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ABSTRACT 

Sign Language is a medium for communication used primarily by people who are either deaf or 

mute. People use it to communicate their thoughts, ideas, etc. to the world. Sign language has a 

defined vocabulary, grammar and associated lexicons. There are different types for sign language 

based on geography and context of spoken language such as American Sign Language, British 

Sign Language, Japanese Sign Language, etc. The emphasis of this research is on American Sign 

Language (ASL). 

Communication through sign language can be orchestrated in a variety of ways. There are certain 

words of the spoken language that can be directly represented and interpreted through simple 

gestures. Words like Hello, Mom, Dad, etc. have designated signs or gestures. However, there are 

certain words that don’t have pre-defined signs. In this case, a technique called “Fingerspelling” 

is used to spell the word out using sings for individual alphabets. Typically, fingerspelling is used 

when someone is trying to convey their name.  

Research in the field of sign language interpretation and translation had been sparse prior to the 

introduction of deep learning methods and algorithms. The most common technique for 

interpretation is using Image Processing Algorithms to extract features from orchestrated gestures 

and then using Convolutional Neural Networks to learn these features and increase utility. 

Advances in deep learning have led to the creation of Object Detection Algorithms that, when used 

in conjunction with neural networks, can identify all types of objects. Currently, there is research 

being conducted to identify words from the sign language vocabulary by classifying them as 

objects and making use of such object detection plus neural network combinations. You Only Look 
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Once (YOLO) is one such algorithm that excels in identifying custom objects. It is used in 

conjunction with a neural network architecture known as Darknet.  

People that make use of sign language often need to rely on a translator to convey what they are 

trying to say to a person that does not understand sign language.  Dependency on a translator can 

create issues and potentially render the person incapable of acting independently. The creation of 

a system that can help people use sign language without depending on another person can really 

help them be independent and ignite the confidence to present themselves to the world without any 

fear. 

The focus of this research is to propose a system that can accurately identify the orchestrated 

gesture and map it to the desired word or alphabet in the sign language vocabulary using object 

detection algorithms in conjunction with neural networks, typically the YOLOv3. 
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CHAPTER: INTRODUCTION 

Sign Language is a non-verbal form of communication used by people with impaired hearing and 

speech across the world. Sign language has quickly established itself as a primary language among 

many users in different parts of the world. Sign Language is not an arbitrary language. Rather, it 

has been observed that most sign languages have their own vocabulary and grammatical structure. 

This leads to the belief that sign language possess a lot of similarities with spoken language. People 

that employ sign language have found it to be a gradual learning process. The end of this learning 

process begets an easy, simplified and effective method of communication, specially between 

those that belong to this community of sign language users. 

While sign language users are comfortable with using it as medium for communication between 

each other, there arises an issue when they are to communicate with people that don’t use sign 

language. The conversation between a user of spoken language and sign language is a situation 

that needs to be observed carefully. In most cases, the spoken language user has no idea regarding 

the dynamics of sign language. They lack knowledge about the meanings of signs, related context, 

grammar, etc.  Hence, the sign language user cannot effectively express themselves as the person 

they are talking to has, essentially, no idea about what they are doing. This begets the dependency 

to have a translator act as a moderator in the conversation. The translator is a person that has 

knowledge and high-level understanding of both the spoken language and sign language. Thus, 

the translator can facilitate conversation between both individuals.  

This research is focused on proposing a system that mimics the role of a translator in the situation 

where a user of sign language is verbally communicating with a user of spoken language. It is a 

quantitative assessment of translation with its foundation derived from Neural Networks and 
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Object Detection. The intent is to provide an application that can be used to make sense of sign 

language, especially for those that are unfamiliar with the concept altogether. To understand the 

focus of this research, we shall understand the motivations behind this thesis and then highlight 

the expected goals and outcomes. 

1.1 Motivation 

The dependency on a translator is one of the primary motivating factors for this study. Sign 

language users are constantly wary about the fact that they will be unable to express themselves in 

the absence of a translator. Any attempts to express themselves may also be misunderstood by 

other individuals that can lead to a plethora of unnecessary problems. For instance, public places 

are a prime example where translators will, generally, not be found in abundance. Assuming the 

availability of translators at every corner of the world is unwise (R. Anderson, Wiryana, Ariesta, 

& Kusuma, 2017). Hence, a working model that mimics the role of a translator can help improve 

interaction between individuals.  

An application can also help in education (Adamo-Villani, Heisler, & Arns, 2007). A tool that can 

recognize and translate the fundamentals of sign language can be a great asset in teaching aspirants. 

People who are new or are struggling to learn the language can experiment with this tool at will 

and learn or practice at a pace that they are comfortable with. 

Prior research aimed at object detection (C. Zhang, Platt, & Viola, 2006), gesture recognition 

(Waldron & Kim, 1995) and gesture classification (Kim, Ji, & Lee, 2018), has achieved different 

levels of accuracy when attempting such systems. However, applications were unable to achieve 

desired levels of accuracy, precision and speed due to technological constraints (Waldron & Kim, 

1995). In the last few years, technology has advanced at a rapid rate. This has led to the discovery 
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of many great applications, specifically in the field of object detection and language translation 

(Kadous, 1996) (Chunli, Wen, & Jiyong, 2001) (Aran & Akarun, 2010). This bolsters the 

possibility of a similar breakthrough in the field of sign language translation.  

1.2 Goals 

The objective of this study is to propose a system that can recognize the orchestrated sign or hand 

gesture and provide the correct translation for it in the English language. The study uses the 

vocabulary and rules enforced by the American Sign Language (ASL) (Battison, 1978). Deep 

learning concepts are utilized to create such a system. The framework provided by the You Only 

Look Once algorithm (YOLO) (Redmon, Divvala, Girshick, & Farhadi, 2016), YOLOv3 (Redmon 

& Farhadi, 2018), is utilized for detecting and classifying different signs as depicted in ASL.  

1.3 Research Question 

The guiding research question for this study is to understand whether: 

Is it possible to create an American Sign Language translator using YOLOv3? 

1.4 Limitations 

The limitations of this project are as follows: 

1. The dataset used for this research only contains the ASL signs for the alphabets of the 

English Language (A-Z). 

2. The trained model is susceptible to inconsistency when tested for images that are extremely 

diverse from the images that the models are trained on. 

3. The Word Builder Script is applicable only for images. 
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1.5 Delimitations 

The delimitations of this project are as follows: 

1. The labelling, training and prediction of dynamic gestures for alphabets J and Z is based 

on the final position of the ASL signs for these alphabets. 

2. The dataset is divided into 3 unique clusters. Each cluster is trained independently of the 

other. This is done to avoid issues with memory and to prevent system failure during 

training process. 
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CHAPTER 2: LITERATURE REVIEW 

This section explores the research that has been conducted in the area of sign language translation. 

We start off by discussing the background of American Sign Language (ASL). Next, we briefly 

provide a description of the translation process as defined in computer vision. We then elucidate 

the concept of Object Detection, its several methods and multifarious applications. The emphasis 

is on the You Only Look Once (YOLO) algorithm (Redmon et al., 2016) and how research on sign 

language recognition/translation has been conducted in the past using this algorithm.  

2.1 American Sign Language 

American Sign Language is a derived type of sign language used primarily by deaf people in the 

United States as their medium for communication. ASL is believed to have originated in the early 

1900’s. It has been influenced by several different languages, predominantly the French Sign 

Language (Battison, 1978). Over the years, ASL has evolved into a coherent and consistent 

language defining its own unique vocabulary, grammar and structure. ASL provides a hand gesture 

for each alphabet of the English language(Battison, 1978). However, signs are not limited to just 

alphabets. Rather ASL has evolved to such an extent that many words and phrases of the English 

language can now be represented through hand gestures. Figure 1 (Vogler & Metaxas, 2003) shows 

the signs for alphabets A, S and L as per ASL. Figure 2 (Vogler & Metaxas, 2003) shows the sign 

for I Love You as per ASL.  
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Figure 1 Representation of A, S and L in American Sign Language.  

Figure adopted from (Vogler & Metaxas, 2003). 

 

Figure 2 Representation of I Love You in American Sign Language. 

Figure adopted from (Vogler & Metaxas, 2003). 

At any given moment, an ASL sign consists of five salient aspects, Handshape, Location, Facial 

Expressions, Hand Orientation and Hand Movement (Stokoe Jr, 2005). Each of these factors have 

a direct impact on the meaning of a hand gesture. Based on these factors, ASL signs can be broadly 

classified as Static and Dynamic hand gestures. Static gestures are defined as the signs that don’t 

involve any movement with the hand for a small fraction of time. Figure 3 (Vogler & Metaxas, 

2003) shows the hand gesture for alphabet A in ASL. No movement is involved in explaining the 

meaning of the sign. Dynamic hand gestures involve some form of movement to help express the 

meaning of the sign. Figure 4 (Vogler & Metaxas, 2003) shows the hand gesture for Grandmother. 

The line represents the movement of the hand. This activity of representing the letter, numbers or 
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words of a language through hand gestures is known as Fingerspelling (Wilcox, 1992). This thesis 

concentrates on capturing the essence of fingerspelling through our proposed system.  

 

Figure 3 ASL Gesture for Alphabet A. 

Figure adopted by (Vogler & Metaxas, 2003). 

 

 

Figure 4 ASL Gesture for word Grandmother. 

Figure adopted from (Vogler & Metaxas, 2003). 
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2.2 Sign Language Translation 

Gesture recognition is a small part of a high-level system (Vogler & Metaxas, 2003). This larger 

system is composed of several sequential steps, each having its own associated fields of research. 

Each individual step lays out the foundation for its subsequent steps (Vogler & Metaxas, 2003). 

Therefore, while each step can be explored independently, any advancements in one field, such as 

Object Detection (C. Zhang et al., 2006) (Song, Chen, Huang, Hua, & Yan, 2011), Feature 

Extraction (Ren, He, Girshick, & Sun, 2015), etc. can have a severe impact in all other remaining 

fields of research. The analogous field of research for this larger system is known as Sign Language 

Translation (Vogler & Metaxas, 2003). In the simplest of terms, translation can be defined as the 

process of inferring meaning from a foreign language to a native language. It generally involves 

translating each word of a different language into a more familiar language. Sign language 

translation follows a similar protocol. As is the case with the spoken language, the idea to is to 

interpret the meaning of an orchestrated gesture (Vogler & Metaxas, 2003). This can be understood 

if the people have knowledge about the vocabulary, grammar or contextual rules of sign language. 

Since sign languages can have convoluted rules regarding their use and it is difficult to learn an 

entirely new language, we rely on computer vision to create applications that can help ease this 

process.   

According to Vogler et al. (Vogler & Metaxas, 2003), this process can be understood by the 

following steps. The first step involves capturing the relevant information. This is generally 

achieved by taking images or videos of orchestrated gestures. To add diversity, these are taken in 

batches with each batch exhibiting changes in settings such as location, lighting, orientation, etc. 

The second stage involves feeding these images or videos to a computer. The computer acts as a 
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system that is responsible for providing answers to a given question. In this case, the question 

asked pertains to the detection and classification of gestures. 

Once all information has been inputted in the system, the focus shifts on the task of feature 

detection. Normally, one or more algorithms are used to extract static or dynamic features from 

the given input. These features correspond to the salient information of the gesture within the 

image such as Position of Hands, Facial Expressions, Finger Movement, etc. The final output is a 

feature vector that represents characteristics of a gesture in an input image.  

Once feature vectors have been created, the system has enough information to begin training using 

these vectors. Once training is successful, the system can predict the gestures or signs orchestrated 

in a given image. The information given by the system regarding the predicted sign is dependent 

on the researcher as well as the algorithm or network used for detection and classification purposes. 

Some systems will only output the predicted class of the sign while others, in addition, will 

highlight location of the sign, confidence for prediction, etc. in the given image.    

The final step involves coherent and cohesive translation. Remember, the process is not complete 

until we can make sense of the output. The end goal is to always have the user of such a system 

understand the meaning of a given sign. Typically, this step focuses on providing a textual list of 

all orchestrated signs in the specific order that they were conducted. Sophisticated applications 

will convert this textual list into audio and allow people to hear the meaning of the sign in real-

time.  

The goals of this research are layered between the steps of recognition and translation. We 

concentrate on proposing a system that can perform both tasks instantaneously. 
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2.3 Object Detection 

Object Detection is one of the most versatile research areas in the field of computer vision (C. 

Zhang et al., 2006). It has become the building block for several real-world applications such as 

Object Tracking, Autonomous Driving, Face Detection, Video Surveillance, etc. Object Detection 

is the task of detecting a custom object in some form of graphical media such as an image, video, 

etc (Wikimedia, 2008). These images or videos can either contain multiple objects or a few objects 

at multiple locations. The task is not limited to just listing the different objects that are there. It 

also involves providing information regarding the location of the object in the image. This is 

usually accomplished by providing the coordinates of the object in the image. Additional 

information may also include a bounding box that specifies the location as well as the probability 

with which the object was detected.  

Detection is often clubbed with classification (Fasel, Fortenberry, & Movellan, 2005) (Song et al., 

2011) (Redmon et al., 2016). Both tasks have been known to be simultaneous as opposed to 

sequential. Typically, most algorithms or networks will not train inputs without the information 

regarding the different classes of objects that can exist in the training data. While training itself 

may become a tedious task, it has been noticed that newer algorithms can drastically decrease their 

computational load and provide results faster due to this information being fed to the system. The 

inception of object detection started in the early 1960’s, but accuracy was a major concern and 

results were considered to be subpar (C. Zhang et al., 2006) (Ren et al., 2015) (Redmon et al., 

2016). In addition, there was not enough technological support to implement high scale projects 

for real-time applications.  
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2.3.1 Deep Learning 

Deep Learning is an application of Machine Learning that attempts to replicate the functioning of 

a human brain (Deng & Yu, 2014). The emphasis is on duplicating the cognitive and decision-

making abilities of the human mind, neurons to be specific, and create a system that can work at 

the same level and capacity. The human brain is capable of observing intricate details about an 

object and learning from these subtle nuances to create a sense of understanding regarding the 

differences between multiple objects. Inference gathered and conclusions made regarding these 

objects are then stored in the memory. By using information stored in the memory, the brain can 

now detect the same object even in different settings. The objective of deep learning is to mimic a 

similar mechanism, create a network that can learn from the information provided to it and serve 

a purpose using all learned details (Ngiam et al., 2011) (Deng & Yu, 2014) .  

2.3.2 Neural Networks Approaches 

The traditional Convolutional Neural Network (CNN) uses a sliding window to search for an 

object in every possible position in the image. However, it is inefficient. This is due to the simple 

fact that different objects can exist in different sizes in the image and thus running the network 

with a pre-determined sliding window size was slowing down the network exponentially. 

RCNN’s were one of the first attempts at improving traditional convolutional neural networks for 

the task of object detection. RCNN’s improved the detection process by creating regions using a 

selective search algorithm. These regions were then passed through a CNN to classify the object 

in the image. Bounding boxes that create these regions are then modified using regression 

techniques (Girshick, Donahue, Darrell, & Malik, 2014). RCNN’s were a great innovation when 

first introduced in the realm of object detection. However, they were unable to generate real time 
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results. They are also largely dependent on the selective search algorithm (Uijlings, Van De Sande, 

Gevers, & Smeulders, 2013). It is observed that there is no process of learning at the stage of region 

creation (bounding box generation), thus there is a high probability of bad regions being generated.  

Faster RCNN’s (Von Zitzewitz, 2017) (Ren et al., 2015) (Girshick et al., 2014) are an advancement 

from conventional RCNN’s. While both methods follow a similar approach, Fast RCNN’s feed 

the entire image as the input to the CNN as opposed to individual regions in conventional RCNN’s. 

The images are used to generate convolutional feature maps. A separate network is used to locate 

regions of interest from the feature map. The regions of interest propose areas in the image where 

it is likely to detect an object. A Pooling layer serves the purpose of resizing regions, which are 

then fed to a hidden layer of the network that predicts the appropriate class of the detected objects. 

Faster RCNN’s are good at detection and provide improved accuracy over RCNN’s but lack real-

time application. In addition, they make use of a two-step network that is complex and may require 

individual training for each network making it computationally expensive.  

You Only Look Once (YOLO) (Redmon et al., 2016), Single Shot Detectors (Liu et al., 2016), etc. 

are a few examples of the approaches that outperform the networks listed above. For the purpose 

of this research, we will not dive into the details of any other framework other than YOLO and its 

different types.  

2.3.3 YOLO 

You Only Look Once (YOLO) is one of the most popularly used advanced object detection model. 

The entire object detection pipeline is combined in a single neural network (Redmon et al., 2016). 

The framework is based on convolutional neural networks that has been modified to 

simultaneously predict bounding boxes, for object detection, and class probabilities, for object 
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classification. The unique name is based off the fact that the network sees the entire image only 

once during training, yet it is able to infer contextual information about the different objects in the 

image as well as their associated class. YOLO boasts of high-speed detection while maintaining 

precision and accuracy (Redmon et al., 2016). It has also shown tremendous results for real-time 

applications due to its low latency. YOLO provides the following advantages over existing 

techniques (Redmon et al., 2016): 

➢ Conventional CNN’s use separate networks for static feature extraction, region 

classification, bounding box prediction, etc. These are all combined into a single network, 

optimizing the entire process for faster and more accurate predictions. 

➢ RCNN’s proposes about 2000 regions using its selective search algorithm that are then 

passed through the network. YOLO proposes approximately 98 bounding boxes per image. 

Thus, it performs the same task with less computation.  

➢ Fast RCNN’s are known to falsely detect background images as objects due to its reduced 

context. YOLO performs far lesser false background detection. In addition, it proves to a 

better method for real-time applications. 

While YOLO provides a better methodology than previous approaches, it still struggles in certain 

aspects. These limitations can be understood as follows (Redmon et al., 2016): 

➢ YOLO is strict with imposing spatial constraints. It is estimated that each grid cell predicts 

only two bounding boxes for one class. This limits the number of objects the model can 

detect.  

➢ Issues regarding generalized objects with varied aspect ratios or configurations. 

➢ Errors regarding bounding box predictions for large and small objects. No clear distinction 

for both types of errors.     
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2.3.4 YOLO9000  

YOLO proved to be a unique, novel approach that could potentially set the tone for future object 

detection applications. Yet, there were some limitations that prevented it from achieving its full 

potential. These limitations were systematically addressed and countered. This new and improved 

system is called YOLO9000 or YOLOv2. The motto is to provide a better, faster and stronger 

architecture (Redmon & Farhadi, 2017). The improvements can be understood as follows: 

➢ YOLO9000 uses the concepts of anchors to make predictions as opposed to the fully 

connected layer in YOLO. Anchors are estimates of the size of bounding boxes. Doing so 

decreases the mean accuracy by 0.4, but it decreases computation cost by 33%. 

➢ Anchor boxes help in increasing recall. The procedure of creating bounding boxes on 

objects in the training set drastically boost the speed of the training process.  

➢ YOLOv2 forces the network to train on images with various resolution sizes. After a fixed 

batch size, the network chooses a new dimension size. YOLOv2 is also capable of running 

at 448x448 resolution, making it a high-resolution classifier. 

2.3.5 YOLOv3 

YOLOv3 is an incremental change to the existing YOLOv2 architecture. The changes are listed as 

follows (Redmon & Farhadi, 2018): 

➢ It makes use of an “objectness score” for each predicting bounding box. This is achieved 

using Logistic Regression. It is done to pick the closest possible option to the ground truth. 

➢ Prediction of classes is also done using logistic classifiers. 

➢ The overall network is much larger than YOLOv2. Residual connections make it a 53-layer 

network. This helps in increasing accuracy.  
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2.4 Related Work on Sign Language 

There has been significant research done on sign language recognition and translation in the pre-

deep learning era. Majority of these were based on techniques such as Hidden Markov Models 

(Lee, Gauvain, Pieraccini, & Rabiner, 1993), Maximum-Likelihood approaches (Siskind & 

Morris, 1996), Hierarchical approaches (Cui, Swets, & Weng, 1995), etc. Research conducted by 

Nam et al. used HMM’s for continuous gesture recognition (Nam & Wohn, 1996). Gao et al. (Gao, 

Fang, Zhao, & Chen, 2004)  propose methods to recognize German sign language using Dynamic 

Time Wrapping (Mustafa, 2014). Braffort (Braffort, 1997) discovered ARGO, a dynamic 

architecture for recognizing French Sign Language. Their research proposed an integration of 

recognition and understanding as opposed to having them as separate steps. Kadous et al. (Kadous, 

1996) worked on recognition of Auslan signs using Power Gloves. Their focus was on using 

computationally inexpensive methods for recognition of 95 isolated signs in the Auslan sign 

language. Chunli W. et al. (Chunli et al., 2001)proposed an isolated recognition system for the 

Chinese Sign Language with more than 5000 unique signs using HMM’s. The breakthrough 

provided by Deep Learning in the field of computer vision stimulated research using neural 

networks. Erenshteyn (Erenshteyn & Laskov, 1996) recognized fingerspelling using neural 

networks. Pugeault et al. (Pugeault & Bowden, 2011) use Microsoft Kinect to capture and translate 

fingerspelling in real time. Waldron et al. (Waldron & Kim, 1995) performed sign recognition for 

a small set of isolated signs using neural networks. Rao et al. (Rao, Syamala, Kishore, & Sastry, 

2018) use a mobile application to provide real-time gesture recognition. They use multiple CNN 

architectures and compare results of metrics such as accuracy, precision, etc. Kim et al. (Kim et 

al., 2018) propose a sign language learning method using Region of Interest segmentation. This is 

implemented using the YOLO detection network. Zhang et al. (Q. Zhang, Zhang, & Liu, 2019) 

propose a continuous gesture recognition algorithm using Channel State Information and 
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YOLOv3. Data acquisition is conducted using CSI-based radio frequencies to generate grey-scale 

images, which are provided as input to the YOLOv3 network.  

Hence, we can notice that there have been significant attempts made at Sign Language Recognition 

in the past. While classical methods such as Hidden Markov Models (C-H Lee, 1993), dominate 

most of these attempts (Vogler & Metaxas, 2003), we can still see a burgeoning interest in utilizing 

neural networks and its associated algorithms to achieve the same task. This thesis is dedicated to 

further that interest using YOLOv3 as its foundation. 
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CHAPTER 3: DESIGN METHODOLOGY 

The methodology employed in this research is adopted from Sajanraj (2018). According to 

Sajanraj (2018), sign language detection using YOLOv3 can be accomplished by training the 

network on pre-labelled images that accurately label the gesture in the image. Their research is 

conducted on Indian Sign Language (Tomkins, 1969). Gestures used to indicate alphabets, number 

or words, in the American Sign Language, are treated as objects. These objects are then passed 

through the YOLOv3 network also knows as Darknet. The network is responsible for detecting 

the location of the object as well as predicting the appropriate class that the object belongs to. The 

class refers to the different alphabets, number or words, in the English Language, that the network 

has been trained on. For words in the English language that don’t have a static gesture associated 

with them in ASL, we assume that Fingerspelling will be employed to enact the respective word. 

Figure 5 shows the methodology. Each individual component is described in this section. 

 

Figure 5 Methodology Flowchart 

3.1 Dataset 

The dataset used for this research consists of images representing each alphabet of the English 

language as depicted in ASL. Figure 6 shows the different images that were used for the purpose 

of training and testing the neural network. The images contain upper/full body of an individual 

making the appropriate ASL sign. The primary reason for using full body images is to help the 
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network learn to isolate the ASL gesture from the body of an individual. This helps reduce and 

eliminate false positives that the network is prone to identifying on the face of an individual. This 

also boosts the applicability of the trained network in a real-world scenario that may consist of 

multiple individuals making multiple ASL gestures. Each image has a resolution of 3024X4032. 

The high resolution is to ensure that the network can clearly learn the differences between each 

individual ASL gesture and the likelihood of finding an ASL gesture in an image, thus helping 

accuracy and precision. There are 26 classes, each representing an alphabet of the English 

language. 

 

    

Figure 6 Sample images from the dataset. The images represent Alphabet B (in ASL) and Alphabet 

V (in ASL). 

3.1.1 Image Labelling  

A fundamental requirement of the YOLOv3 network is the use of pre-labelled images for training. 

The labeller used for this purpose is the Yolo_Label (Kwon, 2018). This labeller allows a user to 
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label multiple objects in the same image. The user-interface is very user friendly. It permits the 

user to select the appropriate object class and create corresponding bounding boxes anywhere in 

the image. Each bounding box has 5 parameters. The first parameter is the class of the object that 

the box is said to represent. The next two parameters are for the centre of the box with respect to 

the dimensions of the image. The last two parameters are the width and height of the box relative 

to the image. This file contains information regarding all objects that have been labelled in the 

image. Once a box is created, the information regarding its position is stored in .txt file (Kwon, 

2018). This file is supplied to the network along with the image when the network is being trained. 

3.2 YOLO Network 

Before we dive into the details of the changes made to the existing network to suit our needs, it is 

important to understand the background of the existing network and the different concepts 

associated with it. These are described as follows. 

3.2.1 YOLO Architecture 

The YOLO algorithm is focused on examining a given input image only once. When it is being 

examined, the network is trying to extract features from the image to create a corresponding feature 

map that can be used to identify objects in a given image. As the feature map is populated with 

more information regarding the subtle nuances of each object, the network gains more confidence 

in predicting objects and their classes in an image. Feature extraction is accomplished using a 

conventional Convolutional Neural Network. The network consists of several convolution layers 

that help in transforming the input image. The network pipeline is shown in Figure 7 (Redmon et 

al., 2016). At the end of the pipeline are two fully connected network layers that are responsible 

for predicting bounding box co-ordinates and object class probabilities. The architecture can be 
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modified as per user requirement. This is generally accomplished by changing the number of 

identifiable objects, the number of batches for training, the anchors for bounding box predictions, 

etc.  

 

Figure 7 YOLO Architecture. The network has 24 convolutional layers followed by 2 fully 

connected layers. 

Figure adopted from (Redmon et al., 2016) 

The YOLO system divides an image into a grid. Each cell contains a portion of the image that may 

or may not contain an object. Typically, an object will occupy more than one cell in the grid. In 

such a scenario, only the grid cell that hosts the centre of an object is said to contain that object. 

This grid cell is thus responsible for predicting the object. This concept is realized by assigning 

bounding boxes to objects that are present in the image. Each bounding box has a confidence score 

associated with it. These scores are a reflection of how confident and accurate the network is while 

predicting that object. Ideally, if there is no object the score should be 0 and if the predicted 

position of the object is at the exact same position as in the original image then the score should 
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be 1. The confidence score is calculated using a concept known as Intersection Over Union (IOU) 

(Redmon et al., 2016). 

  

The bounding box predictions contain 5 parameters. The first two parameters are for the centre of 

the box with respect to the dimensions of the grid cell. The next two parameters are the predicted 

width and height of the box relative to the image. The last parameter is the confidence score. 

Images that are used to train the architecture are labelled in the exact same way as described. Each 

image is labelled with bounding boxes that encapsulate each instance of an object in the image. 

Once a bounding box is drawn, the data regarding the 5 parameters is stored in a corresponding 

.txt file. This file contains information regarding all objects that have been labelled in the image. 

This file is supplied to the network along with the image when the network is being trained. 

Smaller objects might be contained in one cell of the defined gird. Larger objects are more likely 

to be spread across multiple cells of the grid. Generally, the network will allocate an object to a 

cell if it hosts the centre of that object. However, this may be difficult to identify in case of large 

objects. The network may predict the same object multiple times, relative to each grid cell that it 

thinks this object belongs to. This will result in multiple predicted box locations for the same object 

that differ only slightly from each other. This can have a severe impact on accuracy. Figure 8 

(Vogler & Metaxas, 2003) (Redmon et al., 2016)  highlights a scenario where multiple boxes are 

served as results for the same object.  
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Figure 8 The same object with multiple predicted bounding boxes. 

Figure adopted from (Redmon et al., 2016) 

To avoid this issue, the network is equipped with Non-Max Suppression. Non-max suppression is 

used to filter through the predictions made by the network. The objective is to suppress duplicates 

that have low confidence scores. The box with the highest confidence is given priority, assuming 

that higher confidence translates to a stronger prediction. The final output from the YOLO network 

is shown in Figure 9 shows the final output obtained from a YOLO network. 
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Figure 9 Final YOLO Output. 

Figure adopted from (Redmon et al., 2016). 

3.2.2 YOLO9000 Architecture 

YOLO9000 or YOLOv2 was introduced to strengthen the existing YOLO network architecture. 

There were significant changes made to the network with the aim of making it better, faster and 

stronger. One of its most noted accomplishments is the ability to detect over 9000 distinct objects 

while providing similar real-time detection capabilities as its predecessor (Redmon & Farhadi, 

2017).  

The most notable change is the alteration of the convolutional network structure. The new network 

known as Darknet-19 consists of 19 convolutional layers and 5 max-pooling layers. The network 

doubles the feature maps after each pooling step. Figure 10 (Redmon & Farhadi, 2017) shows the 

composition of Darknet-19. Another notable change is the inclusion of Batch Normalization. This 

helps regularize the model and increases overall accuracy.  
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Figure 10 Composition of YOLO9000 or Darknet-19. 

Figure adopted from (Redmon & Farhadi, 2017). 

Anchor boxes are the most significant addition to the network. YOLO uses its fully connected and 

convolutional layers together to predict co-ordinates of bounding boxes. This is very tedious. 

Predicting offsets instead of co-ordinates simplifies prediction and helps the network learn. By 

using anchor boxes, each grid cell now predicts the change in the box dimensions rather than 

predicting absolute height and width. Further improvements can be understood through Redmon 

(Redmon & Farhadi, 2017). Figure 11 (Redmon & Farhadi, 2017) shows the improvement in 

accuracy from YOLO. 
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Figure 11 Transition from YOLO to YOLO9000. 

Figure adopted from (Redmon & Farhadi, 2017). 

3.2.3 YOLOv3 Architecture 

The YOLOv3 architecture follows the same principles as its predecessors. The difference arises in 

its ability to provide a faster and more reliable prediction. This is achieved by making subtle 

changes to the existing YOLO9000 architecture. The most notable change is the addition of more 

layers is the convolutional neural network. The new feature extractor is created to act as hybrid 

that encapsulates residual network architectures onto the YOLO framework. The network is larger 

than Darknet-19 but has several significant shortcut connections. The new network is termed as 

Darknet-53. Figure 12 (Redmon & Farhadi, 2018) shows the structure of Darknet-53. The system 

is said to perform as efficiently as other approaches and has the added advantage of being faster.  
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Figure 12 Composition of Darknet-53. 

Figure adopted from (Redmon & Farhadi, 2018). 

Across all YOLO architectures, classification was implemented using the standard softmax 

classifier. It was noted that many objects tend to have overlapping labels. In such a scenario, 

standard softmax does not provide adequate accuracy, at par with expectations. Hence, standard 

softmax is replaced with independent logistic classifiers (Redmon & Farhadi, 2018). This 

suppresses the assumption that each box, mapping a given object, has exactly one class. Logistic 

classifiers enforce multi-label classification. This is more suited to real-time processing and 

application. A more comprehensive guide to all changes can be found in Redmon (Redmon & 

Farhadi, 2018). 
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3.3 Training 

3.3.1 Gilbreth Architecture 

Gilbreth is Purdue University’s community cluster for running sophisticated applications. It is 

optimized for communities running GPU intensive applications such as machine learning, deep 

learning, artificial intelligence, etc (Purdue). It consists of Dell compute nodes and Nvidia Tesla 

GPU’s with Intel Xeon processors. Each sub-cluster consists of different specifics. Primarily, there 

are 20 cores per node with 256GB of storage available and P100 or V100 GPU’s available for use 

(Purdue).  

3.3.2 Cluster Creation 

A fair number of ASL signs have somewhat overlapping or somewhat similar gestures. The 

similarity can be attributed to factors such as: Number of fingers used to make the sign, Orientation 

of fingers used to make the sign, Orientation of palm, etc.(Stokoe Jr, 2005). This can be understood 

as follows: 

➢ G and Q have the exact same handshape, the difference arising from the orientation of the 

palm. Q has the palm facing downwards whereas G has the palm facing sideways. Figure 

13 shows the difference between the gestures. 

➢ H and U use the same handshape, with two fingers pointing in a specific direction. For H 

the fingers point horizontal whereas for U the fingers are vertical. Figure 14 shows the 

difference between the gestures. 

➢ A and S have the same closed fist orientation with the difference arising from the position 

of the thumb relative to the closed fist. Figure 15 shows the difference between the gestures. 

The same can be noted for alphabets M, N and T. 
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Figure 13 Difference between ASL signs from Alphabets G and Q. G has the fingers pointing 

sideways whereas Q has the fingers pointing downwards. 

  

Figure 14 Differences between ASL signs for Alphabets H and U. H has fingers facing sideways 

whereas U has fingers facing upwards. 

  

Figure 15 Differences between ASL signs for Alphabets A and S. A has the thumb next to the 

index finger whereas S has the thumb over the index and middle fingers of the hand. 
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Several tests were conducted using pre-training models to confirm if the model would indeed find 

it confusing to differentiate between these signs. Each pre-training model was trained for 5 

alphabets, selected at random. The only condition used was to keep the alphabets with somewhat 

similar signs, such as A and S or M and N, in different sets. Tests were conducted with the images 

of all alphabets the model was trained on and the images of alphabets that had similar signs with 

the current alphabet set the model was trained on. The model showed great results for test images 

of alphabets that it was trained on. However, it would also show false positives for test images of 

alphabets that had very similar signs to the alphabets that the model was trained on. For example: 

A small network trained for alphabets A, B, C, D and F, when tested with images of the alphabet 

S, incorrectly marked all images of S with the alphabet A. This bolstered the notion that there was 

an inherent similarity between the ASL signs of alphabets A and S. Therefore, these alphabets 

needed to be trained together so that the model could learn the differences between the ASL signs 

of both alphabets. Similar results were observed for alphabets M and N, M and T, G and Q, etc. 

Therefore, keeping in mind the repetitive nature of results, appropriate clusters of alphabets were 

created for optimal training. Each cluster was trained separately with the images of all the alphabets 

that were deemed a part of that cluster. The specifications of these clusters are as follows: 

➢ Cluster 1: It contains alphabets B, D, E, F, I, J, L, R, V, W, X, Y and Z. The ASL signs 

for these gestures are unique and independent of any other alphabet. All pre-training 

models had no difficulty in correctly identifying these alphabets for a majority of the tests 

conducted. 

➢ Cluster 2: It contains alphabets A, M, N, S and T. These alphabets have very similar ASL 

signs, primarily attributed to the closed fist and spatial positioning of the thumb. 
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➢ Cluster 3: It contains alphabets C, G, H, K, O, P, Q and U. These alphabets have similar 

signs, primarily attributed to the position of fingers, the direction fingers are pointing to 

and the direction the palm is facing. 

3.3.3 Source Fork and Modifications 

The original source code for Darknet is provided by Redmon (Redmon et al., 2016) (Redmon & 

Farhadi, 2018) (Joseph, 2013--2016). This repository primarily defines the structure of darknet 

and its various specifics that are essential for training, testing and implementing pre-trained 

models. A more refined repository is provided by AlexeyAB (AlexeyAB, 2018). This fork adds 

additional features to the existing darknet repository making it easier to use, optimal and efficient. 

A thorough explanation of all changes that need to be made to the configuration of darknet are also 

provided by AlexeyAB (AlexeyAB, 2018). Standard changes are mentioned as follows: 

➢ Changes to the MakeFile to indicate use of GPU’s and OPEN CV. 

➢ Changes to the training file to specify location of custom dataset. 

➢ Changes to the obj.data and obj.names files to incorporate custom dataset. 

➢ Including the modified .cfg file and pre-trained weights file to be used for training.  

3.4 Testing 

Testing is conducted in two phases, first with images and then with videos. In both phases, each 

cluster is tested independently of all other clusters. This is done to ensure that each cluster is 

efficient, accurate and proficient enough to correctly predict and recognize the alphabets that it has 

been trained on. 



39 

3.4.1 Google Colaboratory  

Testing is conducted on Google Colaboratory (Colab) for ease and convenience. Google Colab is 

a large scale project that has transformed the landscape for machine learning and deep learning by 

providing computational hardware that can be used to train small and large neural networks 

(Carneiro et al., 2018). GPU’s provided by Google Colab are extensively being used by researchers 

for various applications (J. Anderson, 2019) (Çavdar & Faryad, 2019). Processing and efficiency 

are not compromised by shifting to Google Colab from the Gilbreth cluster. 

3.5 Word Builder Script 

The world builder is a novel attempt at making sense from the information obtained from the 

network. In the above section, it has been established that the trained models are able to identify a 

given alphabet within an image and video. However, application should not be limited to just 

identifying an alphabet in an image. It is important to gather the results obtained from many such 

images and make sense of the results provided by the trained models. The word builder script 

accomplishes this task by combining the results, identified alphabet, of multiple images when 

supplied as a continuous chain of input to the trained models. This script is only applicable for 

images that require testing and has not been created or tested for videos. Testing is conducted with 

the set of test images that were used to train each cluster.  

The script is created in Python. It primarily parses through the output generated by darknet when 

an image is tested with a trained model. While it is parsing the output, it extracts all information 

related to the alphabet that has been identified by the trained model for that respective image. This 

information contains the identified alphabet and the confidence with which the model has predicted 

the existence of this alphabet in the test image. For example: A: 90%. B: 100%, etc. The extracted 
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information is stored in a dictionary that is then sorted based on the confidence level next to each 

alphabet. The alphabet with the highest confidence score in the dictionary is then concatenated in 

the string, named as Word, that contains the results of all previously tested images. This procedure 

is repeated for each image. Since each cluster has its own unique trained model, each image is 

tested with the weights file (model) of each cluster and results are stored and parsed accordingly. 

This script was tested with unique words such as Drama, Car, Driving, Man, etc. and was 

successful in identifying each word correctly. 
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CHAPTER 4: RESULTS 

4.1 Images 

Testing is conducted in two phases, first with images and then with videos. In both phases, each 

cluster is tested independently of all other clusters. This is done to ensure that each cluster is 

efficient, accurate and proficient enough to correctly predict and recognize the alphabets that it has 

been trained on. The first phase of testing focuses on testing with images derived from the training 

set of images. The images used to train each cluster contain identical images of each alphabet 

trained in that cluster. For example, the alphabet B is trained repeatedly using the same image. 

Before the models were trained, data was split into a 90:10 ratio with 90% of images used for 

training and 10% preserved for testing. This was repeated for each cluster. Each image in these 

test sets share characteristics such as white background, moderate lighting, ASL sign in fixed 

position and no blurred elements in the image. Additional images that had similar characteristics 

but were not directly taken from the training set of images were also included. These images have 

the ASL sign performed at different locations relative to the body of the individual performing the 

ASL sign. This adds diversity to the set of test images. Four standard areas have been highlighted: 

1. ASL sign performed by the right hand with right hand close to the body 

2. ASL sign performed by the right hand with right hand away from the body 

3. ASL sign performed by the left hand with left hand close to the body 

4. ASL sign performed by the left hand with left hand away from the body 

Average Precision for each alphabet in a cluster is noted and these are used to calculate the Mean 

Average Precision (mAP) for the entire cluster. Figure 16 and Figure 17 show the Average 

Precision per alphabet, Mean Average Precision and predictions made by the model for Cluster 1. 
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Figure 18 and Figure 19 show the Average Precision per alphabet, Mean Average Precision and 

predictions made by the model for Cluster 2. Figure 20 and Figure 21 show the Average Precision 

per alphabet, Mean Average Precision and predictions made by the model for Cluster 3. 

 

 

Figure 16 Mean Average Precision (mAP) of Cluster 1. 
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Figure 17 Predictions for Cluster 1. Alphabets B, F, Y and V respectively. 
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Figure 18 Mean Average Precision (mAP) of Cluster 2. 

 

         

Figure 19 Predictions for Cluster 2. Alphabets A, N and S respectively. 
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Figure 20 Mean Average Precision (mAP) of Cluster 3. 

 

          

Figure 21 Predictions for Cluster 3. Alphabets K, C and U respectively. 
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4.2 Video 

The next phase of testing is conducted on videos. Each cluster was tested independently of other 

clusters. Videos primarily contained the alphabets the cluster was trained on. To add diversity, 

some videos contained alphabets the cluster was not trained on. This is done to ensure that minimal 

false positives or true negatives arise during detection. Predictions by darknet are obtained at an 

average of 23 Frames per Second (FPS) for each cluster. Figure 22, Figure 23 and Figure 24 shows 

screenshots of some of the predictions made for each cluster. 

 

 

Figure 22 Prediction for Alphabet B in Cluster 1. 
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Figure 23 Prediction for Alphabet T in Cluster 2. 

 

 

Figure 24 Prediction for Alphabet C in Cluster 3. 
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CHAPTER 5: DISCUSSION 

5.1 Improving the effectiveness of Sign Language Translation using YOLOv3 

Sign language translation using traditional methods has been explored for more than 25 years (Lee 

et al., 1993) (Nam & Wohn, 1996) (Gao et al., 2004). These methods have proven to be useful in 

their restricted domains and have provided adequate results to prove their efficiency and accuracy 

(Chunli et al., 2001) (Vogler & Metaxas, 2003).  However, the era of deep learning has just begun. 

The current study aims to enhance the effectiveness of sign language translation by employing 

deep learning. The application of deep learning techniques in sign language translation is still 

unexplored and nascent. This research emphasizes on using deep learning methods, specifically 

YOLOv3, for achieving sign language translation. The research question particularly targets the 

use of YOLOv3 as the basis of achieving sign language translation. Viewing the translation process 

as a task of object detection and classification provides a unique way of approaching the problem. 

The results of this research provide a mean average precision of 99.2% across the three trained 

clusters, a metric comparable with the results produced by other novel deep learning approaches 

targeting sign language translation. Therefore, the results clearly indicate that YOLOv3 is a 

capable and reliable method for achieving sign language translation. 

Prior research on sign language translation using deep learning reveals that Rao et al. (Rao et al., 

2018) use multiple conventional CNN architectures and create unique sign language translators 

for each architecture. As mentioned in Section 2.3.3, Section 2.3.4 and Section 2.3.5, YOLO 

eliminates the problems encountered with conventional CNN architectures and provides results 

better suited for diverse real-time inputs. Kim et al. (Kim et al., 2018) proposed sign language 

translation using region of interest segmentation. The segmented region is found using YOLO. 
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Post the region is located, the identified region is further processed using a different network to 

classify identified signs. Our current research combines the task of identifying the region of interest 

and classification as simultaneous steps, by implementing the YOLOv3 algorithm. This helps 

improve the efficiency of the network which positively impacts the accuracy, precision and recall 

of the trained models. Zhang et al. (Q. Zhang et al., 2019) propose a gesture recognition algorithm 

using Channel state information to generate gray-scale images which are then provided as input to 

a YOLOv3 network. Our research builds on this idea and eliminates the need to provide gray-scale 

images as input to the YOLOv3 network. Instead, this research uses full color images as input to 

the network and emphasizes on training the network to detect and classify gestures in full color. 

Juan et al. (Figueroa, Sierra, & Arzuaga, 2019) propose a system for real-time ASL recognition 

using YOLOv3. The study conducted by Juan et al. (Figueroa et al., 2019) primarily targets 

detection and classification of ASL gestures in images and videos that contain only the hand 

performing the gesture. Their results prove the capability of the YOLOv3 network for performing 

sign language translation. Our research adds on to the existing body of knowledge with an intent 

to incorporate full-body images for training the network. The results provided in Chapter 4 

reinforce the use of YOLOv3 as a unique, consistent and reliable medium for achieving sign 

language translation and provides an adequate answer to our research question. 

5.2 Division of training set into clusters 

Another key point of discussion is the division of the training set into clusters. This division is 

primarily done to avoid memory errors and system crashes during training. Prior research, using 

traditional methods or deep-learning techniques, focused on creating networks/systems that would 

train an alphabet set, list of words or other specifics altogether (Kim et al., 2018) (Figueroa et al., 

2019). Training is conducted for a large number of classes without the need of dividing them into 
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sub-clusters. It is often speculated that the accuracy and precision of the translation process might 

be affected negatively due to this division (Waldron & Kim, 1995) (Pugeault & Bowden, 2011). 

However, the results of this study proved more effective than expected. Division into clusters 

significantly reduced the size of the training data by dividing into 3 parts. Each network that was 

trained on a specific clusters data was shielded from the heavy load of images that it would have 

encountered had this division not been done. In addition, it boosted the training process as each 

iteration/epoch of training made use of a significantly lower number of images than what would 

have been observed without this division. The results strengthen the notion of dividing training set 

into clusters as it did not impact average precision or mean average precision when trained models 

were tested with images. False positives of alphabets that the cluster was not trained on were 

minimal and had very little confidence scores associated with them. Hence, the trained models 

were proficient enough to recognize alphabets that it wasn’t trained on and refrained from 

providing information regarding them. This can also be observed with the Word Builder script that 

specifically targets this ability of each trained model. Therefore, as future research strives towards 

capturing more signs in ASL that extend to words and phrases of the English language, the size of 

training data will increase exponentially and it can be argued that dividing the training set into 

clusters would prove to be as beneficial as training the entire data set together. 

The results of the study highlight the efficiency and power of the trained models in achieving sign 

language translation. However, it is important to note that there are factors that limit this research. 

The study provides a basis for translation for only the alphabets of the English language, A-Z, as 

depicted in ASL. However, signs for words and phrases that are commonly used by individuals 

are excluded from this study. In addition, the trained models are susceptible to inconsistency when 

tested or images that are extremely diverse from the images the model was trained on. Section 3.1 
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and Section 4.1 provide information about the characteristics of the images used to train and test 

models. Testing with different backgrounds, lighting, other people, etc. can also be conducted to 

assess the level of variance that trained models can handle. Furthermore, a more sophisticated 

application could potentially provide predictions for real-time recognition using computer 

webcams, mobile cameras and other devices. 
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CHAPTER 6: CONCLUSION AND FUTURE WORK 

The study focused on creating and proposing a model that could accurately and precisely predict 

the occurrence of an American Sign Language gesture for an alphabet in the English Language 

using the You Only Look Once (YOLOv3) Algorithm. The training dataset used for this study was 

custom created and was further divided into clusters based on the uniqueness of the ASL sign. 

Three diverse clusters were created. Each cluster was trained with the network known as darknet. 

Testing was conducted using images and videos for fully trained models of each cluster and 

Average Precision for each alphabet in each cluster and Mean Average Precision for each cluster 

was noted. An overall mean average precision of 99.2 % was recorded for all clusters. In addition, 

a Word Builder script was created. This script combined the trained models, of all 3 clusters, to 

create a comprehensive system that would create words when the trained models were supplied 

with images of alphabets in the English language as depicted in ASL. Therefore, the research 

question, “Is it possible to create an American Sign Language translator using YOLOv3”, is 

successfully and positively answered. 

The following suggestions, thoughts and ideas can be incorporated for improving and extending 

the proposed model: 

1. Make use of videos for training. These can add diversity to the training data set and allow 

the network to understand the subtle differences between gestures. 

2. Increase the ASL signs that the network can learn and predict. Incorporate words in the 

English language that have designated ASL signs. 

3. If there are no issues regarding memory and system failure, then the entire dataset can be 

trained together instead of being divided into clusters. 
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4. Incorporate different backgrounds, lighting, scenarios, people, etc. in the training dataset 

to increase the efficiency of the trained network and the diversity of testing that the 

network can handle.    
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