate equipment to measure lengths and heights e.g. ruler, metre rule, tape measure, trundle wheel | | Know common points of reference
for length / height such as a ruler is
30cm and a doorway is 2m tall | | Use the common points of reference they know to estimate the lengths and heights of other objects | | Choose and use appropriate standard units to estimate and measure length/height in any direction (m/cm); mass (kg/g); temperature (°C); capacity and volume (litres/ml) to the nearest appropriate unit, using rulers, scales, thermometers and measuring | | Measurement | | Choose the correct standard units to equipment measure mass (kg/g) balance s | | | e and use the correct
of to measure mass e.g.
ales, kitchen scales (with
propriate scale) | Know common points of reference
for mass such as a small packet of
crisps has a mass of between 25g
and 30g and a bag of sugar has a
mass of 1kg | | Use the common points of reference they know to estimate the mass of other objects | | | | | | Choose the correct standard units to measure volume / capacity (litres/ml) capacity e | | e and use the correct
of to measure volume /
g. measuring cylinders /
th appropriate scales | Know common points of reference
for volume / capacity such as a
teaspoon / medicine spoon has a
capacity of 5ml and a large bottle of
fizzy drink is 2 litres | | Use the common
points of reference they know to estimate the volume in / capacity of other vessels | | | | | | | Know that temperature is measured in degrees Celsius (°C) Know that temperature is measured using a thermometer and read the temperature on a thermometer | | Know that average
room temperature is
between 18°C and
20°C | Use the knowledge of average room temperature to say whether the temperature outside is hotter / warmer or colder / cooler Estimate and read the temperature on a partially marked thermometer scale where the reading is a multiple of 5 Estimate and read the temperature on a partially marked thermometer scale, using the labelled marks to read to the nearest degree | | vessels | | | | | | Compare, describe and solve practical problems for: - lengths and heights (for example, long/short, longer /shorter, tall/short, double/half) - mass/weight (for example, heavy/ light, heavier than, lighter than) - capacity and volume (for example, full/empty, more than, less than, half, half full, quarter) - time (for example, quicker, slower, earlier, later) | Compare the values of two lengths, masses
and volumes / capacities | | | Order the values of three or more lengths, masses and volumes / capacities | | Use <, > and = to compare the values of lengths, masses and volumes / capacities, e.g. 34cm < 43cm; 76g > 67g; 80ml = 80ml (when comparing two differently shaped vessels) | | Compare and order
lengths, mass,
volume/capacity and
record the results
using >, < and = | | | Recognise and know
the value of
different
denominations of
coins and notes | Recognise that p in the context
use this sym | | Recognise that £ in use this sy | Recognise and use
symbols for pounds
(£) and pence (p) | | | | | |--|--|---|--|---|--|--|--|--| | Recognise and know
the value of
different
denominations of
coins and notes | Add two prices together to find the | | that amounts of money
titioned in different ways
(using coins)
can be 30p and 20p or
15p and 35p | For a given value, identify how much more can be spent following the purchase of one item, e.g. 38p + ? = 50p | | Identify combinations which can be
bought for a specific amount of
money e.g. what two or more items
can I buy for exactly 70p? | Combine amounts to
make a particular
value | | | Recognise and know
the value of
different
denominations of
coins and notes | number of 1p coins and understand that, for example, ten 1p coins have the same value as example, five 10p coins | | | £1 coins for the correct nd understand that, for have the same value as Op coin Exchange different coins for other coins of the same value | | Find different
combinations of coins
that equal the same
amounts of money | | | | Recognise and use
language relating to
dates, including days
of the week, weeks,
months and years | Know that there are 60 minutes in 1 hour Know that there are 24 hours in 1 day | | | | | | | | | Recognise and use language relating to dates, including days of the week, weeks, months and years Sequence events in chronological order using language (for example, before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening | Put units of time (second, minute, ho
from shortest to lor | - | | To enable comparison calculation strategies to $\frac{1}{2}$ of 60 minutes which | Compare and
sequence intervals of
time | | | | | face to show these times No equivalent objective in Year 1 | the hour (NB - it
will have moved
one quarter of the
way between the
hour numbers) | three quarters of
the way between
the hour numbers
and therefore has
one quarter of the
space left to go)) | 10 minutes past, 15 minutes past (quarter past), 20 minutes past etc. | minutes past) | 10 minutes to, 15 minutes to (quarter to), 20 minutes to etc. | minutes to) of the above. | five minutes Disc. | Solve simple problems in a practical context involving addition and subtraction of money of the same | |---|---|---|---|--|---|---|---|--| | Tell the time to the
hour and half past
the hour and draw
the hands on a clock | Tell the time for quarter past the hour and draw hands on a clock to show the time, recognising that the hour hand will not be exactly on | Tell the time for quarter to the hour and draw hands on a clock to show the time, recognising that the hour hand will not be exactly on the hour (NB - it will have moved | Count in fives clockwise starting at 12 (for zero) to 6 (for thirty) progressing to counting in times, e.g. 5 minutes past, | Tell the time to the
nearest five
minutes past the
hour (up to 25 | Count in fives anti-
clockwise starting
at 12 (for zero) to 6
(for thirty)
progressing to
counting in times,
e.g. 5 minutes to, | Tell the time to the
nearest five
minutes to the next
hour (up to 25 | Draw the hands on a clock to show the time to the nearest | Tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a |