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ABSTRACT: Rainfall, temperature, and solar radiation are important climate factors, which determine crop growth,
development and yield from instantaneous to decadal scales. We propose to identify year patterns of climate impact on
yield on the basis of rain and non-rain weather. There are inter-related impacts of climatic factors on crop production within
a specific pattern. Historical wheat yield data in Queensland during 1889–2004 were used. The influence of meteorological
conditions on wheat yields was derived from statistical yield data which were detrended by 9-year-smoothing averages to
remove the effects of technological improvements on wheat yields over time. Climate affects crop growth and development
differently over different growth stages. Therefore, we considered the climate effects at both vegetative and reproductive
stages (before and after flowering date, respectively) on yield. Cluster analysis was employed to identify the year patterns
of climate impact. Five patterns were significantly classified. Precipitation during the vegetative stage was the dominant
and beneficial factor for wheat yields while increasing maximum temperature had a negative influence. Crop yields were
strongly dependent on solar radiation under normal rainfall conditions. As the effect of rainfall on soil water is relatively
long-lasting, its beneficial effect in vegetative stage was higher than its effect during the reproductive stage. The Agricultural
Production Systems sIMulator (APSIM) was evaluated using long-term historical data to determine whether the model could
reasonably simulate effects of climate factors for each year pattern. The model provided good estimates of wheat yield
when conditions resulted in medium yield levels, however, in extremely low or high yield years, corresponding to extremely
low or high precipitation in the vegetative stage, the model tended to underestimate or overestimate. Under high growing
season precipitation, simulations responded more favourably to reproductive stage rainfall than measured yields.
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1. Introduction

Crop growth, development, and grain yields are greatly
influenced by climatic factors, including solar radiation,
precipitation, and temperature. These factors are closely
related and affect yield in different ways. Consequently,
understanding the factors that determine crop yield is
essential to forecasting regional crop production, improv-
ing crop management techniques, and adopting feasible
strategies to deal with climate change (Qian et al., 2008;
Yu et al., 2008).

Numerous studies have attempted to quantify the
crop–climate relationship through the application of sta-
tistical regression analysis over the entire and/or critical
growing period (Nicholls, 1997; Lobell and Asner, 2003;
Lobell et al., 2006, 2007). Nicholls (1997) attributed the
increase in wheat yields in Australia to the decrease in
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frost frequency. Lobell and Asner (2003) reported signif-
icant relationships between growing season temperatures
and corn and soybean yields based on county level data in
the United States. Huff and Neill (1982) concluded that
precipitation controlled the corn yields over five Mid-
western states in the United States. A number of studies
have shown that yields from a variety of crops were
linearly related to seasonal crop water use or available
water at planting as influenced by precipitation in dry
regions (Nielsen, 1997, 1998 Nielsen et al., 2002, 2006).
Large-scale climate events, such as El Niño and Southern
Oscillation (ENSO) and Monsoon, also affect crop yields,
through alterations in rainfall and temperature regime
(Hansen et al., 1998; Podestá et al., 1999, 2002; Potgieter
et al., 2005; Sultan et al., 2005). These studies illustrated
definitive correlations among crop yields and climatic
factors. However, those climatic factors influencing crop
yields are often correlated with each other. For example,
rainfall increases soil water, but is also associated with
decreases in solar radiation and daytime temperature. In
humid areas where precipitation is abundant but solar
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radiation is limited, the latter can be the dominant factor
defining crop yield, whereas in dry regions where precipi-
tation is low, yield is mainly limited by water availability
(Yu et al., 2001). Furthermore, the limiting climatic fac-
tors for crop yield may change with growth stages.

Wheat yield varies from year to year because of the
effect of management practices and weather conditions
(Thompson, 1969; Baier, 1973). The general increase in
yield over time came from technological improvements
such as adoption of new cultivars and increase in nitro-
gen application and other management options. Through
some statistical approaches such as fitting, filtering (Chat-
field, 1996; Manly, 1997), the time trend of crop yield
due to technological improvements can be approximately
eliminated, i.e. detrending, which provided pathways for
studying the impact of climate variations on crop yield.

In previous work, crop yields were defined in three
general categories: potential, attainable, and actual yield
levels (Rabbinge, 1993). Potential yield was defined
as the crop yield determined only by solar radiation
and temperature. When available soil water or nutrients
cannot meet the demands of crop growth, potential yield
will decline to the attainable yield level. Crop growth can
also be affected by pests, diseases, and weeds, resulting in
actual crop yield. The gap between actual and attainable
yields can be bridged through the use of pesticides,
fungicides and herbicides and other effective counter
measures. However, climatic factors, such as temperature
and solar radiation cannot be controlled by farmers over
large areas, and the deficiency in precipitation can only
be compensated for if irrigation is applied.

Since the factors limiting crop yields are variable
with different climate scenarios (Eghball and Varvel,
1997; Lamb et al., 1997), it is necessary to quantify
their relationships separately. Applying cluster analy-
sis to multi-year crop yield data may be an effective
means to identify temporal yield patterns (Jaynes et al.,
2003). Cluster analysis has been widely adopted to exam-
ine crop–climate interactions (Dobermann et al., 2003;
Jaynes et al., 2003; Perez-Quezada et al., 2003; Roel and
Plant, 2004a, 2004b; Jaynes et al., 2005), including the
effects of ENSO on crop yields (Potgieter et al., 2005).
It provides a basis to identify the underlying limiting
climatic factors for crop yields over long time periods
given that non-climatic effect such as improved varieties
and management practices can be statistically eliminated.

An alternative to cluster analysis and other statisti-
cal methods that can help define relationships between
crop yield and climate is the use of crop models,
such as APSIM (Agricultural Production Systems sIM-
ulator, Keating et al., 2003), CERES (Crop Environ-
ment Resource Synthesis, Ritchie et al., 1998), ORYZA
(Bouman and van Laar, 2006), WOFOST (World Food
Study, Van Keulen and Wolf, 1986), and RZWQM (Root
Zone Water Quality Model, Ahuja et al., 2000). Crop
models are designed to describe crop growth and develop-
ment processes in simple or complex manners, which can
help to understand climate constraints on crop growth and
yield (Ritchie et al., 1998). As crop models are always a

simplification of the real system, they must be validated
against experimental data for their suitability under spe-
cific climate and soil conditions (Wallach, 2006). Crop
models are regularly validated against experimental data
over several years, but confidence in the model outputs
may be low due to the fact that model validation may not
have covered the very large range of weather conditions
normally encountered in the long-term weather record.

A key problem in the modelling community is that
model validation generally lacks sufficient data over
the long-term (multi-decadal) to represent all possible
climatic patterns in a specific area (Yunusa et al., 2004).
Crop models cannot be validated for every climatic
condition and also may have limitations with respect to
scaling-up to wider climatic conditions. This deficiency
of crop models can produce uncertainty with respect to
model applications.

Information derived from statistical methods based on
cluster analysis and correlation analysis can be useful
for evaluating crop models’ performance to interpret
the interactive effects of climatic factors on crop yields
over long-time periods. Therefore, the aims of this
paper are twofold: (1) to identify the factors which
limited winter wheat yields at different growth stages
in Queensland, Australia and (2) to identify interactive
effects of climatic factors on wheat yields by validating
computer model simulations of wheat yield against
long-term historical yield data.

2. Materials and methods

2.1. Climatic data

Well-processed and quality-checked historical climatic
data (daily maximum and minimum temperatures, solar
radiation, and precipitation) during the period from
1889 to 2004 at Dalby (−27.18◦ in latitude, 151.26◦

in longitude), Darling Downs of Queensland, Australia
were obtained from Australian Bureau of Meteorology
(see the web of SILO at http://www.bom.gov.au/silo/).
Each climatic variable during May to November was
selected for analysis. This time period represents the
growing season length for winter wheat in Queensland,
Australia (Hochman et al., 2009). The wheat growing
season was simply divided into two stages: vegetative
(sowing to flowering stages) and reproductive (flowering
to maturity stages), corresponding to the periods of May
to September and October to November, respectively.

The climate data include all extreme climatic events
over 116 years during 1889–2004, such as droughts and
floods. Figure 1 shows the variation of precipitation dur-
ing both vegetative and reproductive stages. During the
vegetative stage, precipitation ranged from 32 to 450 mm
(average, µ= 179 mm; standard deviation, σ = 82 mm).
During the reproductive stage, it fluctuated between 28
and 328 mm (µ = 134 mm; σ = 69 mm). The precipita-
tion during the vegetative stage was less variable than
that during reproductive stage, and no significant trend
was found in either stage (Figure 1).
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Figure 1. Variations of precipitation during the periods of May
to September (Precip5–9, solid curve) and October to November

(Precip10–11, dash curve) at Dalby in Queensland, Australia.

2.2. Wheat yields

Historical wheat yield data from 1889 to 2004 in
Queensland, Australia, were obtained from the Aus-
tralian Bureau of Statistics (ABS, http://www.abs.
gov.au/AUSSTATS/abs@.nsf/DetailsPage/7124.02010-
11?OpenDocument). The following representative
cultivars released to Australian growers over the last
century were as follows, Gluyas Early in 1894, Federa-
tion in 1901, Nabawa in 1915, Sword in 1923, Bencubbin
in 1929, Gabo in 1945, Insignia-49 in 1951, Halberd
in 1969, Warigal in 1978, Spear in 1983, Excalibur in
1991, and Frame in 1994. It was found that there were
consistent trends for improvement in yielding ability
through breeding effort over time. The yielding ability of
wheat increased by around 15 kg ha−1 per year while pest
and diseases were controlled (Vandeleur and Gill, 2004).
Wheat yield in Queensland varied widely from year to

year during the period between 1889 and 2004. The aver-
age wheat yield (µ) was 1133 kg ha−1 (σ = 436 kg ha−1)
(Figure 2). The yield fluctuated over a baseline of a time
trend of yield increase due to technological improve-
ments. The yield trend in the i th year was the average
yield over 9-years with respective 4 years before and
after the i th year. To eliminate non-climatic effects on
yields, the detrended yield was obtained by subtracting
trend yield from the actual yield. This 9-year smoothing
average was applied to remove trends in yields. (Handler
and Handler, 1983). Due to higher production in recent
decades, the detrended yield varied greatly. So, we
divided detrended yield by the average yields to get
similar amplitude of yield variation during 1889–2004.
In short, the detrended yield is the difference between the
actual yield in the i th year (Yi) and nine-year-smoothing
average yield (Y 0). The relative detrended yield is the
ratio of detrended to the average yield, i.e. (Yi − Y 0)/Y 0,
which is mainly related to weather conditions.

Since the high-quality and long-term yield data were
available at the state level, we choose to use climate data
at one site to avoid averaging meteorological variables
over space. We selected Dalby to represent the climate
of the entire wheat belt of Queensland. Dalby is located
in the main producing region of Darling Downs, in
Queensland. The wheat yields and planted areas at
Darling Downs and the entire state in limited years were
compared to justify the method (Figure 3). A reasonable
1:1 relationship (r2 = 0.92) existed for wheat yields.
Therefore, the yield data of the entire Queensland state
correspond well with that of Darling Downs.

2.3. Methods of cluster analysis for year pattern
identification

Crops accumulate biomass and develop reproductive
apparatus in vegetative growth, which occurs before flow-
ering. After that, crops experience reproductive growth,

Figure 2. Variations of statistical yield (solid) and relative detrended yield (dash) during the period of 1889–2004 at Dalby in Queensland,
Australia.
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(a)

(b)

Figure 3. Comparisons of wheat yields (a) and wheat growth areas (b)
between Darling Downs and Queensland. The thick solid line in the top
panel (a) represents the linear regression, r is the correlation coefficient,
and the thin solid lines on each side of it represent the upper and lower
95% confidence limits. The symbol ** indicates statistical significance

at 0.01 level.

when part of photosynthate is allocated to seeds and car-
bohydrate previously stored in leaves and stems is trans-
ported to seeds. These two growth stages have diverse
assimilate partitioning, which may respond to climate dif-
ferently (Hay and Porter, 2006). The average values of
climatic variables were calculated for each growth stage
of a year.

To identify significant climatic factors influencing
wheat yield, a two-step procedure was considered. First,
we assumed climate determined yield, and grouped rain-
fall, temperature and radiation into eight clusters. Second,
we tested whether wheat yield distribution in each cluster
is significantly different to any other one. Cluster analysis
was applied to identify agro-climatological year patterns
in Queensland, Australia, based on historical meteorolog-
ical data. The K-means method of clustering was adopted
using SPSS (SPSS 16.0) after maximum and minimum
temperatures, precipitation and solar radiation averaged
or summed from daily values for both vegetative and
reproductive stages were standardized.

The yield and corresponding meteorological variables
(rainfall, temperature, and solar radiation) in two periods
were used to classify clusters. Different groups (patterns)
can be divided with significance and non-significance

levels. We applied the Kolmogorov–Smirnov (K–S) tests
to ensure each cluster is significantly different from
others. Two patterns were aggregated into one, if there is
no significant difference between them. The method was
repeated until the difference between any patterns was
significant.

2.4. APSIM simulations

The APSIM was developed and used for improving risk
management under variable climate (McCown et al.,
1996; Keating et al., 2003). It is a crop model that is able
to simulate crop growth and development, soil water and
nitrogen dynamics and the interactions among climate,
soil, crop and management practices. These processes are
represented as modules which can be readily connected
to a central interface engine to simulate cropping systems
using conditional rules. The model runs on a daily
time-step with daily weather information (maximum and
minimum temperature, rainfall and solar radiation). The
APSIM version 5.3 was applied to simulate the effects
of climatic factors on wheat yields based on long-term
historical yield data in Queensland, Australia.

The APSIM has been widely tested against field mea-
surements under a range of growing conditions in Aus-
tralia (Asseng et al., 1998, 2000; Probert et al., 1998).
In the simulations of this study, specific soil character-
istics (i.e. saturated water content, drained upper limit,
lower limit, bulk density, and nutrient properties, such
as soil organic C, organic C biomass fraction, inert
organic C fraction, and nitrate concentration) required for
the APSIM model were based on Probert et al. (1998).
The crop genetic parameters were obtained from Asseng
and van Herwaarden (2003). The parameterized APSIM
model was used to simulate wheat yield with the histori-
cal climate data from 1889 to 2004. The same wheat vari-
ety was used for all simulations, which permits analysis
of the impact of only climate variations on crop growth.

3. Results

3.1. Wheat yield–climatic relationships

Wheat yield was determined by multiple climate fac-
tors of rainfall, temperature, and solar radiation over the
growing season. The correlation coefficients (R) between
yield and specific climatic factors over specific growth
stages were shown in Table 1. Some correlations are sig-
nificant while others show non-significant. The relative
detrended yields were significantly (P ≤ 0.001) corre-
lated with maximum and minimum temperatures, solar
radiation, and precipitation during the vegetative stage.
However, during the reproductive stage, only maximum
and minimum temperatures showed significant correla-
tion with the relative detrended yields, not precipitation
and solar radiation (Table 1).

These apparent relationships between yield and sole
climatic variable may not reflect its actual effect. Rain-
fall is normally the dominant factor affecting wheat
production in this region, but temperatures and solar
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Table 1. Mean values of the relative detrended wheat yield, the maximum (T max, ◦C) and minimum (T min, ◦C) temperatures,
precipitation (Precip, mm), and solar radiation (Ra, MJ m−2) corresponding to specific cluster during the periods May to September

(5–9) and October to November (10–11).

n Yield T max 5–9 T max 10–11 T min 5–9 T min 10–11 Precip 5–9 Precip 10–11 Ra 5–9 Ra 10–11

R −0.49** −0.34** 0.32** −0.22* 0.56** 0.10 −0.43** −0.17
Slope −0.184 −0.068 0.093 −0.078 0.002 0.0005 −0.002 −0.001
A 15 −0.384 22.3 30.9 6.3 14.7 109 88 2452 1506
B 23 −0.192 21.7 29.4 5.0 14.1 96 129 2470 1443
C 38 0.012 21.0 27.6 6.5 13.7 179 178 2340 1374
D 29 0.196 20.8 30.0 6.4 14.1 220 97 2362 1466
E 11 0.376 20.3 27.6 7.7 13.8 337 151 2248 1357

radiation will affect wheat yields as well, and precipi-
tation is related to both temperature and solar radiation.
Figure 4 shows correlations between temperature and
precipitation, and between solar radiation and precipita-
tion averaged over the entire wheat growing period (May
to November). Maximum temperature and solar radia-
tion significantly decreased when precipitation increased.
Precipitation contributed 44.8% in the variation of max-
imum temperature and 42.4% in that of solar radiation.
Although minimum temperature increased with precipita-
tion, the increase rate was 0.28◦/100 mm and rainfall only
contributed 11.7% in its variation, which is too small to
be considered (Figure 4).

Rain and non-rain weather are two distinct types of
meteorological phenomena that interact and influence
crop growth. In both vegetative and reproductive peri-
ods, high precipitation was usually accompanied by low
maximum temperature and low solar radiation (Figure 4,
Table 2). Precipitation also showed a close relationship
with minimum temperature in the vegetative stage, but

it was not significant during the reproductive period
(Table 2).

Direct and indirect effects of precipitation on wheat
yield are illustrated in the Figure 5. Precipitation events
increase soil water content, and decrease solar radiation
and daily temperature. Effects of soil water, solar radia-
tion, and temperature on wheat yield can be positive or
negative. Different combinations of these variables con-
tributed to different levels of crop yield. Solar radiation
and temperature regularly1 exert simultaneous effects on
crop growth. However, precipitation events are discrete,
and have potentially long-term effects on soil water.
Therefore, precipitation during the vegetative phase plays
the most important role in affecting crop yield among all
climatic factors considered.

3.2. Climatic year patterns of wheat yield

After cluster analysis was applied to yield and meteoro-
logical variables during both vegetative and reproductive
stages and the relative detrended wheat yield data, five

Figure 4. Inter-correlations between precipitation (Precip) and maximum (T max) and minimum (T min) temperatures, and solar radiation (Ra)
during the wheat growing period at Dalby in Queensland, Australia. The solid line represents the linear trend for each variable. The symbol **

indicates statistical significance at 0.01 level.
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Table 2. Inter-correlations between precipitation (Precip) and maximum temperature (T max, ◦C), minimum temperature (Tmin, ◦C),
and solar radiation (Ra, MJ m−2) during the periods May to September (5–9) and October to November (10–11).

T max 5–9 T max 10–11 T min 5–9 T min 10–11 Ra 5–9 Ra 10–11

Precip 5–9 −0.0058* n.a. 0.0072* n.a. −0.6704* n.a.
Precip 10–11 n.a. −0.0157* n.a. 0.0006 n.a. −0.6465*

Figure 5. The scheme showing the relationship between precipitation and soil water, solar radiation, and daily temperature, and their effects on
crop growth and yield. + indicates positive feedback and −negative. +/− indicates that the impact can be either positive or negative.

Figure 6. Cluster analysis for the relative detrended wheat yields during
the period 1889–2004 in Queensland, Australia. A, B, C, D, and E
represent the relative detrended yields, −0.384, −0.192, 0.012, 0.196,
and 0.376, respectively. Horizontal bars and upper and lower edges of
boxes indicate 10, 25, 75, and 90 percentiles, thick black line and filled
circle are the median and average, respectively. The crosses indicate

all the outliers.

climatic year patterns for wheat yield were identified
(Patterns A, B, C, D, and E in Figure 6). The mean of
each pattern were −0.384, −0.192, 0.012, 0.196, and
0.376, respectively (Figure 6).

As shown in Table 1, precipitation during the vegeta-
tive stage for the five patterns exhibited large differences,
from 96 to 337 mm. In the highest precipitation pattern
(E), solar radiation was lowest (2248 MJ m−2), the
maximum temperature was lowest (20.3 ◦C), but the
minimum temperature was highest (7.7 ◦C). In contrast,

solar radiation in the lowest precipitation pattern (A)
was larger (2452 MJ m−2), the maximum temperature
was highest (22.3 ◦C), but the minimum temperature
was lowest (6.3 ◦C). Solar radiation varied from 2340
to 2470 MJ m−2, and precipitation varied from 96 to
220 mm across the other three patterns (B, C, and D).
Greater precipitation during the vegetative stage
increased crop yield. Considering all the climatic
variables, precipitation during the vegetative stage is
the dominant factor determining wheat yield. This also
influences changes of other climate variables. Rainfall
decreased maximum temperature and solar radiation,
which resulted in their negative correlation with relative
detrended yield when rainfall is favourable for wheat in
the vegetative stage.

No significant correlation existed between crop yields
and precipitation or solar radiation during the reproduc-
tive stage (Figure 7(f) and (h)). Crop yields were sig-
nificantly correlated with maximum and minimum tem-
peratures. Maximum temperature during the reproductive
stage in Queensland region exceeded the optimal temper-
ature for crop growth and limited yield formation, and
minimum temperature is high enough to limit crop yield
probably through its impact on respiration.

The direct and indirect impacts of precipitation can
be advantageous or disadvantageous to wheat yield, as
shown in Figure 7. Precipitation during the reproduc-
tive stage did not show a significant correlation with
crop yield. The highest precipitation (178 mm) produced
medium yield (Pattern C, Table 1), which is obviously
less than the crop yield for the Pattern E where precipi-
tation was 151 mm. This negative impact of precipitation
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Figure 7. Relationship between relative detrended yield and the maximum temperature (T max), the minimum temperature (T min), precipitation
(Precip), and solar radiation (Ra) during the periods of May to September (indicated as 5–9) (a, c, e, and g) and October to November (indicated
as 10–11) (b, d, f, and h). A, B, C, D, and E represent the relative detrended yields, −0.384, −0.192, 0.012, 0.196, and 0.376, respectively.
Horizontal bars and upper and lower edges of boxes indicate 10, 25, 75, and 90 percentiles, thick black line and filled circle are the median and

average, respectively.

on crop yield may directly come from water-logging due
to excessive precipitation, and may also indirectly come
from the effects of decreased solar radiation, which was
co-varied with the precipitation since the reproductive
precipitation was found to be significantly and nega-
tively correlated with maximum temperature and solar
radiation (Table 2). Higher wheat yields were produced
under cooler temperatures. Patterns A and D were similar
to each other in terms of precipitation (88 and 97 mm)
and solar radiation (1506 and 1466 MJ m−2), but relative
detrended wheat yields were very different (−0.384 and
0.196), indicating that during the reproductive stage crop
yields were more influenced by maximum temperature
(Table 1 and Figure 7).

In terms of the total precipitation during the entire
growing season, patterns C and D had similar levels
of total precipitation (357 vs 317 mm), but the relative
detrended crop yields showed large differences. This is
mainly due to the difference in the distribution of precipi-
tation between the two growth stages. Pattern B was char-
acterized by low precipitation in the vegetative stage and
medium precipitation in the reproductive stage, which
led to a low crop yield. This pattern was called ‘the
low vegetative rainfall-medium reproductive rainfall-low
yield (LML)’. In contrast, pattern D had high vegetative
precipitation and low reproductive precipitation, which
contributed to a high crop yield. The pattern was called
‘high vegetative rainfall-low reproductive rainfall-high
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yield (HLH)’. Pattern C had medium vegetative pre-
cipitation and highest reproductive precipitation, which
produced a medium crop yield, the medium vegetative
rainfall-high reproductive rainfall-medium yield (MHM)
pattern. For the lowest yield level, the climatic condi-
tions are characterized by lowest vegetative precipitation
and lowest reproductive precipitation, termed as the LLL
pattern. The highest yield level was associated with the
highest vegetative precipitation and higher reproductive
precipitation, called HMH. We found that much more
precipitation during the vegetative stage contributed to
higher crop yield (Patterns D and E), while higher repro-
ductive stage precipitation did not (Patterns B and C)
(Figure 7). This demonstrated that vegetative precipi-
tation had the largest impact on final crop yields. For
pattern A, due to extremely low precipitation in both
growth stages, with a total value of 197 mm during the
entire growing season, crop yields were extremely low
(–0.384). The total solar radiation during the entire grow-
ing period was relatively high (3958 MJ m−2) and the
maximum temperature was high (24.8 ◦C) in the LLL
years (Pattern A). In the HMH years (Pattern E), the
cumulative growing season solar radiation (3606 MJ m−2)
was considerably low and the maximum temperature was
also low (22.4 ◦C). For the other three patterns (B, C,
and D), the cumulative growing season solar radiation
were 3913, 3714, and 3829 MJ m−2, respectively, indicat-
ing that crop yields increased with cumulative growing
season solar radiation and that crop yields are strongly
dependent on total solar radiation under normal rainfall
conditions (Figure 7). Solar radiation was not signifi-
cantly correlated with crop yield during the reproductive
stage (Table 1). However, crop yields may increase with
increasing solar radiation under conditions when precip-
itation is not limiting to crop yield.

3.3. APSIM validity against statistical yields

Comparisons were made to investigate whether the
APSIM model could interpret the interactive effects of
temperature, precipitation, and solar radiation, which can
be negative or positive, on wheat yield. Modelled yields
are not influenced by contributions from agricultural tech-
nological advances. There is no significant increasing or
decreasing trend for modelled crop yields due to the use
of the same cultivar and same practices for all the simu-
lation years during the period of 1889–2004.

We therefore applied the same normalization method
deriving the relative detrended yield to the modelled
yields as applied previously to the historical wheat yield
data. Figure 8 showed the comparison between statistical
and simulated relative yields for the five climatic patterns.
Generally, the simulated yields corresponded well with
statistically relative yields for patterns B, C, and D (the
three intermediate yield levels). However, the model
underestimated the yields in the lowest yield level (A)
and overestimated the yields in the highest yield level
(E). This suggests that the model could be able to account
for the effects of temperature, rainfall, and solar radiation

Figure 8. Comparison between statistically and simulated relative
yields during the period of 1889–2004 in Queensland, Australia. Five
clusters, A, B, C, D, and E represent the relative detrended yields,
−0.384, −0.192, 0.012, 0.196, and 0.376, respectively. The solid line
is the linear regression equation for the mean values. The dash line

indicates the 1:1 line.

on wheat yields in majority of years. But for the lowest
and highest yield years, corresponding to extremely dry
and wet years, especially in the reproductive stage, the
model exaggerated the effects of precipitation on wheat
yield. The APSIM-simulated leaf area index (LAI) and
total biomass was plotted for typical years in each pattern.
Simulated LAI and biomass differed much among pattern
years. High yield corresponded to high LAI and biomass,
and LAI and biomass were low in low yield pattern
years (Figure 9). The coherence between the simulated
yield and LAI and biomass indicated that yield is closely
related to LAI or biomass, which is well described by the
APSIM model.

Figure 10 shows the average statistically relative yields
for the five yield patterns plotted against the modelled
relative yields. Although the coefficient of determination
for the regression of modelled relative yields against sta-
tistically relative yields was high (0.95), the discrepancies
in extremely dry and wet years were significant (regres-
sion slope = 1.51). The deficiency of the APSIM model
is thus characterized as overestimating yield in very wet
years and underestimating yield in very dry years.

4. Discussion and conclusion

Crop yield is defined by abiotic stresses over time scales
of diurnal, daily, seasonal variations of climate and soil
conditions. The year-pattern identification in this study
is based on seasonal variation, i.e. two periods of May
to September and October to November. The Australian
wheat-belt is a region of very high rainfall variability.
This characteristic determines distinct year patterns which
can be attributed to large scale climate events, such as
ENSO. Queensland received much more rain in La Niña
years and experienced frequent drought in El Niño years
(Stone et al., 1996). Variability in these year patterns
of climate will result in rainfall variation at hourly or
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Figure 9. APSIM-simulated biomass and LAI for five patterns of climate impact.

Figure 10. Comparison between average statistically relative yield and average simulated relative yield by APSIM. A, B, C, D, and E represent
the relative detrended yields, −0.384, −0.192, 0.012, 0.196, and 0.376, respectively. The circle inside the box represents the mean yield, and
the square inside the box indicates the median yield. The left and bottom edges of the box represent the 5 percentiles, and the right and top
edges of the box represent 95 percentiles. The bottom-left and top-right corners indicate 25 and 75 percentiles, respectively. The solid line is

the linear regression equation for the mean values. The dash line indicates the 1:1 line.

daily time scales which may impact crop growth. For
example, mid-day depression of photosynthesis due to
water stress and extreme high temperature may be more
frequent in drought years. Therefore, yield which varies
annually within each year pattern may be influenced by
the diverse daily variation of climatic factors.

Crop yield variation is determined by both trend of
climate change and climate variability. The impact of cli-
mate variability on annual crops can be much higher than
the trend of climate change. For example, climate warm-
ing over the last century has ranged from 0.056◦ to 0.092◦

degree/decade (IPCC, 2007), or 0.56–0.92 ◦C/century,
while average temperature over growing season ranged
from 14.53 to 17.58 ◦C in the study area.

As rainfall in vegetative and reproductive stages
exerted different effects on wheat yield, its variation
will have significant implication for wheat production.
Decreases in rainfall in the vegetative stage and increases
in reproductive stage (Figure 1) reduce wheat production.

Maximum temperature, minimum temperature, and
solar radiation were closely correlated with precipi-
tation. These variables had measurable influences on
wheat yields in Queensland. However, precipitation is
considered to be the most important driving force. Our
analysis suggested that the amount of precipitation in
May to September can be used to forecast final crop
yields in advance of harvest. This will help farmers
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to better manage their farms prior to and post har-
vest (i.e. storage, transportation, and labour arrange-
ment). Thus, depending on seasonal forecasts, farmers
may apply the appropriate nitrogen treatment to meet
the demands of crop growth since the peak demand for
nitrogen is during the phase when crops grow fastest
(Angus, 2001). When total precipitation during the period
from May to September is high (≥214 mm), farmers
need to apply more fertilizer to obtain higher yields.
Otherwise reducing fertilizer rate is necessary to avoid
economic loss. During the reproductive stage, increased
precipitation may not increase wheat yields, possibly
due to lower solar radiation from increased cloudiness
in years with high rates of precipitation. The inter-
relationship between precipitation and solar radiation
makes both of them not significantly correlated with
wheat yields during the reproductive stage. Maximum
temperature during this stage had a much larger influ-
ence. High wheat yields were associated with low day-
time temperatures. A possible reason for this is that high
temperatures induce heat injury to the photosynthetic
mechanism.

Climatic factors play crucial roles in determining crop
yield. To understand crop–climate relations under differ-
ent climatic scenarios crop models can be very useful
for regional crop yield prediction and for determining
effective management practices. From the perspective of
climate change, understanding relationships between cli-
mate and yield can help to predict and monitor crop
production and to ensure food security. The results of
this article are valuable for crop modellers and model
users. Crop models must be comprehensively evaluated
over long-time periods so that all possible climatic sce-
narios can be covered. Once a crop model has been
validated over multiple years, it is easy to judge which
annual patterns can or cannot be simulated well. With
the knowledge derived from regression analysis of crop
yield to climatic factors, crop modellers will be able to
improve crop models, and model users will be able to
judge model accuracy under different climatic scenar-
ios. The APSIM model had high capability to estimate
wheat yields in years when precipitation was moderate
(about 400–500 mm during the growing season). When
growing season precipitation was either low or too large,
the model significantly underestimated or overestimated
wheat yields.
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