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Abstract—This work presents a novel yield optimization
methodology based on establishing a strong correlation between
a group of fails and an adjustable process parameter. The
core of the methodology comprises three advanced statistical
correlation methods. The first method performs multivariate
correlation analysis to uncover linear correlation relationships
between groups of fails and measurements of a process parameter.
The second method partitions a dataset into multiple subsets and
tries to maximize the average of the correlations each calculated
based on one subset. The third method performs statistical
independence test to evaluate the risk of adjusting a process
parameter. The methodology was applied to an automotive
product line to improve yield. Five process parameter changes
were discovered which led to significant improvement of the yield
and consequently significant reduction of the yield fluctuation.

1. Introduction

Yield is one of the most important metrics to indicate the
success of a product project. Therefore, it is not unusual that
efforts to improve yield continue into the mass production
stage. In this work, yield optimization specifically refers to
such efforts in production stage where mass amounts of test
data become available and can be utilized to improve yield.

Due to process variations, yield is not a constant across
wafers and lots. For example, Fig. 1 illustrates a fluctuation
of yield across wafers. The plot shows the probability density
distribution of yield estimated based on 2000+ wafers. The
chip is a sensor device for the automotive market, which
contains a controller, sensors, analog and RF components.

Fig. 1. Illustration of yield fluctuation and our goal

Given Fig. 1, it is desirable to push the yield distribution
to the high end. In this sense, yield optimization can be
for (1) pushing the mean of the yield to the right and (2)
simultaneously reducing the variance .

Because yield is such an important metric, multiple teams
are in charge of improving it. For example, yield is a function
of test. Hence, it is possible to improve yield by improving
test (under the constraint that quality such as customer return
rate is not worsened). From this end, note that result shown
in Fig. 1 was after multiple test revisions.
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Yield can also be design dependent. It is noted that the result
seen in Fig. 1 was also after one design revision. Therefore,
additional yield improvement from Fig. 1 would represent
added value to these design and test efforts.

The third way to improve yield is by adjusting the process.
In order to identify which process parameter(s) to tune, evi-
dences are required to show strong correlation relationships
between process parameter(s) and certain types of fails of
interest. This task is carried out by the yield analysis team.

To search for a high correlation between a process parameter
and a type of fails, an intuitive methodology can be based on a
flow of the following four steps: (1) Identify a type of fails to
investigate. (2) Calculate the numbers of fails across N wafers
as ~x = {x1, . . . , xN}. (3) Calculate the measured value of a
selected process parameter across the N wafers, one value
per wafer as ~y = {y1, . . . , yN}. (4) Calculate the (Pearson)
correlation coefficient such as

Corr(~x, ~y) =
∑N

i (xi−x̄)(yi−ȳ)√∑N
i (xi−x̄)2

∑N
i (yi−ȳ)2

where x̄ and ȳ are the mean of ~x and the mean of ~y, re-
spectively. Then, the parameters are ranked by the correlation
coefficients and the top parameters are identified.

Consider the step (1) above. In test, failing parts are
organized into different test bins. Usually, similar categories
of fails are grouped into the same bin. Hence, it is natural to
analyze each bin independently. For example, Fig. 2 depicts
the average number of fails for a list of test bins (left plot),
and for the top three most failing bins (bins 26, 25, and 28),
their wafer-to-wafer fail fluctuations over time (right plot).

Fig. 2. Bins of fails and their fluctuations

Given Fig. 2, it is natural to consider bin 26 first, followed
by bin 25. Suppose in step (1) we choose the bin 26. Then, in
step (2) we extract the data vector ~x across the 2000+ wafers
based on the failing dies (or ”fails”) recorded in bin 26.

Although partitioning the fails based on test bins makes
sense, it is not the only way one can define a type of fails.
For example, Fig. 3 shows failing statistics based on individual
tests in bins 26 and 25. As we can see, tests A,B,C,D each
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has a significant number of fails. Hence, the type of fails can
also be defined based on each individual test.

Fig. 3. Failing statistics based on individual tests

Now consider step (3). Suppose t process parameters are
measured for each wafer (In our work, t > 130). In our case,
a process measurement is repeated on five sites on each wafer.
Fig. 4 illustrates these five sites (left plot) and the (wafer-to-
wafer) fluctuation of the average measured value over the five
sites for one process parameter (right plot). For each process
parameter, data vector ~y can therefore be calculated as the
vector of the average values across all wafers.

Fig. 4. Measurement sites and a fluctuation example

Finally, step (4) calculates the correlation coefficient
Corr(~x, ~y). Steps (3)-(4) can be applied to each process
parameter to identify the one with the highest correlation. For
example, the highest correlations found for bin 26, test A, test
B and test C are depicted in Fig. 5.

In these plots, the x-axis is the average value of the process
parameter and y-axis is the number of fails. Each dot is a
wafer. Note that the measured process values in the Test B
plot are more discrete than others.

Fig. 5. Illustrating the starting point of this work

Fig. 5 basically shows that no strong correlation was found
to support any potential process parameter adjustment. Similar
results were found for other types (e.g. bin 25). Before this
work, the yield analysis team had conducted extensive analysis
and did not find a strong correlation. Results like Fig. 5
illustrates the starting point of this work.

The rest of the paper is organized as below. Section 2
discusses potential issues with the intuitive methodology.
Section 3 explains a multivariate correlation methodology and
demonstrates its usefulness in uncovering a strong correlation
which could not be found before. Section 4 describes a subset
discovery problem formulated to enable finding additional
strong correlations. Section 5 presents a risk evaluation method
based on statistical independence test to assess the risk of
a process parameter adjustment. Following the uncovered
process parameter changes, section 6 summarizes the silicon
results with significant yield improvement. Section 7 briefly
reviews prior works and comments on the statistical analysis
tools used in this work. Section 8 concludes.

2. Potential issues with the intuitive methodology

An obvious concern with the intuitive methodology is the
use of Pearson correlation to evaluate statistical dependence.
Pearson correlation coefficient, although popular, is not a
robust statistic for dependence test. For example, it is known
that the correlation coefficient can be quite sensitive to strong
outliers. Fig. 6 illustrates such an example in our analysis.

Fig. 6. Correlation can be sensitive to outliers

The left plot shows that an outlier is far from the majority
of distribution. The correlation calculated based on this plot is
0.06. The right plot shows the result by removing the outlier
(consequently, the scale of y-axis changes). The correlation
becomes 0.85. The sensitivity to outliers can be one reason to
use other statistics such as the rank correlation coefficients, e.g.
Spearman’s ρ or Kendall’s τ . Alternatively, a preprocessing
step can be taken to remove outliers.

2.1. Need for multivariate analysis

While there are many other alternatives for univariate sta-
tistical dependence test, a more fundamental issue is that the
data in our analysis is inherently multivariate.

To apply a univariate analysis between ~x and ~y, one has to
define how to calculate ~x and ~y from the data. The correlation
result can be dependent on the calculation. For example, each
process parameter was measured on five sites. In the univariate
analysis above, we simply take the average of the five sites.
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Fig. 7 uses eight parameters P1-P8 to illustrate the vari-
ability across the five measurement sites. For each parameter,
we show the correlation coefficients between measured values
from all pairs of sites. Since there are five sites, there are 10
(pairwise) correlation coefficients shown for each parameter. In
total, therefore there are 80 correlation coefficients (as shown
in the x-axis) divided into eight blocks.

Fig. 7. Examples of site-site pairwise correlations

Fig. 7 shows that the correlations between two sites can
range from below 0.6 to above 0.8. The bottom line: there
can be significant variability across sites. If that is the case,
only considering the average may not be sufficient.

Furthermore, recall from Fig. 3 that tests A-D are important
due to their associated large numbers of fails. Fig. 8 depicts
the distribution of test values for test A and for test D.

Fig. 8. Discrete test A and continuous test D

Test A is a discrete test. Its values can fall into 6 categories.
The left plot shows a histogram of the test values across one
lot of wafers. Test D is a continuous tests. The right plot shows
the probability distribution of the test values estimated based
on one lot of wafers.

In the intuitive methodology, ~x is based on the number of
fails. The number of fails does not include all the information
contained in a test distribution as shown in Fig. 8. For example,
a process parameter may be correlated to only a subset of the
fails (e.g. only having the X4 value) or to the shape of a
test distribution. For capturing these types of correlations, the
correlation analysis needs to be extended to go beyond just
using the number of fails as the target of the correlation.

For example, for test A we may want to correlate directly
to a multivariate vector (X1, X2, X3, X4) as shown in Fig. 8
(In general, we may have X1-Xn for a large n). For test
D, we may want to correlate to some characteristics of the
distribution. Both demand a multivariate correlation analysis.

Fig. 9 gives another reason to consider multivariate analysis.
Fig. 9 plots two wafer heat maps based on the number of fails

Fig. 9. Examples of failing wafer heat map

in a single lot. Observe that test A fails concentrate on the edge
while test D fails reside more on an inner ring. This raises the
question: Would it be possible that a strong correlation exists
only in a certain region of a wafer?

One way to address this question can be to partition the
wafer into multiple regions. A strong correlation may exist
with each region individually or with a combination of mul-
tiple regions collectively. Again, this can be formulated as a
multivariate correlation analysis problem.

3. Multivariate correlation and statistical dependence

It is well known that correlation coefficient zero
(Corr(~x, ~y) = 0) is not the same as statistical independence.
In other words, finding no strong correlation does not imply
that the type of fails and the process parameters have no strong
dependence. A zero correlation coefficient only guarantees
statistical independence when the joint probability distribution
P (x, y) is normal. In test data analysis, this is often not the
case (see, e.g., the left plot in Fig. 8 - not normal).

To go beyond correlation coefficient, one can follow the well
established principles for measuring statistical dependence,
proposed by Rényi who showed that one sound measure for
statistical dependence is the following (see [1][2]):

Q(P (x, y)) = sup
f,g

Corr(f(x), g(y)) (1)

where f and g are Borel measurable and bounded functions.
The notation ”sup” denotes the least upper bound. Hence,
equation (1) basically denotes the maximum correlation across
all possible functions f, g. Rényi showed that the quantity
Q(P (x, y)) = 0 implies statistical independence. The quantity
Q(P (x, y)) = 1 implies x = h(y) or y = h(x) for some
function h, i.e. there is a strict dependence between x and y.

In equation (1), x and y are two random variables. Replacing
them with two random vectors X and Y and also replacing
the ”sup” with the maximum ”max” we obtain the following
measure of dependence for two random vectors:

CC(X,Y ) = max
f,g

Corr(f(X), g(Y )) (2)

where f and g are functions that take a vector as input and
output a real value. For example, when f and g are dot-product
functions with weight vectors Wx and Wy , we have

CC(X,Y ) = max
Wx,Wy

Corr(〈Wx, X〉, 〈Wy, Y 〉) (3)
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where 〈·, ·〉 denotes the dot-product of the two vectors. In
this case, the correlation calculated in equation (3) is the
maximum correlation across all possible linear transforms
denoted by Wx,Wy . Equation (3) is the traditional Canonical
Correlation Analysis (CCA) (see, e.g. [3]).
CC(X,Y ) = 0 in equation (3) does not guarantee statistical

independence because Wx and Wy are linear transforms and
the functions f and g in the original equation (2) can be
non-linear. To extend CCA to consider non-linear transforms,
kernel CCA (KCCA) applies the so-called ”kernel trick” [4].

To apply the kernel trick, one starts with choosing a kernel
function k(X,Z) that measures the similarity between two
vectors X and Z. A kernel k() corresponds to a mapping
function Φ() such that k(X,Z) = 〈Φ(X),Φ(Z)〉. The idea of
KCCA is to apply CCA on the transformed vectors [5]:

KCC(X,Y ) = CC(Φ(X),Φ(Y )) (4)

The ”kernel trick” corresponds to calculating equation (4)
without explicitly using the mapping function Φ(). Instead,
only the kernel function k() is involved in the computation. To
explore non-linear correlations we choose a kernel of which
the Φ() is non-linear. In this section, we discuss how CCA
can be used to find strong correlations beyond traditional
correlation coefficient. In Section 5, we will discuss how
KCCA can be used for risk evaluation.

3.1. Canonical Correlation Analysis (CCA)
Let X = (x1, . . . , xn) and Y = (y1, . . . , ym) be two

random vectors where each xi and each yj are random
variables. In practice, the distribution of each xi is measured
by N sample points ~xi = (x1i, . . . , xNi). Similarly, each yj
is measured by N sample points ~yj = (y1j , . . . , yNj). Hence,
we have a data matrix Sx for X and a data matrix Sy for Y .
This is illustrated below.

Let wx = (wx1 , . . . , w
x
n) be a weight vector for X . In matrix

multiplication ”Sx × wx,” the weight vector transforms each
sample vector ~ui into a canonical value c(X)i as below:

c(X)i = 〈wx, ~ui〉 =

n∑
k=1

(xikw
x
k) (5)

Therefore, the result of Sx × wx is a vector (c(X)1, . . .,
c(X)N ). Similarly, Sy × wy is a vector of N values. The
correlation coefficient between the two vectors can then be
calculated, denoted as Corr(Sxwx, Sywy). Then, the sample
canonical correlation between X and Y is defined as

CC(X,Y ) = max
wx,wy

Corr(Sxwx, Sy, wy) (6)

= max
wx,wy

〈Sxwx, Sywy〉
‖Sxwx‖‖Sywy‖

(7)

Note that Sxwx = (w′xS
′
x)′ where ′ denotes the ma-

trix transpose operator. Then, we have 〈Sxwx, Sywy〉 =
w′xS

′
xSywy for the nominator in equation (7). Similar changes

can be applied to the denominator to rewrite equation (7) as:

CC(X,Y ) = max
wx,wy

w′xS
′
xSywy√

w′xS
′
xSxwx

√
w′yS

′
ySywy

(8)

= max
wx,wy

w′xCxywy√
w′xCxxwxw

′
yCyywy

(9)

where S′xSy = Cxy denotes the sample covariance matrix
between X and Y , S′xSx = Cxx denotes the sample co-
variance matrix for X and S′ySy = Cyy denotes the sample
covariance matrix for Y .

The optimization problem stated in equation (9) can be
solved by applying the Lagrangian method. This leads to
solving a generalized eigenproblem of the form Awx = λBwx
where A = CxyC

−1
yy Cyx and B = Cxx (see e.g. [3]).

Solving the generalized eigenproblem leads to a sequence
of weight vector pairs for wx and wy . The number of weight
vector pairs is equal to min(n,m), the smallest dimension
between X and Y . The first weight vector pair gives the largest
correlation. This can be called as the 1st CC component. The
second weight vector pair gives the second largest correlation
(2nd CC component), and so on.

3.2. Analysis of test A in bin 26

Refer back to the test A plot in Fig. 8. Let X =
(X1, X2, X3, X4) be the random vector as shown in the plot.
Each Xi is a random variable, representing on each wafer the
number of dies whose test A values fall into the Xi category.
As shown in Fig. 8 for test A, test values of X1-X4 are
considered as failing. The first two are passing.

Given a process parameter P, let YP = (S1, S2, S3, S4, S5)
be the random vector denoting the measured values on the five
sites (see Fig. 4). Then, we can run CCA on (X,YP ). This
can be carried out for each process parameter P to determine
which one has the highest canonical correlation to X .

Fig. 10. CCA results for Test A

Fig. 10 plots the canonical correlations based on the first
two CC components for all process parameters under consid-
eration. Observe the correlations of the 1st CC components are
consistently (much) higher than the correlations of the 2nd CC
components. Also, the highest canonical correlation is 0.84,
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indicating a strong correlation between test A fails and the
first process parameter shown in the plot (call this process
parameter PP1). The second highest correlation is 0.53 which
is based on the second process parameter in the plot.

The table on the right shows the loadings for each random
variable. To understand what a loading is, suppose ~x1 is the
column vector denoting the N sample values measured on the
random variable X1. The loading in CCA for X1 is simply the
regular correlation coefficient between ~x1 and the transformed
vector Sxwx, i.e. loading(~x1) = Corr(~x1, Sxwx).

In Fig. 10 we see that the loading for X4 is 0.96 that is
much higher than the loadings for other X’s. This indicates
that the canonical correlation 0.84 is contributed more from
the X4 variable than from other X variables. In other words,
it is likely that the X4 type of fails by itself have a high
correlation to the PP1 parameter.

Following the same notation used above, the left plot of
Fig. 11 shows how the values from Sxwx and the values from
Sywy correlate. The plot clearly shows a linear trend.

Fig. 11. Further illustration of results shown in Fig. 10

Then, the right plot of Fig. 11 shows how the X4 type of
fails by itself correlates to the PP1 parameter. The x-axis is the
average measured values for PP1 from the five sites (each dot
is a wafer). As expected, a high correlation is observed with a
negative correlation coefficient −0.766 between X4 and PP1.

Next, we removed X4 fails from the analysis and let X =
(X1, X2, X3). We reran the CCA on the new X . The highest
canonical correlation found was around 0.52, indicating that
no high correlation could be found for X1-X3 types of fails.

3.3. Analysis of test D (Bin 25)

Fig. 12. Encoding a distribution into a multivariate vector

Refer back to Fig. 8 where the distribution of test D (bin 25)
is shown. Fig. 12 shows a way to encode the characteristics
of the distribution into a vector of five quantities, i.e. X =
(D0, D1, D2, D3, D4). Then, we ran CCA based on this X and
each process parameter vector YP . Note that the encoding was
for the entire distribution, not just for the failing distribution.

The left plot of Fig. 13 summarizes the CCA result where
the highest canonical correlation found is 0.82. It is interesting
to note that this highest correlation is based on the same
parameter PP1 found in Fig. 10. For comparison, the right
plot of Fig. 14 shows that univariate correlation between the
number of test D fails (test D is the only test with bin 25) and
the average PP1 value is only 0.305.

Fig. 13. Canonical Correlation vs. Pearson Correlation

Fig. 13 indicates that PP1 is highly correlated to some char-
acteristics of the test D distribution, but not highly correlated
to the number of test D fails.

As we examined the CCA loadings for D0 to D4, we
found that the two highest loadings were −0.74 for D1

(the mean) and −0.91 for D2 (the variance). This indicated
that the PP1 was mostly negatively correlated to the mean
and variance of the test D distribution. To confirm, Fig. 14
shows the scatter plots for the D1-vs-PP1 and D2-vs-PP1 with
their respective Pearson correlation coefficients. The negative
correlation trends can be observed in both plots.

Fig. 14. PP1 is correlated to the mean and variance of bin 25

3.4. Summary of the first finding - parameter PP1

In the above CCA analyses, we use CCA to identify a high
correlation scenario. Then, we analyze the loadings to identify
the variable(s) contributing the most to the high correlation.
Then, we use univariate correlation to confirm the findings.

Results from Fig. 11 and Fig. 14 both suggest to increase
PP1 for yield improvement. With Fig. 11, the expected impact
would be to reduce the number of X4 fails. With Fig. 14, the
expected impact would be to decrease the mean and variance
of the test D distribution, resulting fewer fails because the test
limit is set on the right of the distribution.

3.5. Note on applying CCA in location-based analysis

To illustrate how CCA can be applied to analyze location-
based correlations, Fig. 15 gives an example of partitioning the
X4 type of fails in bin 26 into two groups, the inner group and
the outer group. Let I be the number of X4 fails in the inner
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group and O be the number of X4 fails in the outer group.
Let the random vector X = (I,O) in CCA.

Fig. 15. Partitioning X4 type of fails based on their locations

Running CCA on X and YPP1 for process parameter PP1
gives canonical correlation 0.8, higher than the correlation
−0.766 shown in Fig. 11. Nevertheless, Fig. 15 shows that
the Pearson correlations are -0.754 and -0.745 for I-type of
fails and for O-type of fails, respectively. These results are
comparable to −0.766 but not higher. Hence, this particular
location-based CCA did not improve the correlation result.

4. The subset discovery problem
Earlier at the end of Section 3.2 we explain that with CCA,

no high correlation could be found to account for X1-X3

types of test A fails in bin 26. In this section, we formulate a
subset discovery problem and show that solving the problem
can enable us to find additional strong correlations.

Given two random vectors X,Y , suppose X,Y are mea-
sured through a dataset S of N wafers. Let S1, S2, . . . , Sk
denote a sequences of subsets of S where each Si ⊂ S and
for any i 6= j, Si ∩ Sj = φ. Let |Si| denote the size of the
subset Si. Let CC(X,Y )Si

denote the canonical correlation
of the 1st CC component based on the wafers in subset Si,
i.e. the highest canonical correlation found. Then the subset
discovery problem can be stated as the following:

Subset Discovery Problem:
SCC(X,Y )λ,η = maxS1,S2,...,Sk

[
∑k

i=1 CC(X,Y )Si

k ]
subject to |

⋃k
i=1 Si| ≥ λ|S|, and

∀Si, |Si| ≥ η|S|,
where 0 < λ < 1 and 0 < η < λ are given parameters.

We call SCC(X,Y )λ,η the subset canonical correlation
based on the user parameters λ and η.

Suppose λ = 0.5 (50%) and η = 0.1 (10%). The constraint
|
⋃k
i=1 Si| ≥ λ|S| basically says that the total number of

samples used in the calculation of SCC has to be no less
than 50% of the size of S. On the other hand, the constraint
∀Si, |Si| ≥ η|S| says that the size of each subset cannot be less
than 10% of the total number of samples in S. It is important
to note that all subsets are disjoint. We call the two constraints,
the λ-constraint and the η-constraint, respectively.

4.1. Assumption for subset discovery to be useful

The subset discovery problem tries to find k disjoint subsets
under the two size constraints, to maximize the average
canonical correlation across the k subsets. This is based

on the assumption that for some subset Si, CC(X,Y )Si
is

much higher than CC(X,Y )S . In other words, the correlation
relationship can become a lot more apparent as we focus on
a particular subset (and the correlation relationship becomes
blur if we use the entire dataset).

Using less data can be better because the original dataset
contains noise. For example, the measurements at a certain
period may be more noisy than others. The parameter λ allows
user to drop a portion of the data to maximize the resulting
correlation. Another reason can be because there is a drift of
the correlation relationship over time. Given two subset Si and
Sj produced at different times, a strong correlation relationship
can be identified based on each subset individually but not on
both subsets collectively. This drift property will be discussed
in detail shortly when the results are presented.

4.2. Heuristic to approach the problem

The objective function in the subset discovery problem
involves calculation of canonical correlations CC(X,Y )Si .
Further, in search for the best subsets S1, . . . , Sk, we may need
to consider all possible partitions (that satisfy the constraints)
of the set S. Exhaustively searching for the optimal answer
can be overly expensive.

A straightforward heuristic is to incrementally find the
subsets following a greedy approach. In other words, the
heuristic finds a sequence of subsets S1, . . . , Sk such that
CC(X,Y )S1

> CC(X,Y )S2
> . . . > CC(X,Y )Sk

. The
heuristic can be described as repeating a two-step process:

1) Given S, find the subset Si that results in maximum
CC(X,Y )Si

where |Si| satisfies the η-constraint.
2) If the λ-constraint is not yet satisfied, let S = S − Si

and repeat step (1); Otherwise, stop.
Let Si and Si+1 be two consecutive subsets found by

the heuristic. Let s be a wafer that s ∈ Si+1. Note that
it is possible to have the situation where CC(X,Y )Si

+
CC(X,Y )Si+1

< CC(X,Y )Si∪{s} + CC(X,Y )Si+1−{s}. In
other words, if we move the sample s from Si+1 back to Si,
we improve the sum of the two correlations.

It is important to note that if the algorithm to solve the
maximization problem in step (1) is ideal, then we should
have CC(X,Y )Si

> CC(X,Y )Si∪{s}. However, this does
not mean that s should not be included in Si because s may
decrease the correlation based on Si+1 more than it decreases
the correlation based on Si. Therefore, the straightforward
heuristic is not optimal.

Because computing the objective function in the subset
discovery problem itself can be expensive, it is preferable not
to follow a process that goes beyond the linear complexity as
the greedy heuristic. Hence, we modify the objective function
in step (1) by introducing a regularization term based on the
size of the subset.

In step (1), instead of finding a subset to maximize
CC(X,Y )Si

, we try to maximize CC(X,Y )Si
+ γ |Si|

|S| . In
other words, if adding more samples to Si does not decrease
the correlation too much, then those samples should be added.
Notice that 0 < |Si|

|S| ≤ 1 and 0 ≤ CC(X,Y )Si
≤ 1. Hence,
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value ranges of the two terms are comparable. This means
that the choice of γ would not be too far from 1. The optimal
choice of γ can be determined experimentally.

4.3. Analysis of X1-X3 types of fails from test A

While CCA itself did not find high correlation for X1-X3

types of test A fails, as explained in Section 3.2 before, result
below shows that applying subset discovery did.

TABLE I
SUBSET CANONICAL CORRELATIONS FOR FOUR PARAMETERS PP2-PP5
FOUND TO HAVE HIGH CORRELATIONS TO THE X1-X3 TYPES OF FAILS

S1 S2 S3 S4 S5 S6 S7 S8 S9

PP2 0.84 0.78 0.643 0.69 0.641 0.63 - - -
PP3 0.88 0.85 0.69 0.82 0.68 0.61 0.53 0.52 -
PP4 0.86 0.87 0.85 0.82 0.83 0.82 0.81 0.79 0.75
PP5 0.86 0.81 0.82 0.77 0.68 0.59 0.61 - -

Table I summarizes the results of applying subset discovery
to analyze X1-X3 types of fails. For λ-constraint, we set λ =
0.5. For η-constraint, we set η = 0.0625 which means using
a minimum of 125 wafers in each subset for a total of 2000+
wafers. In the table, the Si represents the ith subset found by
following the greedy heuristic discussed above. Each number
shown is the canonical correlation of the 1st CC component
based on the particular subset.

Notice that for the same parameter, it is not always true that
the correlation found with Si is greater than or equal to that
with Si+1. For example, for PP2 the correlation found with
S4 (0.69) is higher than that found with S3 (0.643). This is
due to the regularization discussed above that in each step, we
try to maximize the term CC(X,Y )Si

+ γ |Si|
|S| instead of just

maximizing the canonical correlation CC(X,Y )Si
.

4.4. Result illustration

Table I shows that the four parameters PP2-PP5 can be
highly correlated to the X1-X3 types of fails. To illustrate
why subset discovery is needed for finding these correlations,
Fig. 16 and Fig. 17 show, for each parameter, a scatter plot
based on selected two subsets (green and blue). The correla-
tions shown in these plots are Pearson correlation coefficients
between the number of fails in the subset and the average
parameter measured value across five sites.

Fig. 16. Subset discovery found two process parameters, PP2 and
PP3, highly correlated to X1-X3 types of fails in bin 26

Consider the first plot in Fig. 16, the two subsets individ-
ually correlate to the PP2 by -0.78 and -0.83. Collectively,
the correlation drops to -0.66. The reason can be seen clearly
from the plot that between the two subsets, there is a shift

of the trend. Therefore, when all the data points are analyzed
together, the trend becomes less apparent.

Similar shifts of trends can be observed for the PP3 plot
in Fig. 16 and the two plots in Fig. 17. In all cases, the
correlations based on each subset of wafers are higher than
the correlations based on the two subsets combined.

Fig. 17. Subset discovery found two more process parameters,
PP4 and PP5, correlated to X1-X3 types of fails in bin 26

Fig. 16 and Fig. 17 also show that subset discovery can
be applied independently of CCA to find correlations. In the
two figures, all correlations are based on Pearson correlation
and as we can see, high correlations can be found once the
appropriate subsets are identified.

4.5. Double check X4 types of fails from test A

Earlier with Fig. 11 we have established that the X4 type
of fails is highly correlated to the parameter PP1. This is
supported by the highest canonical correlation found, 0.84,
together with the Pearson correlation -0.766.

Table II shows the result of applying subset discovery to
rerun the CCA analysis with X = (X1, X2, X3, X4). In the
subset discovery we use the same parameter setting λ = 0.5
and η = 0.0625. Table II shows that all subset canonical
correlations are greater than the canonical correlation 0.84
found before. Four subsets give correlations above 0.9.

TABLE II
CONFIRMING STRONG CORRELATION BETWEEN X4 FAILS AND PP1

S1 S2 S3 S4 S5 S6 S7 S8

PP1 0.93 0.92 0.91 0.90 0.89 0.889 0.874 0.864

The left plot of Fig. 18 shows results for X4 type of
fails from two subsets. We see that individually the Pearson
correlation coefficients are -0.91 and -0.85 which are much
improved from the correlation coefficient -0.766 found before.

Fig. 18. Subset discovery confirms X4 type of fails highly
correlated to PP1 while X1-X3 types of fails do not
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For comparison, the right plot of Fig. 18 shows results for
X1-X3 types of fails. The result earlier shows that they do not
have a high correlation to parameter PP1. The plot confirms
the finding by showing two subsets with low (and opposite)
correlations and with combined correlation almost zero.

4.6. Summary of findings

TABLE III
SUMMARY OF FINDINGS AND SUPPORTING EVIDENCES

Para Fail Type Trend Support
PP1 X4 type, test A, Bin 26 Negatively correlated Figs. 11,18
PP1 Bin 25 Negatively correlated Fig. 14
PP2 X1-X3 types, test A, Bin 26 Negatively correlated Fig. 16
PP3 X1-X3 types, test A, Bin 26 Negatively correlated Fig. 16
PP4 X1-X3 types, test A, Bin 26 Negatively correlated Fig. 17
PP4 tests B,C, Bin 26 Negatively correlated omitted
PP5 X1-X3 types, test A, Bin 26 Positively correlated Fig. 17

Table III summarizes the correlation findings. Based on the
results, the recommendation was: increasing PP1, PP2, PP3,
PP4, and decreasing PP5.

5. Risk evaluation
Silicon experiments are expensive. Therefore, before any

recommendation of process change was implemented, we had
to evaluate its risk. For example, the result above shows
that increasing PP1 would improve bin 25 and bin 26 yield.
However, it might also simultaneously increase the failing rates
of other bins. To make sure that this was unlikely to happen,
we needed to assess the statistical dependence between PP1
and other bins. In other words, for risk evaluation, it was
desirable to demonstrate that PP1 and other bins were likely
to be statistically independent.

The CCA and subset CCA methods above could be used
as a basis for risk evaluation. However, not finding a high
correlation using those methods does not mean that the process
parameter and the type of fails are statistically independent.
As discussed in Section 3, this is because CCA only looks
for linear correlations. Hence, to take the evaluation one step
further, we need to consider non-linear correlations.

5.1. Kernel CCA (KCCA) looks for non-linear correlations

For non-linear CCA, we can employ the idea of kernel CCA
as stated in equation (4) in Section 3 before. Fig. 19 illustrates
the basic principle of kernel CCA.

Fig. 19. Illustration of kernel CCA

Let k() be a kernel function and Φ() be corresponding map-
ping function where k(X,Z) = 〈Φ(X),Φ(Z)〉. Essentially,

Φ() takes an input sample vector and maps it into another
vector in the feature space. In Fig. 19, for example, ~ui is an
n-dimensional sample vector (see also the matrix illustration in
Section 3). Φ(~ui) maps it to an n′-dimensional feature vector
|Φ1(~ui), . . .Φn′(~ui)| in the feature space.

Common kernels include the Gaussian kernel: k(X,Z) =
e−g‖X−Z‖

2

and polynomial kernel of degree d: k(X,Z) =
(〈X,Z〉+R)d for some constant R. For a Gaussian kernel, the
dimensionality in the feature space is infinity (n′ =∞). For a
polynomial kernel of degree d, the dimensionality n′ =

(
n+d
d

)
where n is the input dimension. (see, e.g. [4]).

Kernel CCA is equivalent to performing the regular CCA
in the feature space based on the mapped vectors. Refer back
to equation (7) earlier for CCA formulation. The trick is to
recognize that CCA is based on the dot-product operations
between two vectors, i.e. like 〈X,Z〉. Because 〈Φ(X),Φ(Z)〉
in the feature space is the same as k(X,Z) in the input space,
to perform CCA in the feature space, one can simply use the
kernel operations k(X,Z) in the input space to achieve the
same purpose as illustrated in Fig. 19. Hence, the mapping
Φ() is never explicitly involved in kernel CCA. Rather, the
computation is carried out using k(X,Z) in the input space.

Let Sx be the data matrix for X containing N sample
vectors (~u1, . . . , ~uN ). The kernel matrix Kx is an N × N
matrix |k(~ui, ~uj)|∀i,j . Also let Ky denote the kernel matrix
for Y . Notice that Ky is also an N ×N matrix because there
are N samples (wafers).

With the kernel trick, the kernel CCA can be stated as the
following (α, β are N -dimensional vectors) [5]:

KCC(X,Y ) = max
α,β

α′KxKyβ√
α′K2

xα
√
β′K2

yβ
(10)

If we compare equation (10) to the original CCA formula-
tion equation (9), we see that the only things we change are
replacing Sx with Kx and Sy with Ky (see, e.g. [3]).

Given a kernel with a non-linear mapping Φ(), performing
CCA in the feature space is therefore equivalent to maximizing
the non-linear correlation in the input space.

5.2. Kernel CCA as a statistical independence test

It turns out that the formulation of equation (10) is not very
useful in practice. This is because with a powerful enough
kernel, the KCC is almost guaranteed to be 1. For example,
with a universal kernel (e.g. a Gaussian kernel mentioned
above is a universal kernel) as defined in [6], the authors in
[7] show that the KCC result is always 1, independent of
the dataset. In other words, one can always find a mapping
function Φ() complex enough to overfit the data so that the
resulting correlation is 1.

To resolve the overfitting issue, the most popular way is
by regularization [7] - In equation (10) the objective function
is changed by replacing

√
α′K2

xα with
√
α′K2

xα+ γα′Kxα

and
√
β′K2

yβ with
√
β′K2

yβ + γβ′Kyβ. The user-input pa-
rameter γ controls the ”complexity” of the linear transform
functions used by CCA in the feature space. A small γ allows
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higher complexity and vice versa. The work [7] proves that
with regularization and universal kernels, KCC(X,Y ) = 0 if
and only if X and Y are independent.

5.3. Practical implementation of kernel CCA

We experimented with the regularized kernel CCA and
found that in practice, it was hard to interpret the results. For
example, depending on the choice of γ, the kernel CCA may
give a lower correlation than regular CCA - a property that
is not desirable because for risk evaluation we desire kernel
CCA to be always more powerful than CCA, i.e. always gives
an equal or higher correlation. We therefore chose a different
implementation based on the idea proposed in [8].

The idea is to approximate kernel CCA by (1) running
kernel Principal Component Analysis (KPCA) [9] to extract
the first C principal components in the feature space and (2)
running regular CCA based on the transformed dataset by the
C principal components. In other words, in Fig. 20 the kernel
trick is applied to perform PCA in the feature space (kernel
PCA), and the CCA is then applied directly in the feature
space by selecting only the first C kernel PCA components.

To illustrate the use of kernel CCA for dependence test,
Fig. 20 shows results based on parameter PP1. From the CCA
based analyses, we know that PP1 is highly correlated to test
A and test D. We also knew that PP1 was not highly correlated
to the most-frequent failing tests in bins 20, 28 and 30. Fig. 20
shows how kernel CCA differentiates these two groups.

Fig. 20. Kernel CCA risk evaluation on known results

The x-axis shows the number C where the first C KPCA
components are selected. Suppose X is an n dimensional
vector (X1, . . . , Xn). In the analysis, we expand X to X ′ that
is an n+C dimensional vector (X1, . . . , Xn, PC1, . . . , PCC)
where each PCi is a KPCA component. Hence, for C = 0, it
is the same as the regular CCA. As we see in Fig. 20, as more
KPCA components are used, the correlation become higher.

In Fig. 20, the separation between the correlated cases and
uncorrelated cases is clear across all selections of C. We
selected C = 50 to apply the kernel CCA to check if there is
a dependence between all other types of fails and PP1.

Fig. 21 shows an example result of risk evaluation. In this
example, we tried to evaluate the risk of adjusting PP1 by
assessing the dependence between the result of a test and PP1.
A test bin may comprise multiple tests. The figure shows the
highest KCCA correlation found in each test bin. In each case,

Fig. 21. Risk evaluation with respect to adjusting parameter PP1

it shows the correlation based on CCA and then additional
correlation based on the kernel CCA (with C = 50).

For all cases, the CCA correlations are low. For all but bin
31, the KCCA correlations are also not high. However, for bin
31, its CCA correlation is very low but KCCA correlation is
very high - indicating a strong non-linear dependence between
this test in bin 31 and the process parameter PP1.

Fig. 22. Detailed analysis of the test in bin 31 vs. PP1

Fig. 22 provides more information on the test from bin 31.
Call this test in bin 31 test E. The left shows a similar plot as
that shown in Fig. 20. Observe that the KCCA correlation to
PP1 increases significantly when the 17th KPCA component
is included. The KCCA correlation increases to almost 1 as
more components are added. This clearly indicates a strong
non-linear correlation.

Since the dependence is non-linear, it is hard to visualize it.
To contain the risk, the right plot shows a scatter plot where
the y-axis is based on the average value of test E across each
wafer. The plot shows that the distribution is not close to the
test limits. Hence, even though adjusting PP1 may somehow
affect test E result, the risk might not be high.

The risk with test E was presented to the product team
for further evaluation. It was determined that the association
between PP1 and the devices tested by test E was not high. In
this case, the benefit of adjusting PP1 out-weighted the risk
and hence, the adjustment was kept.

We applied the kernel CCA to assess the risk of adjusting
other parameters PP2-PP5. A few other risky tests were found
like that shown in Fig. 21. However, all risky tests were
contained either by showing a large margin of the distribution
to the test limits and/or by domain knowledge from the product
team. Although risk evaluation did not invalidate any of the
recommended changes, it was an essential step to sign-off the
silicon experiment.
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6. Yield improvement based on silicon results
After the risk evaluation, findings from Table III were all

accepted to implement a split-lot run with multiple experi-
mental lots. The five parameter changes were implemented as
three process changes, one for PP5 (call it ADJ #1), another
for PP2-PP4 (call it ADJ #2), and the third for PP1. In the
split lot experiment, change for PP1 was applied across the
board. A first set of wafers was based on applying only ADJ
#1 (and PP1 adjustment). A second set of wafers was based
on applying only ADJ #2 (and PP1 adjustment). A third set
of wafers was based on applying both ADJ #1 and ADJ #2
(and PP1 adjustment). Of course, lots manufactured previously
without any of the changes were used for comparison.

Fig. 23. Silicon split-lot results show yield improvement

Fig. 23 summarizes the result from the split-lot experiment.
It can be clearly seen that ADJ #1 and ADJ #2 each uniquely
contribute to the yield improvement and together achieve the
best yield result. After the split-lot experiment and confir-
mation of the yield improvement, the process changes were
accepted and applied in production.

7. A brief review of prior work
For production yield improvement, existing efforts may in-

clude approaches based on yield modeling, volume diagnosis,
and/or root-causing. For example, earlier work such as [10]
tried to identify the top parametric parameters that were most
sensitive to yield and model their impact using multivariate
regression. The work [11] used K-Means to cluster wafers
into two groups, one with good yield and one with poor yield.
Kruskall-Wallis and decision trees were applied to identify
process parameters that most likely explained the discrepancy
between the two groups.

Volume diagnosis is an effective approach for yield im-
provement [12][13][14]. For example, the work in [12] applied
a novel statistical learning algorithm to produce accurate
feature failure probabilities to better understand yield limiters.
The work in [13] incorporated logic diagnosis data along
with information on physical features in the layout to identify
dominant defect mechanisms among failing dies.

For lithographic induced systematic issues, the work in
[15] proposed methods to extract features and cluster layout
snippets to identify possible defect hotspots.

Most of the tests analyzed in this work were parametric tests
where root causing the failures could be difficult. Hence, the
correlation approach was applied as an alternative to the root-
causing effort. The goal of finding relevant process parameters
to improve yield is similar to [11]. However, our analysis is
much more detailed than that proposed in [11].

As discussed above, CCA and kernel CCA are well known
statistical methods prior to this work. For CCA analyses, we
used the Python CCA tool from scikit-learn [16]. Our subset
discovery tool was built on top of the CCA tool. Our kernel
CCA tool involved new script that wraps the CCA tool and
kernel PCA tool [16]. Hence, CCA and kernel CCA them-
selves are not the novel aspects of this work. Instead, the novel
aspects are in the overall methodology, including the subset
canonical correlation, the implementation of kernel CCA with
kernel PCA and in its application for risk evaluation.

8. Conclusion
This work presents a novel production yield optimization

methodology based on three advanced statistical correlation
methods: CCA, subset CCA and kernel CCA. We applied
the methodology to optimize the production yield for an
automotive product line. Silicon split-lot experiment confirms
the effectiveness of our findings by showing significant yield
improvement and significant reduction of the yield fluctuation.
The silicon result demonstrates the added value by the pro-
posed methodology to the existing yield optimization efforts
carried out by the test, design and yield analysis teams.
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