
Yoda
Agile Project Management

with
GitHub

Jens Vedel Markussen, Engineering Manager

Hewlett Packard Enterprise

v3

Introduction

Yoda was developed during 2017/2018 at Hewlett Packard Enterprise to
support Agile Project planning and execution for development of a new
innovative product.

GitHub was already in place for source code versioning and issue tracking
(for both bugs and new features).

The ambition was to enhance GitHub to become an all-in-one solution for
Agile Project Planning and Execution.

Yoda augments GitHub by adding estimates and sprint planning to issues.
Further, Yoda brings various tools for issue-reporting and management.

Yoda was Open-Sourced using an MIT license in January 2018.

Content
• Agile Project Management
• Stories, Features, Epics, … in GitHub (issues)
• Sprints in GitHub (milestones)
• Story point estimation in Github Issues
• GitHub issue labelling convention
• Yoda Reporting Tools

• Issue Time Statistics, CFD, Issue Exporter

• Yoda Agile Project Management Tools
• Burndown Chart, Velocity Chart, Kanban Board, Release Notes

• Other Yoda tools
• Milestone Manager, Label Manager, Admin, Task Copy

• Yoda Architecture

Agile Project Management

• Agile project management is becoming an industry de-facto standard

• Project- and product-development happens as a series of sprints.

• Software is released either at the end of each sprint, or every n’th
sprints as a Product Increment (PI).

• Sprints address (user) stories, which are estimates using story points.

• Often SCRUM methodology drives development.

• Different frameworks, e.g. SAFe (Scaled Agile Framework) add
descriptions at higher level than (user) stories to capture required
functionality (Epics, Capabilities, Features).

(User) Stories, etc. in GitHub

• GitHub issues can be used to represent (User) Stories – and as well
Epics, Capabilities, and Features

• GitHub Issues bring many relevant features for this, e.g.
• Web UI, Markdown, graphics, discussions, assignments, labels, lists, file

attachments, references, milestones, etc.…

• GitHub issue references can be used to link descriptions (e.g. stories x
and y required to implement Epic z gives references x<->z and y<->z).
• GitHub does not implement as such hierarchies/break-down of issues

Sprints in Github

 A sprint defines a time period (typically 2-4
weeks) in which a number of (user) stories (as
broken down into tasks) are delivered.

 Yoda uses Github milestones for sprints
• Milestones already have an end/due date.
• Yoda expects to have as well a sprint start date
• Optionally, a team sprint capacity figure (in story

points)

 Milestones with matching titles across
repositories are considered to be part of the
same sprint.
• This allows multi-repository sprint planning and

tracking

Story point estimation in Github Issues
 Github issues for (User) Stories do not have a dedicated field to store estimates

(story points).
• Similarly, no features exists for summing up estimates (into milestones, projects, etc.)
• This seems an obvious omission from GitHub

 Instead Yoda introduces two options for handling estimates into issues:
1. As special text “> estimate (story points)”, in the body (first comment) of the issue
2. Using pre-defined fixed story point labels.

 If using labels, suggest to create labels with Fibonacci-like values
(1,2,3,5,8,13,20,40) as typically done for Story Points.

 Yoda considers as well the remaining effort for an issue. If not provided, the
remaining effort is assumed to be equal to the estimate while the issue is open,
and zero when it is closed.
• If using option 1 above (estimate into issue body), it is possible to specify as well one or more

explicit remaining values using a ”> remaining YYYY-MM-DD (story point value)” syntax.

Estimate example (body text)

Markdown ”> estimate (story point)” format) Resulting preview/HTML

Estimate example (using labels)
Fibonacci Labels

Issue with label estimate

Remaining example
Markdown ”> remaining YYYY-MM-DD (story point)” format)

Resulting preview/HTML

GitHub issue labelling convention

 To get maximum benefit from Yoda, it is important to be consistent
on the use of labels. This is best done by having a labelling
convention.

 Suggestion for a labelling convention is to assign to issues:
• A type label (e.g. Defect, Enhancement, Tasks).

• A severity label (e.g. Urgent, High, Medium, Low).

• Note: These labels are mutually exclusive by
convention not enforced by Github.

• Optionally, use a prefix (e.g. T or S) for different
label enumerations.

Example

Yoda Reporting Tools

Issue Time Statistics, CFD, Issue Exporter

Issue Time Statistics

• This report shows open GitHub issues over time in a bar-chart

• Scope can be issues in the entire organization, or one- or multiple
repositories

• Issues can be split into different bars based on labels (e.g. Severity)

• Issue label filters can be applied

• Start- and end-dates, reporting interval, etc. can be adjusted

• Optionally, number of opened or closed reports during an interval
can be reported instead of # of open issues.

Example: Issue Time Statistics

CFD (Cumulative Flow Diagram)

• A CFD shows cumulative number of issues over time split by state
(open/closed)
• Normally CFD charts may consider more than just two states (e.g. Open, In

design, in development, in test, done/closed).

• As GitHub only has two issue states (open and closed). Yoda CFD only uses
these two states.

• Scope can be issues in the entire organization, or one- or multiple
repositories

• Yoda can also draw the related lead-time graph.
• This shows the average number of days an issue remained in the open state.

CFD Example

Lead Time Example

Issue Exporter

• Yoda Issue Exporter can export issues (all or filtered) to a CSV file,
which can e.g. be imported into Excel.

• Exporter can export from a single repo, multiple repositories or
across all repos for an entire GitHub Organization.

• Set of exported fields are highly configurable.

• The use of a good labelling convention helps (e.g. as the tool
supports merging Severity labels into a single column).

Issue Exporter Example

Release Notes

• Yoda introduces the ability to
generate Release Notes (RN)
based on annotations into issues.
• A release note entry will contain the

issue title, issue number, plus.

• A more detailed description may be
added using the > RN annotation.
• Markdown formatting can be used

• The title wording to be used in the
Release Note may be overwriten
using the > RNT annotation.

Release Notes Tool Sample
Highly configurable in terms of output
Format. Supports HTML, md, rST
Table or list formats.

Can scope multiple repositories and/or
milestones, allowing PI Release Notes
across several sprints.

Yoda Agile Project Management
Tools

Burndown Chart, Velocity Chart, Kanban Board

Burndown Chart

• A Burndown Chart is a bar chart showing the remaining effort over
time for a given sprint

• An ideal burndown line is drawn for comparison

• Yoda uses remaining estimates (see earlier) for this purpose.

• Scope can be issues one- or multiple repositories. This allows cross-
repository planning and tracking

• It is possible to attribute some issues as tentative (aka stretch goal).
These will be drawn in Yellow on top of committed issues

• Yoda Burndown tools further includes a table view containing the
relevant sprint issues and their planning data.

Burndown Example

Burndown Table Example

Velocity Chart

• A velocity chart compares the team velocity across different sprints

• Over time, a velocity chart will help teams to set the correct capacity
for upcoming sprints

• Scope can be issues one- or multiple repositories. This allows cross-
repository planning and tracking

• Yoda does this by reporting per sprint
• number of story points completed

• story points per day

• story points vs. predefined sprint capacity

Velocity Chart Example

Kanban Board

• A Kanban Board shows sprint activities across various states, thus allowing an
intuitive view of progress

• GitHub natively supports Kanban Boards as part of projects, where issues can be
placed in configurable columns

• Yoda does not use this mechanism, but instead supports Kanban Board views of
issues based on issue labels (e.g. Severities, defined Sub-states, issue types)

• Issues may be further filtered based on milestones, labels, and assignee

• Yoda Kanban boards can include issues from multiple repos inside the same
organization.

• Drag and drop between columns change labels and can close (or reopen) issues

• Note: While Yoda Kanban boards provides label and state (open/closed)
consistency, GitHub projects do not. Here issue to column is manually
maintained.

Kanban Board Example

Other Yoda tools

Milestone Manager, Label Manager, Admin, Task Copy

Milestone Manager

• In support of managing sprints as a set of milestones across different
repos, Yoda includes a milestone manager

• The milestone manager can create milestones automatically across
several repositories

• Also, the tool can synchronize sprint milestones across repositories
(updating e.g. due date in sync)

Milestone Manager Example

Label Manager

• In support of managing labelling conventions across different repos,
Yoda includes a label manager

• The label manager can copy labels (all or some) from one repo to
another.

• Label manager does not allow deletion of labels that are in use

• Hint: When creating a new repo, press ”Delete all labels” to get rid of
the standard GitHub labels. Next press ”Copy all Labels” to get label
definitions from your favorite repo.

Label Manager Example

Admin

• The Yoda admin tool allows the user to store various defaults into the
browser settings (localStorage)

• Most notably, the GitHub userId and personal access token should be
set here.

• Typically, good idea to store also default Owner (GitHub organization
or personal GitHub account) and the typical list of repositories

Yoda Admin Example

Task Copy

• When executing successive sprints, you may have recurring tasks that
you need to execute for every sprint.

• These tasks should naturally be handled (including estimates) as
GitHub issues.

• The task copy tool allows you to copy such tasks from one sprint
(milestone) to the next.

• If such recurring issues include tasks lists (GitHub notation ”– [x]
text”), check boxes will be cleared in preparation for the next sprint
(so ”- [x]” will become ”- []”

Task Copy Example

Yoda Architecture

Yoda Architecture

• Yoda has a very simple architecture based on a few key principles:
1. All data will be kept in GitHub – no auxiliary database will be used

2. Yoda executes exclusively in the browser. Yoda has no backend, apart from
GitHub.

3. Yoda communicates with GitHub using the standard API (version 3)

4. Yoda tools are written using only HTML and JavaScript

5. Yoda uses various JavaScript libraries, which are all pulled from the Internet
at cdn.com.

• Other key features:
• Yoda can run against any the default github.com instance or against any

GitHub Enterprise instance.

Thank You

