Yoneda Theory for Double Categories

Robert Paré
Dalhousie University
pare@mathstat.dal.ca

July 23, 2011

Introduction

- Basic tenet: The right framework for two-dimensional category theory is that of double categories
- The traditional approach was via:
- 2-categories (like \mathcal{C} at)
- bicategories (like Prof)
- (Weak) double categories are a lot like bicategories
- good because much of the well-developed theory of bicategories can be easily adapted to double categories
- interesting when the theories differ
- the Yoneda lemma is an instance of this
- The Yoneda lemma is the cornerstone of category theory
- categorical universal algebra
- categorical logic
- sheaf theory
- representability and adjointness
- The further development of double category theory depends on understanding the Yoneda lemma in this context
- Not a priori clear what representables should be
- Where do they take their values?
- What kind of "functor" are they?
- These questions lead to the double category Set
- sets, functions and spans
- this is the double category version of the category of sets
- the most basic double category
- Representables are lax functors into Set
- hence the double category $\mathbb{L a x}\left(\mathbb{A}^{\text {op }}\right.$, Set $)$
- a presheaf double category
- understand its properties
- horizontal and vertical arrows
- composition (not trivial)
- completeness
- etc.

(Weak) Double Categories

- Objects
- Two kinds of arrows (horizontal and vertical)
- Cells that tie them together

(also denoted $\alpha: v \longrightarrow w$)
- Horizontal composition of arrows and cells give category structures
- Vertical composition gives "weak categories", i.e. composition is associative and unitary up to coherent special isomorphism (like for bicategories)
- Vertical composition of cells is as associative and unitary as the structural isomorphisms allow
- Interchange holds

The Basic Example: Set

- Objects are sets
- Horizontal arrows are functions
- Vertical arrows are spans
- Cells are commutative diagrams

- Vertical composition uses pullback - it is associative and unitary up to coherent special isomorphism

A Related Example: V-Set

- \mathbf{V} a \otimes-category with coproducts
- Objects are sets
- Horizontal arrows are functions
- Vertical arrows $A \rightarrow B$ are $A \times B$ matrices of objects of \mathbf{V}
- Cells are matrices of \mathbf{V} morphisms
- Vertical composition is matrix multiplication

When $\mathbf{V}=$ Set, \times, we get Set
When $\mathbf{V}=\mathbf{2}, \wedge$, we get sets with relations as vertical arrows

An Important Example: Cat

- Objects are small categories
- Horizontal arrows are functors
- Vertical arrows $\mathbf{A}-\mathbf{B}$ are profunctors, i.e. $\mathbf{A}^{o p} \times \mathbf{B} \longrightarrow$ Set
- Cells

are natural transformations

$$
t: P(-,-) \longrightarrow Q(F-, G-)
$$

Three General Constructions: $\mathbb{V}, \mathbb{H}, \mathbb{Q}$

- For \mathcal{B} a bicategory, $\mathbb{V} \mathcal{B}$ is \mathcal{B} made into a double category vertically, i.e. horizontal arrows are identities
- For \mathcal{C} a 2-category, $\mathbb{H C}$ is \mathcal{C} made into a double category horizontally, i.e. vertical arrows are identities
- For \mathcal{C} a 2-category, $\mathbb{Q C}$ is Ehresmann's double category of "quintets". A general cell is

Lax Functors $F: \mathbb{A} \rightarrow \mathbb{B}$

- Preserve horizontal compositions and identities
- Provide comparison special cells for vertical composition and identities

$$
\phi(\bar{v}, v): F \bar{v} \cdot F v \Rightarrow F(\bar{v} \cdot v), \quad \phi(A): \mathrm{id}_{F A} \Rightarrow F\left(\mathrm{id}_{A}\right)
$$

- Satisfy naturality and coherence conditions, like for lax morphisms of bicategories
There are also oplax, normal, strong, and strict double functors

Examples

- $F: \mathbb{V} \mathcal{B} \longrightarrow \mathbb{V} \mathcal{B}^{\prime}$ is a (lax) morphism of bicategories
- $F: \mathbb{H C} \longrightarrow \mathbb{H C}^{\prime}$ is a 2-functor
- Cat \rightleftarrows Set
- Ob : Cat \longrightarrow Set is lax
- Disc : Set $\longrightarrow \mathbb{C}$ Cat is strong
- $\pi_{0}:$ Cat \longrightarrow Set is oplax normal
$-\mathbf{1} \longrightarrow \mathbb{A}$ is a vertical monad
- $\mathbf{1} \longrightarrow$ Set is a small category
- $\mathbf{1} \longrightarrow$ V-Set is a small V-category

The Main Example: $\mathbb{A}(-, A): \mathbb{A}^{o p} \longrightarrow$ Set

$$
\begin{gathered}
\mathbb{A}(X, A)=\{f: X \longrightarrow A\} \\
\mathbb{A}(v, A)=\left\{\begin{array}{ccc}
X & \xrightarrow{\longrightarrow} & A \\
v \emptyset & \alpha & i_{i d} \\
Y & \xrightarrow[g]{\longrightarrow} & A
\end{array}\right\}
\end{gathered}
$$

The span projections are domain and codomain

- Horizontal functoriality is by composition
- Vertical comparisons

$$
\begin{aligned}
& h(w, v): \mathbb{A}(w, A) \otimes \mathbb{A}(v, A) \Rightarrow \mathbb{A}(w \cdot v, A) \\
& X \xrightarrow{f} A
\end{aligned}
$$

Natural Transformations of Lax Functors

$$
t: F \longrightarrow G
$$

- For every $A, t A: F A \longrightarrow G A$ (horizontal)
- For every $v: A \rightarrow \bar{A}$,

$$
\begin{aligned}
& F A \xrightarrow{t A} G A \\
& \text { Fv } \prod_{\downarrow} t v \quad \emptyset^{G v} \\
& F \bar{A} \underset{t \vec{A}}{\longrightarrow} G \bar{A}
\end{aligned}
$$

- Horizontally natural
- Vertically functorial

Examples

- For lax $\mathbf{1} \longrightarrow$ Set, we get functors
- For lax $\mathbf{1} \longrightarrow \mathbf{V}$-Set, we get \mathbf{V}-functors
- For $\mathbb{V} \mathcal{B} \longrightarrow \mathbb{V} \mathcal{B}^{\prime}$, we get lax transformations which are identities on objects
- For $\mathbb{H C} \longrightarrow \mathbb{H} \mathcal{C}^{\prime}$, we get 2-natural transformations
- Every horizontal $f: A \longrightarrow A^{\prime}$ gives a natural transformation

$$
\begin{aligned}
& \mathbb{A}(-, f): \mathbb{A}(-, A) \longrightarrow \mathbb{A}\left(-, A^{\prime}\right) \\
& X \xrightarrow{x} A \quad \mapsto \quad X \xrightarrow{x} A \xrightarrow{f} A^{\prime}
\end{aligned}
$$

The Yoneda Lemma

Theorem
For a lax functor $F: \mathbb{A}^{o p} \longrightarrow$ Set and an object A of \mathbb{A}, there is a bijection between natural transformations $t: \mathbb{A}(-, A) \longrightarrow F$ and elements $x \in F A$ given by $x=t(A)\left(1_{A}\right)$.

Corollary
Every natural transformation $t: \mathbb{A}(-, A) \longrightarrow \mathbb{A}\left(-, A^{\prime}\right)$ is of the form $\mathbb{A}(-, f)$ for a unique $f: A \longrightarrow A^{\prime}$.

"Application"

The theory of adjoints for double categories was set out in [Grandis-Paré, Adjoint for Double Categories, Cahiers (2004)]. The left adjoint is typically oplax and the right adjoint lax. It is expressed in terms of conjoints in a strict double category \mathbb{D} oub.

Example:

$$
\pi_{0} \dashv \text { Disc } \dashv \mathrm{Ob}
$$

Theorem
For $F: \mathbb{A} \longrightarrow \mathbb{B}$ oplax and $U: \mathbb{B} \longrightarrow \mathbb{A}$ lax, there is a bijection between adjunctions $F \dashv U$ and natural isomorphisms

$$
\mathbb{B}(F-,-) \longrightarrow \mathbb{A}(-, U-)
$$

of lax functors $\mathbb{A}^{0 p} \times \mathbb{B} \longrightarrow$ Set.

Vertical Structure of $\mathbb{L a x}(\mathbb{A}, \mathbb{B})$

For F and G lax functors, $\mathbb{A} \longrightarrow \mathbb{B}$, a module [Cockett, Koslowski, Seely, Wood - Modules, TAC 2003] $m: F \rightarrow G$ is given by the following data.

- For every vertical arrow $v: A \bullet \bar{A}$ in \mathbb{A} a vertical arrow $m v: F A \bullet G \bar{A}$
- For every cell α a cell $m \alpha$

Modules (continued)

- For every pair of vertical arrows $v: A \rightarrow \bar{A}$ and $\bar{v}: \bar{A} \rightarrow \tilde{A}$, left and right actions

satisfying
- Horizontal functoriality
- Naturality of λ and ρ
- Left and right unit laws
- Left, right and middle associativity laws

Examples

- For $\mathbf{1} \longrightarrow$ Set, modules are profunctors
- For $F: \mathbb{A} \longrightarrow \mathbb{B}$ lax, $\mathrm{id}_{F}: F \rightarrow F$ is given by

$$
\mathrm{id}_{F}(v)=\stackrel{F v^{\prime}}{\stackrel{F A}{\downarrow}} \underset{\ddagger}{ } \bar{A}
$$

- (Main Example) For $v: A \rightarrow \bar{A}$ in \mathbb{A}

$$
\begin{aligned}
& \mathbb{A}(-, v): \mathbb{A}(-, A) \rightarrow \mathbb{A}(-, \bar{A}) \\
& \mathbb{A}(z, v)=\left\{\begin{array}{ccc}
X & \\
z \downarrow & A \\
\downarrow & \xi & \vdots v \\
Y & & \bar{A}
\end{array}\right\}
\end{aligned}
$$

Modulations

The cells of $\mathbb{L a x}(\mathbb{A}, \mathbb{B})$ are called modulations following [CKSW]

- For every vertical $v: A \rightarrow \bar{A}$ we are given

satisfying
- Horizontal naturality
- Equivariance

Example: A cell α of \mathbb{A} produces a modulation $\mathbb{A}(-, \alpha)$

The Yoneda Lemma II

Theorem
Let $m: F \bullet G$ be a module in $\mathbb{L a x}\left(\mathbb{A}^{o p}\right.$, Set $)$ and $v: A \bullet \bar{A}$ a vertical arrow of \mathbb{A}. Then there is a bijection between modulations

and elements $r \in m(v)$ given by $r=\mu(v)\left(1_{r}\right)$.

Corollary

For $F: \mathbb{A}^{o p} \longrightarrow$ Set lax, an element $r \in F(v)$ is uniquely determined by a modulation

Corollary
For $v: A \rightarrow \bar{A}$ and $v^{\prime}: A^{\prime} \rightarrow \bar{A}^{\prime}$ in \mathbb{A}, every modulation

$$
\begin{array}{cc}
\mathbb{A}(-, A) \longrightarrow & \mathbb{A}\left(-, A^{\prime}\right) \\
\mathbb{A}(-, v) \downarrow & \\
\downarrow & { }^{\prime} \\
\mathbb{A}(-, \bar{A}) \longrightarrow & \\
& \\
\mathbb{A}\left(-, v^{\prime}\right) \\
& \mathbb{A}(-, \bar{A})^{\prime}
\end{array}
$$

is of the form $\mathbb{A}(-, \alpha)$ for a unique cell $\alpha: v \longrightarrow v^{\prime}$.

Application: Tabulators

A tabulator for a vertical arrow $v: A \bullet \bar{A}$ in a double category is an object T and a cell

with universal properties:
(T1) For every cell

there is a unique horizontal arrow $x: X \longrightarrow T$ such that $\tau x=\xi$

Tabulators: 2-Dimensional Property

(T2) For every commutative tetrahedron of cells

there is a unique cell ξ such that

gives the tetrahedron in the "obvious" way.

Tabulators in $\mathbb{L a x}\left(\mathbb{A}^{o p}\right.$, Set $)$

Let $m: F \bullet G$ be a module. If it has a tabulator, T, we can use Yoneda to discover what it is. By Yoneda, elements of $T A$ are in bijection with natural transformations $t: \mathbb{A}(-, A) \longrightarrow T$ which by T1 are in bijection with modulations

and as $\operatorname{ld}_{\mathbb{A}(-, A)}=\mathbb{A}\left(-, \mathrm{id}_{A}\right)$, such μ are in bijection with elements $r \in m\left(\mathrm{id}_{A}\right)$ by Yoneda II. So we define

$$
T(A)=m\left(\mathrm{id}_{A}\right)
$$

By Yoneda II, elements of $T(v)$ are in bijection with modulations

which correspond to commutative tetrahedra

and this tells us that we must have

$$
T(v)=\left(G v \otimes m\left(\mathrm{id}_{A}\right)\right) \times_{m(v)}\left(m\left(\mathrm{id}_{\bar{A}}\right) \otimes F v\right)
$$

It is now straightforward to check that with these definitions, T is indeed the tabulator.

Lax Double Categories

Also called fc-multicategories, virtual double categories, multicategories with several objects
Like double categories, except vertical arrows don't compose. Instead multicells are given

denoted

$$
\alpha: w_{k}, \ldots, w_{2}, w_{1} \longrightarrow v
$$

Lax Double Categories (continued)

There are identities $1_{v}: v \longrightarrow v$ and multicomposition: for compatible

$$
\beta_{i}: x_{i 1}, \ldots, x_{i l_{i}} \longrightarrow w_{i}
$$

we are given

$$
\alpha\left(\beta_{k}, \ldots, \beta_{1}\right): x_{11}, \ldots, x_{k l_{k}} \longrightarrow v
$$

which is associative and unitary in the appropriate sense.
The composite w_{k}, \ldots, w_{1} exists (or is representable) if there is a vertical arrow w and a special multicell

$$
\iota: w_{k}, \ldots, w_{1} \Rightarrow w
$$

such that for every multicell α as above there exists a unique $\bar{\alpha}: w \longrightarrow v$ such that $\bar{\alpha} \iota=\alpha$.
The composite $w_{k}, \cdot \ldots \cdot w_{1}$ is strongly representable if ι has a stronger universal property for α 's whose domain is a string containing the w 's as a substring.

Multimodulations

A multimodulation

- For each path $A_{0} \xrightarrow{v_{1}} \rightarrow A_{1} \xrightarrow{v_{2}} \ldots \xrightarrow{v_{k}} \rightarrow A_{k}$, we are given

$$
\mu\left(v_{k}, \ldots, v_{1}\right): n_{k} v_{k} \cdot \ldots \cdot n_{1} v_{1} \longrightarrow m\left(v_{k} \cdot \ldots \cdot v_{1}\right)
$$

satisfying

- Horizontal naturality
- Left, right, inner equivariance ($k-1$ conditions)

The Multivariate Yoneda Lemma

Theorem
For $m: F \bullet G$ in $\mathbb{L a x}\left(\mathbb{A}^{o p}, \operatorname{Set}\right)$ and v_{k}, \ldots, v_{1} a path in \mathbb{A}, we have a bijection between multimodulations

$$
\mathbb{A}\left(-, v_{k}\right), \ldots, \mathbb{A}\left(-, v_{1}\right) \longrightarrow m
$$

and elements

$$
r \in m\left(v_{k} \cdot \ldots \cdot v_{1}\right)
$$

Corollary
The composite $\mathbb{A}\left(-, v_{k}\right) \cdot \ldots \cdot \mathbb{A}\left(-, v_{1}\right)$ is represented by $\mathbb{A}\left(-, v_{k} \cdot \ldots \cdot v_{1}\right)$.

Theorem
All composites (k-fold) are representable in $\mathbb{L a x}\left(\mathbb{A}^{o p}\right.$, Set).
Remark: Don't know if they are strongly representable. Don't think so, but we conjecture that they are if \mathbb{A} satisfies a certain factorization of cells condition.

The Yoneda Embedding

$$
\begin{gathered}
Y: \mathbb{A} \longrightarrow \mathbb{L a x}\left(\mathbb{A}^{o p}, \text { Set }\right) \\
Y(A)=\mathbb{A}(-, A) \\
Y(v)=\mathbb{A}(-, v)
\end{gathered}
$$

- Y is a morphism of lax double categories
- It preserves identities and composition (up to iso)
- It is full on horizontal arrows
- It is full on multicells
- It is dense

Density

For $F: \mathbb{A}^{o p} \longrightarrow$ Set construct the double category of elements of F $\mathbb{E}(F)$

- Objects are (A, x) with $x \in F A$
- Horizontal arrows $f:(A, x) \longrightarrow\left(A^{\prime}, x^{\prime}\right)$ are $f: A \longrightarrow A^{\prime}$ such that $F(f)\left(x^{\prime}\right)=x$
- Vertical arrows $(v, r):(A, x) \bullet(\bar{A}, \bar{x})$ are $v: A \bullet \bar{A}$ and $r \in F(v)$ such that $r_{0}=x$ and $r_{1}=\bar{x}$
- Cells are cells α of \mathbb{A} such that $F(\alpha)\left(r^{\prime}\right)=r$

There is a strict double functor $P: \mathbb{E}(F) \longrightarrow \mathbb{A}$
Theorem

$$
F \cong \lim _{\Rightarrow}^{\Rightarrow} Y P
$$

Example: \mathbb{A} Horizontally Discrete

Let $\mathbb{A}=\mathbb{V} \mathbf{A}$ for a category \mathbf{A}.

- For a lax functor $F: \mathbb{V} \mathbf{A}^{o p} \longrightarrow \mathbb{S e t}, \mathbb{E l}(F)$ is also horizontally discrete, i.e. VB. Thus F corresponds to an arbitrary category over $\mathbf{A}, \mathbf{B} \longrightarrow \mathbf{A}$ (Bénabou)
- The representable $\mathbb{A}(-, A)$ corresponds to $A: \mathbf{1} \longrightarrow \mathbf{A}$
- A natural transformation $t: F \longrightarrow G$ corresponds to a functor over A,

Example (continued)

- A module $m: F \rightarrow G$ corresponds to a "profunctor over A "

a cell in \mathbb{C} at
- The representable $\mathbb{A}(-, a)$ corresponds to

- Modulations are commutative prisms
- Thus $\mathbb{L} a x\left(\mathbb{V} \mathbf{A}^{o p}, \operatorname{Set}\right) \simeq \mathbb{C}$ at $/ / \mathbf{A}$

