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Abstract

We report on the design, implementation and evaluation of a scalable real-time streaming architecture,
termed Yima, that enable applications such as video-on-demand and distance learning on a large scale.
While Yima incorporates lessons learned from first generation research prototypes, it also complies with
industry standards in content format (MP4) and communication protocol (RTP/RTSP). Meanwhile, it
distinguishes itself from both research prototypes and commercial products because it incorporates our
recent research and it pushes the industry envelope by supporting HDTV and multi-channel panoramic
clients. This article describes the principles of existing approaches (both research and commercial)
and how Yima improves upon them through our research. We also included some detailed information
on how we tweaked available hardware and software to achieve certain objectives (e.g., playback of
HDTV streams on an HDTV monitor). We describe three major contributions of Yima. First, we show
how we have reduced inter-nodal data exchange and hence improved the scalability of Yima using a
bipartite design. We report our comparison results of two such designs, both implemented in a real-
world experimental setup. Second, we explain two alternative approaches to handling variable-bit-rate
(VBR) video. Finally, in order to recover from RTP’s potential packet-loss, we report on our observations
in integrating a selective retransmission protocol into Yima’s RTP server. Since packet-loss can mainly
be observed in a WAN environment, we experimented with streaming MPEG-4 data over the Internet.
Yima is operational and supports a variety of display bandwidths from MPEG-4 at 800 Kb/s to five
synchronized channels of MPEG-2 at a total of 20 Mb/s.

1 Introduction

In this article, we report on the design, implementation and evaluation of a scalable real-time streaming
architecture that would enable several applications such as news-on-demand, distance learning, e-commerce,
corporate training, and scientific visualization on a large scale. A growing number of applications store,
maintain, and retrieve large volumes of real-time data, where the data are required to be available online.
We denote these data types collectively as “continuous media”, or CM for short. Continuous media is
distinguished from traditional textual and record-based media in two ways. First, the retrieval and display of
continuous media are subject to real-time constraints. If the real-time constraints are not satisfied, the display
may suffer from disruptions and delays termed
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. Second, continuous media objects are large in size.

A two-hour MPEG-2 video with a 4 Megabit per second (Mb/s) bandwidth requirement is 3.6 Gigabytes
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(GB) in size. Popular examples of CM are video and audio objects, while less familiar examples are haptic,
avatar and application coordination data [SBE � 99].

The first research papers on the design of continuous media servers appeared about a decade ago
(e.g. [AH91, Pol91]), followed by many papers on this topic during the past decade (here is an example
for every year [GC92, RR93, FR94, FD95, CGM96, NMW97, SY98, GT99, LLG00, LWMS01]). Our
research during this past decade started in 1993 [GS93] and continued through 2001 [SGC01]. Some of the
projects described in these papers resulted in prototype servers, such as Streaming-RAID [TPBG93], Oracle
Media Server [LOP94], UMN system [HLD � 95], Tiger [BBD � 96], Fellini [MNO � 96], Mitra [GZS � 97]
and RIO [MSB97]. These first generation continuous media servers were primarily focused on the design of
different proposals of data placement paradigms, buffer management mechanisms, and retrieval scheduling
techniques to optimize for throughput and/or startup latency time.

There are two major shortcomings with these research prototypes. First, since they were implemented
concurrently during the same time frame, each one of them could not take advantage of the findings and
proposed techniques of the other projects. For example, UMN, Fellini and Mitra independently came out with
a seemingly identical design for their data placement technique based on round-robin assignments of blocks to
disk clusters. While this approach was already superior in throughput to RAID striping (used by Streaming-
RAID), it resulted in higher worst case startup latency time. In contrast, RIO’s data placement, which is
based on random block assignment, is more flexible and results in the same throughput as round-robin with
shorter expected startup latency time. On the other hand, UMN’s simple scheduling policy resulted in a fairly
good performance without complicating the code as opposed to the constrained scheduling policies of Mitra
(round-robin), Fellini (cycle-based) and RIO (round-based). We extended UMN’s scheduling (to deadline-
driven) and adapted the disk cluster (in Mitra’s and Fellini’s terms) or logical volume striping (in UMN’s
vocabulary) storage design. We extended RIO’s random data placement (to pseudo-random placement for
easier bookkeeping and storage scale-up) and instead of an expensive shared-memory architecture of UMN
(based on SGI’s Onyx), we employed a shared-nothing approach.

The second shortcoming is that almost all of these research prototypes were completed before the
industry’s standardizations for streaming continuous media over the Internet. Hence, each prototype has
its own proprietary media content format, client (and codec) implementation and communication/network
protocol. As a matter of fact, some of these prototypes did not even focus on these aspects and never
reported on their assumed network and client configurations. They mainly assumed a very fast network with
constant-bit-rate media types in their corresponding research publications. Practically, these environment
assumptions and the specific content type are not realistic.

Several commercial implementations of continuous media servers are now available in the marketplace.
We group them into two broad categories: 1) single-node, consumer oriented systems (e.g., low-cost
systems serving a limited number of users) and 2) multi-node, professional oriented systems (e.g., high-
end broadcasting and dedicated video-on-demand systems). Table 1 lists some examples for both types.
RealNetworks, Apple Computer, and Microsoft product offerings fit into the first category, while SeaChange
and nCUBE offer solutions that are oriented towards the second category. Table 1 is of course a non-
exhaustive list summarizing some of the more popular and recognizable industry products.

Commercial systems often use proprietary technology and algorithms, therefore, their design choices and
development details are not publicly available and objective comparisons are difficult to achieve1. Because
these details are not known, it is also unclear as to how much research resulting from academic work have
been incorporated into these systems. For example, although a good body of work has been developed
on how to configure a video server (e.g., block size, number of disks) given an application’s requirements

1One notable exception is Apple Computer, Inc., which has published the source code of its Darwin Streaming Server.
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Video Server Yima RealNetworks, SeaChange nCUBE
Microsoft,

Apple QuickTime,
Prototype Consumer Level Professional Level

Authoring Suite Yes Yes Yes
MPEG-1 & 2 Yes Yesa Yes Yes
MPEG-4 Yes Yesb Yes ?
HDTV MPEG-2 Yes ? ?
Multi-node Clusters Yes Yes Yes
Multi-node Fault-tolerancec Yes Yes Yes
Synchronized streamsd Yes
Selective Retransmissions Yes Yes ? ?
Hardware Commodity PC Commodity PC Commodity PC Proprietary Hypercube
Software Linux Windows NT / Mace Windows NT Proprietary

aThese systems support many other codecs that are commonly used in PC/Mac environments.
bSupported in Windows Media Player.
cMulti-node Fault-Tolerance is defined as the capability of one node taking over from another node without replicating the data.
dBy synchronized streams we mean the simultaneous playback of multiple independent audio and video streams for, say,

panoramic systems.
eRealSystem Producer products are also available for several Unix variants.

Table 1: A comparison of continuous-media servers. Note that Yima is a prototype system and does not
achieve the refinement of the commercial solutions. However, we use it to demonstrate several advanced
concepts.

(e.g., tolerable latency, required throughput), as reviewed in [GS99], there is no indication that any of
the commercial products utilize these results. However, those details that we are aware of are referred to
throughout this paper when comparing them with the design choices of Yima.

To meet the objectives of an NSF ITR grant and an NSF engineering research center (Integrated Media
Systems Center)2, we needed to utilize and extend a working continuous media server to incorporate our
recent results, to enable global distribution and to support other media types such as haptic and avatar data.
We did a study on both commercial and research servers and due to the above mentioned limitations, we could
use neither type the servers. Therefore, we decided to design and develop a second generation continuous
media server, termed Yima3. Yima is unique because of the following:

� It incorporates and combines useful lessons learned from first generation research prototypes. Yima
utilizes: 1) random data placement (vs. constrained placement), 2) non-deterministic scheduling
(vs. restricted time-period approach), 3) simple scan or elevator algorithms at the disk level (vs.
GSS [YCK93] or REBECA [GKS95]), and 4) both variable and constant bit rate media types. The
main objective was not to complicate the code in order to squeeze the last 5% of disk bandwidth, but
instead to emphasize on the flexibility and extensibility of the code to enable several key benefits as
described later. This design choice is especially consistent with the current trend of increase in disk
bandwidth [Gro97].

� It is designed to incorporate our own recent research results. In particular, Yima is designed as a
completely distributed system (with no single point of failure or bottleneck) as well as separating
physical disks (used to store the data) from the concept of logical disks (used for retrieval scheduling)

2See http://dimlab.usc.edu/Report/nsf-itr.html and http://imsc.usc.edu/ respectively.
3Yima in ancient Iranian religion, is the first man, the progenitor of the human race, and son of the sun.
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to support fault tolerance [ZG00] and heterogeneous disk subsystems4 [ZG97]. Yima includes a
method to reorganize data blocks in real-time for online adding/removing disk drives [GSYZ00]. Also
included are a flexible rate-control mechanism between clients and the server in order to realize the
Super-streaming policy [SA00] and techniques to resolve stream contentions at the server for ensuring
inter-stream synchronization as proposed in [CGS95].

� It is compatible with industry standards. Content-wise, Yima supports the MPEG-4 file format, MP4,
and can stream MPEG-1, MPEG-2, MPEG-4 and Quicktime video formats. It supports the RTP and
RTSP communication standards as described in Sec. 5. The clients can be off-the-shelf QuickTime
players as well as our own proprietary clients that handle multi-channel audio and video playback and
HDTV displays. Although our proprietary clients can support specialized playback of multiple media
types, they still follow communication and format standards.

� It is operational. The system has been implemented and can stream a wide array of media types as
we later explain. Yima has been used to stream MPEG-4 data from USC’s campus to a residential
location connected via ADSL, described in Sec. 6.3. There are plans to co-locate Yima at our industry
partner’s data center in June 2001 so that we can test multiple high-resolution streams to clients on
our campus at up to 60 Mb/s through Internet2.

The preceding points make up the core of our contributions which we will elaborate in greater detail and
show their effectiveness through a series of comparative experiments. Several interesting innovations of Yima
are worth noting: 1) complete distribution where all nodes run identical software and single points of failure
are eliminated, 2) efficient, online scalability of disks where disks can be added or removed without stream
interruption, 3) synchronization of several

��������	������������
streams of audio and/or video within one-fiftieth of

a millisecond and 4) smooth, client-dictated transmission rate control.

We will describe our overall system architecture in Sec. 2 including an overview of system components
and connectivity. In Sec. 3, we describe the internals of our server design including several comparisons
between alternative approaches. We explain why we adopted the Yima-2 design over the Yima-1 design.
Next, in Sec. 4, we describe the various types of clients we have developed to support MPEG-2, MPEG-4,
HDTV and stream synchronized media delivery. The communications network and protocols are described
in Sec. 5 and experiments justifying our design choices and contributions are reported in Sec. 6. Finally, in
Sec. 7, we summarize this paper and layout our future plans for our work in this area.

2 System Architecture

Fig. 1 shows the overall system architecture of Yima. Our implementation emphasizes the use of low-
cost, off-the-shelf, commodity hardware components for the complete end-to-end system. In our prototype
implementation the server consists of a 4-way cluster of rack-mountable DellTM PowerEdgeTM 1550 Pentium
III 866 MHz PCs with 256 MB of memory running Red Hat Linux 7.0. The media data are stored on four
18 GB Seagate Cheetah hard disk drives that are connected to the server nodes via Ultra160 SCSI channels.
The software architecture of the server nodes is discussed in detail in Sec. 3.

The nodes in the cluster communicate with each other and send the media data via multiple 100 Mb/s
Fast Ethernet connections. Each server is attached to a local Cabletron 6000 switch with either one or two
Fast Ethernet lines. The local switch is connected to both a WAN backbone (to serve distant clients) and
a LAN environment with local clients. Choosing an IP based network keeps the per-port equipment cost

4Note that our concept of logical disks is very different from the concept of logical volume striping used in the UMN system.
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Client Media Type Support
Media Type DivX;-) MPEG-4 MPEG-2 + Dolby Digital MPEG-2 HD MPEG-1 & 2
Decoder Software Creative Dxr2 DVD Software Vela Research CineCast
Channels 1 video + 2 audio 1 video + 5.1 audio 1 video 4 video + 8 audio
OS Linux (RH 6.2) Linux (RH 6.2) Linux (RH 6.2) Windows NT 4.0
Min. CPU Speed 500 MHz 200 MHz � 1 GHz 400 MHz
Video Resolution 720 � 480 720 � 480 1920 � 1080 720 � 480 each
Audio Encoding MP3 Dolby AC-3 N/Aa MPEG-1 & 2
Delivery Rate 1 Mb/s 6-8 Mb/s 19.4 Mb/s ���! Mb/s

aWe currently do not decode the audio to save CPU cycles and to increase the speed of the video. This will change in the future.

Table 2: Yima client media type support. All clients are currently implemented on standard Pentium III PC
platforms but could also be ported to digital set-top boxes.

low and is immediately compatible with the public Internet. In addition, our server nodes can be deployed
within our LAN and do not need to be co-located.

The clients are again based on the commodity PC platform. The Yima client software (Yima Presentation
Player) runs on either Red Hat Linux 6.2 or Windows NT 4.0. It is structured into several components and
only one of them interfaces with the actual media decoder, see Fig. 6. This allows us to plug-in multiple
software and hardware decoders and hence support various media types. Table 2 lists the different media
types that Yima currently recognizes. Note that in addition to the standard MPEG-1, MPEG-2, and MPEG-4
media types, Yima also recognizes the high-definition TV (HDTV) formats as defined by ATSC5. Sec. 4.3
details some of the challenges that we encountered while implementing HD MPEG-2 support.

A second unusual media type is panoramic video with 10.2 channel audio. Panoramic video consists of
multiple independent, but tightly synchronized, NTSC-quality video channels that must be combined into
a seamless, 360-degree video “cylinder” at the client location. Panoramic video may be acquired with a
camera such as the FullViewTM model from Panoram Technologies. Extending the visual field requires that
the aural presentation be improved as well. The combination of 10.2 channels of audio and panoramic video
is the next step in audio-visual fidelity.

Using two clients, each equipped with a 4-channel CineCastTM MPEG-2 decoding unit from Vela
Research, we are able to deliver 10.2 channels of synchronized audio and 5 channels of synchronized video
from our Yima server. These streams are rendered through twelve speakers and either a head-mounted or
wide-angle display. This setup demonstrates the multi-stream synchronization capabilities of Yima. Note
that the choice of five channels of video and twelve channels of audio was imposed by the available media
content and is not an inherent limitation in the Yima design. Furthermore, the streams may be delivered
from one, two, or more Yima servers residing in different locations. The final, fine-grained synchronization
is achieved at the client-side. We further elaborate on this setup in Sec. 4.4.

3 Server Design Challenges

An important component of delivering isochronous multimedia over IP networks to end users and applications
is the careful design of a multimedia storage server. The task of such a server is twofold: (1) it needs to
efficiently store the data and (2) it must schedule the retrieval and delivery of the data precisely before it is
transmitted over the network. We investigate two design approaches for our Yima CM server: master-slave

5Advanced Television Systems Committee, http://www.atsc.org.
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Figure 1: The Yima multi-node hardware architecture. Each node is based on a standard PC and connects
to one or more disk drives and the network.

(Yima-1) and bipartite (Yima-2). One of the main differences between the two is the logical interconnection
topology between the nodes in a cluster. We start by describing the common features for both server designs
in Secs. 3.1 and 3.2. Then the specifics of each of the master-slave and bipartite servers are described in
Sec. 3.3.

3.1 Data Placement and Scheduling

Magnetic disk drives have established themselves as the storage device of choice for CM servers because of
their high performance and moderate cost. A single high-end disk, such as the Seagate Cheetah X15, can
sustain an average transfer rate of more than 30 MB/s (e.g., sixty 4 Mb/s streams, under ideal conditions). If –
for a large-scale server – a higher bandwidth or more storage space are required than a single disk can deliver
then disk drives are commonly combined into disk arrays [CCM97]. For load-balancing purposes without
requiring data replication a multimedia object " is commonly striped into blocks, e.g., "$#&%�"(')%�*�*�*+%�"-,�.�'
across an array [Pol91, TPBG93]. Data striping may be achieved implicitly by using a storage system with
embedded RAID [PGK88] controller. In this case the CM server software is unaware of the data striping
and treats the RAID system as one large disk drive. If the data striping is explicitly under the control of the
CM server software, then the distribution of data can extend beyond a single machine. This allows a system
to scale to very large server clusters. Examples of such architectures are Yima, SeaChange’s MediaCluster,
and nCUBE’s n4 Streaming Media System (see Table 1).

Both, the display time of a block and its transfer time from the disk are a function of the display
requirements of an object and the transfer rate of the disk, respectively. A multimedia object may either
require a constant bit-rate (CBR) or a variable bit-rate (VBR) for a smooth display. VBR encoding generally
results in a superior visual quality as compared with CBR for the same object size, because bits can be
allocated to high-complexity scenes rather than being spread out evenly. However, the bursty nature of VBR
media imposes additional challenges for the data scheduling and transmission mechanisms. A CM server
should be designed to handle both types of rates. Many of today’s popular compression algorithms, e.g.,
MPEG-4, produce VBR streams. Fig. 2 shows the display bandwidth requirement of a 10-minute segment
for the movie “Saving Private Ryan.”

The blocks of VBR multimedia objects can be stored with two fundamental approaches: (1) the size of
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Figure 2: Variable consumption rate of a 10-minute segment of a typical MPEG-4 movie “Saving Private
Ryan.”

each block is varied to keep the display time per block constant, or (2) the size of each block is constant
which results in a variable display time per block. The first approach simplifies the retrieval scheduling
but the storage system becomes more complex. For the second approach the tradeoffs are reversed. The
Yima framework is based on constant block sizes and our solution to the more complex VBR scheduling
and delivery is presented in Sec. 4.1.

There are two basic techniques to assign the data blocks to the magnetic disk drives that form the
storage system: in a round-robin sequence [BGMJ94], or in a random manner [SM98]. Traditionally, the
round-robin placement utilizes a cycle-based approach to scheduling of resources to guarantee a continuous
display, while the random placement utilizes a deadline-driven approach. In general, the round-robin/cycle-
based approach provides high throughput with little wasted bandwidth for video objects that are retrieved
sequentially (e.g., a feature length movie). Block retrievals can be scheduled in advance by employing
optimized disk scheduling algorithms (such as elevator [SCO90]) during each cycle. Furthermore, the load
imposed by a display is distributed evenly across all disks. However, the initial startup latency for an object
might be large under heavy load because the disk on which the starting block of the object resides might be
busy for several cycles. The random/deadline-driven approach allows for fewer optimizations to be applied,
potentially resulting in less throughput. However there are several benefits that outweigh this drawback such
as 1) support for multiple delivery rates with a single server block size, 2) simpler design of the scheduler,
3) support for interactive applications due to short startup latencies and stream switching, and 4) automatic
achievement of the average transfer rate with disks that are multi-zoned.

One potential disadvantage of random data placement is the need for a large amount of meta-data: the
location of each block "0/ must be stored and managed in a centralized repository (e.g., tuples of the form1 ��23���+4 % �
�5�&68789 ). Yima avoids this overhead by utilizing a pseudo-random block placement. With random
number generators, a seed value initiates a sequence of random numbers. Such a sequence is pseudo-random
because it can be reproduced if the same seed value is used. By placing blocks in a pseudo-random fashion,
the next block in a sequence of blocks can always be found using the pseudo-random number generator and
the appropriate seed for that sequence. Hence, Yima needs to store only the seed for each file object instead
of locations for every block.
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3.2 Scalability, Heterogeneity, and Fault-Resilience

Scalability is a desired property of any CM server design so that it can easily expand to allow for future growth
in user demand or increased application requirements. Scalability is addressed with several techniques for
CM servers. First, instead of a single disk, multi-disk arrays are employed. However, if all the disks are
connected to a single large computer then the I/O bandwidth constraints of this computer will limit the
overall achievable throughput. The architecture of Yima server implementation is illustrated in Fig. 1. The
distributed, multi-node design is based on commodity personal computer hardware components. The storage
nodes are interconnected via a high-speed network fabric that can be expanded as demand increases. Each
node provides high data throughput from and to the network via a Fast Ethernet connection (100 Mb/s, or a
Gigabit Ethernet), a high performance disk interface (for example up to 160 MB/s for Ultra160 SCSI), and
fast magnetic disk drive arrays. This modular architecture provides a cost-effective and scalable solution in
which older PCs can be easily replaced by newer, more advanced PCs. More nodes can be added to support
more simultaneous video requests.

Applications, such as video-on-demand, that rely on large-scale CM servers require continuous operation
around the clock. To achieve high reliability and availability for all the CM data that are stored in the server,
Yima implements a parity-based data redundancy scheme that, in addition to providing fault-tolerance, can
also take advantage of a heterogeneous storage subsystem [ZG97, Zim98]. Current disk drives are fairly
reliable with a mean time to failure of up to 1,000,000 hours. However, if a large number of disks is aggregated
into a CM storage system, the chance that one disk fails increases. For example, assuming that all the disks
are independent and that their lifetimes are exponentially distributed [PGK88], then a disk array consisting
of 1,000 disks experiences a mean time to data loss (MTTDL) of 1/1,000th of a single disk, equivalent to
1,000 hours or approximately 42 days. The trend for disk devices is of annually increasing performance
and storage capacity [Gro97]. Therefore, it is usually more cost-effective to replace a failed disk with a
newer model. Moreover, in the fast-paced disk industry, newer model disks are added to systems requiring
more storage capacity because the original disks are simply unavailable. For these reasons heterogeneous
storage systems are a common occurrence and Yima manages these heterogeneous resources intelligently
to maximize their utilization and to guarantee jitter-free real-time delivery. Yima manages heterogeneous
storage systems with a technique termed Disk Merging [ZG97]. This technique presents a virtual view of
logical disks on top of the actual physical storage system. The application layers of a system can now assume
a uniform characteristic for all the logical disks. As a result of this abstraction, conventional scheduling and
data placement algorithms as described previously can be applied.

Data Reorganization An important goal for any computer cluster is to achieve a balanced load distribution
across all the nodes. Both round-robin and random data placement techniques distribute data retrievals
evenly across all disk drives over time. A new challenge arises when additional nodes are added to a server.
If the existing data are not redistributed then the system evolves to become a partitioned server where each
individual retrieval request will impose a load on only part of the cluster. One might try to even out the load
by storing new media files only on the added nodes (or at least skewed towards these nodes), but because
future client retrieval patterns are usually not precisely known this solution becomes ineffective.

Redistributing the data will once again yield a balanced load on all nodes. Reorganizing blocks placed
in a random manner requires much less overhead when compared to redistributing blocks placed using a
constrained placement technique. For example, with round-robin striping, when adding or removing a disk,
almost all the data blocks need to be relocated. Instead, with a randomized placement, only a fraction of all
data blocks need to be moved. For example, increasing a storage system from four to five disks requires that
20% of the data from each disk be moved to the new disk. For disk removal, only the data blocks on the
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disk that is scheduled for removal must be relocated. Redistribution with random placement must ensure
that data blocks are still randomly placed after disk scaling (adding or removing disks) to preserve the load
balance.

As described in Sec. 3.1, we use a pseudo-random number generator to place data blocks across all the
disks of Yima. If the number of disks does not change, then we are able to reproduce the random location
of each block. However, upon disk scaling, the number of disks changes and some blocks need to be moved
to different disks in order to maintain a balanced load. Blocks that are now on different disks cannot be
located using the previous random number sequence, instead a new random sequence must be derived from
the previous one. In Yima we use a composition of random functions to determine this new sequence. Our
approach, termed SCAling Disks for Data Arranged Randomly or SCADDAR, preserves the pseudo-random
properties of the sequence and results in minimal block movements after disk scaling while it computes the
new locations for data blocks with little overhead [GSYZ00]. This algorithm can support scaling of disks
while Yima is online.

3.3 Yima Multi-Node Server Architecture

Yima servers are built from clusters of multiple server CPUs which we refer to as nodes. Each node connects
to a common network fabric via Fast or Gigabit Ethernet. A distributed file system provides a complete
view of all the data on each node without the need to replicate individual data blocks (except as required for
fault-tolerance [ZG97]). A Yima cluster can run in one of two possible modes: master-slave or bipartite.
We will now describe each one in turn.

Master-Slave Design (Yima-1) One technique to enable a server application to access the storage resources
located on multiple nodes is to introduce a distributed file system. With this design, an application running
on a specific node operates on all its files through the distributed file system layer, which transparently
provides access to local and remote data. If remote data are read or written, then the distributed file system
forwards the data via a network protocol to the corresponding node.

The Yima-1 software consists of two components: the Yima-1 high-performance distributed file system
and the Yima-1 media streaming server as shown in Fig. 3. The distributed file system is actually comprised of
multiple File I/O modules located on each node. The media streaming server itself is composed of a scheduler,
a Real-Time Streaming Protocol (RTSP [SRL98]) module and a Real-Time Protocol (RTP [SCFJ96]) module,
see Fig. 6. Each Yima-1 node may either run only the distributed file system, in which case the Yima-1
media streaming server is inactive, or both components. A node running only the file system is said to have
slave capabilities while a node running both components is said to have master and slave capabilities.

A master server node is the point of contact for a client during a session. A session is defined as a complete
RTSP transaction for a continuous media stream, starting with the DESCRIBE and PLAY commands and
ending with a TEARDOWN command. When a client requests a data stream using RTSP, it is directed to a
master server node. If multiple master nodes exist in the cluster, then this assignment is decided based on
a round-robin domain name service (RR-DNS) or a load-balancing switch. Each master node retrieves and
streams the corresponding data to its various clients. To satisfy the real-time constraints of each data stream,
the distributed file system is optimized for fast block access and transfer between nodes. Furthermore, it
keeps track of the locations (i.e. disk number) of all data blocks for each media file. This is facilitated by
using a pseudo-random number generator that determines the particular disk number that a specific block
falls onto based on a seed value as previously described in Sec. 3.1. The master node also must keep
configuration files that provide the disk-to-node mapping for all disks. Requests for blocks can then be
brokered to correct slave nodes which are connected to the particular disk containing the requested data
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Figure 3: Yima-1 software design. A master node becomes active when clients establish sessions with it.
Otherwise master nodes remain inactive.

block.

One major advantage of using a distributed file system, which transparently maps remote data into a
local address space, is that applications need not be aware of the distributed nature of the storage system.
Hence, even applications that were designed for a single node can to some degree take advantage of a cluster
organization. In fact, the Yima-1 media streaming server component is based on the Darwin Streaming
ServerTM (DSS) project by Apple Computer, Inc. The DSS code assumes that all media data are located in
a single, local directory. Enhanced with our distributed file system, multiple copies of the DSS code (each
running on its own master node) were able to share the same media data.

With this architecture, the ease of utilizing clustered storage is offset by some major performance
problems. The master node can easily become a bottleneck since all transmitted data funnels through it.
Even more significantly, the master-slave architecture leads to heavy inter-node traffic which may saturate
inter-node links. The outgoing network traffic, the inter-node traffic and the CPU load of the master nodes
all increase as the number of sessions increases. Furthermore, a master node potentially becomes a single
point of failure such that all sessions are lost if it fails. These drawbacks motivated the design of Yima-2
which addresses these issues to provide a higher performing and more scalable solution.

Finally, we require a bit rate smoothing technique to support the delivery of variable bit rate media. In
our implementation of Yima-1, we use a binary variation: a stream is sent at a rate of either :0; or zero
megabits per second, where : ; is the transfer rate across a network. : ; is fixed at a value between the
average and maximum consumption rate of a stream (the correct value depends on the client buffer size). We
denote this as the pause/resume transmission scheme since the client issues pause and resume commands
to the server depending on how full the client buffer is. A disadvantage of this technique is that it may
temporarily require a higher link transmission rate than other smoothing techniques. Additionally, its on/off
nature can lead to bursty traffic. Advantages include its simple design and that it can be applied dynamically
to streams that are in progress without any precomputation other than knowing the maximum consumption
rate.

Bipartite Design (Yima-2) The design of Yima-2 addresses almost all of the limitations of Yima-1. It is
based on a bipartite model. Recall that with the Yima-1 master-slave design, the slave nodes forward all data
blocks to the master node where the blocks are placed into the correct order and scheduled for transmission
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to the clients.

Hence, from the viewpoint of a single client, the scheduler, the RTSP and the RTP server modules are
all centralized on a single master node. Yima-2 expands on the decentralization by keeping only the RTSP
module centralized (again from the viewpoint of a single client) and parallelizing the scheduling and RTP
functions as shown in Fig. 4. Hence, every node retrieves, schedules, and sends data blocks that are stored
locally directly to the requesting client, thereby eliminating the bottleneck caused by routing all data through
a single node. The elimination of the master node bottleneck and the distribution of the scheduler reduces the
inter-node traffic to only control related messages, which is orders of magnitude less than the streaming data
traffic. The term “bipartite” relates to the two groups, a server group and a client group (in the general case of
multiple clients), such that data flows only between the groups and not between nodes of a group. Although
the advantages of the bipartite design are clear, its realization imposes several new challenges. First, since
clients are receiving data from multiple servers, a global order of all packets per session needs to be imposed
and communication between the client and servers needs to be carefully designed, see Sec. 5. Second, an
RTSP server node still needs to be maintained for client requests. The original DSS code component of
our Yima-1 media streaming server clearly did not fit the Yima-2 decentralized model and it needed to be
replaced with a distributed scheduler and RTP server. Lastly, a flow control mechanism is needed to prevent
client buffer overflow or starvation.

With Yima-2, each client maintains contact with one RTSP module for the duration of a session for
control related information (such as PAUSE and RESUME commands). For load-balancing purposes each
server node may run an RTSP module. For each client, the decision of which RTSP server to contact can
be based on either a round-robin DNS or a load-balancing switch. However, contrary to the Yima-1 design,
if an RTSP server fails, sessions are not lost — instead they are reassigned to another RTSP server and the
delivery of data is not interrupted.

With Yima-2, we replaced the DSS-based server component with our own light-weight code that ac-
complishes the distributed scheduling, handles multiple concurrent client sessions (via the RTSP protocol),
and transmits media data as RTP streams. For the storage of media blocks we adapted the MPEG-4 file
format as specified in MPEG-4 Version 2 [MP4]. The MP4 file format is a flexible container format that
is based on the QuickTimeTM file format from Apple Computer, Inc. Its structure is object-oriented and
stores both a hierarchy of metadata (also called atoms) and the media data itself. Metadata known as hint
tracks provide instructions on how to packetize and deliver the media data according to, for example, the
RTP protocol. In Yima-2 we expanded on the MP4 format by allowing compressed media data other than
MPEG-4 to be encapsulated (e.g., MPEG-2). This gives us the flexibility of easily delivering any data type
by augmenting it with MPEG-4 conforming metadata information while still being compatible with the MP4
industry standard. Our server is multi-threaded with each thread having a specific task as shown in Fig. 4.
We are using the thread library Qpthread, that handles message queues and thread pools. The result is a
light-weight, easily extendible server framework.

In order to avoid bursty traffic caused by the pause/resume transmission scheme of Yima-1 (as described
in further detail in Sec. 4.1), the client controls the data transmission rate in Yima-2. By periodically sending
slowdown or speedup commands to the Yima-2 server, the client can receive a smooth flow of data by
monitoring the amount of data in its buffer. If the amount buffer data decreases (increases), the client will
issue speedup (slowdown) requests. Thus, the amount of buffer data can remain close to constant. This
mechanism will complicate the server scheduler logic, but bursty traffic is greatly reduced as shown in
Sec. 6.2.
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4 Client Systems

We have built a client application called the Yima Presentation Player to demonstrate and experiment with
our Yima server. The Yima player can display a variety of media types and is available for both Linux
and Windows platforms. Clients receive streams via standard RTSP and RTP communications, which are
detailed in Sec. 5. In the following sections we describe the client design and how it handles various media
types. We start with an overview of our playout buffer management technique that is common across all
media types. In Sec. 4.3, we report on the current state of our HDTV client. Finally, we describe how we
can achieve stream synchronization across multiple clients required by certain applications in Sec. 4.4.

4.1 Client Buffer Management

A circular buffer in the Yima Presentation Player reassembles media streams from RTP packets that are
received from the server nodes. Recall that Yima supports variable bit rate media. Numerous techniques
have been proposed in the literature to transmit VBR media (for an overview see [AG98]). Most of the
techniques smooth the consumption rate :>= by approximating it with a number of constant rate segments.
Such smoothing algorithms implemented at the server side need complete knowledge of : = as a function
of time to compute each segment length and its appropriate constant bit rate. Segment boundaries are
determined based on the following two assumptions: (1) the data transfer takes a fixed amount of time and
(2) no data are lost, hence the client buffer fullness can be computed. Neither of these two assumptions is
true in real world networks, where packet delays and drops are common.

To work in a dynamic environment we based our buffer management techniques on a flow control
mechanism. A circular buffer of size ? accumulates the media data and keeps track of two watermarks:
buffer overflow @BADC and buffer underflow @BAFE . Data are consumed from the same buffer by the
decoding thread. We introduce two schemes termed the pause/resume scheme and the G 	 scheme and
describe them as follows.
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Pause/Resume If the data in the buffer reaches @HAIC , the data flow from the server is paused. The
playback will continue to consume media data from buffer. When the data in the buffer reaches the
underflow watermark @BAFE , the delivery of the stream is resumed from the server. If the delivery rate ( : ; )
of the data is set correctly then the buffer will not underflow while the stream is resumed.

In an ideal case the server could be paused and resumed instantaneously and the watermarks could be set
as follows: @HADCKJL? and @BADEMJLN , where ? is the buffer size. However, in a real world implementation
the processing of pause and resume results in some delays (Yima uses the RTSP commands PAUSE and
PLAY for these purposes). The accurate values of @BA C and @HA E are calculated as follows. After a pause
request is sent out, the server is still sending data during a short time OQP , where O�P is the one-way delivery
time from server to client. The data accumulated during ORP is ST: ;VU : =QW <-O�P . Hence, the buffer overflow
watermark must be set to

@HAXCZY[? U ST: ;DU : =\W <]O�P (1)

to avoid a buffer overrun. Similarly, the buffer underflow watermark must be set to

@BAXE_^[: = <(O�P (2)

The delay time O�P depends on the network delay between the client and the server as well as the server
request processing time and must be empirically obtained. Finally, the following condition must hold:
@BAZC`^a@BAXE . If this condition is not met then the buffer size ? is not large enough for this operating
environment. Although the pause/resume technique is a simple, clean design, if pausing and resuming
actions coincide across multiple sessions, then bursty traffic will become a noticeable effect.

Client-controlled G 	 G 	 is the inter-packet delivery time used by the schedulers to schedule the transmis-
sion of packets to the client. A global G 	 is maintained across all the schedulers of all the server nodes.
Schedulers use the Network Time Protocol (NTP) as the common time across nodes in order to know when
to send packets. Using NTP and the timestamp of each packet, server nodes send packets in order at G 	 time
intervals. The G 	 delivery rate at which packets are sent should be adjusted to match the client-side variable
consumption rate as closely as possible. This adjustment is fine-tuned by the client by updating the server
with new G 	 values based on the amount of its buffer data. The client-side buffer is used to smooth out
any fluctuations in network traffic which might lead to late packets. Thus, the client adjusts the amount of
data within this buffer by issuing speedup and slowdown commands to the server to keep the amount of data
between predetermined overflow and underflow watermarks. Ideally, by fine-tuning G 	 , the client should
be able to keep a constant amount of buffer data throughout the session. Speedup commands decrease the
G 	 value while slowdown commands increase the G 	 value. The initial default G 	 value needs to be small
enough to quickly fill the buffer to a desired amount. Changing the G 	 is the control mechanism which
affects the amount of data within the buffer. This control mechanism can be used to enable different types of
policies such as a policy dictating the fastest possible delivery rate given a specific server load and network
load.

To compute the amount of G 	 fluctuation, the client issues commands to speedup or slowdown the data
stream as shown in Fig. 7. Several watermark thresholds are used to fine-tune the streaming rate. As the
amount of client buffer data approaches the overflow watermark, the client will increase G 	 first by b�Ndc
and eventually by e3Ndc if the amount continues to increase. Similarly, as the amount of data approaches
zero due to a high consumption rate, the client will speedup the delivery rate by decreasing G 	 first by b�Ndc
and then by e3Ndc . As in Yima-1, if the amount of data reaches either the overflow or underflow watermarks,
then PAUSE or RESUME commands are issued, respectively. A RESUME command will set G 	 to the initial
default value. The percentages of increase and decrease were chosen in accordance to the characteristics of
our media. Differing media consumption rates may necessitate a different set of percentages for optimized
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Figure 7: The amount of data in the client buffer triggers the client to issue speedup or slowdown commands
if a threshold is crossed.

delivery smoothness. Thus, the client is able to control the delivery rate of received data to achieve smoother
delivery and prevent bursty traffic.

4.2 Yima Presentation Player Media Types

We have experimented with a variety of media types for our Yima player. Fig. 6 shows the three-threaded
structure of the player. The Playback thread is responsible for interfacing with the actual media decoder.
The decoder can either be software or hardware based. Table 2 lists some of decoders that we incorporated.

First, we started with CineCastTM hardware MPEG decoders from Vela Research. They support both
MPEG-1 and MPEG-2 video and 2 channel audio. However, content that includes 5.1 channels of audio (i.e.,
Dolby Digital) is not recognized. To remedy for this situation, we use the open source ac3dec audio library
to downmix 2 channels from the 5.1 channels of received audio. Hence, the CineCast decoders process the
video and the PC sound cards render the 2 channels of audio. However, this solution presented a problem
in that the audio and video were not synchronously displayed. Extensive fine tuning was performed to shift
the audio to match the video.

Next, we moved to a Dxr2TM PCI card from Creative which can decompress both MPEG-1 and 2 video
in hardware. Additionally it decodes MPEG audio and provides a 5.1 channel Dolby Digital audio output
terminal. With this solution the multi-channel audio synchronization was accomplished in hardware and the
rendering presented no problems.

With the emergence of MPEG-4 we started to experiment with a software decoder called DivX;-) [Hib01].
Using this decoder, we can decompress MPEG-4 data entirely in software without any specialized hardware.
MPEG-4, a newer standard than MPEG-2, provides a higher compression ratio. A typical 6 Mb/s MPEG-2
media file may only require a 800 Kb/s delivery rate when encoded with MPEG-4. Sec. 6.3 contains details
on one of our end-to-end experiments, where we delivered an MPEG-4 video stream at near NTSC quality
to a residential client site via an ADSL connection.

4.3 HDTV Client

The streaming of HD content presented several challenges for our Yima implementation. First, HD media
require a high transmission bandwidth. For example, a video resolution of 1920 < 1080 pixels encoded via
MPEG-2 results in a data rate of 19.4 Mb/s. This turned out to be less of a problem at the server side because
Yima was designed to handle high data rates.

We faced the more intriguing problems at the client-side. Consumer hardware decoders that can be easily
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integrated with our software are not yet available6 . Professional solutions can cost up to tens of thousands
of dollars. Hence we decided to integrate a software decoder. We started with a library from the mpeg2dec
open source project. However, even though we were able to decode our content, achieving the real-time
frame rates with HD video was non-trivial. HD media contains up to seven times more pixels per frame
than standard NTSC video and hence requires much more CPU cycles to decode than, for example, a DVD
movie. On a 933 MHz Pentium III we were able to achieve 13 to 14 frames per second7 . The software
decoder does take advantage of MMX and SSE multimedia instructions, but does not utilize the graphics
chip iDCT capabilities. After further optimization to the code we are confident that we will achieve real-time
decoding. A software decoder has the advantage of being cheap and easy to disseminate.

An additional problem was introduced with the software decoder: the interfacing with an actual HD
television set. Both, resolutions and refresh rates of conventional computer monitors are different from what
HD sets can handle. The 4 < 3 aspect ratio of most computer monitors is different than the 16 < 9 aspect
ratio used with HD content. Also, unlike multi-sync monitors, HD sets usually only synchronize to the
specific formats defined in the ATSC standard. We were able to overcome these limitations by configuring
the computer graphics card to a non-standard, HD-compatible mode, such as 1280 < 720. Sometimes even
the actual physical video connection can present a problem. Conveniently, our AF3.0HD test monitor from
Princeton Graphics did have a 15-pin VGA-type input connector. For other models, which only feature
YPbPr input terminals, a converter is needed (e.g., Audio Authority’s model 9A60). This solution allowed
us to configure the output also for 960 < 540 progressive display, which the HD set interpreted similarly to
1920 < 1080 interlaced video. In this lower resolution mode (which is still considerably better than NTSC)
we were able to demonstrate full screen MPEG-4 compressed video at just over 2 Mb/s bandwidth, see
Fig. 8. We estimate that full-resolution HDTV is hence possible at approximately 8 Mb/s with MPEG-4. An
interesting application would be to upgrade the picture quality of the panoramic video described in the next
section. The five synchronous video channels would require a total bandwidth of approximately 40 Mb/s
and produce an astounding 9000 < 1000 pixel display.

4.4 Multi-Stream Synchronization

The flow control techniques implemented in the Yima client-server communications protocol allow us to
synchronize multiple, independently stored media streams. Fig. 5 illustrates the client configuration for the
playback of panoramic, 5 channel video and 10.2 channel audio. The five video channels originate from a
360-degree video camera system such as the FullViewTM model from Panoram Technologies. The audio is
recorded from multiple microphones. Each video channel is combined with two audio channels and encoded
into a standard MPEG-2 program stream8. During playback, all of the streams must be rendered in tight
synchronization such that the five video frames that correspond to one time instance are accurately combined
into a panoramic 3000 < 480 mosaic every 'f # of a second. The real-time seamless frame stitching is achieved
with processing equipment from Panoram Technologies. A segment of the resulting panoramic video can
either be shown on a wide-screen display or an observer may wear a head-mounted display (HMD). If the
HMD is combined with a head tracking device, then the observer can freely “look around” (360 degrees)
and experience a much more immersive visual sensation than is possible with a conventional display.

The experience is enhanced with surround audio that is presented phase-accurately and in synchroniza-
tion with the video. 10.2 channels of immersive sound create a seamless, fully three-dimensional aural
environment that preserves the correct spatial sound localization for a participant, even if he or she moves

6The Win-HD card from Hauppauge may be a candidate in the future.
7With Linux 6.2 and XFree86 4.0.1 on an nVidia Quadro 2 graphics accelerator.
8One stream is audio only because we have 5 video and 12 audio channels.
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Figure 8: HDTV display connected to an Yima client. The Yima client can decode HD MPEG-2 formats
in software up to the full the resolution of 1920 < 1080i (with some degradation in the frame rate on a 933
MHz PC). The picture shows a quarter-resolution video with 960 < 540p pixels compressed via MPEG-4.

around in the environment. In our system we output the audio streams into mixing equipment which allows
for interactive changes and adjustments. For example, undesirable room characteristics can be compensated
before the audio signals are amplified and rendered with high-quality speakers.

Yima achieves such precise playback with two levels of synchronization: (1) coarse-grained via the
flow control protocol and (2) fine-grained through hardware support. The flow control protocol allows us to
maintain approximately the same amount of data for each MPEG-2 stream in the client buffers, even if there
are variations in the bitrate across multiple streams. With this pre-requisite in place, we can lock-step the
hardware MPEG decoders to produce frame-accurate output. For this we use multiple CineCastTM MPEG
hardware decoders from Vela Research genlocked to one timing signal. The genlock signal assures that the
current frame playout starts and stops together in all decoders. However, if one decoder originally started its
playback several frames ahead of others, then this difference will actually be “locked in” instead of corrected.
For example, if decoder A is three frames ahead of decoder B, then genlocking them together will always
keep A three frames ahead of B because the genlock signal only provides synchronization within the current
frame (however, there will be no drift). Moreover, lost packets which result in missing frames will affect the
synchronization and may lead to drift. In our LAN we do not experience dropped packets, but a solution
will eventually be required for WAN and Internet delivery. All streams need to be started precisely at the
same time. The CineCast decoders provide an external trigger input for this purpose. In our system we can
software-control this trigger to initiate the playback when all channels have sufficient initial data. Using
two clients, each of them equipped with a 4-channel CineCast decoder, we are able to render up to eight
synchronous streams of MPEG-2 data (i.e., 8 video and 16 audio channels).
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5 RTP/UDP and Selective Retransmission

Yima supports the industry standard real-time protocol (RTP) for the delivery of time-sensitive data. Because
RTP transmissions are based on the connection-less User Datagram Protocol (UDP), a data packet could
arrive out of order at the client or be altogether dropped at some point along the network. The characteristics
of real-time data places rigid constraints on packet delivery and may be sensitive to packet loss. If a missing
packet does not arrive at the client before it is scheduled to be consumed, then it is considered lost. To
achieve the best visual and aural quality possible, we start decoding a movie only after the arrival of an initial
amount of data at the client-side buffer.

To reduce the number of RTP data packets lost between the server and client we implemented a selective
retransmission protocol [PP96]. This protocol was configured to attempt at most one retransmission of each
lost RTP packet only if it seemed likely (based on the round-trip packet delay) that the retransmitted packet
would arrive in time for consumption by the decoder. With this technique the raw transmission data lossg #hJ 	 can be reduced to an effective data loss of

gjilk+k J 	 <_STmonpS�Sqb U m W < 	 W�W (3)

where
	

is server-to-client and m is the client-to-server data loss probability. Eq. 3 assumes a different loss
rate for both link directions since most broadband technologies (such as ADSL and cable modems) provide
asymmetric throughput for upstream and downstream data flow. If the loss probability is identical in both
link directions, then Eq. 3 simplifies to

griqk+k s 7utvt i�wyx /yz J 	�{ <VS|e U 	 W (4)

As a result of this technique, the transmission of video/audio streams is more error-resilient for both local
or wide area networks (LANs and WANs, e.g., Internet2). We report on the reduction in data loss in an
end-to-end experiment in Sec. 6.3.

5.1 RTP/UDP with Multiple Server Nodes and Selective Retransmission

When multiple servers deliver packets which are part of a single stream, as with Yima-2, the following
question arises: If a data packet did not arrive, how does the client know which server node attempted to
send it? In other words, it is not obvious to which node the client needs to send its retransmission request.
There are two solutions to this problem: 1) the client computes which server node to issue the retransmission
request to, or 2) the client broadcasts the retransmission request to all the server nodes.

Unicast approach Recall from Sec. 3.1, that the locations of the data blocks can be determined by regen-
erating a pseudo-random sequence. With the unicast approach, retransmission requests are addressed to
a specific server node possessing the requested packet. The client can determine the source of a missing
packet if it has all of the following information: the block ID of this packet, the seed of the movie, a mapping
of which logical disks lay on which server nodes and the original pseudo-random number generator used
to randomly distribute the data blocks. While this approach sends the retransmission request to the correct
server node, the amount of meta-data needed by the client leads to greater complexity and book-keeping.
Each time disks are added or removed from Yima during disk scaling, the disk-to-node mapping information
needs to be passed onto the clients. Logically, the clients should be oblivious to the configurations and
components of the file system. Moreover, if the client is low on resources, then the added computation of
the packet locations would be unfavorable.
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Broadcast approach We have incorporated the broadcast approach into our Yima-2 design. Broadcasting
the packet retransmission request to all of the server nodes places little load on the client since no computation
to identify a specific server node is necessary. Instead, server nodes receive the request, check whether they
hold the packet and either ignore the request or perform a retransmission. Thus the client remains unaware
of the server sub-layers. Moreover, most local area networks have LAN IP addresses which can be used
to multicast packets to all IP addresses on that LAN. In essence, the client could send a unicast of the
retransmission request to the LAN IP address upon which the LAN gateway would broadcast the request to
all the server nodes. So with the broadcast model, we separate the client from knowledge of the underlying
server file system such as the server disk configurations and the random sequence of the data blocks.

Even though this technique works well in our system, we realize that it may impact the scalability of
Yima-2. We plan to investigate other techniques, such as forward error correction (FEC) to find an optimal
solution.

6 Experiments

We conducted a series of experiments to verify and evaluate our design choices and to provide evidence of
improvements in Yima-2 vs. Yima-1. While the majority of our server and client tests were on our local
area network, we also report on the results of a test across the public Internet. All of our experiments were
conducted on the same hardware components in order to provide fair comparisons.

6.1 Server Experiments

We made several design choices to improve the overall performance of Yima-2 over Yima-1. Most signifi-
cantly, we eliminated the inter-node data traffic which limits the number of streams per node, } , as shown
in Eq. 5. This equation assumes full-duplex network links with a throughput of : ; each and ~ nodes.
Intuitively, by increasing the number of nodes, the fraction of the data that is local decreases. The second
factor '{ .0�� denotes the reduction that is due to the inter-node traffic. For large configurations the throughput

is cut in half.
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We tested the Yima-1 and Yima-2 software on a 4-way server configuration as described in Sec. 2. The
MPEG-2 encoded test media required 8 Mb/s of bandwidth per stream. In the case of Yima-1, all four nodes
were slave nodes and we increased the number of masters from 1 to 4. For Yima-2, we increased the number
of participating nodes from 1 to 4, because every node sends out data.

Method of measurement We needed a way to measure the number of sustainable, concurrent clients. For
Yima-1, the Darwin Streaming Server component of the Yima-1 media streaming server begins to exhibit a
significant drop in throughput when the number of sessions increases to a point where the server bandwidth
or the server CPU are maxed out. Because our system bottleneck is in the network, the available bandwidth
maxed out before the CPU utilization. Hence, increasing the number of sessions by one should increase the
total server throughput by 8 Mb/s. The maximum number of sustainable, concurrent clients is determined
when an 8 Mb/s increase in throughput is not observed after increasing the number of sessions by one.
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Figure 9: The number of client streams (at 8 Mb/s) that can be supported with the Yima-1 and the Yima-2
architecture as the number of nodes increases. The inter-node data traffic clearly limits the Yima-1 scalability.

For Yima-2, a noticeable increase in hiccups will occur when the number of sessions increases beyond
a certain number of sustainable, concurrent sessions. Again, this is the point at which the available network
bandwidth begins to max out. To find this threshold, we considered that the maximum number of sessions
had been reached when the last session admitted experienced a e
c delay of packets. A delayed packet is
defined as a packet which was sent 1 or more seconds too late. We observe that visual and audible quality
degrades significantly when the number of delayed packets is �Ie
c .

A limiting factor to the results which we obtained for our experiments is that the network cards supplied
by our server manufacturers seemed to only support a maximum uplink delivery rate of 50 Mb/s instead
of the expected 100 Mb/s. However, the results for our experimental sets were all performed on the same
hardware components so that the relative performances are compared fairly.

Measurement results The maximum number of sustainable 8 Mb/s data streams for Yima-1 and Yima-2 are
shown in Fig. 9. Yima-2 exhibits an almost perfectly linear increase in the number of streams while Yima-1
levels off early. Of course, Yima-2 will also become sub-linear with larger configurations and/or low-bit-rate
streams, but we are pleased to see that it scales much better than Yima-1. This expectation of non-linearity
is attributed to the increase of inter-nodal control commands. We observe a decrease in the average number
of supportable streams per server node as the number of server nodes is increased for Yima-1.

6.2 Client Experiments

We conducted two sets of experiments on our client system. First, we compare the delivery rate of media
streams for Yima-1 and Yima-2 over a period of time. Recall from Sec. 4.1 that Yima-1 utilizes the
pause/resume method, which leads to bursty traffic, while Yima-2 uses the G 	 method, which leads to a
smoother delivery rate. The actual consumption rate is compared to the delivery rate using G 	 and the
similarity between the two verifies that the client attempts to keep a constant amount of data in its buffer.
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Figure 10: Yima end-to-end configuration.

The closer the amount of buffer data is to becoming constant, the closer the delivery rate will mimic the
consumption rate. Keeping the amount of data in the buffer constant also improves client utilization of the
buffer. The client can better allocate unused portions of memory for other uses if the amount of used buffer
space is known beforehand.

In the second set of experiments, we evaluated the accuracy of our synchronization mechanism for multi-
channel clients. With our experimental setup we have been able to achieve frame accurate video playback
over an extended period of time. Genlocked frames are played out very precisely with differences of at most
a few milliseconds. Audio multi-channel synchronization is actually more critical because even slight time
delays between two channels result in phase differences that can shift the position of an instrument from its
correct rendering location to the left or right. Our audio content is sampled at either 44,100 or 48,000 Hz.
Even a few samples worth of time difference can be noticed by a trained listener. To test our experimental
setup we played the same content on combinations of two channels (out of eight possible channels on one
CineCastTM MPEG decoder) and recorded the rendered signals as a stereo file. This stereo file was used
as input into a program, written in Matlab, to find the sampling difference between the maximum cross-
correlations of a 90-second segment of each channel. Correlating all combinations of two channels resulted
in either a 0 or 1 sample time difference between channels.

6.3 End-to-End Experiments

There have been a number of reports of trials and deployments of video-on-demand services. However, little
to no information is available about the architectural details and performance tradeoffs for these systems. We
have used our Yima testbed to investigate the end-to-end performance of near NTSC quality video delivery
over IP. Fig. 10 illustrates the experimental setup.

The data sent out from the Yima servers in our lab were transported via the USC campus network to the
public Internet. Table 3 shows the data route between one of our test client locations and the Yima servers.
The geographical distance between the two end points is approximately 40 kilometers. The client was set up
in a residential apartment and linked to the Internet via an ADSL connection. The raw bandwidth achieved
end-to-end between the Yima client and servers was approximately 1 Mb/s9.

Our test media was encoded with an MPEG-4 software codec called “DivX;-)” [Hib01]. The high

9The ADSL provider did not guarantee any minimum bandwidth but stated that 1.5 Mb/s will not be exceeded.
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Hop # Router

1 user-2iniv81.dialup.mindspring.com (165.121.125.1)
2 207.69.228.1 (207.69.228.1)
3 s4-1-1.lsanca1-cr1.bbnplanet.net (4.24.24.13)
4 p2-1.lsanca1-ba1.bbnplanet.net (4.24.4.5)
5 p0-0-0.lsanca1-cr3.bbnplanet.net (4.24.4.18)
6 s0.uscisi.bbnplanet.net (4.24.40.14)
7 usc-isi-atm.ln.net (130.152.128.2)
8 rtr43-18-gw.usc.edu (128.125.251.210)
9 rtr-gw-1.usc.edu (128.125.254.1)

10 zanjaan.usc.edu (128.125.163.158)

Table 3: End-to-end route from one Yima client (located in West Covina, California, connected via an ADSL
line) to the Yima server (USC campus, Los Angeles). The distance between the two locations is approx. 40
km.
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Fig. 11a: Raw data loss. Fig. 11b: Effective data loss.

Figure 11: The raw and effective packet loss for a MPEG-4 encoded movie segment of 10 minutes. The
average declines from 0.365% to 0.098% with packet retransmissions.

compression ratio of MPEG-4 allows for near NTSC quality video transmissions at less than 1 Mb/s
bandwidth requirement, suitable for a residential ADSL connection. For example, our test stream was
encoded with a frame size of 720 < 576 pixels and 25 frames per second (fps). The stream required an
average of 105 KB/s (840 Kb/s) bandwidth for both the video and audio layers (audio was encoded in
MPEG-1 Layer 3 format); the bit rate of a 10 minute video segment is shown in Fig. 2. This compares
favorably with MPEG-1 which would require 1.5 Mb/s for a lower video resolution of 320 < 240 pixels at 30
fps.

We have conducted several end-to-end video streaming playback tests with the physical setup described
in the previous paragraphs and the selective retransmission scheme presented in Sec. 5. Figs. 11a and 11b
illustrate the reduction in lost data from an average of 0.365% to 0.098% with this protocol in our test system.
Note that the loss characteristic of a real network link is very bursty (as illustrated in Fig. 11a) as compared
with the uniform approximations of Eqs. 3 and 4. Hence, the real reduction of the loss rate is less dramatic
than would be expected from the analytical equations. However, in practice the protocol worked very well
and some of the loss peaks are completely eliminated while others are reduced significantly.

The visual and aural quality of an MPEG-4 encoded movie at less than 1 Mb/s is surprisingly good. Our
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test movie, encoded at almost full NTSC resolution, displayed some slight blocking artifacts during complex
scenes that can be attributed to the high compression ratio. If a highly compressed movie is streamed over
a network and packets are lost, then artifacts are visible. In our setup, because of the low packet loss rate,
almost no degradation of the movie was noticeable compared with its local playback.

7 Conclusions and Future Work

Yima is a second generation scalable real-time streaming architecture, which incorporates results from
first generation research prototypes, and is consistent with industry standards. By separating the physical
disk subsystem used for data storage from logical storage units used for retrieval scheduling, Yima can
support heterogeneous magnetic disks and can achieve fault-tolerance. By utilizing a pseudo-random block
assignment technique, we are able to reorganize data blocks efficiently when new disks are added or
removed. Furthermore, Yima has a rate-control ~ �)���������5� ~ that can be utilized by a control

	�2&�������
such as

Super-streaming, to speedup and slowdown streams. Finally, it supports inter-stream synchronization.

In this article, we explained and compared two alternative designs for Yima: master-slave and bipartite.
The former was implemented by porting an operational single-node server (i.e., Darwin Streaming Server)
as a component on top of our distributed file server architecture. The advantage of this design as opposed
to several independent single-node servers is its load balancing capabilities by avoiding the partitioning of
the resources. The main disadvantage is that only a single-node (the master node) exists, from the client
perspective, resulting in a bottleneck node and single point of failure. The latter was implemented from
scratch utilizing our own lightweight streaming server components. The bottleneck node was eliminated in
the bipartite design resulting in close to linear scale-up as we increase the number of nodes.

We also demonstrated that Yima is a working prototype. We discussed the details of its high-end client
implementation, the communication protocol and its retransmission component, and Yima’s handling of
variable-bit-rate video. Finally, extensive sets of experiments were conducted to verify different aspects
of our design. The results demonstrated the superiority of Yima-2 in scale-up and rate-control. It also
demonstrated the effectiveness of the incorporated retransmission protocol.

We intend to extend Yima in three ways. First, we intend to co-locate Yima at a data center to stream
several high-resolution audio and video content to our campus. This environment provides us with a good
opportunity to not only perform several intensive tests on Yima but also collect detailed measurements on
hiccup and packet-loss rates as well synchronization differences. Second, we plan to extend our experiments
to support distributed clients from more than one Yima server. We already have three different hardware
setups hosting Yima. By co-locating one Yima server cluster at an off-campus location and the other two
servers in different buildings within our campus, we have an initial setup to start our distributed experiments.
We have some preliminary approaches to manage distributed continuous media servers [SAK01] that we
would like to incorporate, experiment with and extend. Finally, we performed some studies on supporting
other media types, in particular the haptic [SKB � 01] data type. Our next step would be to store and stream
haptic data.
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