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Abstract

Human pose estimation is a well-known problem in com-

puter vision to locate joint positions. Existing datasets for

learning of poses are observed to be not challenging enough

in terms of pose diversity, object occlusion and view points.

This makes the pose annotation process relatively simple

and restricts the application of the models that have been

trained on them. To handle more variety in human poses,

we propose the concept of fine-grained hierarchical pose

classification, in which we formulate the pose estimation as

a classification task, and propose a dataset, Yoga-82§, for

large-scale yoga pose recognition with 82 classes. Yoga-

82 consists of complex poses where fine annotations may

not be possible. To resolve this, we provide hierarchical la-

bels for yoga poses based on the body configuration of the

pose. The dataset contains a three-level hierarchy including

body positions, variations in body positions, and the actual

pose names. We present the classification accuracy of the

state-of-the-art convolutional neural network architectures

on Yoga-82. We also present several hierarchical variants

of DenseNet in order to utilize the hierarchical labels.

1. Introduction

Human pose estimation has been an important prob-

lem in computer vision with its applications in visual

surveillance [6], behaviour analysis [12], assisted living [8],

and intelligent driver assistance systems [20]. With the

emergence of deep neural networks, pose estimation has

achieved drastic performance boost. To some extent, this

success can be attributed to the availability of large-scale

human pose datasets such as MPII [4], FLIC [23], SHPD

[6], and LSP [17]. The quality of keypoint and skeleton an-

notations in these datasets play an important role in the suc-

cess of the state-of-the-art pose estimation models. How-

ever, the manual annotation process is prone to human er-

rors and can be severely affected by various factors such as

resolution, occlusion, illumination, view point, and diver-
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Figure 1. Example human poses from the yoga activity.

sity of poses. For example, Fig. 1 showcases some human

pose images for the yoga activity which inherently consist

of some of the most diverse poses that a human body can

perform. It can be noticed that some of these poses are too

complex to be captured from a single point of view. This

becomes more difficult with the changes in image resolu-

tion and occlusions. Due to these factors, producing fine

pose annotations such as keypoints and skeleton for the tar-

get objects in these images may not be possible as it will

lead to false and complex annotations.

In order to solve this problem, we propose the concept of

fine-grained hierarchical pose classification. Instead of pro-

ducing fine keypoints and skeleton annotations for human

subjects which may not be possible due to various factors,

we propose hierarchical labeling of human poses where the

classes are separated by the variations in body postures,

which involve much in their appearances. One important

benefit of hierarchical labeling is that the categorical error

can be restricted to particular subcategories, such that it is

more informative than the classic flat N -way classification.

For example, consider the two yoga poses shown in Fig. 2,

the upward bow pose and the upward facing two-foot staff

pose. The two poses differ in the manner that the upward

Figure 2. The upward bow pose (left) and upward facing two-foot

staff pose (right). Both the poses have same superclass called up-

facing wheel pose.



Table 1. Comparison of human pose datasets.
Datasets #Train #Test Source Target poses

MPII [4] 25,000 - YouTube Diverse

LSP [17] 1,000 1,000 Flickr Sports

LSP-Ext. [18] 1,0000 - Flickr Sports

FLIC [23] 6,543 1,016 Movies Diverse

SHPD [6] 18,334 5,000 Surveillance Pedestrian

Yoga-82 21,009 7,469 Bing Yoga

facing two-foot staff pose puts headstand together with the

upward bow pose. Apart from this, both the poses have

many similarities such as the way in which the back is bent

(wheel pose), the orientation of faces, and the placement of

legs. Therefore, both these poses can be put in a single su-

perclass pose called up-facing wheel pose. An advantage of

this type of label structure is that, once the network learns

that it is a type of up-facing pose, it will not confuse it with

any down-facing poses such as the cat-cow pose which have

a similar wheel type structure. Further separation of the

classes at the lowest level will help the network to focus

on specific parts of the body. For example, the headstand

part of the upward facing two-foot staff pose.

In this work, building on the concept of fine-grained hi-

erarchical pose classification (as discussed above), we pro-

pose a large-scale yoga dataset. We choose yoga activity

since it contains a wide variety of finely varying complex

body postures with rich hierarchical structures. This dataset

contains over 28.4K yoga pose images distributed among 82

classes. These 82 classes are then merged/collapsed based

on the similarities in body postures to form 20 superclasses,

which are then further merged/collapsed to form 6 super-

classes at the top level of the hierarchy (Fig. 3). To the best

of our knowledge, Yoga-82 is the first dataset that comes

with class hierarchy information. In summary, the main

contributions of this work are as follows.

• We propose the concept of fine-grained hierarchi-

cal pose classification and propose a large-scale pose

dataset called Yoga-82, comprising of multi-level class

hierarchy based on the visual appearance of the pose.

• We present performance evaluation of pose recogni-

tion on our dataset using well-known CNN architec-

tures.

• We present modifications of DenseNet in order to uti-

lize the hierarchy of our dataset for achieving better

pose recognition.

Related work. Human pose estimation has been an im-

portant problem in computer vision and many benchmark

datasets have been proposed in the past. Summary of some

of the most commonly used human pose datasets is pre-

sented in Table 1. Many of these datasets are collected

from the sources such as online videos, movies, images,

sports videos, etc. Some of them provide rich label infor-

mation but lack in human pose diversity. Most of the poses

in these datasets ([4], [6], and [23]) are of standing, walk-

ing, bending, sitting, etc. and not even close to comparison

with complex yoga poses (Fig. 1). Chen et al. [6], recently

observed that the images considered for annotations are of

very high quality with large target objects. For example,

in the MPII dataset [4], around 70% of the images consists

of human objects with height over 250 pixels. Thus, with-

out much diversity in human poses and target object size in

these datasets, they can not meet the high-quality require-

ments of applications such as behaviour analysis. Our pro-

posed Yoga-82 dataset is very different from these datasets

in the two aspects discussed above. We choose yoga activ-

ity, which we believe consists of some of the most diverse

and complex examples of human poses. Furthermore, the

images considered from the wild are with different view-

points, illumination conditions, resolution, and occlusions.

Few works have been done on yoga pose classification for

applications such as self training [5, 26, 21, 15]. However

these works involve yoga dataset with a less number of im-

ages or videos and does not consider vast variety of poses.

Hence, they lack in generalization and are far from complex

yoga pose classification.

2. The Yoga-82 Dataset

Data Acquisition. The dataset contains yoga pose images

downloaded from web using the Bing search engine. The

taxonomy about yoga poses (name and appearance) is col-

lected from various websites and books [16, 19, 2, 1]. Both

Sanskrit and English names of yoga poses were used to

search for images and the downloaded images were cleaned

and annotated manually. Every image contains one or more

people doing the same yoga pose. Furthermore, images

have poses captured from different camera view angles.

There are a total of 82 yoga pose classes in the dataset.

The dataset has a varying number of images in each class

from 64 (min.) to 1133 (max.) with an average of 347 im-

ages per class. Some of the images are downloaded from a

specific yoga website. Hence, they contain only yoga pose

with clean background. However, there are many images

with random backgrounds (e.g., forest, beach, indoor, etc.).

Some images only contain silhouette, sketch, and drawing

version of yoga poses and they were kept in the dataset as

yoga pose is more about the overall structure of body and

not the texture of clothes and skin. For the sake of easiness

in understanding and readability, here we use only English

names for the yoga poses. However, Sanskrit names are

available as well in the dataset for reference.

Label Hierarchy and Annotation. Existing pose datasets

(Table 1) available publicly for evaluation do not impose

hierarchical annotations. Hierarchical annotations can be

beneficial for part-based learning in which few parts of
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Figure 3. Yoga-82 dataset label structure. Hierarchical class names at level 1, 2, and 3.

the network will learn features based on the hierarchical

classes. Many hierarchical networks have been observed to

perform better as compared to their baseline CNN models

[28, 9]. Hierarchical annotations are beneficial for learning

the network as they provide rich information to users not

only about the pose names but also about the body postures

(standing, sitting, etc.), the effect on the spine (e.g., forward

bend, back bend in wheel pose, etc.), and others (e.g. down-

facing or up-facing).

Our labels are with a three-level hierarchical structure

where the third level is a leaf node (yoga pose class). There

are 6, 20, and 82 classes in the first-, second-, and third-

levels, respectively as illustrated in Fig. 3. References for

these classes have been collected from websites and books

[24, 16, 19, 2, 1, 3]. There is no established hierarchy in

yoga poses. However, standing, sitting, inverted, etc. are

well defined as per their configuration. In this work, we

have taken guidelines from [24, 16, 19, 2, 1] in order to de-

fine the first level classes and defined a new class (wheel)

based on the posture of the subject’s body in a certain pose.

The second level further divides the first level classes into

different classes as per subject’s body parts configuration.

However, it is hard to define 82 leaf classes in 6 super

classes perfectly. Yet, we have made an attempt to briefly



(a) (b) (c)

(d) (e)
Figure 4. Different variations of the same pose in one class (a)

Extended triangle pose and revolved triangle pose, (b) Hero pose

and thunderbolt pose, (c) Upward bow pose and its variation, (d)

Fish pose and its variation, and (e) Side spilt and front split pose.

describe the 6 first level classes as follows.

Standing: Subject is standing while keeping their body

straight or bending. Both or one leg will be on the ground.

When only one leg is on the ground, the other leg is in air

either held by one hand or free.

Sitting: Subject is sitting on the ground. Subject’s hip will

be on ground or very close to the ground (e.g., garland

pose).

Balancing: Subject is balancing their body on palms. Both

the palms are on ground and the rest of the body is in air.

Subject’s body is not in the inverted position.

Inverted: Subject’s body is upside down. Lower body is

either in air or close to the ground (e.g., plow pose).

Reclining: Subject’s body is lying on the ground. Either

spine (upward facing) or stomach (downward facing) or

side body (side facing) touching or very near to the ground,

or subject’s body is in 180◦ angle (approximately) along-

side ground (e.g, plank poses).

Wheel: Subjects body is in half circle or close to half circle

on ground. In upward facing or downward facing poses,

both the palm and the feet will touch the ground. In others

category, either only hip or stomach will touch the ground;

(a) Inverted poses.

(b) Plank poses.

(c) Standing poses

(d) Balancing poses
Figure 5. Some example of different classes in very similar appear-

ances.

the other body parts will be in air.

All the class levels are shown in Fig. 3. The class names

and their images are based on the body configuration. For

example, forward bend is a second-level class in both stand-

ing and sitting. As it is clear from its name, this class

includes poses where the subject needs to bend forward

while standing or sitting. Similar names are given to the

other second-level classes. The poses that do not fit in any

second-level classes are kept in others (standing), twist (sit-

ting), normal1 (sitting), normal2 (sitting), etc.

Analysis over our Dataset. Some of the poses have vari-

ations of their own. For example, extended triangle pose

and revolved triangle pose, head-to-knee pose and revolved

head-to-knee pose, hero pose, reclining hero pose, etc.

These poses are kept in the same class or different classes

in the third level based on the differences in their visual

appearances. For example, extended triangle pose and re-

volved triangle pose (Fig. 4(a)) are in the same class, while

head-to-knee pose and revolved head-to-knee pose are in

different classes.

Some completely different poses (e.g. hero pose and

thunderbolt pose, side spilt pose and front split pose, etc.)

are kept in same third-level classes as they appear to be very



Table 2. Performance of the state-of-the-art architectures on Yoga-82 using third-level class (82 classes).

Architecture Depth # Params Model size Top-1 Top-5

ResNet-50 50 23.70 M 190.4 MB 63.44 82.55

ResNet-101 101 42.72 M 343.4 MB 65.84 84.21

ResNet-50-V2 50 23.68 M 190.3 MB 62.56 82.28

ResNet-101-V2 101 42.69 M 343.1 MB 61.81 82.39

DenseNet-121 121 7.03 M 57.9 MB 73.48 90.71

DenseNet-169 169 12.6 M 103.4 MB 74.73 91.44

DenseNet-201 201 18.25 M 149.1 MB 74.91 91.30

MobileNet 88 3.29 M 26.7 MB 67.55 86.81

MobileNet-V2 88 2.33 M 19.3 MB 71.11 88.50

ResNext-50 50 23.15 M 186.1 MB 68.45 86.42

ResNext-101 101 42.29 M 340.2 MB 65.24 84.76

Table 3. Classification performances of our three variants. L1, L2, and L3 stand for the first-, second-, and third-level classification,

respectively.

Network # Params
Top-1 Top-5

L1 L2 L3 L1 L2 L3

Variant 1 18.27 M 83.84 85.10 79.35 99.40 97.08 93.47

Variant 2 18.27 M 89.81 84.59 79.08 99.83 97.03 92.84

Variant 3 22.59 M 87.20 84.42 78.88 99.69 97.28 92.66

similar to each other. For example, hero pose and thunder-

bolt pose (Fig. 4(b)) have a minute difference that legs to

be placed near the thighs and under the thighs, respectively.

Other class separations were carefully made using sugges-

tions of three of the authors based on the appearance of the

poses.

Our dataset is very challenging in terms of similarity

between different classes. There are many classes at the

third level that are very similar to each other that are treated

as different poses. For example, inverted poses (level 2)

has poses that differ from each other if the subject is in

inverted position and balancing their body up straight on

hands (handstand pose), head (headstand pose), or fore-

arms (feathered peacock pose) as shown in Fig. 5(a). Sim-

ilarly, plank poses differ from each other based on plank’s

height from the ground and whether its on palms or fore-

arms (Fig. 5(b)). Few similar poses are shown in Fig. 5.

These poses make the dataset very challenging as this is not

covered in any previous pose datasets [5].

3. Experiments

We divide our experiments into two parts. In the first

part, we conduct benchmark experiments on the Yoga-82

dataset. In the second part, we present three CNN architec-

tures that exploit the class hierarchy in our Yoga-82 dataset

to analyze the performance using hierarchical labels.

3.1. Benchmarking Yoga82 Dataset

We evaluate the performance of several popular CNN

architectures on the Yoga-82 dataset that have recently

achieved state-of-the-art accuracies on image recognition

tasks on the ImageNet [7] dataset.

Benchmark models. Table 2 gives a comprehensive list of

network architectures that we used for benchmarking our

Yoga-82 dataset. They are selected such that they differ in

structures, depth, convolutional techniques, as well as com-

putation and memory efficiencies. For example, ResNet

[10, 11] and DenseNet [14] differ in the manner the skip

connections are applied. MobileNet [13, 22] uses separa-

ble convolutions for better computational and memory ef-

ficiency. ResNext [25] uses group convolutions for better

performance and reduces space-time complexity.

Experimental protocol and setting. All our experiments

were conducted on a system with Intel Xeon Gold CPU

(3.60 GHz × 12), 96 GB RAM, and an NVIDIA Quadro

RTX 8000 GPU with 48 GB memory. We used Keras with

Tensorflow backend as the deep learning framework. For

training the networks, we used stochastic gradient descent

(SGD) with momentum 0.9. We started with a learning rate

of 0.003 and decreased it by the factor of 10 when the val-

idation loss plateaus. All weights were initialized with the

orthogonal initializer. We did not apply any data augmen-

tation techniques on the input images. All images were re-

sized to 224 × 224, before feeding into the networks. We

split our dataset into training and testing sets, which contain

21009 and 7469 images, respectively. As mentioned earlier,

we provide train-test splits of the dataset for consistent eval-

uation and fair comparison over the dataset in future.

Results. The results of the benchmark experiments are

shown in Table 2. Both the top-1 and top-5 classifica-

tion accuracies are reported. We observe that deeper net-
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Figure 6. DenseNet-201 modified hierarchical architectures.

works have a clear edge over their shallower versions. For

example, 101-layer ResNet architecture (ResNet-101) out-

performed its 50-layer variant (ResNet-50). Furthermore,

deeper networks with dense skip connections, such as the

DenseNet architectures, performed better than the networks

with sparse skip connections. DenseNet-201 gives the best

performance, achieving top-1 classification accuracies of

74.91% .

3.2. Hierarchical Architectures

Our dataset, Yoga-82, provides a rich hierarchical struc-

ture in the labels, which can be utilized in order to enhance

the performance of pose recognition. Based on [28], we

modify Densenet-201 architecture to make use of the struc-

ture. That is, due to the hierarchical structure, label predic-

tion in any level can be deducted from the third-level pre-

diction results. However, since the hierarchy is based much

on visual similarity between different poses, training with

upper-level labels may help lower-level boost the prediction

in lower-level label, and vice versa.

Variant 1. In this variant, hierarchical connections are

added in DenseNet-201 after DenseBlock 2 and Dense-

Block 3 for class level 1 (6 classes) and class level 2 (20

classes), respectively, as shown in Fig. 6(a). Coarser classes

are classified at the middle layers and finer classes are at the

end layers of the network. The intuition behind this variant

is to utilize hierarchy structure in the dataset. Initial-to-mid

layers learn to classify the first level and the details in the

input image is passed on to next layers for the second-level

classification, and so on. Layers shared by all three levels

(up to DenseBlock 2) learn basic structure of pose and fur-

ther layers refine it for specific details. The branch for the

first-level classification applies batch normalization and the

ReLU activation, followed by global average pooling. The

same applies to the branch for the second-level classifica-

tion. The main branch is for the third-level classification

with 82 classes. Softmax-cross entropy loss is computed

for all three levels and weighted sum is evaluated as the fi-

nal loss as follows:

L =
3∑

i=1

wi

Ni∑

j=1

tij log(yij), (1)

where Ni (i = 1, 2, 3) is the number of labels in level l, i.e.,

6, 20, and 82 for i = 1, 2, and 3, respectively. tij ∈ {0, 1}
is ground truth for label j of level l. yij is the output of the



Figure 7. Activation maps learned using variant 2.

softmax layer. wi is the weight for level i. All weights are

set to one as we consider that all levels are equally impor-

tant.

Variant 2. In variant 1, the first-level classifier does

have access to only DenseBlock 1 and DenseBlock 2 that

comprises of 6 and 12 dense layers, respectively, whereas

DenseBlock 3, which classifies level 2, has 48 dense lay-

ers. Hence, the accuracy of the first-level classifier may be

degraded in variant 1 because of insufficient representation

capability. Since our focus is to classify images into classes

in all three levels correctly, we make branches for the first-

and second-level classifiers from the same position (Fig. 6),

so that the first-level classifier can have more representation

capability. We classify both levels after DenseBlock 3 as

illustrated in Fig. 6(b). Batch normalization, the ReLU ac-

tivation, global average pooling, and loss function are the

same as variant 1.

Variant 3. Another attempt to classify all three levels

equally is made in variant 3. We employ a similar architec-

ture as variant 1, except that we add DenseBlock 5 with 32

dense layers for the first-level classifier branch (Fig. 6(c)).

This variant gives more trainable parameters to the first-

level classifiers while keeping the hierarchical structure of

network. This variant increases the number of parameters

compared to the others.

Results and Discussion. The performances of all three

variants are presented in Table 3 along with the numbers

of parameters. All three variants stem from DenseNet-201

and thus the numbers of parameters differ only because of

the addition of DenseBlock 5 in variant 3. Clearly, the hier-

archical structures boosted the performances. As shown in

Tables 2 and 3, the accuracy of the third-level classifier (82

classes) was boosted from 74.91% to 79.35% with hierar-

chical connections added in DenseNet-201.

We can see that the third-level classifiers (L3 in Table 3)

give similar accuracies varying within 1% in all three vari-

ants. In contrast, we see huge variations in the accuracy

of the first-level classifier. From these results, we may say

that the performance depends more on the number of layers

or the parameters responsible for a certain level classifier

as well as on the number of classes. For example, vari-

ant 1 uses two DenseBlocks (6 + 12 dense layers) for the

first-level classification and three DenseBlocks (6+12+48

dense layers) for the second-level classification. This huge

gap between the numbers of parameters used for the first-

and second-level classification may cause the difference in

performances. This gap is reduced with variant 2 whose

first- and second-level classifiers branch at the same point

(i.e., after DenseBlock 3). As expected, the accuracy of the

first level is less than that of the second level 2 and the ac-

curacy of the second level is less than that of the third level.

Similarly, variant 3 has extra layers added for the first-level

classification. Hence, the accuracies decrease in the order

of the first level to the third level classifiers. Variant 3 in-

creases the performance at the cost of additional parameters

in the network. In conclusion, variant 2 can balance well.

In Fig. 7, we present the class activation maps obtained

from variant 2 using [27]. It can be observed that our model

responded to the person doing a certain pose. Furthermore,

we observe that, for a particular pose, the model focuses

on one or specific parts of the body. For example, for ea-

gle pose (Fig. 7, second column), the model focused on the

configuration of the legs of the person.



4. Conclusion

In this work, we explored human pose recognition from

a different direction by proposing a new dataset, Yoga-82,

with 82 yoga pose classes. We define a hierarchy in la-

bels by grasping the knowledge of body configurations in

yoga poses. In particular, we present a three-level hier-

archical label structure consisting of 6, 20, and 82 classes

in the first to third levels. We conducted extensive experi-

ments using popular state-of-the-art CNN architectures and

reported benchmark results for the Yoga-82 dataset. We

present modified DenseNet architecture to utilize the hierar-

chy labels and get a performance boost as compared to the

flat n label classification. It is evident that hierarchy infor-

mation provided with dataset improves the performance be-

cause of additional learning supervision. It is visible from

results that there is sufficient room for accuracy improve-

ment in yoga pose classification. In future, we will focus on

adding explicit constraints among predicted labels for dif-

ferent class levels.

References

[1] Wikipedia: List of asanas. https://en.wikipedia.

org/wiki/List_of_asanas. 2, 3

[2] Yoga journal. https://www.yogajournal.com/

poses. 2, 3

[3] Yoga sequence builder. https://www.tummee.com/.

3

[4] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and

Bernt Schiele. 2d human pose estimation: New benchmark

and state of the art analysis. In CVPR, pages 3686–3693,

2014. 1, 2

[5] Hua-Tsung Chen, Yu-Zhen He, Chun-Chieh Hsu, Chien-Li

Chou, Suh-Yin Lee, and Bao-Shuh P Lin. Yoga posture

recognition for self-training. In MMM, pages 496–505, 2014.

2, 5

[6] Qiuhui Chen, Chongyang Zhang, Weiwei Liu, and Dan

Wang. SHPD: Surveillance human pose dataset and per-

formance evaluation for coarse-grained pose estimation. In

ICIP, pages 4088–4092, 2018. 1, 2

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In CVPR, pages 248–255, 2009. 5

[8] Philipe Ambrozio Dias, Damiano Malafronte, Henry

Medeiros, and Francesca Odone. Gaze estimation for as-

sisted living environments. In WACV, pages 290–299, 2020.

1

[9] Ruigang Fu, Biao Li, Yinghui Gao, and Ping Wang. CNN

with coarse-to-fine layer for hierarchical classification. IET

Comput. Vis., 12(6):892–899, 2018. 3

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

pages 770–778, 2016. 5

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Identity mappings in deep residual networks. In ECCV,

pages 630–645, 2016. 5

[12] Michael B Holte, Cuong Tran, Mohan M Trivedi, and

Thomas B Moeslund. Human pose estimation and activ-

ity recognition from multi-view videos: Comparative explo-

rations of recent developments. IEEE J. Sel. Topics Signal

Process., 6(5):538–552, 2012. 1

[13] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017. 5

[14] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In CVPR, pages 4700–4708, 2017. 5

[15] Muhammad Usama Islam, Hasan Mahmud, Faisal Bin

Ashraf, Iqbal Hossain, and Md Kamrul Hasan. Yoga pos-

ture recognition by detecting human joint points in real time

using microsoft kinect. In R10 HTC, pages 668–673, 2017.

2

[16] Bellur Krishnamukar Sundara Iyengar. Light on yoga. New

York: Schocken Books, 1965. 2, 3

[17] Sam Johnson and Mark Everingham. Clustered pose and

nonlinear appearance models for human pose estimation. In

BMVC, volume 2, page 5, 2010. 1, 2

[18] Sam Johnson and Mark Everingham. Learning effective hu-

man pose estimation from inaccurate annotation. In CVPR,

pages 1465–1472. IEEE, 2011. 2

[19] Leslie Kaminoff and Amy Matthews. Yoga anatomy. Human

Kinetics, 2011. 2, 3

[20] Manuel Martin, Stephan Stuehmer, Michael Voit, and Rainer

Stiefelhagen. Real time driver body pose estimation for novel

assistance systems. In ITSC, pages 1–7. IEEE, 2017. 1

[21] Sen Qiao, Yilin Wang, and Jian Li. Real-time human gesture

grading based on openpose. In CISP-BMEI, pages 1–6, 2017.

2

[22] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In CVPR, pages 4510–4520,

2018. 5

[23] Ben Sapp and Ben Taskar. Modec: Multimodal decompos-

able models for human pose estimation. In CVPR, pages

3674–3681, 2013. 1, 2

[24] Mark Singleton. Yoga body: The origins of modern posture

practice. Oxford University Press, 2010. 3

[25] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In CVPR, pages 1492–1500, 2017. 5

[26] Santosh Kumar Yadav, Amitojdeep Singh, Abhishek Gupta,

and Jagdish Lal Raheja. Real-time yoga recognition using

deep learning. Neural Comput. Appl., pages 1–13, 2019. 2

[27] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,

and Antonio Torralba. Learning deep features for discrimi-

native localization. In CVPR, pages 2921–2929, 2016. 7

[28] Xinqi Zhu and Michael Bain. B-CNN: branch convolutional

neural network for hierarchical classification. arXiv preprint

arXiv:1709.09890, 2017. 3, 6


