Year 9 Science Chemistry

Week 4, Lesson 1

Learning Intention:

- Review balancing chemical equations
- Investigate acids and bases and the pH scale

Success Criteria:

- Balance chemical equations
- Define properties of acids and bases
- Understand the purpose of the pH scale

Review: We Do:

Balance the following chemical equation:

 $\mathbf{CH_4} + \mathbf{O_2} \to \mathbf{H_2O}$

Review: You Do:

Balance the following chemical equations:

a)
$$N_2 + O_2 \rightarrow N_2O$$

- b) KI + CI₂ \rightarrow KCI + I₂
- c) $S + O_2 \rightarrow SO_3$

d) Na + $H_20 \rightarrow NaOH + H_2$

Answers:

a) $2N_2 + O_2 \rightarrow 2N_2O$

- b) $2KI + CI_2 \rightarrow 2KCI + I_2$
- c) $2S + 3O_2 \rightarrow 2SO_3$
- d) $2Na + 2H_2O \rightarrow 2NaOH + H_2$

Acids and bases are all around us.

We use them in cooking, cleaning, farming and medicine.

Can you think of any acids?

Can you think of any bases?

An acid is a substance that releases **hydrogen ions (H⁺)** into an aqueous solution (water).

Common examples of acids include hydrochloric acid (which is found in your stomach) and acetic acid (which is found in vinegar).

Properties of Acids

- Acids are corrosive this means they will burn our skin
- Acids have a sour taste think of lemon juice
- React with some metals to produce hydrogen gas and a sale

CORROS

- Conduct electricity
- Can be neutralized by bases, producing water and a salt
- Turn blue litmus paper red

Strength of Acids

The acids we work with in the school laboratory are not pure substances.

They are solutions – meaning the acid has been mixed with water.

When acids are mixed with water they release hydrogen ions (H⁺).

The strength of an acid depends on how many of these hydrogen ions are released.

Nitric acid, hydrochloric acid and sulfuric acid are examples of strong acids.

Acetic acid (vinegar) and carbonic acid (found in soft drinks) are examples of **weak acids**.

- 1. An acid is a substance that releases ______ ions (H⁺) into an aqueous solution (water).
- 2. Acids are _____ meaning they will burn our skin.
- 3. Acids react with some metals to form _____ gas and a salt.
- 4. Common examples of acids include _____ acid which is found in your stomach and _____ acid which is found in vinegar.

- 1. An acid is a substance that releases **hydrogen** ions (H⁺) into an aqueous solution (water).
- 2. Acids are _____ meaning they will burn our skin.
- 3. Acids react with some metals to form _____ gas and a salt.
- 4. Common examples of acids include _____ acid which is found in your stomach and _____ acid which is found in vinegar.

- An acid is a substance that releases hydrogen ions (H⁺) into an aqueous solution (water).
- 2. Acids are **corrosive** meaning they will burn our skin.
- 3. Acids react with some metals to form _____ gas and a salt.
- 4. Common examples of acids include _____ acid which is found in your stomach and _____ acid which is found in vinegar.

- An acid is a substance that releases hydrogen ions (H⁺) into an aqueous solution (water).
- 2. Acids are **corrosive** meaning they will burn our skin.
- 3. Acids react with some metals to form hydrogen gas and a salt.
- 4. Common examples of acids include _____ acid which is found in your stomach and _____ acid which is found in vinegar.

- 1. An acid is a substance that releases **hydrogen** ions (H⁺) into an aqueous solution (water).
- 2. Acids are **corrosive** meaning they will burn our skin.
- 3. Acids react with some metals to form hydrogen gas and a salt.
- 4. Common examples of acids include hydrochloric acid which is found in your stomach and acetic acid which is found in vinegar.

A base is a substance that releases hydroxide ions (OH⁻).

If a base can be dissolved in water it is known as an **alkali**.

The solution it forms is called an **alkaline solution**.

Common examples of bases include sodium hydroxide which is used in soap ammonia which is used for household cleaning.

Properties of Bases

- Bases are caustic meaning they can burn your skin
- Bases have a soapy, slimy feel
- Bases have a **bitter taste**
- Bases conduct electricity

- Bases are neutralized by acids, producing water and a salt
- Turn red litmus paper blue

An base is a substance that releases ______ ions (OH⁻).
 Bases that dissolve in water produce ______ solutions.
 Bases are ______ meaning they will burn our skin.
 Common examples of bases include ______ hydroxide which is found in soap and ______ which is used for household cleaning.

1. An base is a substance that releases hydroxide ions (OH⁻).

- 2. Bases that dissolve in water produce ______ solutions.
- 3. Bases are ______ meaning they will burn our skin.
- 4. Common examples of bases include _____ hydroxide which is found in soap and _____ which is used for household cleaning.

- 1. An base is a substance that releases hydroxide ions (OH⁻).
- 2. Bases that dissolve in water produce alkaline solutions.
- 3. Bases are ______ meaning they will burn our skin.
- 4. Common examples of bases include _____ hydroxide which is found in soap and _____ which is used for household cleaning.

- 1. An base is a substance that releases hydroxide ions (OH⁻).
- 2. Bases that dissolve in water produce alkaline solutions.
- 3. Bases are **caustic** meaning they will burn our skin.
- 4. Common examples of bases include _____ hydroxide which is found in soap and _____ which is used for household cleaning.

- 1. An base is a substance that releases hydroxide ions (OH⁻).
- 2. Bases that dissolve in water produce alkaline solutions.
- 3. Bases are **caustic** meaning they will burn our skin.
- 4. Common examples of bases include sodium hydroxide which is found in soap and ammonia which is used for household cleaning.

The pH Scale

We use pH to measure the concentration of hydrogen ions (H⁺) in a solution.

Remember that in an acidic solution there are more hydrogen ions (H⁺) than hydroxide ions (OH⁻).

In a **basic, or alkaline, solution** there are more hydroxide ions (OH⁻) than hydrogen ions (H⁺).

Pure water is **neutral** (neither acidic or basic).

It has an equal number of hydrogen and hydroxide ions.

Pure water has a **pH of 7**. It is in the middle of the pH scale.

Acidic solutions have a pH <u>below 7</u> (1 being the most acidic).
Basic, or alkaline, solutions have a pH <u>above 7</u> (14 being the most basic).

Measuring pH

We use indicators that **change colour** to determine the pH of a solution.

We can use **blue litmus paper** which **turns red** when dipped in an acidic solution.

We can use **red litmus paper** which **turns blue** when dipped in a basic solution.

We can also use **universal indicator** which changes colour depending on the pH of a solution.