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This study examined how small groups of second-grade children developed understandings of the 
concept of congruence while collaboratively exploring and solving problems with dynamic 
representations of triangles using Sketchpad on the iPad. One case study is presented to illustrate 
how young learners can infer geometrical relationships between congruent triangles and co-
construct mathematical strategies to create congruent triangles using these technologies. 
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Introduction 
Congruence is an important mathematical idea for humans to understand the structure of their 

environment. Congruence is embedded in young children’s everyday experiences that allow them to 
develop intuitive senses of this geometric relationship. Understanding the concept of congruence 
provides strong foundations for learning more advanced mathematical processes such as area and 
volume measurement (Huang & Witz, 2011; Wu, 2005). However, prior research has revealed a 
variety of students’ difficulties in learning congruence at both the elementary and secondary grades 
(Clements & Sarama, 2014; Wu, 2005). Wu (2005) claims that the teaching of this concept is focused 
on the static informal definition “congruence is same size and same shape” (p. 5), which does not 
relate congruence to planar transformations, while the precise mathematical definition of the concept 
is based on rotations, translations and reflections. Wu notes that middle-school students have 
difficulties in understanding the precise mathematical definition of congruence and fail to grasp how 
it underlays other mathematical processes. Clements and Sarama (2014) state that the natural 
development of congruence also represents critical challenges for young children because they tend 
to analyze only parts of the shapes (e.g. length of one side) but not the relationships between these 
parts (e.g. lengths of all the sides) and privilege aspects of the shapes that are salient perceptually 
(e.g. orientation) rather than aspects that are mathematically relevant (e.g. number of sides). Thus, 
young children fail when one of the two figures is rotated or flipped or when the figures are unusual 
for them (e.g. long and thin triangles, scalene triangles, hexagons). The authors suggest that 
traditional teaching of geometry in early grades is implemented in rigid ways, which means that 
children are exposed to only prototypical shapes and have little experience with non-examples or 
variants of shapes. Students’ difficulties can endure until adolescence if not well addressed 
educationally, limiting their access to formal mathematics in higher grades (Clements & Sarama, 
2014). Furthermore, although learning congruence is important for the growth of advanced 
mathematical thinking, its teaching has been traditionally relegated to middle school (Huang & Witz, 
2011; Wu, 2005). However, prior research has shown that from birth to 7-8 years of age, children 
spontaneously develop Euclidean geometry knowledge about two-dimensional shapes including 
triangles (Shustermann, Lee & Spelke, 2008) as well as intuitive ideas of congruence (Clements & 
Sarama, 2014). This suggests that second-grade children could engage in informal reasoning about 
congruence and benefit from the early implementation of the concept as groundings for its future 
formal learning. 

Researchers have stressed that utilizing digital interactive technologies in early childhood 
education can promote new ways of mathematical thinking in young learners (Clements & Sarama, 
2014; Hegedus, 2013; Sinclair & Moss, 2012). The use of dynamic geometry software such as 
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Geometer's Sketchpad® (Jackwic, 2009, hereon Sketchpad) could support young children’s 
reasoning on properties of two-dimensional shapes and facilitate their access to more complex 
concepts (Sinclair, deFreitas & Ferrara, 2013; Ng & Sinclair, 2015). The addition of multi-touch 
devices could foster direct interaction with the mathematical configurations and collaborative 
behaviors that, in turn, could support the co-construction of shared mathematical meanings (Hegedus, 
2013). This study posits that combining Sketchpad with the iPad through the application 
Sketchpad®Explorer, could enhance young children’s learning experiences of congruence by helping 
them grasp in a dynamic way what means ‘same shape and same size’, so that they can link these 
properties to continuous geometric motions and to a variety of triangles. Moreover, children could 
work in small groups manipulating the dynamic shapes directly and simultaneously on the iPad, to 
also benefit from gestural expressivity and social interaction. Such an environment could help 
students overcome some of the learning challenges stated above. However, research on early learning 
of congruence is scarce. Furthermore, little is known about how the use of these digital multimodal 
technologies in small groups could benefit young children’s development of foundations on 
congruence. This study aimed to design and implement a sequence of exploratory and problem-
solving activities using Sketchpad on the iPad in order to examine the ways in which small groups of 
young learners reason about and understand congruence ideas while collaboratively working with 
dynamic representations of triangles. The question was: How do small groups of second-grade 
children make sense of the concept of congruence within a collaborative Dynamic Multi-touch 
Geometry Environment? 

Theoretical Framework 
This study is grounded on sociocultural theories of situated learning that see human activity as an 

integral part of the process of knowing that is mediated by both social interaction and cultural 
artifacts, such as digital interactive technologies. The theoretical framework of semiotic mediation 
related to the use of dynamic geometry environments and haptic technologies for the development of 
children’s mathematical reasoning (Moreno-Armella, Hegedus, & Kaput, 2008; Hegedus, 2013; 
Sinclair & Moss, 2012) guided the research. The construct of semiotic mediation is central to 
understand how the use of multimodal technologies can nurture young children’s co-construction of 
understandings about congruence. Sketchpad is a computer micro-world that enables users to 
continuously manipulate and transform, into a drawing-like space, a variety of geometrical objects 
that are pre-defined mathematically (Sinclair & Moss, 2012). Students can utilize the function tool 
dragging and, after any dynamic transformation, these objects preserve their defining mathematical 
properties, even if other characteristics vary. These affordances can mediate children’s access to a 
variety of representations of mathematical objects and ways of thinking about the underlying 
properties (Hegedus, 2013; Sinclair & Moss, 2012). In this study, the dragging tool could mediate 
children’s access to multiple representations of congruent triangles and the discovery of the 
underlying congruence relationship. Multi-touch horizontal tablets allow for physicality of learning, 
multiple inputs and co-location of students, facilitating small-group collaboration and haptic 
representations (Dillenbourg & Evans, 2011; Hegedus, 2013). Mediation of visual dynamic feedback 
and multi-touch input could foster young children’s mathematical inquiry entailing reasoning and 
discovery, as they are able to conjecture and generalize while interacting with peers and the 
technology, as well as richer mathematical discourse, gestural expressivity, and understanding of 
geometric concepts such as congruence. 

Methodology 
The study entailed the design and implementation of an educational intervention strategy based 

on collaborative inquiry and problem solving within a dynamic multi-touch geometry environment 
(hereon DMGE). A sequence of seven activities was implemented in small groups of students for the 
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early learning of congruence and similarity. Thirteen children (7-8 year olds) from five second-grade 
classrooms of a middle-SES public elementary school from Massachusetts, U.S., participated in the 
study. Children included girls and boys from various cultural backgrounds and were organized into 
five groups –two groups of two students and three of three students. This educational strategy was 
implemented as part of the afterschool program. A qualitative multiple-case study research approach 
was the method of inquiry to analyze small-group work on the tasks. This paper focuses on the three 
first activities of the sequence, designed to promote informal understandings of congruent triangles 
from a dynamic and multimodal perspective: Two exploratory activities (one task each one) and one 
problem-solving activity (three tasks). In Activity 1 and Activity 2, children were shown two 
congruent triangles of contrasting colors, and were asked to drag one of them and describe what 
happened with the other triangle. In Activity 1, both triangles could be continuously rotated, resized, 
and translated by dragging one of them, adopting different positions on the screen, but after any 
dynamic transformation the triangles always remained congruent (Figures 1a). In Activity 2, both 
triangles could be continuously transformed by dragging one of them, adopting different orientations 
and positions between them, but they always remained congruent (Figures 1b). In Activity 3, children 
were shown a referent triangle and a non-congruent triangle over a grid, and were asked to make the 
non-congruent triangle identical to the referent triangle (Figures 1c). This activity had three tasks 
with increasing degree of complexity based on the type of triangle (e.g. right, scalene). All the 
activities showed the area of each triangle at the top, which was called the Size Marker tool. 

 
 (a) Activity 1: Exploratory (b) Activity 2: Exploratory (c) Activity 3: Problem II Isosceles 

    

	 	   
Figure 1. Sequence of exploratory and problem-solving activities for congruence. 

The task-based interview with a semi-structured interview protocol was the primary data 
collection method. Each small group of children had one iPad with the activities developed in the 
DMGE and was observed and interviewed while solving each activity. The entire sequence of 
learning took place during four 1-hour sessions, once a week during four consecutive weeks, which 
were fully videotaped, transcribed and codified for analysis. Discourse analysis of children’s 
interactions within each group was the data analysis method (Wells, 1999). The analytical framework 
included: (a) Children’s ways of thinking about congruence (e.g. one or two relationships between 
attributes, discovering congruence invariance, measurement, representation of attributes), (b) 
Collaborative patterns, and (c) Uses of the technology. These aspects were analyzed from children’s 
discourse -utterances, actions, gestures-. Coding consisted of a stepwise iterative process of seeking 
redundancy, using a first cycle-process coding method and a second cycle-pattern coding method. 
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Results 
Partial results from this study are presented in three sections regarding three emergent themes. 

These results are illustrated with excerpts from one case study correspondent to the analysis of 
Nathan and Kevin’s discussions while interacting with each other, the researcher and the DMGE, in 
Activities 1 and 3. This group was selected because children planned the strategy in Activity 3 before 
using it, different to other groups. Actions are presented between braces, gestures underlined between 
brackets, and utterances are presented in normal format (between quotes only within the narrative). 

Dynamism Mediated the Discovery of Congruence Relationships between Triangles 
The first relevant finding of the study is that dynamism mediated young children’s discovery of 

geometric relationships related to congruence of triangles within the DMGE. In Activity 1, I asked 
Kevin and Nathan: “I would like for you to drag the blue triangle (hereon BT) and tell me what 
happens with the pink triangle (hereon PT)”. Initially, children showed an explorative use of the 
dragging function, systematically examining different continuous motions of BT such as turning 
around it, resizing it and, sliding it up and down, and observing the PT’s behavior. When Kevin 
dragged BT up and down several times he began identifying one relationship between attributes of 
both dynamic triangles referred to their same movements as he said “Oh! Now when I move the 
triangle, if you move it up and down {drags BT up-and-down}, that one moves just up and down 
{shows PT} [moves right hand back-and-forth]”. Kevin’ statement implied dynamism as he talked 
about the up-and-down motion of the triangles. Nathan began dragging BT, turning around several 
times and stretching it until the triangles got increasingly bigger or turning around and shrinking it 
until the triangles got increasingly smaller, while Kevin observed the screen. I had asked them to 
explore more, when the following discussion took place.  

Excerpt 1. Case Kevin and Nathan, Activity 1 (BT: Blue Triangle; PT: Pink Triangle). 

1 Kevin: Ok! {Drags BT stretching and shrinking the triangles two times} Oh! May be, I think 
when you move the blue triangle that makes the blue triangle bigger and then also that makes 
the pink triangle bigger and it also moves? 

2 Researcher: Yeah? What do you think Nathan? 
3 Nathan: Whenever you make the blue triangle bigger {drags BT stretching the triangles} or 

smaller {drags BT shrinking the triangles}, they both are always equal, the same size {drags 
BT turning around several times} 

4 Researcher: Yes? Can you show me that? 
5 Nathan: {Drags BT stretching the triangles, shrinking the triangles, turning around the 

triangles, stretching the triangles, shrinking the triangles, translating the triangles} 
6 Researcher: What do you think Kevin about what Nathan says? 
7 Kevin: Um, well like {observes what Nathan does on the screen}, they’re, yeah, they’re always 

like the same size {shows the triangles} and they’re, they both have the same lengths of edges 
[extends two hands as horizontal parallel lines] 

8 Researcher: Can you show me that? I want to see 
9 Kevin: Like they both, they both have the same lengths on the sides {shows one side in PT; then 

shows the correspondent side in BT; then shows another side in PT and the correspondent 
side in BT; then shows the last side in PT and the correspondent side in BT} 

The Excerpt 1 shows that both children began inferring two relationships between attributes of the 
dynamic triangles such as same change of size and same type of movement, for instance when Kevin 
said “Oh! May be I think when you move the blue triangle that makes the blue triangle bigger and 
then also that makes the pink triangle bigger and it also moves?”. They also discovered two invariant 
relationships between attributes of the dynamic triangles such as same change of size and same size, 
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for instance when Nathan said “Whenever you make the blue triangle bigger or smaller, they both are 
always equal, the same size”; or same size and same lengths of the edges as when Kevin said 
“they’re always like the same size and they’re, them both have the same lengths of edges”. Kevin and 
Nathan’ statements implied dynamism as they talked about the triangles’ movements or about their 
changes of size, which are attributes of dynamic triangles. This dynamism mediated the discovery of 
the invariant relationship related to “same size”, which was evidenced in the use of words such as 
“whenever”, “always” or “also”, along with the words “same” and “equal” to make explicit the 
condition that the triangles are always equal because of the same size, independently of the type of 
movement. Although they did not say “same shape”, Kevin talked about the “same length of edges” 
as another attribute different from size. Moreover, further on Kevin was able to specify which were 
the equal edges by showing them by pairs of congruent sides in both triangles. The children found 
out what was invariance in the activity and were able to formulate these relationships in their own 
words as a permanent rule of the two triangles. The Excerpt 1 also shows that the use of the 
technology evolved from exploratory to demonstrative. The children accompanied their statements 
with actions of dragging and gestures (e.g. pointing out) intentionally directed to demonstrate to each 
other and me, as the interviewer, what they were thinking. A collaborative behavior was seen when 
Kevin built on and extended Nathan’s idea about “same size” (Line 7). 

Gestures Mediated the Co-Planning of Strategies to Create Congruent Triangles 
The second relevant finding is that gestural expressivity mediated young children’s collective 

planning of strategies to create congruent triangles within the DMGE. Children used gestures on the 
iPad to represent a congruent triangle and properties of congruent triangles. The Excerpt 2 is a 
discussion from Activity 3, Task 2 (Level II: Isosceles) in which Kevin and Nathan planned a 
strategy to make the green triangle (GT) identical to the purple triangle (PT, see Figure 1c). 

Excerpt 2. Case Kevin and Nathan, Activity 3a (PT: Purple Triangle; GT: Green Triangle) 

1 Nathan: (To Kevin) We can move the F down [points out from GT’s point F towards a place 
down on the grid in front of PT’s point A] and then the D, the E over here [points out from 
GT’s point E towards a place down on the grid in front of PT’s point B] and then the D over 
here [points out from GT’s point D towards a place down on the grid in front of PT’s point 
C]. 

2 Kevin: We have to equal up as there {shows that the Size Marker of the referent triangle PT is 
27 cm.} so, that one {shows PT} is 27 centimeters {shows PT’ Size marker}, and that one… 

3 Nathan: Yeah! 27, so we try to make it 27 [nods] 
4 Kevin: That one is a little thinner so {shows GT} (Inaudible) 
5 Researcher: How do you say Kevin? 
6 Kevin: The purple triangle {shows PT’ Size Marker} is like 27 centimeters [extends 2 fingers on 

PT’s area making a big space between fingers] and that one is only 23.50 centimeters 
[extends 2 fingers on GT’s area making a smaller space between fingers] and this one is a 
little skinnier [extends 2 fingers on GT’s area making a smaller space between fingers] 

7 Researcher: Yeah? 
8 Kevin: Like it is skinnier [extends two fingers on a thin area of a GT’s angle leaving little 

space between fingers] and then is a little fatter at the top [extends two fingers on a wide area 
of a GT’s angle leaving a wide space between fingers] and then gets skinnier [extends two 
fingers on another thin area of a GT’s angle leaving little space between fingers] and that 
one is a little fatter [extends two fingers on a wide area of a PT’s angle leaving a wide space 
between fingers] than that one [extends two fingers on a thin area of a PT’s angle leaving 
little space between fingers]. 
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9 Nathan: It is skinnier over here [extends two fingers on a thin area of a PT’s angle leaving 
little space between fingers] and fatter here, and then gets fatter [extends two fingers on a 
wide area of another PT’s angle leaving a wide space between fingers] 

10 Kevin: That one gets skinnier [extends two fingers on an thin area of a GT’s angle leaving 
little space between fingers] and then gets skinnier again [extends two fingers on another thin 
area of a GT’s angle leaving little space between fingers]. I just think that it’s a little fatter 
{shows PT} than that one {shows GT}. We have to make it {shows GT} the same lengths 
{shows 2 sides of PT} and everything. 

11 Nathan: Yeah! [Nods] 

The Excerpt 2 shows how Nathan and Kevin explicitly discussed a strategy to create a congruent 
triangle before implementing it. The pre-planned strategy consisted of relocating the points of the GT 
and aligning them with the points of the PT (referent). Nathan used hand gestures to represent the 
trajectories of the three GT’s points to become a congruent triangle as well as their new location on 
the grid just in front of the PT, displaying what I call an ‘imagined’ spatial representation of the new 
triangle. This representation implies dynamism, as it involves imagined trajectories of the points. It is 
also embodied, as Nathan used his fingers to show to Kevin the new positions of the points. It also 
implies informal processes of measuring, specifically, the estimation of distances among the points of 
the imagined triangle, and the alignment of the points of the two triangles. As a result, the imagined 
triangle had an approximate shape and size to the PT’s shape and size. Kevin and Nathan also talked 
about another informal measuring component, equaling up the size of the two triangles through the 
use of tools such as the Size Markers of both triangles (Lines 2 & 3). When Kevin began talking 
softly about the triangles’ attributes, I asked him to repeat what he said and he elaborated on his idea 
to explain it (Lines 4 & 5). The children began making explicit attributes of the referent and the non-
congruent triangles by comparing them informally; for example, they compared their shapes using 
words such as “thinner”, “skinnier” and “fatter”. Simultaneously, they utilized hand gestures featured 
by the use of two fingers on the triangles and intended variation of the space between fingers, to 
represent the triangles’ areas or the areas of their angles and to plan equaling up their sides’ lengths 
(Lines 6, 8, 9 & 10). This process of co-planning the strategy revealed how children were aware of 
the relationships between attributes of the two triangles such as equal sizes and equal shapes. Uses of 
the technology were characterized by children’s utilization of special tools to solve problems, for 
instance the grid to imagine the new triangle (Line 1), or the Size Markers to compare sizes (Lines 2, 
3 & 6). Children were less explorative than in Activity 1; the use of their fingers was mainly 
demonstrative so that even without dragging they could represent both trajectories and properties of 
the triangles as discussed above. The Excerpt 2 also shows the emergence of a collaborative pattern 
to co-construct strategies. First, children proposed new ideas to each other, discussed actions of their 
strategy, and explained and justified their ideas demonstrating them to others through gestures (Lines 
1, 6, 8, 9 & 10). Second, children built on each other’s ideas. For instance, Kevin proposed an idea 
and Nathan adopted and extended it (Line 3 & 9), or Kevin expanded a Nathan’s explanation and 
made a conclusion (Line10). 

Informal Measuring as Mathematical Focus of the Co-Creation of Congruent Triangles  
The third relevant finding is that young children used emergent informal ways of measuring as 

the mathematical focus to assure that two triangles had the same shape and size during the collective 
creation of congruent triangles. The Excerpt 3 presents a discussion from the process of 
implementation of Kevin and Nathan’ strategy during Activity 3. 
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Excerpt 3. Case Kevin and Nathan, Activity 3b (PT: Purple Triangle; GT: Green Triangle) 

1 Nathan: {Re-locates GT’s point F on the grid in front of PT’s point A, slides GT’s points D and 
E towards left, slides back them towards right and closes the space between them} 

2 Kevin: {Looks at Size Markers} No! Try to make them both fit {shows Size Markers; then 
makes GT taller, opening space between points D and E} (Triangle is tall but thin) 

3 Nathan: Ok! {Makes GT fatter opening space between point F and points E and D; then makes 
GT taller opening space between D and F} (…) 

4 Kevin: (…) We have to align all with that (to Nathan) {shows the points in PT} 
5 Nathan: I’m trying to {makes GT taller, opening space between points D and E} 
6 Kevin: Let’s make it bigger {shows GT} (GT is on the top-right while PT is on the bottom-left) 
7 Nathan: I’m doing it bigger {smoothly slides point E up-and-down on the grid many times} 
8 Kevin: Move, move this one {shows point D} 
9 Nathan: You can’t move the D. It’s a thing! 
10 Kevin: {Slides points F and D towards left on the grid} 
11 Nathan: 26 {looks at GT, looks at Size Markers} (PT or referent is 27 cm.) 
12 Kevin: {Slides points F and D back towards right} I will move D {Keeps sliding point D} 
13 Nathan: 28 {looks at GT, looks at Size Markers, shows Size Markers} You cannot move D! 
14 Researcher: What are you trying to do? 
15 Kevin: We are trying, we are trying to make it equal, so is like the same {drags GT } 
16 Nathan: One more time {superposes GT’s point D on PT’s point A, GT’s point E on PT’s 

point C, and GT’s point F on PT’s point B}. Then I will move this one over here {slides GT’s 
point F on the same line of PT’s point B locating F in front of B; slides GT’s point D on the 
same line of PT’s point A locating D in front of A} 

17 Kevin: That one, there it goes! {Looks at Nathan moving D} You wanna make it exactly the 
same? 

18 Nathan: Yes! {Slides GT’s point E on the same line that PT’s point C locating E in front of C. 
With finger verifies that C and E are aligned measuring distance among them, and adjusts E} 

19 Kevin: Yeah! {Looks at GT and looks at Size Markers, shows Size Markers} Not, not, move! 
Ok! 

20 Nathan: {Adjusts point F one square on the grid} Yeah! (GT has the same shape) 
21 Kevin: 27 centimeters! {Looks at Size Markers} Ok! (Size Markers show triangles are 27 cm.) 

The Excerpt 3 shows that children implemented and enhanced the strategy they had planned. Their 
first attempt consisted of relocating the points of PT on the grid one by one. However, they aligned 
just one of the GT’s points with one of the PT’s points, using it as the only spatial reference to locate 
the other points (Line 1). Then they adjusted the sides while checking permanently the Size Markers 
(Lines 2-13). The triangles were approximate but not exact in shape and size. The first informal way 
of measuring emerged when Kevin proposed to align all the points of both triangles (Line 4), but 
children did not reach an agreement (Lines 6, 7, 8 & 9). When I asked them what they were trying to 
do (Line 14), Kevin had clear their goal as he said “we are trying to make it equal, so is like the 
same”. Nathan also restarted the task suggesting that he was aware that their strategy did not assure 
that the triangles get the same shape and size (Line 16). Further on, three informal methods of 
measuring emerged. First, Nathan superposed all the points of GT onto the points of PT, which 
produced a congruent triangle (Line 16). Second, he dragged each point of GT towards right, one by 
one, using the x-axis of the grid to align the points of both triangles on the same grid lines (Lines 16 
& 18). Third, he adjusted the sides, measuring with his finger the distances between the points of 
both triangles (Lines 18 & 20). Superposition of two triangles, alignment of the points of two 
triangles using the x-axis and estimation of distances with fingers between the points aligned are 
informal ways of measuring that allowed him to correctly equal up the length of all the sides. Kevin 
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was aware of the value of aligning, so he helped giving ideas and controlling the Size Markers (Lines 
17, 19 & 21). The use of informal measuring and the regular monitoring of the Size Markers helped 
children construct a congruent triangle. The role of the technology was focused on the constructive 
use of the dragging tool and other tools provided to solve the task (e.g. Size Markers, grid, x-and-y 
axes). The collaborative pattern consisted of distributing and coordinating two functions: Nathan 
superposed, aligned, verified distances amongst and adjusted the points of GT while Kevin 
monitored the sizes of the two triangles in the Size Markers until they had equal shape and size. They 
also exchanged relevant information, suggesting ideas and building on each other’s ideas. 

Conclusions 
This paper illustrated an educational strategy envisioned to cross borders among ages/grade 

levels for allowing young children in early childhood education (k-2) to access to complex concepts, 
such as congruence, that are traditionally taught at middle grades. The implementation of the strategy 
involving children’s participation in activities designed in a DMGE, showed three relevant findings: 
(a) mediation of dynamism for discovering invariant geometric relationships between congruent 
triangles, (b) mediation of gestural expressivity for co-planning strategies to create congruent 
triangles, and (c) emergence of informal ways of measuring to assure that two triangles have the 
same shape and size. Children’s collaborative patterns included the use of varied modes for 
conveying ideas (e.g. dragging actions, gestures), building on each other’s ideas and distribution of 
tasks related to the exploration and the solution of the problems. Uses of the dragging tool had three 
functions: explorative, demonstrative and constructive. Children also used others tools such as the 
Size Markers and the grid. The implementation of DMGEs has critical implications for the learning 
of geometric concepts in both schools and informal settings such as afterschool programs. 
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