Years 3\&4

The principal focus of mathematics teaching in lower key stage 2 is to ensure that pupils become increasingly fluent with whole numbers and the four operations, including number facts and the concept of place value. This should ensure that pupils develop efficient written and mental methods and perform calculations accurately with increasingly large whole numbers.
At this stage, pupils should develop their ability to solve a range of problems, including with simple fractions and decimal place value. Teaching should also ensure that pupils draw with increasing accuracy and develop mathematical reasoning so they can analyse shapes and their properties, and confidently describe the relationships between them. It should ensure that they can use measuring instruments with accuracy and make connections between measure and number.
By the end of year 4, pupils should have memorised their multiplication tables up to and including the 12 multiplication table and show precision and fluency in their work.
Pupils should read and spell mathematical vocabulary correctly and confidently, using their growing word reading knowledge and their knowledge of spelling.

Years 5\&6

The principal focus of mathematics teaching in upper key stage 2 is to ensure that pupils extend their understanding of the number system and place value to include larger integers. This should develop the connections that pupils make between multiplication and division with fractions, decimals, percentages and ratio.
At this stage, pupils should develop their ability to solve a wider range of problems, including increasingly complex properties of numbers and arithmetic, and problems demanding efficient written and mental methods of calculation. With this foundation in arithmetic, pupils are introduced to the language of algebra as a means for solving a variety of problems. Teaching in geometry and measures should consolidate and extend knowledge developed in number. Teaching should also ensure that pupils classify shapes with increasingly complex geometric properties and that they learn the vocabulary they need to describe them.
By the end of year 6, pupils should be fluent in written methods for all four operations, including long multiplication and division, and in working with fractions, decimals and percentages.
Pupils should read, spell and pronounce mathematical vocabulary correctly.

Year 3 Addition			
Strategies	Concrete	Pictorial	Abstract
Column Addition-no regrouping (friendly numbers) Add two or three 2 or 3digit numbers.		Children move to drawing the counters using a tens and one frame.	223 +114 337 Add the ones first, then the tens, then the hundreds.

Column Addition with regrouping.	 Exchange ten ones for a ten. Model using numicon and place value counters.	 34 +1 7 Children can draw a representation of the grid to further support their understanding, carrying the ten underneath the line	$\begin{gathered} 564+335=500+60+4 \\ 300+30+5 \\ 800+90+9=899 \\ 489+215 \\ 6009014=704 \end{gathered}$ Start by partitioning the numbers before formal column to show +318 the exchange.
Estimate the answers to questions and use inverse operations to check answers	Estimating $98+17=$? $100+20=120$	Use number lines to illustrate estimation: Estimate $86+11=$ $90+10=100$	Building up known facts and using them to illustrate the inverse and to check answers: $\begin{array}{ll} 98+18=116 & 116-18=98 \\ 18+98=116 & 116-98=18 \end{array}$

Year 4,5 and 6 Addition			
Strategies	Concrete	Pictorial	Abstract
y4-add numbers with up to 4 digits (to include 4+4 digits and also $4+3,4+2$ and 4+1 digits)	Children continue to use dienes or place value counters to add, exchanging ten ones for a ten and ten tens for a hundred and ten hundreds for a thousand.	Read or draw pictorial representation using a place value grid.	
Y5-add numbers with more than 4 digits. Add decimals with 2 decimal places, including money. (to include 5+5 digits and also $5+4,5+3,5+2$ digits etc.)	As vear 4 Introduce decimal place value counters and model exchange for addition.	$2.37+81.79$ tens ones tenss heletes 00 000 08000 00000 0 00000 00 000 00060 000 0000	$\begin{array}{r} 56793 \\ +13567 \\ 70360 \\ \hline \end{array}$

			$\begin{array}{r} 7285.84 \\ +\quad 416.93 \\ \hline 7702.77 \\ \hline \end{array}$		
Y6-add several numbers of increasing complexity, including adding money, measure and decimals with different numbers of decimal points.	As Year 5	As Year 5	$\begin{array}{r} 9241462 \\ +\quad 478557 \\ \hline 9720019 \\ \hline \end{array}$		
(Note: to include adding numbers with different numbers of digits AND different numbers of decimal digits)			Example 1: Adding Decimals	$\begin{array}{r} 9.8+9.7+9.9 \\ 9.800 \\ 9.700 \\ 9.425 \\ +9.850 \\ \hline \\ \hline 98.775 \end{array}$	5 + 9.85 * line up decimals * use zeros as placeholders ADD, remembering the decimal
Estimate and use inverse operations to check answers to a calculation	As per Year 3				

Year 3 Subtraction			
Strategies	Concrete	Pictorial	Abstract
Subtract numbers mentally, including: three digit number + ones three digit number + tens three digit number + hundreds	Use beads, base 10 or PV counters for children to show concrete examples of counting prior to pictorial activities.	Or beads/counters can also be used.	Expose children to missing number questions and vary the missing part of the calculation. $\begin{gathered} 678=?-1688-10=? 678=?- \\ 100 \\ \mathbf{7 4 6}-\square=7 \mathbf{7} \mathbf{-} 6 \\ \square-\mathbf{8}=\mathbf{3 1 0} \\ \mathbf{2 7 0}-\square=\mathbf{2 3 0} \end{gathered}$
Column subtraction without regrouping (friendly numbers) up to 3 digits (to include 3-3digits, 3-2digits and 3-1 digits).	Using concrete objects	Using pictorial representation	

Column subtraction with regrouping (exchanging) (to include 3-3digits, 3-2digits and 3-1 digits).			

Year 4,5 and 6 Subtraction			
Strategies	Concrete	Pictoral	Abstract
Year 4: Subtract with up to 4 digits including money. (include subtracting numbers with different numbers of digits)	$\begin{array}{cccc} \sum_{0}^{n} & 4 & 1 & 2 \\ -4 & 5^{\circ} & 9 & 2 \end{array}$		$\begin{array}{rr} 243^{\prime} 1 & £ 22^{3} .41 \\ -1232 & -£ 12.32 \\ \hline 1209 & £ 10.09 \end{array}$
Year 5: To subtract with more than 4 digits including with 2 decimal places. (include subtracting numbers with different numbers of digits including different numbers of decimal digits)	As Year 4 as required	As Year 4 as required	$\begin{array}{rc} 673^{2} 31 & 456.32 \\ \frac{-12123}{55208} & \frac{-242.14}{214.18} \end{array}$
Year 6: To subtract numbers of increasing complexity, including money, measure and decimals with different numbers of decimal points. (include subtracting numbers with different numbers of digits including different numbers of decimal digits. Also include conversions of units involving different decimal digits.)	As Year 4 as required	As Year 4 as required	$\begin{array}{rr} 8952^{5} 6^{\prime} 4 & 94624.2^{\prime} 1 \\ \frac{-235245}{660019} & \frac{-22312.03}{72312.18} \end{array}$ $3.65 \mathrm{~km}-2804 \mathrm{~m}=?$

Year 3 Division			
Strategies	Concrete	Pictorial	Abstract
Year 3: Recall all division facts for 3,4 and 8 tables			$24 \div 8=$
Year 3: Recap division without remainders.	Sharing using place value counters. $42+3=14$	Children to represent the place value counters pictorially. Continued work counting 'groups' on a number line. $36 \div 6=6$	Children to be able to make sense of the place value counters and write calculations tc show the process. $\begin{aligned} & 42+3 \\ & 42=30+12 \\ & 30+3=10 \\ & 12+3=4 \\ & 10+4=14 \end{aligned}$ $36 \div 6=$ \qquad
Year 3: Division with remainders.		Draw dots and group them to divide an amount and clearly show a remainder. ($):$ Moving on to 'chunking' jumps and working with remainders. $41 \div 4=10 r 1$ (Put answer in at end)	Complete written divisions and show the remainder using r . $\begin{array}{cc} 29 & \div 8=3 \\ \uparrow \uparrow \uparrow & \text { REMAINDER } 5 \\ \text { dividend } \\ \text { divisor quotient } \end{array}$

Year 4,5 and 6 Division			
Strategies	Concrete	Pictorial	Abstract
Year 4: Recall all division facts for ALL times tables to 144:12			$132 \div 12=$
Year 4: Short Division 2digit \div 1digit then 3 digit \div 1digit.		Short division using place value counters to group. $615 \div 5$ 1. Make 615 with place value counters. hundred counters? 3. Exchange 1 hundred for 10 tens. . How many groups of 5 tens can you make with 11 ten 5. Exchange 1 ten for 10 ones How many groups of 5 ones can you make with 15 ones?	${ }_{5} \stackrel{123}{6^{12} 15}$ $432 \div 5$ becomes Answer: 86 remainder 2

Short Division: 4 digit $\div 1$ digit.			$\begin{gathered} \frac{02}{122544} \\ \frac{24}{1} \end{gathered}$
Long Division with/without remainders.			151 2523 3798 $25 \dagger$ 25 129 125 48 25 23
decimals		\|	$432 \div 15$ becomes 1

