
ibm.com/redbooks Redpaper

z/OS UNIX Security
Fundamentals

Patrick Kappeler
Finn Christensen

Jean-Marc Darees
Dominique Richard

The explanation of the z/OS UNIX
security model

The use of SAF to achieve
superior security

Professionals’ tips and
recommendations to achieve
superior security

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

z/OS UNIX Security Fundamentals

February 2007

International Technical Support Organization

© Copyright International Business Machines Corporation 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (February 2007)

This edition applies to the z/OS UNIX System Services base component in Version 1, Release 7,
of z/OS (product number 5694-A01)

Note: Before using this information and the product it supports, read the information in
“Notices” on page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The team that wrote this IBM Redpaper. ix
Become a published author . x
Comments welcome. xi

Chapter 1. Overview of the UNIX operating system model 1
1.1 What is UNIX?. 2

1.1.1 The POSIX standards . 2
1.2 The UNIX model of operating system . 3

1.2.1 The UNIX kernel . 4
1.2.2 The UNIX processes . 4
1.2.3 Signals . 5
1.2.4 Virtual memory and memory protection . 5
1.2.5 Shell . 5
1.2.6 The UNIX utilities . 6
1.2.7 The UNIX file system . 6
1.2.8 The /etc directory . 7
1.2.9 Daemons. 8

1.3 The UNIX security model . 8
1.3.1 Accessing UNIX . 8
1.3.2 UNIX users and groups. 8
1.3.3 File and directory permissions . 10

1.4 The z/OS UNIX System Services history . 11

Chapter 2. Overview of z/OS UNIX implementation 13
2.1 z/OS UNIX System Services fundamentals . 14

2.1.1 Dubbing. 15
2.1.2 z/OS UNIX services . 16
2.1.3 z/OS UNIX and z/OS features. 17
2.1.4 Resource Measurement Facility . 20
2.1.5 z/OS UNIX configuration parameters . 21
2.1.6 z/OS UNIX kernel . 21
2.1.7 z/OS UNIX file system. 21

2.2 Securing the z/OS UNIX environment. 26
2.2.1 z/OS UNIX address spaces . 26
2.2.2 HFS and zFS data sets . 29

© Copyright IBM Corp. 2007. All rights reserved. iii

2.2.3 Protecting the BPXPRMxx member . 30
2.2.4 Protecting z/OS UNIX related operator commands 30

2.3 Applications security: UNIX security and z/OS UNIX security. 30
2.4 RACF AIM . 30

Chapter 3. z/OS UNIX users and groups identity management 31
3.1 User identification and authentication in z/OS UNIX 32

3.1.1 User identity implementation. 32
3.1.2 User authentication . 33

3.2 The UID and GID in z/OS UNIX . 34
3.2.1 The OMVS segment in the RACF USER profile 34
3.2.2 RACF group and z/OS UNIX. 37

3.3 Default UID and GID . 38
3.4 Shared UID and GID . 40

3.4.1 Automatic prevention of UID sharing . 40
3.4.2 Allowing assignment of shared UIDs or GIDs 41

3.5 Automatic UID and GID assignment . 42
3.5.1 Specifying automatic assignment of UIDs and GIDs 42
3.5.2 Automatic UID and GID assignment in an RRSF configuration 43

Chapter 4. z/OS UNIX task identity management . 45
4.1 Implementation of the UNIX process and threads concepts 46

4.1.1 The UNIX process. 46
4.1.2 The UNIX thread . 47

4.2 Identities associated with a z/OS UNIX process or thread 48
4.2.1 Real and effective UID and GID . 49
4.2.2 The saved UID and saved GID . 49

4.3 Functions that change the effective UID and GID 49

Chapter 5. The z/OS UNIX security model . 51
5.1 The superuser concept and privileges . 52

5.1.1 The concerns with the superuser concept . 52
5.2 z/OS UNIX implementation of the superuser concept and privileges 53

5.2.1 Reminder on z/OS UNIX identity switching. 53
5.2.2 Authentication of the switched-to user ID . 56
5.2.3 The RACF BPX.DAEMON profile in the FACILITY class 57

5.3 Introducing the controlled environment . 58
5.4 Using surrogate users with z/OS UNIX . 61
5.5 BPX.SERVER . 62
5.6 z/OS UNIX users privilege granularity . 64

5.6.1 BPX.SUPERUSER . 64
5.7 Individual limits in the USER profiles. 65

5.7.1 The UNIXPRIV class of resources . 65
5.8 Some recommendations . 68

iv z/OS UNIX Security Fundamentals

5.9 Other restrictions to superuser authority . 69
5.10 The daemons in z/OS . 69
5.11 Advanced topic: RACF enhanced program security 69

5.11.1 Overview of the principles of operation . 69
5.11.2 Enhanced program security and z/OS UNIX. 71

5.12 A word on IPC security . 71

Chapter 6. z/OS UNIX files security . 73
6.1 z/OS implementation of the Hierarchical File System 74

6.1.1 The z/OS UNIX file systems . 74
6.1.2 Protection of the file system data sets . 75
6.1.3 Mount security. 76

6.2 UNIX files and directories security . 77
6.2.1 The file security packet . 77

6.3 File and directory access control permission bits 81
6.3.1 Default permission bits . 84
6.3.2 The chmod command . 85
6.3.3 Default owning UID and GID. 86

6.4 File and directory access control: Access control list 86
6.5 File and directory access control: Security checks 89

6.5.1 Authorization checking algorithm without using an ACL 90
6.5.2 Authorization checking algorithm with ACL defined 92

6.6 The IRRHFSU utility . 94

Chapter 7. Overview of multilevel security . 97
7.1 The MLS security model . 98

7.1.1 Applying MAC . 98
7.1.2 Security labels. 99
7.1.3 Domination and equivalence of security labels 100
7.1.4 Turning on MLS in RACF . 101
7.1.5 When MLS is on . 101

7.2 MLS and z/OS UNIX resources and users . 102

Chapter 8. Considerations on z/OS UNIX program management 105
8.1 How to link-edit program into HFS files . 106
8.2 Owner information for a z/OS UNIX file. 106
8.3 Extended attributes of an HFS file. 107

8.3.1 Program control bit . 107
8.3.2 APF bit . 108
8.3.3 The shared space bit. 108
8.3.4 The library bit . 109

8.4 The file mode section of the FSP . 109
8.4.1 The non-permission bits . 109
8.4.2 The permission bits . 110

 Contents v

8.5 The sanction list . 111

Chapter 9. Auditing z/OS UNIX. 113
9.1 Overview of auditing options . 114
9.2 File-based auditing options . 115
9.3 Events always audited. 116

9.3.1 RACF classes for auditing. 116
9.4 Auditing for superuser authority and UNIXPRIV class privileges 118
9.5 Auditing reports . 119

Appendix A. BPX. RACF profiles . 121

Appendix B. C/C++ functions and
UNIX System Services callable services 125

Related publications . 127
IBM Redbooks . 127
Other publications . 127
Online resources . 128
How to get IBM Redbooks . 128
Help from IBM . 128

Index . 129

vi z/OS UNIX Security Fundamentals

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2007. All rights reserved. vii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

BookManager®
DB2®
DFS™
IBM®
Language Environment®
Lotus Notes®

Lotus®
MVS/ESA™
MVS™
Notes®
OS/390®
RACF®

Redbooks (logo) ™
Redbooks™
RMF™
System z™
Tivoli®
z/OS®

The following terms are trademarks of other companies:

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

viii z/OS UNIX Security Fundamentals

Preface

This IBM® Redpaper introduces the z/OS® UNIX® security model and
implementation to IBM MVS™ knowledgeable and security-minded users. It
does not address in detail all the wealth of specific security features available in
z/OS UNIX, but rather the base principles of operation and the mechanisms
implementation with setup recommendations.

We assume that the user already has a knowledge of the most commonly used
IBM Resource Access Control Facility (RACF®) setups and commands.
However, we do not provide detailed procedures and explanations about the use
of these commands.

The team that wrote this IBM Redpaper
This IBM Redpaper was produced by a team of specialists from around the world
working in the European Products and Solutions Center (Montpellier, France) on
behalf of the International Technical Support Organization (ITSO) in
Poughkeepsie (U.S.).

Patrick Kappeler led this IBM Redpaper project. For the past 35 years, he has
been holding many international specialist and management positions in IBM, all
dealing with mainframes Technical Support. He is now part of the European
Products and Solutions Support Center, located in Montpellier (France), where
his domain of expertise is the e-business Security on IBM System z™. He has
authored many IBM Redbooks™ and still extensively writes and presents on this
topic.

Finn Christensen is an IBM Senior I/T specialist. He has been an MVS Systems
Programmer for nine years and with the IBM EMEA Cryptographic Competency
Center in Copenhagen for another 15 years. He has made migration tools from
TopSecret and ACF2 to RACF and has done many such migrations in many
countries. He also does penetration tests as a fee service, and regularly presents
on this subject at conferences. He has taken part in many residencies on
mainframe-related security.

Jean-Marc Darees joined IBM in 1984 as an MVS System Engineer. Since this
time, he has held several specialist and architect positions dealing with
mainframe and other technologies supporting customer and internal projects.
He joined the PSSC in Montpellier in 1997, where he now provides consulting

© Copyright IBM Corp. 2007. All rights reserved. ix

and presales technical support in the area of Siebel® CRM infrastructure for
large customers.

Dominique Richard is an IT Specialist in IBM France. He joined IBM in 1982
and was a System Engineer supporting MVS customers in France. Since 2005,
he is part of the European Products and Solutions Support Center, located in
Montpellier (France), where he is involved in benchmarks. He is specialized in
the area of host system security.

Thanks to the following people for their contributions to this project:

Chris Rayns
ITSO, Poughkeepsie Center

Bruce Wells
z/OS Security Server Development

Alain Roger
Pascal Tillard
Montpellier European Products and Solutions Support Center

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

x z/OS UNIX Security Fundamentals

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome
Your comments are important to us!

We want our papers to be as helpful as possible. Send us your comments about
this Redpaper or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 Preface xi

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xii z/OS UNIX Security Fundamentals

Chapter 1. Overview of the UNIX
operating system model

In this chapter, we describe the main characteristics of the UNIX operating
system and we also provide a high-level view of the UNIX security model.

1

© Copyright IBM Corp. 2007. All rights reserved. 1

1.1 What is UNIX?

UNIX is an interactive, multi-user, multitasking operating system, designed in the
70s with the objective of providing a hardware platform independent operating
system, thus allowing users to leverage their investments both in system
programming, system management and application development skills as they
were changing hardware platforms for scalability, quality of services, or for both
these reasons.

Eventually UNIX became the prototype of what is now called an Open System
because, at least in its mind-set, it met today’s Institute of Electrical and
Electronics Engineers (IEEE) definition of an Open System:

“An Open Systems environment is a comprehensive and consistent set of
international information technology standards and functional profiles that specify
interfaces, services, and supporting formats to accomplish Inter operability and
portability of application, data, and people.”

The first version of UNIX was created in 1971. The term UNIX is not itself an
acronym, but it was derived from the acronym of an earlier operating system
called UNiplexed Information and Computing Service (UNICS).

UNIX has been extraordinarily well received in the data processing community; it
happened to become the operating system of choice for small and medium
systems, about a decade before personal computers came to be a commonly
used device. It had the potential robustness that fitted most of the small and
medium enterprises needs, thus leading to the constitution of a huge base of
applications developed according to the UNIX model of operating system.

These days, UNIX is a registered trademark licensed exclusively through The
Open Group. Operating systems may only use the UNIX trademark if they have
been certified to do so by The Open Group, the condition for certification being to
meet with the proposed implementation the thoroughly formalized system model
behavior and to provide the strictly specified applications and user interfaces.

UNIX-compatible operating systems that are not certified by The Open Group
are typically referred to as UNIX-like. For instance, Linux® is a UNIX-like
operating system.

1.1.1 The POSIX standards

The IEEE definition of Open System and the lessons learned with the many
different attempts to provide UNIX-like operating systems led to defining a family
of standards to better define the characteristics of such a platform neutral
operating system: the Portability System Interface (POSIX).

2 z/OS UNIX Security Fundamentals

The POSIX standards cover a wide spectrum of operating system components
ranging from C language and shell interfaces to system administration, and as
such define an application programming interface (API), which could be supplied
not only by UNIX systems but by any other operating systems, as it is the case
for z/OS today, which implements the POSIX defined APIs. Note, however, that
implementations of POSIX can be different in areas such as performance,
availability, and recoverability, resulting in all POSIX-compliant systems not
offering the same environmental characteristics although they all support
basically the same interfaces.

The POSIX standards specify three different areas of compliance:

� POSIX.0: Relates to standards project and draft guide to the POSIX
(p1003.0) Open System Environment.

� POSIX.1: Relates to System Application Program Interface (API) (p1003.1)

� POSIX.2: Relates to Shells and Utilities(p1003.2)

These POSIX standards have been incorporated since then into the XPG4
(X/Open Portability Guides) super-set of standards.

1.2 The UNIX model of operating system

In this section, we describe the main components of the UNIX operating system
model.

As explained in the previous section, UNIX has been designed with portability in
mind. This translated into:

� The operating system code being written in the C language (rather than a
specific assembly language) so that it can easily be moved from one
hardware platform to another.

� Moving an application (or porting) from one hardware platform to another is
generally as simple as transferring the source code, then recompiling it.

UNIX also provides the following operating system features:

� Multitasking with virtual memory support and address spaces isolation.

� All users must be authenticated by a valid account and password to use the
system. Files are owned by particular accounts. The owner can decide
whether others have read or write access to the files he or she owns.

� Tooling and command language for system and application developments.
One peculiar feature of UNIX is the huge amount of different user commands.

 Chapter 1. Overview of the UNIX operating system model 3

� A unified file system to represent data, programs, and any input or output
ports used to transfer data as files, nested in directories, in a hierarchical tree
structure.

� Support for distributed processing.

UNIX has three large functional blocks: The kernel, the shell, and the utilities.
Technically, only the kernel and the shell form the operating system, while the
utilities are intended to make the operating system more immediately useful to
the user.

1.2.1 The UNIX kernel

The kernel is the core of the UNIX operating system. It consists of the collection
of software modules that makes it possible for the operating system to provide
services. The basic services provided by the kernel are:

� Creation and management of processes
� The file system
� The communications system
� The operating system start up processes

The kernel functions are of two broad types: Autonomous and responsive. Kernel
functions, such as allocation of memory and CPU, are performed without being
explicitly requested by user processes, therefore autonomous. Other functions of
the kernel, such as resource allocation and process creation and management,
are initiated by explicit requests from processes.

UNIX users are not required to have some kernel knowledge in order to use the
system.

1.2.2 The UNIX processes

A process is the flow of execution of a set of program instructions and owns, as a
system entity, the necessary resources. Some operating systems, such as z/OS,
call the basic unit of execution a job or task. In UNIX, it is called a process. In the
UNIX kernel, anything that is done, other than autonomous operations, is done
by a process that issues system calls. Processes often spawn other child
processes, using for instance the fork() system call, which usually run in parallel
with their parent process. These are usually subtasks which, when they are
finished, terminate themselves.

All UNIX processes have an owner. Typically, the human owner of a process is
the owner of the account whose login process spawned the initial process parent
of the process chain currently executing. The child process inherits the file
access and execution privileges belonging to the parent.

4 z/OS UNIX Security Fundamentals

Every process in UNIX is identified by a process ID (PID) number.

1.2.3 Signals

Signals are designed for processes to communicate with each other and with the
kernel. The signalling capability is provided by the operating system and is used,
for instance, to inform processes of unexpected external events such as a
timeout or forced termination of a process. A signal consists of a prescribed
message with a default action embedded in it. There are different types of
signals in UNIX, and each type is identified with a number.

1.2.4 Virtual memory and memory protection

UNIX uses paging and swapping techniques similar to z/OS. Each UNIX address
space has its own individual address translation table that thereby ensures
isolation between address spaces.

1.2.5 Shell

The shell is the interactive environment that UNIX users are put in when they log
in to the system. To perform work from the shell, the user enters commands in
the shell screen.

The shell is a command interpreter, that is, it takes each command that is
entered and passes it to the operating system kernel to be acted upon. The
results of the system’s operation is then displayed on the screen. Several
command interpreters, that is several different shells, might be hosted by a UNIX
system for the users to choose from. A user might decide to use the default shell
or override the default to get access to another shell he or she prefers for some
reasons. Some of the more common UNIX shells are:

� Bourne shell (the shell executable has usually a file extension “sh”)
� C shell (csh)
� Korn shell (ksh)
� TC shell (tcsh)
� Bourne Again shell (bash)

Each shell also includes its own command programming language as Time
Sharing Option (TSO) does with the CLIST or REXX languages. Command files,
called shell scripts, can be built and invoked to automatically accomplish a series
of tasks.

There is a graphical shell available for UNIX systems, called X-Windows or
simply X. This graphical user interface (GUI) has all the features found on a
personal computer. In fact, the version used most commonly on modern UNIX

 Chapter 1. Overview of the UNIX operating system model 5

systems (Common Desktop Environment (CDE)), is sponsored by The Open
Group and is intended to give a common GUI look and feel to all open systems.

1.2.6 The UNIX utilities

UNIX includes many utility programs, often invoked as commands, to perform
functions such as:

� Editing
� Maintaining files
� Printing
� Sorting
� Program debug
� Getting systems-related information

1.2.7 The UNIX file system

The UNIX file system hosts the collection of files accessed by the processes
running in the system and is in charge of the logical representation of the data to
the requesting entities. The file system has therefore both a logical and physical
dimension.

The logical file system
The logical file system is in charge of the hierarchy of connected directories and
files as they are shown to the users. The UNIX file system is logically arranged
as a tree, actually inverted with the root, named “/”, at the top. All files are
logically contained within the root directory. See the example shown in Figure 1-1
on page 7, where the shaded boxes represent directories, while the unshaded
boxes represent files. A file or directory is located in the file system tree using a
“path name”; /etc/profile or /u/dirA/dirA1/Dominique are path names.

Note that UNIX is a case-sensitive operating system, therefore a file called “ABC”
is different from a file called “abc”.

6 z/OS UNIX Security Fundamentals

Figure 1-1 Hierarchical file system

The physical file system
The physical file system, as the name implies, is in charge of the physical
arrangement of data and control information about the physical media. The
physical file system operates with control blocks such as the superblock, inodes,
and data blocks. The superblock holds the control information for the system.
Inodes contain similar information for individual files. The data blocks hold the
data that makes up the information in the files.

1.2.8 The /etc directory

Note that the /etc directory has a particular use in UNIX systems as, by
convention, it is expected to host the parameter files used by either the system or
applications.

/

/u/etc

/etc/rc /etc/profile /u/dirA

/u/dirA/dirA1 /u/dirA/dirA2

/u/dirA/dirA1/Dominique

/t

/u/dirA/dirA1/Finn

root directory

 Chapter 1. Overview of the UNIX operating system model 7

1.2.9 Daemons

A UNIX daemon is a program intended to run continuously and to wait for specific
service requests. As the requests arrive, the daemon program forwards them to
processes that it creates as appropriate.

1.3 The UNIX security model

UNIX implements a security model to identify and authenticate individual users
and to determine their access privileges when it comes to accessing the
following resources:

� Directories
� Files
� Interprocess communications (IPC)

1.3.1 Accessing UNIX

To access UNIX interactively, the user has to log in to the same specific user
account. To do so, they use the rlogin (remote login) or telnet services. rlogin
and telnet are similar except that login allows the access request to originate
from a trusted host and does not in that case require a password. The use of
trusted hosts is a rather common practice with UNIX services and is obviously a
potential security exposure. Security-minded organization would rather use
services that always proceed with end user authentication.

UNIX is also case-sensitive when processing user ID and password, therefore
uppercase characters used in the user ID or password are different from the
same characters in lowercase.

1.3.2 UNIX users and groups

A user is the term used to describe an individual entity that requests work to be
performed in a computer system. A group is the term used to describe a list of
users who are associated together by system administration according to
administrative or functional reasons.

In a UNIX system, users are identified with a unique user name and a numeric
value: the UID (see the following section). Likewise, groups of users are also
identified with a numeric value: the GID. Although it is technically feasible to
share the same UID between different users, or the same GID between different
groups, it is generally strongly discouraged to do so.

8 z/OS UNIX Security Fundamentals

The user is also associated to a password value and, in most of the UNIX
system, this value is stored in a file named /etc/passwd. Therefore, this file
requires very special attention regarding its protection against unautorized
access.

UIDs
The user name is an easy-to-remember word, while UID is a number usually
between 0 and 65,535, that is, a 16-bit UID value (some UNIX versions also
support 32-bit UIDs). The UID is used internally to the system to represent the
user’s identity.

The UNIX superuser
The UNIX superuser is a privileged user who has unrestricted access to the
whole system, that is, all commands and all resources regardless of whatever
the setup of access permission is for these resources. The superuser status is
granted to all users with a UID(0). From the historical standpoint, there is a
convention that the user name for the superuser account is root. Do not confuse
the term root here with the root subdirectory in the file system—they are
unrelated.

A superuser, or root account is mostly intended to be in charge of system
administration. A superuser can:

� Read, write, and execute all files and directories, regardless of their
permission settings

� Change permissions for any file or directory

� Add, remove, or update any UNIX user group

� Mount or unmount any files system

� Access any device

� Change the priority of any task running within the system

� Change the UID associated to a process without providing authentication
data for the new UID

� Start up and shut down the system

Important:

� UID(0) has a special meaning and is reserved for the so-called superuser.
� UNIX access control privileges are assigned to the UID, not the user name.

 Chapter 1. Overview of the UNIX operating system model 9

GIDs
Each UNIX user is also associated to a group of users. A UNIX group is
represented in two ways: A group name and a GID. Group name is an
easy-to-remember word, while GID is a number. This information might be stored
in the file /etc/group. GID is typically a number between 0 and 65,535, where 0
through 99 might be reserved on some UNIX implementations. Some UNIX
implementations also support a 32-bit GID.

1.3.3 File and directory permissions

Every file or directory in a UNIX file system has three types of access modes.
Users or groups are granted none, one, or many of these access modes. They
are:

read [r] A user who has read permission for a file may look at its contents
or make a copy of it. For a directory, read permission enables a
user to see the file names in that directory.

write [w] A user who has write permission for a file can alter or remove the
contents of that file. For a directory, the user can create and delete
files located in that directory.

execute [x] A user who has execute permission for a file can cause the
contents of that file to be executed (provided that it is executable
code). For a directory, execute permission allows a user to traverse
the directory to access files or subdirectories.

These access mode permissions are specified three times for each file or
directory, for each one of these three possible accessing entities:

� The owner’s of the file or directory. That is whether the owner has read, write,
or execute access.

� The group that owns the file or directory (be aware that this group can be a
different group from the owner’s group).

� The other users, that is, users who are not owner of the file or directory and
are not member of the owning group.

As already mentioned, these permissions are associated to a UID or GID, not a
user name or group name.

Figure 1-2 shows how permission bits are often referred to by their octal
representation. For example, if a file is to be updated only by its owner, while

Important: Unlike UID, GID=0 has no special meaning.

10 z/OS UNIX Security Fundamentals

others are allowed to read/execute it, then the octal permission setting is 755
(owner = rwx = 4+2+1 = 7; group = r-x = 4+0+1 = 5; other = r-x = 4+0+1 = 5).

Figure 1-2 Octal representation of permissions

1.4 The z/OS UNIX System Services history

In the 1980s, IBM mainframe customers requirements began to surface as the
need to leverage their organization investment in UNIX systems and applications
skills using a technology exhibiting an industry-proven superior quality of
services. Open standards compliance was also emerging as a core strategy for
integrating any platform seamlessly into distributed environments and to
increase one platform’s applications portfolio.

In 1991, IBM decided that MVS should incorporate support of the UNIX user and
application interfaces, therefore making the UNIX environment model part of the
IBM mainframe offering strategy.

The first implementation was known as MVS OpenEdition (or OE, or OMVS),
then it became OS/390 UNIX System Services, and finally z/OS UNIX System
Services, as we know it today. The main steps of the evolution were:

� In 1994, IBM MVS/ESA™ V4 was hosting the first version of Open Edition,
which was an optional feature of MVS.

� The same year Open Edition was integrated into MVS V5R1.

 0 --- No access
 1 --x Execute-only
 2 -w- Write-only
 3 -wx Write and execute
 4 r-- Read-only
 5 r-x Read and execute
 6 rw- Read and write
 7 rwx Read, write and execute

Permission bit examples:
700 owner(7=rwx) group(0=---) other(0=---)
755 owner(7=rwx) group(5=r-x) other(5=r-x)

Bit values
 XXX
 421

 Chapter 1. Overview of the UNIX operating system model 11

� In 1996, IBM OS/390® V1R2 received the official UNIX branding. That is, the
IBM mainframe proprietary operating system became an official
UNIX-compliant system. Figure 1-3 is a graphical view of the standards
OS/390 had to conform to get the UNIX branding.

� In 1997, the Open Edition kernel was merged into the core operating system,
and in 1998 OpenEdition was renamed to UNIX System Services with
OS/390 V2R6.

Figure 1-3 OS/390 UNIX branding and standards

Important: z/OS implements the POSIX-compliant APIs as extensions to
MVS system services, that is, the UNIX System Services is a set of MVS
architected services that behave, from the application standpoint, as though
the system were a UNIX system.

However, note that this implementation, as explained in Chapter 2, “Overview
of z/OS UNIX implementation” on page 13, also allows UNIX applications to
take advantage of specific z/OS operating system features such as Workload
Manager (WLM), System Management Facilities (SMF), Sysplex, and so on,
and provide optional (but recommended, and explained in this book)
enhancements over the regular UNIX security model.

POSIX
XPG4 XPG4.2

MVS/ESA 4.3 and 5.1

MVS/ESA 5.2.2 and OS/390 R1
OS/390 R2

Full
UNIX
Branding

1994 1996

12 z/OS UNIX Security Fundamentals

Chapter 2. Overview of z/OS UNIX
implementation

In this chapter, we provide an overview of how UNIX functions are implemented
in z/OS, stressing, whenever appropriate, functions with similar purposes in the
MVS and z/OS UNIX environments.

2

© Copyright IBM Corp. 2007. All rights reserved. 13

2.1 z/OS UNIX System Services fundamentals

The z/OS UNIX System Services provides a UNIX-like operating environment,
which is implemented via an extension to the MVS architected services provided
by the z/OS operating system.

The z/OS support for UNIX System Services makes two open systems interfaces
available to the z/OS operating system users:

� An application programming interface (API) for applications to request UNIX
operating system services. This API is primarily intended for C language,
programs executing in the IBM z/OS Language Environment® (LE); but UNIX
functions are made available as assembler callable services as well.

� An interactive z/OS UNIX shell interface.

Figure 2-1 shows the API and interactive shell open systems interfaces and their
integration within z/OS. Notice the z/OS UNIX kernel address space that hosts
the UNIX System Services main control functions.

Figure 2-1 z/OS UNIX with open systems interfaces

UNIX
System

Services
(kernel)

SMF

WLM

HFS

zFS

TFS

z/OS
Language

Environment
(LE)

API
(C functions)

Interactive
Shell

(commands)

Assembler
Callable
Services

local file systems

z/OS functions

14 z/OS UNIX Security Fundamentals

These APIs are also available in different program execution environments such
as batch processing, jobs submission from the Time Sharing Option Extensions
(TSO/E) environment, started tasks, or other z/OS application task environment.
A z/OS application program can therefore be designed to use the operating
system APIs to call for:

� MVS services only
� z/OS UNIX services only
� Both MVS and z/OS UNIX services

The shell interface is available on TSO/E terminals, or through telnet or rlogin
client system. A default shell program is provided in z/OS with the capability of
overriding the default to give users access to another specific shell program. At
the time of the writing of this book, z/OS comes with two shell programs: The
z/OS UNIX shell and the tcsh shell. Users can also install their own shell
program.

The system tasks originating from the shell are:

� Programs run by shell users
� Shell commands and scripts run by shell users
� Shell commands and scripts run as batch jobs

2.1.1 Dubbing
As already mentioned, z/OS UNIX is made up of MVS architected services that
behave as though the operating system is a UNIX system. Therefore, all
applications are started as regular MVS address spaces without initially caring
whether they have to acquire UNIX process characteristics. The MVS address
space is given the characteristics of a UNIX process at the time of the first call to
a z/OS UNIX system service. The z/OS address space is then said to be dubbed
and the system makes necessary updates to control blocks so that from now on
the address space is also considered to be a UNIX process.

Note that new address spaces or tasks created as a direct consequence of calls
by existing UNIX process or thread are systematically dubbed when they are
initialized.

Note: In order to stress the differences between the z/OS components that
implement z/OS UNIX functions and the other components of the system, we
sometimes refer to the latter as the system’s MVS components or functions.

Important: In addition to the user having a UID, z/OS UNIX also requires that
the UNIX user MVS default group and current connect group have a GID for
the dubbing to work.

 Chapter 2. Overview of z/OS UNIX implementation 15

2.1.2 z/OS UNIX services
This section provides information about the z/OS UNIX services.

System Services
The System Services provide:

� XPG4 UNIX 1995 and 1998 functions conformance
� Assembler callable services
� TSO/E commands to manage the file system
� A shell environment via ISPF panels

Application Services
Application Services interprets commands from users or shell scripts, and calls
z/OS services for their execution. The Application Services provide:

� A TSO/E command to enter the shell environment
� A shell environment for developing and running applications
� Utilities to administer and develop in a UNIX environment
� The dbx debugger utility environment
� Support for socket applications
� rlogin (remote login) and inetd functions
� Direct telnet based on TCP/IP protocol
� Support for full-screen applications (curses support)

z/OS and UNIX functional comparison
Table 2-1 provides a functional comparison of some of the basic functions of
z/OS and the equivalent UNIX functions as provided by z/OS UNIX.

Table 2-1 z/OS and UNIX functional comparison

Function z/OS UNIX

Background work Submit batch JCL sh_cmd &

Configuration parameters SYS1.PARMLIB /etc

Data management DFSMS, HSM tar, cpio, pax

Debug TSO TEST dbx

Editor ISPF option 2 ed, sed, oedit, ishell

Initiate new task ATTACH, LINK, XCTL fork(), spawn()

Interactive access Logon to TSO telnet/rlogin to sh/tcsh

Job management SDSF ps, kill()

16 z/OS UNIX Security Fundamentals

2.1.3 z/OS UNIX and z/OS features
z/OS UNIX interacts with the elements and features of z/OS that are described in
the following sections.

Workload Manager
The Workload Manager (WLM) is a base component of z/OS that is used by the
UNIX kernel to create child processes, that is, new address spaces. When
programs issue the fork() or spawn() requests to create a new UNIX process, as
shown in Figure 2-2, the BPXAS PROC, installed in SYS1.PROCLIB, is used to
provide a new address space.

List files ISPF option 3.4, LISTC ls

Long running work Started task (STC) daemon

Post IPL commands COMMNDxx /etc/rc

Power user RACF OPERATIONS superuser or root

Primary configuration IEASYSxx BPXPRMxx

Primary data index Master Catalog root (“/”) directory

Procedural language CLIST, REXX shell scripts, REXX

Program products LNKLST /usr

Resident programs LPA sticky bit

System logging SYSLOG SYSLOGD

System programs LNKLST /bin

Test programs STEPLIB /sbin

User data &SYSUID or &SYSPREF /u/<username>

User identity user/group UID/GID

Function z/OS UNIX

 Chapter 2. Overview of z/OS UNIX implementation 17

Figure 2-2 Examples of a parent process issuing fork() and spawn()

The types of processes are:

� User processes, that is, typically applications which are started on a specific
user request.

� Daemon processes, which perform continuous or periodic system-wide
functions, such as a Web server. Daemons are programs that are typically
started when the operating system is initialized and remain active to perform
standard services. In z/OS UNIX, daemons can be started as started tasks
(STC). Examples of typical UNIX daemons are:

– cron, which starts applications at specific times.

– inetd, which provides service management for a network.

– rlogind, which starts a user shell session when requested to do so by the
rlogin command.

prog1
............
fork()....
............

prog1
............
fork()....
............

WLM

ASID=428
ASID=547

prog2

prog4

prog3

................
spawn(prog3)
spawn(prog4)

................

................

................

................

................

................

ASID=1012

ASID=1423

SYS1.PROCLIBParent Process
Child Process

z/OS
 UNIX
Kernel

BPXAS

18 z/OS UNIX Security Fundamentals

A process can have one or more threads. A thread is a single flow of control
within a process. Application programmers create multiple threads to structure
an application in independent sections that can run in parallel for more efficient
use of system resources. In z/OS UNIX, a multi-threaded process is an address
space that contains several subtasks.

System Management Facilities
System Management Facilities (SMF), which is a base component of z/OS,
collects data for accounting. SMF job and job-step accounting records identify
processes by user name, process PID, group GID, and session identifiers. Fields
in these records also provide information about resources used by the process.
SMF file system records describe file system events such as file open, file close,
and file system mount, unmount, quiesce, and unquiesce.

The JWT value in the SMF parmlib SMFPRMxx can be used to specify when to
time out an idle address space. SMF/WLM does the tracking.

C/C++
The C/C++ compiler, which is available with z/OS, is needed to compile C code
using the c89 command, or to compile C/C++ code using cxx.

Language Environment
The C/C++ runtime library provided with Language Environment (LE) is needed
to run a shell command or utility, or any user-provided application program
written in C or C++.

Data Facility System Managed Storage
Data Facility System Managed Storage (DFSMS) can be used to manage the
data sets used to host the Hierarchical File System (HFS). These data sets make
up a file hierarchy that contains directories and files, which can integrate as well
remote file systems (that is, using network file system access such as with NFS)
mounted within the hierarchy. Note that two types of data sets that can host the
z/OS UNIX Hierarchical File System are available: The HFS data sets and VSAM
linear data sets for the so-called zFS file system.

Security Server
z/OS UNIX requires an external security manager to be accessible through the
System Authorization Facility (SAF) interface. The examples that we provide in
the rest of this book assume that the IBM Resource Access Control Facility
(RACF) external security manager is used, although similar non-IBM products,
which provide equivalent functions, can be used.

 Chapter 2. Overview of z/OS UNIX implementation 19

RACF is delivered in the z/OS Security Server component and is used to hold the
z/OS UNIX users and groups registry and to also perform access control and
auditing for accesses to the z/OS UNIX resources.

Note that the examples that we provide in this book apply to RACF and are not
expected to be directly usable with other external security managers.

2.1.4 Resource Measurement Facility

IBM Resource Measurement Facility (RMF™) collects data used to report on
z/OS UNIX performance. RMF monitors the use of resources in an address
space type of OMVS for z/OS address spaces created by fork or spawn callable
services, along with the use of resources in an OMVS Kernel Activity report.

System Display and Search Facility
z/OS UNIX shell users can enter TSO/E sessions and use System Display and
Search Facility (SDSF) to:

� Monitor printing
� Monitor and control a batch job
� Monitor and control forked address spaces
� Find out which users are logged on to TSO/E sessions

Time Sharing Options Extensions
One way to enter the shell environment is by using TSO/E. A user logs on to a
TSO/E session and then enters the TSO/E OMVS command.

TSO/E also provides z/OS UNIX commands, for example, to logically mount and
unmount file systems, create directories in a file system, and copy files to and
from z/OS data sets. Users can switch from the shell to their TSO/E session,
enter commands or do some editing, and switch back to the shell.

z/OS Communications Server TCP/IP Services
Another way to enter the shell environment is by using rlogin or telnet from a
workstation in the TCP/IP network.

User-written socket applications can use TCP/IP Services as a communication
vehicle. Both client and server socket applications can use the socket interface to

Important: All audited access violations to z/OS UNIX resources are
expected to get external security manager messages being issued, as it is the
case for MVS resources, on the system console (typically these are the
ICH408I messages with RACF).

20 z/OS UNIX Security Fundamentals

communicate over the Internet (AF_INET and AF_INET6) and between other
socket applications by using local sockets (AF_UNIX). An assembler interface is
also provided for those applications that do not use the C/C++ runtime library.

Interactive System Productivity Facility
Users of ISPF can use the ISPF shell environment to create, edit, browse, and
perform other functions for files and directories in the HFS.

BookManager READ/MVS
You can invoke the online help facility with the TSO/E OHELP command and
view online publications in BookManager® format.

Network File System
Network File System (NFS) enables users to access files on other systems
connected to the network.

2.1.5 z/OS UNIX configuration parameters
z/OS UNIX System Services is an environment within the z/OS operating system
itself, and has its own runtime parameters defined in the BPXPRMxx member of
SYS1.PARMLIB. See z/OS V1R8.0 MVS Initialization and Tuning Reference,
SA22-7592, for detailed information about the contents of BPXPRMxx.

2.1.6 z/OS UNIX kernel

The z/OS UNIX kernel always starts at the same time that z/OS starts.
Depending on the intended use of the z/OS UNIX System Services, the kernel
can start in minimum mode or full mode. These modes are explained in z/OS
V1R8.0 UNIX System Services Planning, GA22-7800.

In this book, we assume that the kernel is started in full mode.

2.1.7 z/OS UNIX file system
Applications in z/OS UNIX get access to data through physical file systems
(PFSs), which can be thought of as a set of access method services with proper
APIs to write and read data. The underlying physical file systems are defined in
the BPXPRMxx member of SYS1.PARMLIB (with the FILESYSTYPE statement)
in order to be automatically activated when z/OS UNIX is started.

 Chapter 2. Overview of z/OS UNIX implementation 21

A simplified description of z/OS UNIX System Services and PFS is given in
Figure 2-3 on page 23. The following are all PFSs:

– Hierarchical File System (HFS)

z/OS UNIX files are organized in a HFS, as in other UNIX systems. Files
are members of a directory, and each directory is in turn a member of
another directory at a higher level, the highest level being the root
directory. The HFS is implemented in z/OS using HFS or zFS data sets.

– Network File System (NFS)

The NFS client on z/OS UNIX can mount a file system, directory, or file
from any system in the network that runs an NFS server, within a z/OS
UNIX user’s directory. The remote files and directories can then be
worked on as though they were local z/OS UNIX files and directories.

– Distributed File System (DFS™)

DFS joins the local file systems of several file server machines making the
files equally available to all DFS client machines. DFS allows users to
access and share files stored on a file server anywhere in the network,
without having to consider the physical location of the file.

– Temporary File System (TFS)

The TFS is an in-memory physical file system that delivers high-speed
access to data. A TFS is usually mounted at the /tmp directory, therefore it
can be used as a high-speed file system for temporary files.

– Pipe

A program creates a pipe with the pipe() function. A pipe typically is written
with data by one process to be read by another process. The two ends of
a pipe can also be used in a single program task. A pipe does not have a
name in the file system, and it vanishes when the last process using it
closes it.

– Socket

A program creates a socket with the socket() function. A socket is a
method of communication between two processes that allows
communication in two directions, in contrast to pipes, which allow
communication in only one direction. The processes using a socket can be
on the same system or on different systems in the same network.

 A PFS is specialized for a type of file system, with file system having a quite
broad meaning in UNIX as it can designate data residing on a disk as well as
data being transmitted through sockets.

22 z/OS UNIX Security Fundamentals

Figure 2-3 z/OS UNIX physical file systems

File system hierarchy and data sets
For some PFS, the files that are managed are to be visible in a file hierarchy.
This is the case for the HFS and zFS file systems where data is actually stored in
HFS or zFS data sets, in the MVS sense of data repository, which are mounted
as subsets of the file hierarchy, and are managed by the DFSMS component of
z/OS. Figure 2-4 on page 24 shows a hierarchical file system made of three
different HFS data sets.

Starting from the top of the file hierarchy, that is the root, the root file system is
the first file system to be mounted. Subsequent file systems can be mounted on
any directory within the root file system or on a directory within any already

Note: The HFS or zFS data sets can be thought of as containers that contain
the UNIX file system files and directories. Appropriate MVS protection must be
applied to the HFS and zFS data sets themselves, which are accessed with
the kernel address space identity. UNIX protection must be applied to the
individual files and directories, hosted by the data sets, which are accessed
with UNIX users’ identities.

read write open close

Logical file system

z/OS Callable Services interface

auto-
mountTFS IP

sockets
Local

sockets
NFS
clientZFS

HFSVOLHFSVOL ZFSVOLZFSVOL

FF

/

F
F F

F F

/

F
F F

F

z/OS UNIX-PFS interface

Physical file systems

HFS

 Chapter 2. Overview of z/OS UNIX implementation 23

mounted file system. Mounting a file system is performed using a mount
command that can be issued from the BPXPRMxx parmlib member (that is
issued at z/OS UNIX startup, as it is the case for the root file system), by a user
through ISHELL, by the TSO/E MOUNT command, by automount, or by a
program using the mount() function.

Figure 2-4 Hierarchical file systems and mount points

Note: The root file system has to be a z/OS UNIX HFS data set. Other file
systems mounted under the root can be either HFS or zFS data sets.

Path: /Dir1/Dir3/F3

Root file system (only one)

HFS data set #3
MVS DSN = OMVS.USER.TP

/

D DirDir

Dir1 Dir2

Dir3 Dir4

Dir5

Mount pointMount point F1 F2

F3 F4 F5 F6 F7 F8

HFS data set #1
MVS DSN = OMVS.ROOT

HFS data set #2
MVS DSN = OMVS.USER.GL

24 z/OS UNIX Security Fundamentals

Symbolic, external, and hard links
Users can establish aliasing in the file system by symbolic or external links.

� A symbolic link is a file that contains the path name for another file, in
essence a reference to the original file. Only the original path name is the real
name of the original file. You can create a symbolic link to a file or a directory.
In the z/OS UNIX HFS, /etc, /tmp, /dev, and /var are usually symbolic links
that contain references to the real path name of these directories.

� An external link is a type of symbolic link that points to an object outside of the
file system. Typically, it contains the name of a z/OS data set.

� A hard link is an additional name for an existing file. Only one physical file
exists, but it can have multiple names represented by hard links. As an
example, by establishing a hard link to the file /u/dominique/projects, the path
name /u/patrick/projects can point to the same file. You cannot create a hard
link to a directory, and you cannot create a hard link to a file on a different
mounted file system.

File security packet
Each z/OS UNIX file and directory has a set of information called the file security
packet (FSP) associated with it to maintain access control permissions and other
relevant information. The FSP is created when a file or directory is created, and
is kept, with the file or directory, in the file system until the file/directory is
deleted, at which time the FSP is also deleted. Figure 2-5 shows the structure of
the FSP, which is discussed in details in Chapter 6, “z/OS UNIX files security” on
page 73.

Figure 2-5 File security packet

 Permission Bits

File
Owner

UID

File
Owner

GID

S
e
t
U
I
D

S
e
t
G
I
D

S
t
i
c
k
y

r w x r w x r w x

Owner Group Other

File Mode

extattr Access
ACL
exists

File
model
ACL
exists

Directory
model
ACL
exists

ACL Flags

 Chapter 2. Overview of z/OS UNIX implementation 25

2.2 Securing the z/OS UNIX environment

The z/OS UNIX environment is established with a set of z/OS resources. In this
section, we describe how to set up protection for these resources. We begin with
a description of the two started procedures that are used to initialize the z/OS
UNIX kernel:

� OMVS
� BPXOINIT

Then we describe the procedure that is used to invoke WLM for the creation of
z/OS UNIX process address space:

� BPXAS

2.2.1 z/OS UNIX address spaces

The OMVS and BPXOINIT started procedures are invoked to initialize the z/OS
UNIX System Services environment, as shown in Figure 2-6 on page 28.

The OMVS STC
The OMVS address space runs a program that initializes the kernel. The
STARTUP_PROC statement in the BPXPRMxx member of SYS1.PARMLIB
specifies the name of the cataloged procedure that resides in SYS1.PROCLIB. It
is strongly recommended that this procedure name remain its default value of
OMVS; changing it is likely to cause some impact with related functions such as
TCP/IP.

This procedure requires an entry in the Started Task Table or a profile in the
RACF STARTED class. It must be given an MVS user ID with a UNIX UID that
belongs to a group with a UNIX GID. In Chapter 3, “z/OS UNIX users and groups
identity management” on page 31, we explain in detail how to allocate UID and
GID. For the time being, we just remind you about the RACF commands to be
issued to assign a UNIX user and group to the OMVS catalogued procedure.

Important: The FSP can be considered as meta-data that is always
associated with the file. This is the case when a file is exported by a z/OS
UNIX utility such as the TAR archiving utility: The file security packet is
exported with the file data.

With such an implementation, although RACF is used to control access to files
or directories, there are no RACF profiles to define access permissions for
UNIX files or directories resources.

26 z/OS UNIX Security Fundamentals

Note that the very commonly used group name and user name for the OMVS
started procedure are OMVSGRP and OMVSKERN. Note also that the OMVS
user ID must be given UID(0).

ADDGROUP <group_name> OMVS(GID(<an_number>))

ADDUSER <MVS_userID> DFLTGRP(the_default_group_name) OMVS(UID(0)
HOME('/') PROGRAM('/bin/sh')) NOPASSWORD

To define the cataloged procedure in the STARTED class of RACF profiles:

RDEFINE STARTED OMVS.* STDATA(USER(<MVS_userID>) GROUP(group_name)
TRUSTED(YES))

In the rest of the section, we assume that you elected to assign the user ID
OMVSKERN and the group OMVSGRP to the OMVS and BPXOINIT address
spaces.

The BPXOINIT STC
BPXOINIT is the procedure that runs the z/OS UNIX initialization process and is
called at z/OS startup by the OMVS started procedure.

The BPXOINIT address space gets the process ID (PID) “1”. This is the parent of
/etc/rc, that is other processes that users have set up to be started at initialization
time. This task is also the parent of any z/OS address space that is explicitly

Note: Here we use the NOPASSWORD user attribute resulting in defining a
protected RACF user, that is, a user ID that is used to log on to the system
and cannot be revoked by incorrect password attempts.

Note: The kernel address space is to access resources such as the HFS or
zFS data sets.You must decide whether to mark OMVS (the kernel) trusted for
access. Making the kernel trusted is useful for giving the kernel access to any
local data set that it wants to mount. If you do not mark the kernel TRUSTED
for local access, set up profiles so that the kernel user ID has access to any
local data set that it needs to mount.

For instance, if the installation naming convention gives OMVS as the
high-level qualifier for HFS or zFS data sets, the user ID of the OMVS started
procedure must be permitted to this high-level qualifier:

PE ‘OMVS.**’ ID(<MVS_userID>) ACC(UPDATE)

If the procedure runs not TRUSTED, the MVS_userID must also be permitted
in READ to SYS1.PARMLIB.

 Chapter 2. Overview of z/OS UNIX implementation 27

dubbed, which is not created by fork() or spawn(). Therefore, TSO/E commands
and batch jobs that invoke the z/OS UNIX System Services have a parent PID of
“1”.

The BPXOINIT started task shares the MVS group and user ID, and therefore
the same UID and GID, with the OMVS catalogued procedure.

Figure 2-6 The z/OS UNIX initialization process

Note: The BPXOINIT started procedure is recommended to be run not
TRUSTED, and therefore the user ID OMVS must be permitted to the
resources accessed by BPXOINIT.

Start init task

Initialize kernel

Initialize all
filesystems

Allocate, open
HFS data sets

Set init.options:

Run rc

/etc/init

/usr/sbin/init

/etc/init.options

/etc/rc

ROOT HFS

SYS1.PROCLIB

OMVS
BPXOINIT

IPL

Start shell /bin/sh
and run init

BPXOINITOMVS

Start system
address spaces

or
init

Copy:
/samples/init.options
/samples/rc
 to
/etc/init.options
/etc/rc

PID=1

28 z/OS UNIX Security Fundamentals

The files associated with the system initialization program /usr/sbin/init are as
follows:

/bin/sh Default shell that /usr/sbin/init invokes to execute /etc/rc
or another shell script specified in the /etc/init.options file

/etc/init.options Initialization options file, which is read by /usr/sbin/init

/etc/rc Default initialization shell script

/etc/log The file that output is written to

Other utilities Services that are called by the initialization shell script

The BPXAS STC
The BPXAS procedure is started by WLM when a z/OS UNIX program uses the
fork() or spawn() function, or the equivalent callable services. The BPXAS
procedure found in SYS1.PROCLIB is used to provide a new address space. For
a fork, the system copies one process, called the parent process, into a new
process, called the child process. Then it places the child process in a new
address space. The forked address space is provided by WLM using the BPXAS
procedure.

The BPXAS procedure shares the same MVS_userID and group_name as the
OMVS started task and is recommended to be run not TRUSTED.

2.2.2 HFS and zFS data sets
RACF profiles that protect the HFS and zFS data sets are created with
UACC(NONE). They do not need any permission in their access list if the OMVS
STC, which initializes the kernel address space, has been given the TRUSTED
attribute. Otherwise, the OMVS address space user ID (OMVSKERN in our
examples) must have UPDATE access to these data sets.

Important: Because the processes created by /usr/sbin/init inherit the GID of
BPXOINIT, do not permit the OMVSGRP to any MVS resources, unless
programs you start using /etc/rc need to be permitted to these resources.

Note that any programs forked by /etc/rc receive their authority from the user
ID assigned to the BPXOINIT process. Use the same user ID for BPXOINIT as
you assigned to the kernel (OMVSKERN). The BPXOINIT process and any
programs forked by the kernel's descendants will have therefore superuser
authority. This is essential for the successful execution of initialization tasks
run from /etc/rc.

 Chapter 2. Overview of z/OS UNIX implementation 29

2.2.3 Protecting the BPXPRMxx member
This falls under the expected protection of the SYS1.PARMLIB data set, using a
profile in the RACF DATASET class of resources, where permissions are usually
given to system programmers only.

2.2.4 Protecting z/OS UNIX related operator commands
It is recommended to protect access to operator commands that can be used to
dynamically change parameter values in the BPXPRMxx member. These are the
SET OMVS and SETOMVS commands, which can be protected using the
following profiles in the OPERCMDS class of profiles:

� RDEFINE OPERCMDS MVS.SET.OMVS
� RDEFINE OPERCMDS MVS.SETOMVS.OMVS
� PE MVS.SETOMVS.OMVS CLASS(OPERCMDS) ID(group) ACC(READ)
� PE MVS.SET.OMVS CLASS(OPERCMDS) ID(group) ACC(READ)

2.3 Applications security: UNIX security and z/OS UNIX
security

In Chapter 5, “The z/OS UNIX security model” on page 51, we explain the use of
the BPX.SERVER and BPX.DAEMON profiles in the FACILITY class. If none of
these profiles are defined, the system is said to have UNIX-level security. In this
case, the system is less secure than what can be achieved with z/OS UNIX. This
level of security is for installations where superuser authority has been granted to
system programmers. These individuals already have permission to access
critical MVS data sets such as PARMLIB, PROCLIB, and LINKLIB. These
system programmers have total authority over a system.

2.4 RACF AIM

Application Identity Mapping (AIM) is a set of fields in the user profile intended to
assist the mapping of a RACF user ID to a UNIX, Lotus® Notes®, or Novell
directory identity. The RACF database is reorganized with an alias index when
brought to the so-called AIM Stage 3 using the RACF IRRIRA00 utility. The
current AIM stage of the RACF database is meaningful in the z/OS UNIX context
because, if Stage 2 or Stage 3 of identity mapping has not been reached, there is
a potential performance issue with mapping UIDs to user IDs both ways. It is
recommended that either Stage 2 or Stage 3 of AIM be reached with RACF as
soon as possible.

30 z/OS UNIX Security Fundamentals

Chapter 3. z/OS UNIX users and groups
identity management

In this chapter, we address:

� The z/OS implementation of the UNIX user identity and the related system
identification and authentication processes.

� The administrative functions available in Resource Access Control Facility
(RACF) to assign UNIX identities to users and groups.

Note the following conventions that are adopted in the rest of the book:

� The userID pertains to the MVS identity

� The username is the user’s name in the context of the UNIX model of
operating system.

3

© Copyright IBM Corp. 2007. All rights reserved. 31

3.1 User identification and authentication in z/OS UNIX

z/OS UNIX abides with the principles of UNIX identification and authentication,
as described in 1.3, “The UNIX security model” on page 8:

� The users identify themselves to the system using a user name.

� After the user is authenticated using the user name, the user initiated
processes or threads are assigned the user’s UID. This UID is further used to
determine the user’s privileges.

� Users are also associated with groups. Being part of a group grants the
privileges given to the group entity.

3.1.1 User identity implementation

z/OS UNIX requires an external security manager to be operating in the z/OS
instance. As already mentioned, we are assuming in the rest of the book that
IBM RACF is this external security manager.

The z/OS UNIX identity is an extension given to the MVS identity of the user:

� All system users have to be registered as MVS users in the RACF database.
That is, they are given a RACF USER profile with a RACF user ID and a
password (unless they are defined with the NOPASSWORD attribute in the
USER profile).

� Their RACF user ID is their UNIX user name and they are allocated a UNIX
UID by the system administrator if they are to use the UNIX System Services.
The corollary to this is that the UNIX user name is guaranteed to be unique,
as the RACF user ID is. We will see below that the individual UID does not
have to be unique and can be shared, although not recommended, between
different users.

� If they are given a UID, then their MVS user’s default and current connect
group must also be given a GID.

This implementation results in the z/OS UNIX user tasks that run in the system
being given a dual identity: They do have an MVS user ID that is used to

Note: There is a divergence in the way that we specify the user name with
non-z/OS UNIX systems in that RACF is always folding the user name to
uppercase, while UNIX uses mixed case user names. z/OS offers the
USERIDALIASTABLE mechanism if there is a strict need to deal with mixed
case user IDs. For more details about the USERIDALIASTABLE, see z/OS
V1R8.0 UNIX System Services Planning, GA22-7800.

32 z/OS UNIX Security Fundamentals

determine what their access rights for MVS resources are, as specified in the
RACF resources profiles, and they have a UNIX UID used for access control to
z/OS UNIX resources such as files and directories. This is represented in
Figure 3-1.

Figure 3-1 The z/OS UNIX user dual identity and access rights

3.1.2 User authentication

z/OS UNIX users are authenticated by RACF through the System Authorization
Facility (SAF) interface, by using their MVS user ID (which equates their UNIX
user name) and their MVS password, which is stored in the USER profile.

Passtickets can also be used as an alternative to passwords. A passticket is a
64-bit value that is cryptographically composed by a passticket generation
software. The passticket is accepted as authentication data by RACF under the
condition that the passticket generator program and RACF share a common
secret cryptographic key and proper profiles have been defined in the RACF
database.

z/OS UNIX applications request RACF to validate a password or passticket by
using the initACEE RACF callable service. The initACEE RACF callable service
supports the use of mixed case passwords if the RACF MIXEDCASE option is in
effect (mixed case passwords are supported starting with z/OS V1R7). initACEE
also supports, beginning with z/OS V1R8, the use of password phrase as an

MVS
Resources
MVS
Resources

z/OS Unix System Services Environment

UID userID

The Application
accesses either
MVS or UNIX
resources

UID userID

Unix
Resources

access
control

access
control

The address space
is « dubbed » at
the first request for
a UNIX service

 Chapter 3. z/OS UNIX users and groups identity management 33

alternative to passwords. (Be aware though that, at the time of the writing of this
book, there is not yet any IBM product that uses password phrase.)

3.2 The UID and GID in z/OS UNIX

In z/OS UNIX, the following information is required for each UNIX user:

� A UID, which is a 32-bit number between 0 and 2,147,483,647, and which
identifies the user as a z/OS UNIX user. This information is specified in the
OMVS segment of the RACF USER profile or in the profile
BPX.DEFAULT.USER, in the FACILITY class. See the discussion about
default UID in 3.3, “Default UID and GID” on page 38.

� A GID, which is a number between 0 and 2,147,483,647, and which identifies
a z/OS UNIX group of users. This information is specified in the OMVS
segment of the RACF GROUP profile the user belongs to.

Before assigning UID or GID values the following must be considered: The
POSIX 1003.1 standard defines formats for pax, tar, and cpio archives that limit
the UIDs and GIDs that can be stored to the following maximum of 16,777,216.
Values larger than these will not be properly restored for tar and cpio formatted
archives. For USTAR formatted archives, because the user and group names
are also stored in the archive, the correct UID and GID will be restored only if the
same name is defined on the target system as well.

3.2.1 The OMVS segment in the RACF USER profile

The OMVS segment is used to specify the characteristics of the UNIX user.
Typically, there are three basic fields in the OMVS segment: The UID, the
HOME, and the PROGRAM fields. There are other fields to be used in specific
cases called the individual limits. We explain below the contents of these fields.

� UID: This is the numeric UID value assigned to the user.

� HOME: This is the path name of a directory in the file system that
automatically becomes the directory the user is in when he or she enters the
UNIX shell.

Reminder: Support is provided in z/OS for UNIX applications that accept
X.509 V3 digital certificates or Kerberos tickets as means of authentication.
RACF is not involved in the authentication process in that case, however, it
can map a RACF user ID to the authenticated digital certificate or the
Kerberos ticket. This mapping is performed by the R_usermap RACF callable
service. As a result of this mapping, the z/OS UNIX user is allocated the UID
associated with the mapped-to RACF user ID.

34 z/OS UNIX Security Fundamentals

Note that specifying a HOME directory in the OMVS segment does not give
the user any access permission to this directory. The directory access
remains controlled by the directory permission bits and the optional access
control lists (ACLs).

� PROGRAM: This is the path name of the shell program that is started when
the user begins a UNIX shell session. Current values for the PROGRAM field
are /bin/sh for the z/OS UNIX shell and /bin/tcsh for the tcsh shell. The
PROGRAM value is also used to start the shell created as a result of the
execution of the rlogin, su, or newgrp commands.

The individual limits fields
The system resource available for z/OS UNIX users is limited as specified in the
BPXPRMxx member of SYS1.PARMLIB. However, the RACF administrator can
assign individual limits to a specific user in optional fields of the OMVS segment
in the USER profile. These optional fields of the OMVS user segment are
individual limits that override, for the subject MVS user ID, the general limits
given in the BPXPRMxx member. They are:

� ASSIZEMAX for the maximum address space size allocated to the user

� CPUTIMEMAX for the maximum CPU time

� FILEPROCMAX for the maximum number of files per process

� MEMLIMIT for the maximum number of bytes of non-shared memory per user

� MMAPAREAMAX for the maximum memory map size

� PROCUSERMAX for the maximum number of processes per UID

� SHMEMMAX for the maximum number of bytes of shared memory per user

� THREADSMAX for the maximum number of threads per process

Here is an example of a z/OS UNIX USER profile definition in RACF:

ALTUSER <MVS_userID> OMVS(UID(<number>)PROGRAM(/bin/sh)
HOME('/u/username') THREADSMAX(value) MMAPAREAMAX(value)
MEMLIMIT(value) ASSIZEMAX(value) CPUTIMEMAX(value) FILEPROCMAX (value)
PROCUSERMAX(value))

Note: The individual limit is assigned to the specific MVS user ID and its
associated UID. Another MVS user ID, even sharing the same UID, will have
its own individual limits or none.

 Chapter 3. z/OS UNIX users and groups identity management 35

Not specifying the OMVS segment or some of its fields
The following sections describe the consequences of not specifying the OMVS
segment or some of its fields.

Not specifying the OMVS segment
� The user is not to get any z/OS UNIX user characteristics and any task

running with the user identity will not be dubbed, and therefore unable to
invoke the z/OS UNIX System Services. Unless the BPX.DEFAULT.USER
profile is defined.

� If there is a BPX.DEFAULT.USER profile defined, any task running with the
user identity gets the z/OS UNIX user characteristics as specified in the
BPX.DEFAULT.USER profile and is dubbed upon invocation of any z/OS
UNIX System Service.

See the explanation for the BPX.DEFAULT.USER profile in 3.3, “Default UID and
GID” on page 38.

Specifying the OMVS segment without the UID field
This can be achieved specifying, for instance, OMVS(NOUID) when defining the
USER profile.

� The user will never get the characteristics of a z/OS UNIX user. Any task
running under this user identity will never be dubbed. This is the method to
use if, for any reason, you want to ensure that an MVS user is never to be a
z/OS UNIX user (as this also prevents use of the BPX.DEFAULT.USER
profile).

Specifying the OMVS segment without the HOME field
� If a home directory is not specified in the OMVS Segment, the root (/)

directory is then assumed to be the user’s home directory.

Important: RACF administration for the user’s OMVS segment: As for other
fields in the USER profile, it is possible to authorize specific users or groups to
manage the OMVS segment fields. This permission has to be very carefully
granted as it might allow, for instance, users to change their UID to UID(0), or
more generally to acquire user characteristics not agreed on by the installation
security policy. A good practice is first to define the following profile:

RDEFINE FIELD USER.OMVS.* UACC(NONE)

Then permit the specific users or groups that need to access the resource:

PERMIT USER.OMVS.<field_name> CLASS(FIELD) ID(<user_or_group_ID>)
ACCESS(<access_type>)

36 z/OS UNIX Security Fundamentals

Specifying the OMVS segment without the PROGRAM field
� No PROGRAM field in the OMVS segment will default to the /bin/sh program,

that is the z/OS UNIX shell, with the FSUM2386 warning message when
invoking the shell.

3.2.2 RACF group and z/OS UNIX

A z/OS UNIX user has to be member of at least one z/OS UNIX group. There is a
one-to-one mapping between an MVS group and a z/OS UNIX group: The MVS
user with a UID belongs to an MVS group, which should also be a z/OS UNIX
group. An MVS group becomes a z/OS UNIX group by specifying an OMVS
segment with a GID in the GROUP profile. z/OS UNIX groups are given access
permissions to z/OS UNIX resources on the basis of their GID as MVS groups
are given access to MVS resources. We show an example of z/OS UNIX user
and group definition in Figure 3-2.

Figure 3-2 RACF user and group profiles

In this example, we have three RACF profiles:

� The first profile is a user profile for TSO/E user ID SMITH, which is connected
to two MVS groups, PROG1 and PROG2. SMITH is defined as a z/OS UNIX
user because he has a UID specified. The UID of user ID SMITH will be 15.

Groupid
Superior
Group Connected Users

PROG2 PROGR SMITH WHITE

Group profile (no OMVS segment)

Groupid
Superior
 Group Connected Users OMVS

GID

25
PROG1 PROGR SMITH BROWN

Group profile

Userid
Default
 Group

Connect Groups TSO DFP OMVS
UID Home Program

15 /u/smith /bin/shSMITH PROG1 PROG1 PROG2

User profile

 Chapter 3. z/OS UNIX users and groups identity management 37

His home directory is /u/smith and he will enter the z/OS UNIX shell when he
issues the OMVS command as the name of the shell, /bin/sh is specified as
the PROGRAM name.

� The second profile is a profile for group PROG1, which is the user ID SMITH’s
MVS default group. This is a z/OS UNIX group with a GID specified in the
OMVS segment. The GID of PROG1 will be 25.

� The third profile is also a group profile for group PROG2, which the user ID
SMITH is also connected to. But this group PROG2 does not have an OMVS
segment and therefore is not a z/OS UNIX group.

The UNIX user with user name SMITH and UID 15 is therefore in the UNIX group
with GID 25. The RACF commands to create OMVS segments for user SMITH
and group PROG1 are:

� ALTUSER SMITH OMVS(UID(15) HOME(/u/smith) PROGRAM(/bin/sh))
� ALTGROUP PROG1 OMVS(GID(25))

3.3 Default UID and GID

Not all users and groups can justify the administrative workload for getting an
OMVS segment specified and maintained in their RACF profiles. For example:

� Users who need to use sockets and do not need any other UNIX services.
They need a UID (and be a member of a UNIX group) for the sole purpose of
invoking the socket functions, as these functions are being implemented as
UNIX System Services.

� Users who want to run multi-threading PL/I programs. PL/I uses some z/OS
UNIX kernel services, and the user needs a UID to get dubbed when invoking
these services.

Important:

� The default group of a z/OS UNIX user and the current connect group must
have a GID defined, to conform with POSIX standards.

� In most cases the system administrator inherits a structure of RACF
groups, which has been created to answer specific requirements regarding
the MVS population of users. While preparing and maintaining the system
for the use of z/OS UNIX System Services, it might appear that this
existing structure does not match well, or is even incompatible with the
intended distribution of permissions among the UNIX groups. In that case,
do not hesitate to create new MVS groups with a GID, that is UNIX groups,
for the sole purpose of building the UNIX groups structure that matches
your needs.

38 z/OS UNIX Security Fundamentals

� Users who just want to experiment with the shell and do not have an OMVS
segment defined yet.

For these types of needs, the users are not required to have an OMVS segment
defined in their USER profile and can get the benefit of a default UID and of a
membership to a default UNIX group. The default OMVS segments, which they
are to share with other users also without their own OMVS segment, resides in a
USER profile and a GROUP RACF profile specifically created to get their OMVS
segments “borrowed” from.

The system administrator has to define the BPX.DEFAULT.USER profile in the
RACF FACILITY class, and store the names of these lending profiles in the
application data field of BPX.DEFAULT.USER. In the example below:

RDEFINE FACILITY BPX.DEFAULT.USER APPLDATA(OEUDFLT/OEGDFLT)

OEUDFLT and OEGDFLT are arbitrary names given to the RACF USER and
GROUP profiles that lend their OMVS segment. Users without an OMVS
segment inherit all fields of the OMVS segment of the OEUDFLT user (UID,
HOME, PROGRAM, and all other fields). Assuming, for instance, that OEUDFLT
has UID(25) and OEGDFLT has GID(57), all users without an OMVS segment
who invoke a z/OS UNIX System Service get dubbed with a UID(25) and a
membership to GID(57).

The access list of the BPX.DEFAULT.USER profile is ignored.

Tips:

� We recommend that you use a visually recognizable value for the default
UID and GID (such as 999999).

� To prevent the misuse of the default USER profile, it is recommended to
give it the NOPASSWORD attribute.

� If you want to forbid the usage of z/OS UNIX services to a specific RACF
user ID, you must create an OMVS segment with parameter NOUID for
this user with the following RACF command:

ADDUSER MVSONLY OMVS(NOUID)

In this case, the MVS user is not entitled to get a default UID from the
BPX.DEFAULT.USER profile, because it has an OMVS segment. The
missing UID will also prevent dubbing any task that has this user ID.

� If you expect to have a lot of users running with the default segment, you
might want to set the default user’s individual limits higher than the general
limits.

 Chapter 3. z/OS UNIX users and groups identity management 39

A special use of BPX.DEFAULT.USER
When users have an OMVS segment but are connected to a group without a
GID, the installation can use the BPX.DEFAULT.USER profile to lend only a GID
to those users. In that case, our OEUDFLT USER profile will not have an OMVS
segment, or an OMVS segment without a UID, while the OEGDFLT GROUP
profile is properly defined with OMVS segment and GID. Of course, this special
use of BPX.DEFAULT.USER is exclusive of the regular use that we have
explained above.

3.4 Shared UID and GID

3.4.1 Automatic prevention of UID sharing

z/OS UNIX allows several users to share the same UID. Although this might
provide some advantages such as allowing users to share the same access
permissions to z/OS UNIX resources but still have their own unique password, it
is commonly agreed that, besides these specific needs, it is mostly a potential
source of ambiguity and confusion. Note however that this sharing of UID cannot
be avoided between superusers as they all have UID(0).

Care has to be taken, when creating new regular z/OS UNIX users, not to
allocate an already assigned UID. This can be done by a manual or
semi-automatic tracking of already assigned numeric values; it can also be done
automatically by RACF as explained below.

Note: To prevent the potential misuse of the default OMVS segment, the
callable services kill(), pidaffinity(), trace(), and sigqueue() are not supported
when running with the default OMVS segment.

Important: Any user who is eligible to use BPX.DEFAULT.USER is a valid
target of an identity switch as explained in 5.2.1, “Reminder on z/OS UNIX
identity switching” on page 53.

Important: The functions described in this section are available if you are
running with z/OS V1R4 and later and your RACF database is formatted with
Application Identity Mapping (AIM) at least at Stage 2. Refer to z/OS V1R8.0
Security Server RACF System Programmer’s Guide, SA22-7681, for an
explanation on AIM stages and how to convert your RACF database to this
level.

40 z/OS UNIX Security Fundamentals

In order to get the RACF automatic assignment of unique UID working, the
SHARED.IDS profile must be defined in the UNIXPRIV class:

RDEFINE UNIXPRIV SHARED.IDS UACC(NONE)

This profile acts as a switch that enables the verification in RACF for already
assigned UID or GID. For example, assume that UID 15 and GID 25 are already
assigned; trying to assign the same numeric values to a new UID or GID with
SHARED.IDS defined results in the following chain of messages:

ADDUSER MARCY OMVS(UID(15))
IRR52174I Incorrect UID 15. This value is already in use by BRADY.
ADDGROUP PMMVS OMVS(GID(25))
IRR52174I Incorrect GID 25. This value is already in use by PROG1.
ADDUSER (HARRY MARCY) OMVS(UID(14))IRR52185I The same UID cannot be
assigned to more than one user.

3.4.2 Allowing assignment of shared UIDs or GIDs

Even if the SHARED.IDS profile is defined, you may still want some UIDs to be
shared between new users. You will then need to be a RACF SPECIAL or have
READ permission to the SHARED.IDS profile, and this will allow you to specify
the SHARED keyword in the ADDUSER, ALTUSER, ADDGROUP, and
ALTGROUP commands. The SHARED keyword overrides the SHARED.IDS
control as shown below:

PERMIT SHARED.IDS CLASS(UNIXPRIV) ID(UNIXGUY) ACCESS(READ)
SETROPTS RACLIST(UNIXPRIV) REFRESH

When user ID UNIXGUY has at least READ access to the SHARED.IDS profile,
it can then assign the same UID or GID to multiple users or groups, using the
SHARED keyword as follows:

ADDUSER OMVSKERN OMVS(UID(0) SHARED)

In this example, we are assuming that several users have to share UID(0).

Note: Enabling this functionality does not affect pre-existing shared UIDs. To
find occurrences of shared UID or GID, you can use the RACF Database
Unload utility (IRRDBU00) along with the ICETOOL utility. Tutorial samples of
the invocation of ICETOOL are provided in SYS1.SAMPLIB(IRRICE). Refer to
z/OS V1R8.0 Security Server RACF Administrator’s Guide, SA22-7683, for
more information about using the IRRDBU00 and ICETOOL utilities.

 Chapter 3. z/OS UNIX users and groups identity management 41

3.5 Automatic UID and GID assignment

3.5.1 Specifying automatic assignment of UIDs and GIDs

UIDs and GIDs that are not already assigned can be automatically given by
RACF to new users or groups when they are created by the RACF administrator.

In order to activate this function, the profile BPX.NEXT.USER has to be defined
in the RACF FACILITY class:

RDEFINE FACILITY BPX.NEXT.USER APPLDATA(10/10000)

After this profile has been defined, you can now have RACF to automatically
assign a z/OS UNIX UID or GID by specifying the keywords AUTOUID or
AUTOGID in ADDUSER, ALTUSER, ADDGROUP, and ALTGROUP commands:

ADDUSER MARCY OMVS(AUTOUID)
ADDGROUP PMMVS OMVS(AUTOGID)

The APPLDATA field of the BPX.NEXT.USER profile consists of two qualifiers
separated by a slash (“/”):

� The left qualifier specifies a starting UID value, or range of UID value (the
extreme values are separated by a dash (“-”)).

� The right qualifier specifies a starting GID value, or range of GID value
(separated by a dash (“-”)).

It is possible to inhibit the automatic assignment of only UID or only GID. To do
so, the corresponding qualifier before or after the slash (“/”) has to be omitted,
and the intended UID or GID has to be specified in the command.

Note: The use of automatic UID/GID requires the following:

� The RACF database must be at AIM Stage 2 or 3. If this is not the case,
the automatic assignment attempt fails with the following message:

IRR52182I Automatic UID assignment requires application identity
mapping to be implemented.

� If the SHARED.IDS profile is not defined in the UNIXPRIV, an IRR52183I
message is issued and the attempt fails with the following message:

IRR52183I Use of automatic UID assignment requires SHARED.IDS to
be implemented.

42 z/OS UNIX Security Fundamentals

If BPX.NEXT.USER in the FACILITY class is not defined, then an IRR52179I
message will be issued and the attempt fails with the following message:

IRR52179I The BPX.NEXT.USER profile must be defined before you can use
automatic UID assignment.

3.5.2 Automatic UID and GID assignment in an RRSF configuration

In a RACF Remote Sharing Facility (RRSF) environment where user updates are
kept synchronized across the network, you want to avoid UID/GID collisions
when AUTOUID/AUTOGID is used on multiple nodes, that is for instance
AUTOUID in one node propagating a value already assigned in another node.
This is accomplished by specifying unique ranges of values in the
BPX.NEXT.USER APPLDATA for each node.

If you are using RRSF automatic command direction for the FACILITY class, you
must use the ONLYAT keyword to alter the BPX.NEXT.USER profile, even when
changing the profile on the system on which you are logged on. ONLYAT tells
RACF not to propagate the command outbound so that BPX.NEXT.USER
profiles on other nodes are not wiped out. Note that the AT keyword is not
sufficient, because it will still be subject to propagation. Figure 3-3 shows how
ONLYAT is used.

Figure 3-3 Fixing the UIDs and GIDs ranges in a RRSF configuration

Important: RACF can only enforce uniqueness of UIDs and GIDs assigned
using the RACF TSO commands, RACF ISPF panels, or the R_admin callable
service (IRRSEQ00). RACF cannot enforce uniqueness of UIDs and GIDs
that are assigned by programs that invoke the ICHEINTY or RACROUTE
macros.

RALT FACILITY BPX.NEXT.USER UACC(NONE) APPLDATA(‘100-5000/NOAUTO’)
ONLYAT(NODEA)
RALT FACILITY BPX.NEXT.USER UACC(NONE) APPLDATA(‘5001-15000/50-500’)
ONLYAT(NODEB)

 Chapter 3. z/OS UNIX users and groups identity management 43

44 z/OS UNIX Security Fundamentals

Chapter 4. z/OS UNIX task identity
management

This chapter describes the fundamental mechanisms that z/OS implements for
z/OS UNIX processes and threads identity management.

It addresses the nature of the UNIX identity information that is attached to the
execution of the z/OS task, its use by the system, and how it is allocated and
changed.

4

© Copyright IBM Corp. 2007. All rights reserved. 45

4.1 Implementation of the UNIX process and threads
concepts

Tasks to be accomplished in a UNIX system can take the form of a UNIX process
or a UNIX thread. We explain these two concepts in this section as a preparation
for further discussion regarding the user identity that can be assigned to them.

4.1.1 The UNIX process

The UNIX process is an entity that executes a given piece of code, owns the
required resources, and is identified using a Process ID (PID).

As already mentioned, daemon processes are programs executed in the
background, with superuser authority, waiting for services requests. Typically
when a request is received and entitled to be served, the daemon duplicates
itself using a fork() or spawn() function call, as shown in Figure 4-1.

Figure 4-1 UNIX daemon fork() or spawn()

The duplicated process then changes its identity for the requestor’s identity and
proceeds to serve the request on behalf of the requestor.

LISTEN

fork,
spawn

User = DAEMON1
UID = 0

Work
Request
UID = 25

User = BOB
UID = 25

Child Process

Change UID
setuid(25)

Execute
work

Exit
User = BOB

Start

optional user authentication

46 z/OS UNIX Security Fundamentals

Note that the client’s authentication by the daemon process is optional; the
superuser authority allows to switch identity without providing authentication data
for the target identity. The duplicated child process inherits all of the security
context of the parent process.

The functions called to create the child process can be fork(), spawn() or exec().
spawn() is also a POSIX function intended to run more efficiently than fork() or
exec() from the system resource consumption standpoint as there is no
duplication of the parent process.

In z/OS UNIX, a process runs in an MVS address space that has been dubbed
with the daemon identity characteristics. A process that issues a fork() function,
creates a new address space, which is a copy of the address space where the
program is running. The fork() function does a program call to the z/OS UNIX
kernel, which then requests Workload Manager (WLM) to create the child
process address space. The storage contents of the parent address space are
then copied to the child address space.

After the fork() function completes, the program in the child address space starts
at the same instruction as the program in the parent address space. Control is
returned to both programs at the same point with a difference only in the return
codes from the fork() function:

� A return code of zero is returned to the child process after a successful fork().
� The return code for the parent is the child process PID.

Note that any UNIX resources (pipes, sockets, files) accessible via opened file
descriptors in the parent are propagated to the new address space. z/OS
resources such as DD allocations, cross-memory resources, and ENQ
serializations are not propagated to the child address space.

4.1.2 The UNIX thread

A server, as opposed to a daemon, can also be defined as a UNIX application
servicing client requests, but which uses threading to multitask concurrently
executing client requests in the same address space.

As shown in Figure 4-2 on page 48, when a client request is received, the server
main process uses the pthread_create() call to create a new thread, which
executes the client request asynchronously. Thread support improves
performance by providing concurrent, asynchronous processing without the
requirement to create a new address space and a new process to run the client
request.

In the z/OS UNIX implementation, this translates into the main process being the
main MVS task in the address space and the threads being started as MVS

 Chapter 4. z/OS UNIX task identity management 47

subtasks. Although each thread has a dedicated TCB, and can execute a
different code subroutine, all the program code to support main task and client
threads has to be packaged in a single program shared module.

Each thread (task) can be initialized to run in different security environments.

Figure 4-2 The UNIX thread concept and the z/OS UNIX implementation

4.2 Identities associated with a z/OS UNIX process or
thread

Globally speaking, a z/OS task, after it has been dubbed as a UNIX process, is
associated with two sets of identity: A set of UIDs and a set of GIDs.

Both sets, to conform with the POSIX.1 security model, actually contain three
forms of the identity information: The real identity, the effective identity, and the
saved identity.

JST
PGMA
Main

PGMA
RtnB

PGMA
RtnB

PGMA
RtnA

pthread_create()

PGMA Main

RtnA

RtnB

UID=25 UID=18 UID=32

UID=0

JOE
UID=32

JANE
UID=18

BOB
UID=25

Process

mutexes

condition
variables

Any Address Space

48 z/OS UNIX Security Fundamentals

4.2.1 Real and effective UID and GID

The effective UID is the UID value that the system uses for access control
decisions. The real UID is actually the user UID under which the process has
been initiated with. At process creation, the effective UID is made equal to the
real UID. Likewise, the effective GID is used to determine the user’s permission
related to group access to files and directories. It can be different from the real
GID, which is the GID of the group that the user is a member of when logging in
to the system.

The real and effective IDs are generally the same for a process unless a set-uid
or set-gid program is executed or functions that switch identity are called. The
switched-to identity becomes the effective UID, and similarly the effective GID is
changed to reflect the new effective UID group membership.

4.2.2 The saved UID and saved GID

These are entities that have been implemented to keep track of the UID or GID
values that were in use before switching identities. When done with the
switched-to identity, a program can use the setuid() or setgid() function without
specifying a target identity to restore the saved UID or GID as the real or
effective UID or GID.

4.3 Functions that change the effective UID and GID

The following functions, or their equivalent assembler calls, can change the
effective UID and GID:

� Setuid()
� Seteuid()
� Setreuid()
� Spawn() with identity change
� Pthread_security_np()
� _check_resource_auth_np()
� _login()
� _password()
� su
� setUID flag

Identity switching is discussed in further detail in Chapter 5, “The z/OS UNIX
security model” on page 51.

 Chapter 4. z/OS UNIX task identity management 49

50 z/OS UNIX Security Fundamentals

Chapter 5. The z/OS UNIX security
model

This chapter describes the implementation in z/OS UNIX of the superuser
concept, and how the z/OS UNIX superuser privileges can be restricted by the
RACF administrator.

From the principle standpoint, a superuser can do anything in a UNIX
environment. In z/OS UNIX, this is also true as far as UNIX objects are
considered. However, having UID(0) in z/OS UNIX does not provide any
privileges over MVS objects or functions. For instance, the z/OS UNIX user, with
the superuser status, does not acquire any rights on MVS data sets nor does he
or she gets any RACF SPECIAL privilege.

But still only very trusted persons should be deemed the superuser status as any
misuse of their privileges can have quite detrimental consequences to both the
z/OS UNIX users and the environment.

5

© Copyright IBM Corp. 2007. All rights reserved. 51

5.1 The superuser concept and privileges

The superuser is one of the UNIX basic concepts and as such must be supported
by z/OS UNIX. A typical example for a requirement to have superuser authority is
a UNIX server daemon, which must be able to read or update any UNIX file on
behalf of any user. Such applications might have to be ported onto z/OS UNIX,
and actually some are.

Furthermore, for system-wide tasks such as managing files and file systems, you
need a user who can:

� Create a new user’s home directory and make the new user owner of this
directory

� Delete a user’s home directory with all its content

� Mount and unmount other file systems at selected mount points

� Quiesce the file system

Superusers are the UNIX answer to these requirements. Superusers are
originally intended to pass all security checks for UNIX resources access. They
can change their identity to any UID and can increase their own limits for UNIX
resources consumption as opposed to the limits assigned to the rest of the
system.

5.1.1 The concerns with the superuser concept

One drawback of the superuser concept is its very ability to do anything at any
time in the system. It is sometimes difficult to recover from their improper actions
such as misspellings in commands.

The concept also does not fit well in environments with stringent security where
duties and privileges tend to be carefully separated among users and assigned in
a granular way. In addition, this situation is even aggravated today with the many
regulations that banking or health organizations have to comply with.

As a parallel, the OPERATIONS attribute that can be given in RACF to some
MVS users is a sort of limited superuser. Users with this attribute have full
access to files, provided they are not already explicitly designated on the
resource profile access list, in which case the access they are given in the
access list takes precedence over the OPERATIONS attribute. They have the
same limited super access to some general resource classes such as TAPEVOL
and DASDVOL.

52 z/OS UNIX Security Fundamentals

z/OS installations have been reducing, for years, the number of user IDs with the
OPERATIONS attribute, to a point where it is almost not used anymore. For
instance COPY MERGECAT operation in IDCAMS is one of the few valid
justifications for OPERATIONS. Likewise, z/OS UNIX proposes ways of reducing
the amount of users with UID(0), as explained in 5.6, “z/OS UNIX users privilege
granularity” on page 64.

5.2 z/OS UNIX implementation of the superuser concept
and privileges

As already mentioned, z/OS UNIX supports the superuser concept for users who
are assigned a UID(0). This UID can be assigned in the OMVS segment of the
USER profile, or could (and there is a strong advice not to do so) be assigned via
the BPX.DEFAULT.USER profile in the FACILITY class.

However, z/OS UNIX implements optional tighter controls on what a superuser
can do, which are explained in this chapter.

An important superuser privilege is the capability of switching the identity of its
executing process. This capability does exist in the z/OS UNIX implementation of
the superuser concept and leads to specific considerations because of the z/OS
UNIX dual user identity. That is the correspondence that is established between
the MVS user ID and the UID. These considerations are developed in the
following section.

5.2.1 Reminder on z/OS UNIX identity switching

When a job starts or a user logs on to an application, the MVS user ID and
password are verified by invoking existing z/OS and RACF functions. We
mentioned that when the address space requests a z/OS UNIX function for the
first time, the address space is dubbed, meaning that it is now considered as a
UNIX process. The RACF involvement in the dubbing process initialized by the
OMVS kernel is as follows:

� It verifies that the user is defined as a z/OS UNIX user, via an OMVS segment
or via the BPX.DEFAULT.USER profile.

Note: Started tasks running with the TRUSTED or PRIVILEGED attribute are
considered z/OS UNIX superusers when they are dubbed even if their
assigned UID is a value other than 0.

 Chapter 5. The z/OS UNIX security model 53

� It verifies that the user's default group and current connect group (or any
group the user is connected to if RACF list-of-groups is in effect) is defined as
a z/OS UNIX group.

� It updates the control blocks needed for subsequent security checks, both
with the MVS and the UNIX identities.

A very important point to remember here is that a z/OS UNIX program authorized
to switch to an alternate UID value on z/OS will also switch in most cases to the
corresponding MVS user ID, in order to always conform to the dual identity as
specified in the RACF USER profile.

Great care must be exercised when dealing with these UNIX programs if they
also access MVS resources or invoke MVS authorized services, as they are
getting the privileges of the switched-to MVS user ID. It is important to
understand if the switched-to identity is first authenticated, using the UNIX user
name (actually for z/OS UNIX the MVS user ID, as it would be the case for MVS
programs intended to switch task identity), or if the switching is done using
superuser authority and therefore does not require authentication of the target
identity.

The z/OS UNIX approach is to tightly control the superusers’ authority to switch
identity. These controls use RACF profiles that the superuser has to be permitted
to, along with an extension of the RACF Program Control function.

z/OS UNIX also exploits the SURROGAT class of profiles in RACF, which can be
used to authorize bypassing authentication when switching to a specific user ID.

Table 5-1 summarizes the conditions under which a z/OS UNIX program that
switches its UID also switches its MVS user ID. “Y” indicates that an identity
switch is performed.

Table 5-1 UNIX UID and MVS user ID changes

UNIX System Services
functions that result in UID
switching

Change
effective
UID

Change
MVS user
IDa

Conditions for switching identity
Note: We are assuming that the RACF
BPX.DAEMON profile has been defined in
the FACILITY classb

setuid flag in the file security
packet

Y N Only the effective UID is changed for the time
of the program execution

Non-superuser issues su in
shell, without specifying a user
ID

Y
switches
to UID(0)

N The MVS user ID needs READ access to
BPX.SUPERUSER in the FACILITY class

su with user ID and valid
password

Y Y A valid password for the target user ID is
required

54 z/OS UNIX Security Fundamentals

su with user ID without
password

Y Y The issuing MVS user ID needs READ
access to the target user ID profile in the
SURROGAT class

setuid() or _login() with
authentication of the target ID

Y Y The function must be invoked from a clean
address spacec

setuid() or _login() without
authentication of the target ID

Y Y The requesting MVS user ID needs READ
access to the target user ID profile in the
SURROGAT class
OR
The requesting MVS user ID has UID(0) AND
has READ access to BPX.DAEMON AND
the function is invoked from a clean address
space (see Note c below)

pthread_security_np() with
authentication of target ID

Y Y The requesting MVS user ID needs at least
READ access to BPX.SERVER AND the
function is invoked from a clean address
space (see Note c below)

pthread_security_np() without
authentication of target ID

Y Y The requesting MVS user ID needs READ
access to the target user ID profile in the
SURROGAT class
AND
The requesting MVS user ID has at least
READ access to BPX.SERVER AND the
function is invoked from a clean address
space (see Note c below)

_spawn() with identity change
with authentication of target ID

Y Y

_spawn() with identity change
without authentication of
target ID

Y Y The requesting MVS user ID needs READ
access to the target user ID profile in the
SURROGAT class
OR
The requesting MVS user ID has UID(0) AND
has READ access to BPX.DAEMON AND
the function is invoked from a clean address
space (see Note c below)

a. When changing from a non-zero UID for UID(0), the MVS user ID is not changed.

UNIX System Services
functions that result in UID
switching

Change
effective
UID

Change
MVS user
IDa

Conditions for switching identity
Note: We are assuming that the RACF
BPX.DAEMON profile has been defined in
the FACILITY classb

 Chapter 5. The z/OS UNIX security model 55

5.2.2 Authentication of the switched-to user ID

z/OS UNIX offers a peculiar context when it comes to a UNIX application to
switch identity as, because of the dual identity associated to the z/OS UNIX
users, the MVS identity might have to be switched as well. In this section, we
provide the operating rules followed by z/OS UNIX to associate a new MVS
identity, if required to, to the switched-to UID.

Switching UID without authentication of the target UID
Some UNIX daemon processes might issue a setuid() to switch to any UID
without authentication of the target user ID. When the BPX.DAEMON FACILITY
profile is defined, the identity switching occurs if the caller has UID(0) and is
permitted to the BPX.DAEMON profile (see below).

The switched-to MVS user ID is a user who has the same UID as the target UID.
This is another reason to establish unique UIDs, although it might not be possible
if the target UID is UID(0).

The setuid() function invokes the System Authorization Facility (SAF) services to
change the MVS identity of the address space. The MVS identity that is used is
determined as follows:

� If an MVS user ID is already known by the kernel from a previous call to a
kernel function (for example, getpwnam()) and the UID for this user ID
matches the UID specified on the setuid() call, then this user ID is used.

� For non-zero target UIDs, if there is no saved user ID or the UID for the saved
user ID does not match the UID requested on the setuid() call, the setuid()
function queries the security database (for example, using the getpwnam()
function) to retrieve a user ID that also has the target UID. The retrieved user
ID is then used.

Switching to UID(0) without authentication
There are cases in UNIX programming where the superuser might want to switch
to UID(0) (actually this is a way to check if a program is already running with
UID(0)). z/OS UNIX uses a default target user ID in the case of BPXROOT (that
is, a BPXROOT USER profile, with UID(0) is expected to have been defined in

b. When BPX.DAEMON is not defined, z/OS UNIX operates as any UNIX system, granting full un-
controlled authority to superusers.

Note: If the BPX.SERVER or BPX.DAEMON in the FACILITY class is defined, the system is said to
have z/OS UNIX-level security. In this case, the system is more secure than a traditional UNIX sys-
tem.

c. The notion of clean address space is explained in 5.3, “Introducing the controlled environment”
on page 58.

56 z/OS UNIX Security Fundamentals

RACF). A different default user ID can be specified with the SUPERUSER
keyword in the SYS1.PARMLIB(BPXPRMxx) member.

5.2.3 The RACF BPX.DAEMON profile in the FACILITY class

If the BPX.DAEMON resource in the FACILITY class is defined, the system is
said to have “z/OS UNIX security”. Implying that it has a superior level of user
control than initially defined in the UNIX security model.

In regular UNIX systems, superusers can freely change their identity for another
one at any time without justifying of any permission to do so. As a parallel in the
MVS world, a task can change identity only if it can provide the password of the
target identity or if the caller has been defined by the RACF administrator as a
surrogate of the target identity. Non-superusers in UNIX can also change their
identity only if they can provide the valid password for the target identity.

With the BPX.DAEMON defined in the FACILITY class, a process running under
a superuser identity can freely switch, that is without having to provide the target
identity password, to any new identity if the both following statements are true:

� The caller’s MVS user ID identity has READ access to the BPX.DAEMON
profile.

� The request is issued from a clean address space, also called a controlled
environment. We explain in further detail what a controlled environment is in
5.3, “Introducing the controlled environment” on page 58.

Tips:

� It is recommended that the UID(0) default user (BPXROOT or other) be
defined with the NOPASSWORD attribute.

� An MVS user defined with an OMVS segment with NOUID will never be
switched to with setuid().

Important: Remember that if BPX.DEFAULT.USER is defined, then any user
without an OMVS segment can be the subject of an identity switch in a UNIX
process or thread.

 Chapter 5. The z/OS UNIX security model 57

5.3 Introducing the controlled environment

The controlled environment is the exploitation by z/OS UNIX of the program
control mechanisms. Program control was implemented many years ago in MVS
so that the system can control the accesses that users have to load modules and
control the accesses that the programs themselves have on data sets. This
control is achieved by defining resource profiles in the RACF PROGRAM class of
profiles to specify which load modules, or libraries, are program controlled.

Having the RACF administrator defining a program in the PROGRAM class is in
itself an indication that some level of trust is granted to the program contents, as
it could be the case after inspecting the program’s code for sound and safe
design. Programs that can be controlled in this way include programs loaded
from the LNKLST (called public libraries) or from JOBLIB/STEPLIB (private
libraries). CLISTs, procedures, and LPA modules cannot be controlled.

The program control environment is activated with the RACF command:

SETROPTS WHEN(PROGRAM)

Program control goes along with additional processing that checks, when loading
a load module into an address space, that the load module is program controlled.

This notion of controlled program has been extended to UNIX executable
modules residing in Hierarchical File System (HFS) or zFS files. As HFS or zFS
files are not resources defined in RACF, the controlled program indication is kept
in the file security packet as the “p” extended attribute.

Important:

� It is highly recommended to have the BPX.DAEMON profile defined in the
FACILITY class, with UACC(NONE). The profile’s access list is then
updated on a case-by-case basis.

� The default superuser user ID BPXROOT (or any alternate user ID defined
in SYS1.PARMLIB(PRMXX)) must not be permitted to BPX.DAEMON.

� After BPX.DAEMON has been defined, the system should be set up to
establish a controlled environment such as explained in 5.3, “Introducing
the controlled environment” below.

58 z/OS UNIX Security Fundamentals

A clean address space contains only modules that are either MVS controlled
programs (that is defined in the PROGRAM class) or UNIX executables loaded
from files with the “p” extended attribute. Conversely an environment on which a
program not defined in the PROGRAM class, or fetched from a file without the “p”
extended attribute has been loaded, is considered a dirty or uncontrolled
environment.

A schematic view of the mechanism is given in Figure 5-1 on page 60. As
programs are loaded from MVS library or from UNIX files, the program load
function checks whether the load module is defined as a PROGRAM resource in
RACF (for MVS load modules) or whether the file has the “p” extended attribute
(for UNIX executable files). If this is not the case, the program is still loaded in the
requestor’s address space, however an indication, known as the dirty bit, is set
in the address space control blocks.

The following functions that can be invoked by a program running in the address
space and that eventually, for some of them, proceed with a switch of identity,
require, in order to be executed, that the issuing address space be a clean
address space. If this is not the case, the function is not executed and control is
given back to the requesting program with an error information.

� Setuid()
� Seteuid()
� Setreuid()
� Spawn() with identity change
� Pthread_security_np()
� _check_resource_auth_np()
� _login()
� _password()
� su
� setUID flag

The implementation of these function calls in z/OS UNIX is as shown in
Figure 5-1 on page 60. Calling the function gives control to the z/OS UNIX kernel
and the kernel checks whether the BPX.DAEMON profile has been defined and
whether the dirty bit is on or not for the requestor’s address space.

 Chapter 5. The z/OS UNIX security model 59

Figure 5-1 The controlled environment process

What it takes to establish a controlled environment
Here is an example command to get a program to be program controlled:

RDEFINE PROGRAM ABC ADDMEM('SYS1.LINKLIB'//NOPADCHK) UACC(READ)
SETROPTS WHEN(PROGRAM)

In this example, the program “ABC” in the SYS1.LINKLIB library is controlled.
Note that giving READ access by default does not provide any restriction to its
use by non-restricted RACF users, the purpose being here to just get this
program’s execution environment to be controlled as explained above. A
variation of this setup is to get a complete program library to be controlled:

RALTER PROGRAM * ADDMEM(’SYS1.SGSKLOAD’//NOPADCHK) UACC(READ)
SETROPTS WHEN(PROGRAM) REFRESH

?

'Controlled' librairies
(PDS or HFS/zFS)

Address Space

Load
modulesr

(non controlled
program)

TCBLoad,
exec,
spawn,
etc ...
and
Program
Control
Active

set 'dirty bit'

X

'clean'
Address
Space

setuid(), seteuid(),
setruid()
pthread_security_np
auth_check_resource_np
_login()
_spawn() (with UserID
switch)
_passwd

RACF 'Program Control' in effect
SETROPTS WHEN(PROGRAM)
MVS libraries in PROGRAM profiles
HFS/zFS executables with the 'p' extended attribute

Execute

Important: There is no program control checking for program modules loaded
from the LPA, that is, they are considered to be controlled.

60 z/OS UNIX Security Fundamentals

This last example can be used to make all the z/OS LINKLIST libraries controlled
as members of the PROGRAM * profile. Be careful that with new releases of
z/OS new libraries may be on the LINKLIST, and the PROGRAM * profile in
RACF may need to be updated accordingly.

Executable programs that reside in file system files are marked with the “p”
extended attribute bit on to indicate that they are program controlled. Note that in
that case, each program has to be individually marked as controlled as the file
system cannot be considered as a controlled library.

BPX.DAEMON.HFSCTL
The capability exists for selected applications not to check whether program
loaded from MVS libraries are program controlled, but to control only UNIX
executables for coming from files with the “p” extended attribute. In order to do
so, the profile BPX.DAEMON.HFSCTL has to be defined in the FACILITY class
and the applications user IDs for whom the MVS program control check has to be
bypassed are given READ permission to the profile.

Obviously, doing this weakens some of the security provided by the
BPX.DAEMON resource. It should be done only in restricted and carefully
considered cases, or if you do not already run with BPX.DAEMON but want to
gain only a subset of the benefits of running with BPX.DAEMON.

BPX.DAEMON.HFSCTL is an example of a profile, that potentially lowers the
ambitions of a system security policy.

5.4 Using surrogate users with z/OS UNIX

Surrogate users is a facility in the MVS RACF security model that can be
exploited in a z/OS UNIX environment. A surrogate user can act on behalf of
another user, under control of RACF administrative setup and gets the access
privileges of the other users without having to provide the surrogated user’s
authentication data.

Important: To set the UNIX file “p” extended attribute requires having, in
addition to being the file owner or a superuser, READ permission to the
BPX.FILEATTR.PROGCTL profile in the RACF FACILITY class. Note also
that any change to the file contents automatically resets the “p” bit.

Recommendation: You must not define a generic FACILITY catchall profile
such as ** even if it has UACC(NONE), because it will cause by virtue of its
very definition policy setting entities such as BPX.DAEMON.HFSCTL to exist.

 Chapter 5. The z/OS UNIX security model 61

In order to make a z/OS UNIX user the surrogate of another z/OS UNIX user, the
RACF administrator has to define the profile BPX.SRV.surrogated_id in the
SURROGAT class, the last qualifier in the profile name being the user ID of the
surrogated user. Then users of the RACF user ID that has READ access to the
profile are permitted to act as a surrogate of surrogated_id.

We have already indicated in the previous sections that switching user identity is
allowed without further control if the switching user ID is defined as a surrogate of
the switched-to user ID.

5.5 BPX.SERVER

The BPX.SERVER is a RACF profile in the FACILITY class that is used to
protect access to the functions pthread_security_np() and
_check_resource_auth_np().

pthread_security_np() is invoked by server processes that create individual
threads for the requests they serve and have to explicitly assign an identity to
these threads of execution, that is, they have to establish a specific security
environment for the subtask to be run in the address space. It is expected that
such server processes first authenticate the client and then create the thread
security environment using pthread_security_np() with the client authentication
data. If they do not proceed with client authentication, as it could be the case with
a default user ID or an anonymous request, then the server’s address space user
ID has to be defined as a surrogate of the default or anonymous user ID.

When the BPX.SERVER profile is not defined, only superusers can invoke the
pthread_security_np() and _check_resource_auth_np() functions. However,
when the profile is defined only users having at least READ permission to the
profile, be it superuser or not, can use the pthread_security_np() functions, as
well as the _check_resource_auth_np() function. Execution of these two
functions requires the issuing address space to be clean. Figure 5-2 on page 63
illustrates the creation of a thread security context with the pthread_security_np()
function.

It is also assumed that the server process user ID has been defined as a RACF
surrogate for the client.

62 z/OS UNIX Security Fundamentals

Figure 5-2 pthread_security_np and BPX.SERVER

Note that there is a difference whether a server process is given READ or
UPDATE permission to the BPX.SERVER.

UPDATE: When the RACF identity of the server has been granted UPDATE
authority to BPX.SERVER in the RACF FACILITY class, the server fully acts as a
surrogate for the client. This means that the identity of the thread associated with
the request from the server’s client runs with the z/OS user ID of the server’s
client. Access control decisions to z/OS resources (such as data sets) and to
z/OS UNIX resources (such as UNIX files) that are accessed by the client’s
thread in the server are made using the RACF identity of the client.

READ: READ access lets the server establish a thread-level security
environment for the clients that it services. However, the user ID of the server
and the user ID of the client must be authorized to the resources that the server
will access. A thread-level security context in which both the client’s and server’s
identity is used in the access control decision and a password was not supplied
by the client is called an unauthenticated client security context. Depending on
the design and implementation of the client/server application, a client may have
to supply an authenticator to the server. For example, the client may be

 RACF
Facility Class

DATASRVR

any UID
JOE

JANE

pthread_security_np

DATA

Defined To
BPX.SERVER?

Y
N

BPX.SERVER

DATASRVR(UPDATE)
 or
DATASRVR(READ)

"clean"
environment

Y fails!

N

Th 1 JOE

Th2 JANE

 Chapter 5. The z/OS UNIX security model 63

prompted to supply a password or a password substitute, such as a RACF
passticket to the server to prove its identity.

If a RACF password or passticket is specified as a parameter on the
pthread_security_np() service, and the password or passticket is valid for the
client user ID, even if the server’s identity has been granted READ access to the
profile BPX.SERVER in the RACF FACILITY class, the task level security
environment is only used in access control decisions. That is, only the RACF
user ID of the client is used in making access control decisions. This task level
security environment created by a server is called an authenticated client
security context. Because the client has trusted the server sufficiently to supply a
RACF password (or passticket) to the server, the server is granted the capability
of acting as a surrogate for that client (user).

5.6 z/OS UNIX users privilege granularity

z/OS UNIX offers ways of maintaining the amount of UNIX users defined with
UID(0) to a bare minimum. The approach is to grant superuser privileges on a
temporary basis, or to grant granular pieces of superuser privileges to regular
UNIX users (that is non-UID(0) users) under control of RACF profiles.

5.6.1 BPX.SUPERUSER

The BPX.SUPERUSER profile can be defined in the FACILITY class. Regular
UNIX users permitted to this resource can switch to superuser status by issuing
the su (“switch user”) shell command in the z/OS UNIX shell. This initiates a
nested shell where the user has superuser status. The user keeps the superuser
status until exiting from this nested shell.

The objective is that users permitted to BPX.SUPERUSER can temporarily
acquire superuser privileges when, and only when, they explicitly want to exploit
them. Note that these users can also switch into the superuser status with the
“Enable superuser mode (SU)” option in the ISPF shell, and remain with this
status until they explicitly select the option to reset to their original UID’s
privileges.

Note: It is also recommended to have BPX.SERVER defined with
UACC(NONE).

64 z/OS UNIX Security Fundamentals

5.7 Individual limits in the USER profiles

The BPXPRMxx member in SYS1.PARMLIB is used to specify limits pertaining
to resources allocation intended for all z/OS UNIX users. For instance, the
parameter MAXTHREADTASKS is the maximum number of MVS tasks that a
single process can have concurrently active.

Processes that need, for any reason, to go above the general limits fixed in the
BPXPRMxx member can either:

� Be assigned a z/OS UNIX user ID with a UID(0). Superusers are not subject
to the general limits.

� Or run with a non-UID(0) user ID with individual limits specified in the USER
profile. The individual limits override the general limits given in BPXPRMxx.

These individual limits are specified in the OMVS segment of the USER profile
with the following keywords:

� ASSIZEMAX(address-space-size)
� CPUTIMEMAX(cpu-time)]
� FILEPROCMAX(files-per-process)
� MEMLIMIT(nonshared-memory-size) | NOMEMLIMIT
� MMAPAREAMAX(memory-map-size)
� PROCUSERMAX(processes-per-UID)
� SHMEMMAX(shared-memory-size) | NOSHMEMMAX
� THREADSMAX(threads-per-process)

Note that these individual limits, although expected to be mainly used for
increasing the consumption limits for some resources, can also be used to
decrease the user’s limits with respect to the general limits.

To use the _BPX_UNLIMITED_SPOOL environment variable, the caller must be
a superuser or be permitted to the BPX.UNLIMITED.SPOOL FACILITY class
profile with READ access or greater. A “YES” value given to the environment
variable specifies unlimited spooled output. “NO” specifies that the default
spooled output limits is to be used. Not defining or specifying an invalid value is
the equivalent of specifying NO and the defaults limits are not overridden.

5.7.1 The UNIXPRIV class of resources

By using the UNIXPRIV class, the RACF administrator can permit a subset of
superuser privileges to non-UID(0) users. A number of system programmers and
administrators do not need full superuser authority. They just need to perform a
few selected functions that cannot normally be executed without superuser
authority. In this situation, the number of superusers, or users able to switch into

 Chapter 5. The z/OS UNIX security model 65

superuser mode through access to BPX.SUPERUSER, that are needed in the
system can be reduced by using superuser granularity via profiles in the RACF
UNIXPRIV class.

Superuser granularity allows a non-superuser to successfully execute a function
that normally requires superuser authority if the user has access to a certain
resource in the UNIXPRIV class of profiles. For example, a file system can
normally be mounted only by a superuser. However, a user with a non-zero UID
can successfully mount file systems if the user is permitted to
SUPERUSER.FILESYS.MOUNT profile. READ access will allow the user to
mount file systems with the nosetuid option, while UPDATE access will allow the
user also to mount file systems with the setuid option (see Chapter 6, “z/OS
UNIX files security” on page 73).

Table 5-2 shows the resource names that are used in the UNIXPRIV class of
profiles and lists the privileges associated with each resource. Note that profiles
with an access required of NONE are profiles acting as switches to enable the
function.

The UNIXPRIV class must be active and SETROPTS RACLIST must be in effect
for the UNIXPRIV class (this implies that changes to the UNIXPRIV profiles must
be followed by a SETR RACLIST(UNIXPRIV) REFRESH). Global access
checking is not used for authorization checking to UNIXPRIV resources.

Table 5-2 Resource names in the UNIXPRIV class for z/OS UNIX privileges

Note: In this section, we do not list all the profiles in the UNIXPRIV class; we
list only the ones that directly pertain to superuser granular privileges granted
to regular users. For a complete description of all profiles in the UNIXPRIV
class, refer to z/OS V1R8.0 UNIX System Services Planning, GA22-7800.

Resource name z/OS UNIX privilege Access required

CHOWN.UNRESTRICTED Allows all users to use the chown
command to transfer ownership of their
own files.

NONE

SUPERUSER.FILESYS.CHOWN Allows users to use the chown command
to change ownership of any file.

READ

66 z/OS UNIX Security Fundamentals

SUPERUSER.FILESYSa Allows users to read any HFS file and to
read or search any HFS directory.

READ

Allows users to write to any HFS file and
includes privileges of READ access.

UPDATE

Allows users to write to any HFS
directory and includes privileges of
UPDATE access.

CONTROL (or
higher)

SUPERUSER.FILESYS.
CHANGEPERMS

Allows users to use the chmod command
to change the permission bits of any file
and to use the setfacl command to
manage access control lists for any file.

READ

SUPERUSER.FILESYS.MOUNT Allows users to issue the mount
command with the nosetuid option and to
unmount a file system mounted with the
nosetuid option.

READ

Allows users to issue the mount
command with the setuid option and to
unmount a file system mounted with the
setuid option.

UPDATE

SUPERUSER.FILESYS.QUIESCE Allows users to issue the quiesce and
unquiesce commands for a file system
mounted with the nosetuid option.

READ

Allows users to issue the quiesce and
unquiesce commands for a file system
mounted with the setuid option.

UPDATE

SUPERUSER.FILESYS.PFSCTL Allows users to use the pfsctl() callable
service.

READ

SUPERUSER.FILESYS.VREGISTERb Allows a server to use the vreg()
callable service to register as a VFS file
server.

READ

SUPERUSER.IPC.RMID Allows users to issue the ipcrm
command to release IPC resources.

READ

SUPERUSER.PROCESS.GETPSENT Allows users to use the w_getpsent
callable service to receive data for any
process.

READ

SUPERUSER.PROCESS.KILL Allows users to use the kill() callable
service to send signals to any process.

READ

Resource name z/OS UNIX privilege Access required

 Chapter 5. The z/OS UNIX security model 67

5.8 Some recommendations

We found the following RACF setups to highly contribute to the z/OS UNIX
environment security. Their use depends of course on the specific installation
context, but we believe that they should be considered as part of the
recommended best practices related to the z/OS UNIX security setup.

� SETROPTS NOADDCREATOR

� RDEFINE FACILITY BPX.DAEMON UACC(NONE) OWNER(SYS1)

� PERMIT BPX.DAEMON CLASS(FACILITY) ID(BPXROOT) ACCESS(NONE)

� RDEFINE FACILITY BPX.SERVER UACC(NONE) OWNER(SYS1)

� RDEFINE SURROGAT BPX.SRV.* OWNER(SYS1)

We also stress the usefulness of funneling UID(0) requests into a limited set of
administrators with READ access to SHARED.IDS. Furthermore, if a user is
requesting UID(0), he or she will have to justify it to a senior administrator who
would rather look into the use of UNIXPRIV profiles as a replacement for UID(0).

SUPERUSER.PROCESS.PTRACEc � Allows users to use the ptrace()
function through the dbx debugger to
trace any process.

� Allows users of the ps command to
output information about all
processes. This is the default
behavior of ps on most UNIX
platforms.

READ

SUPERUSER.SETPRIORITY Allows users to increase their own
priority.

READ

a. Authorization to the SUPERUSER.FILESYS resource provides privileges to access only local Hi-
erarchical File System files. No authorization to access Network File System (NFS) files is provided
by access to this resource.
b. The SUPERUSER.FILESYS.VREGISTER resource authorizes only servers, such as NFS serv-
ers, to register as file servers. Users who connect as clients through file server systems, such as
NFS, are not authorized through this resource.
c. Authorization to the resource BPX.DEBUG in the FACILITY class is also required to trace pro-
cesses that run with APF authority or BPX.SERVER authority. For more information about adminis-
tering BPX profiles, see z/OS V1R8.0 UNIX System Services Planning, GA22-7800.

Resource name z/OS UNIX privilege Access required

68 z/OS UNIX Security Fundamentals

5.9 Other restrictions to superuser authority

Other restrictions to superuser authority include:

� Extended attributes for HFS files such as program-controlled “p” bit,
APF-authorized “a” bit, and shared library “l” bit can only be set with READ
authority to the appropriate RACF profile in the FACILITY class:
BPX.FILEATTR.PROGCTL, BPX.FILEATTR.APF, or
BPX.FILEATTR.SHARELIB, respectively. See Chapter 8, “Considerations on
z/OS UNIX program management” on page 105, for further details on these
bits.

� Use of the ptrace function of dbx to debug programs running with APF
authority or with BPX.SERVER authority requires READ access to the profile
BPX.DEBUG in the FACILITY class.

5.10 The daemons in z/OS

As of z/OS V1R7, the following UNIX programs are delivered in z/OS and
operate with superuser authority to switch to unauthenticated identities. They
have been thoroughly reviewed by IBM so that they can be permitted to the
BPX.DAEMON FACILITY profile without introducing a security exposure.

� inetd: The network daemon
� rlogind: The remote login daemon
� cron: The clock daemon
� uucpd: The UUCP daemon
� The syslogd daemon

5.11 Advanced topic: RACF enhanced program security

In this section, we provide an overview of this enhancement to the program
control protection mechanism. Further details pertaining to its principles of
operation and administration can be found in z/OS V1R8.0 Security Server
RACF Security Administrator’s Guide, SA22-7683, and z/OS V1R8.0 UNIX
System Services Planning, GA22-7800.

5.11.1 Overview of the principles of operation

We have seen in 5.3, “Introducing the controlled environment” on page 58, how
the MVS program control mechanism is exploited in z/OS UNIX to check that
critical functions, mainly dealing with identity switching, require, in addition to

 Chapter 5. The z/OS UNIX security model 69

being authorized to the BPX.DAEMON or BPX.SERVER profiles, to be called
from a clean address space.

RACF program control, control of program access to data sets (PADS), and
protection of programs with sensitive data or/and algorithm inside (EXECUTE
control) have been enhanced at z/OS V1R4 with the introduction of RACF
enhanced program security.

RACF enhanced program security provides a finer level of checking for
controlled programs that makes it even more difficult for malicious users to
establish an illegitimate clean environment.

These optional controlled programs characteristics have to be entered in the
APPLDATA field of the PROGRAM profiles. They are:

� “MAIN”: Programs with MAIN in the APPLDATA field of their PROGRAM
profile are tracked to be the initiator of the environment. If the environment is
initiated by a non-MAIN program, then the environment becomes dirty.
Typically MAIN programs are programs started by:

– // EXEC PGM=program
– TSOEXEC program

� “BASIC”: Programs with the BASIC attribute are the first program of the
current task or a parent task. The check for clean environment only involves
the library or file or data set the program is coming from.

Here are examples of definition for a MAIN program and BASIC program:

RDEFINE PROGRAM ABC ADDMEM('load.library'//NOPADCHK) APPLDATA('MAIN')
RDEFINE PROGRAM ABC ADDMEM('load.library'//NOPADCHK) APPLDATA('BASIC')

In the above example, you can declare the program ABC as MAIN, if it is called
via a JCL EXEC. However, if you start the program ABC with a TSO CALL or
ISPEXEC, ABC does not create the environment (IKJEFT01 did it) and therefore
can only be defined as BASIC. If the MAIN program resides in the shared
storage area, LPA, use ‘LPALST’ as library name, and in this case the UACC
value of the PROGRAM profile is not being used.

These programs characteristics are honored when the system is running in
enhanced program mode. To turn on enhanced program mode in the system,
you have to define the mode in the APPLDATA field of the profile
IRR.PGMSECURITY in the RACF FACILITY class. The mode is one of the
following:

� “BASIC” mode: This is the pre-enhanced program security mode, or the
default mode. It only checks for proper program controlled origin of the
modules brought into the address space.

70 z/OS UNIX Security Fundamentals

� “ENHANCED” mode: The system is to ensure that MAIN programs are really
the initiator of the environment. BASIC programs are checked, as done
already, for a program controlled source.

� “ENHANCED-WARNING” mode: This is an aid for the migration to
ENHANCED mode, as running with ENHANCED mode is probable to fail the
first times as many programs that might be found not to be properly controlled
yet.

5.11.2 Enhanced program security and z/OS UNIX

It appears from the explanations above that the MAIN or BASIC attribute can
only be specified in PROGRAM profiles in RACF, that is there is no MAIN or
BASIC program characteristics that can be set for the z/OS UNIX executable
files.

However, you can define the FACILITY profile BPX.MAINCHECK. With this
profile defined, z/OS UNIX and RACF will require that the first program a
daemon executes must be defined to RACF using a PROGRAM profile with the
MAIN option, as described previously. If you define BPX.MAINCHECK, then the
first program that any daemon executes has to be moved first into an MVS library
and defined in the RACF PROGRAM profiles with the MAIN attribute. The initial
z/OS UNIX executable needs to have the sticky bit attribute turned on or can be
set up as an external link z/OS UNIX file.

Remember that programs loaded from the LPA are all considered to be program
controlled.

5.12 A word on IPC security

Interprocess communications (IPC) are, with files and directories, part of the
UNIX applications resources that are protected. In z/OS UNIX, IPC comprises
the following facilities, according to the XPG4 support:

� Message queues: Message queues allow a client and a server process to
communicate through one or more message queues in the kernel. A process
can create, read from, or write to a message queue. Multiple client and server
processes can share the same queue.

� Shared memory: Shared memory provides a method of sharing data in
storage between multiple processes. The shared data is kept in a data space

Important: Switching mode in the IRR.PGMSECURITY profile requires to
re-IPL the system for all tasks to execute in the selected mode.

 Chapter 5. The z/OS UNIX security model 71

created by the kernel. The data can be shared between a parent and child
process or between unrelated processes.

� Semaphores: Semaphores are used for serializing access to shared
memory. A program using shared memory must get a semaphore before it
allocates shared memory.

IPC requires RACF to do authorization and permission checking. IPC facilities of
the z/OS UNIX system allow two or more distinct processes to communicate with
each other. RACF protects this environment so that only those processes with
the correct authority can communicate. IPC consists of message queuing,
semaphores, and shared memory segments used by application programs. Each
function requires a security action by z/OS UNIX, which RACF performs to allow
a secure environment to exist.

The IPC security packet (ISP) contains data needed to make security decisions.
It is built when a new ID for an IPC key is created and is saved in memory by the
kernel. An IPC key is a number used to identify unequivocally an IPC control
structure and is usually created with the ftok(3) function. The ISP is used in place
of a profile in the RACF database to contain information about the IPC key’s
owner and access rights.

Access READ to the profile SUPERUSER.IPC.RMID in the class UNIXPRIV
allows users to issue the ipcrm command to release IPC resources.

Note: The IPC mechanisms have a limited set of permission bits (read and
write for user, group, and other), which can be manipulated by APIs, but not
by commands.

72 z/OS UNIX Security Fundamentals

Chapter 6. z/OS UNIX files security

In this chapter, we address the security of the MVS data sets that host the z/OS
UNIX users’ data and how the security model of the UNIX Hierarchical File
System (HFS) is implemented in z/OS UNIX.

In this chapter, we address:

� The HFS and the file security packet (FSP)

� The pertinent z/OS UNIX security checks

6

© Copyright IBM Corp. 2007. All rights reserved. 73

6.1 z/OS implementation of the Hierarchical File System

As seen in Chapter 1, “Overview of the UNIX operating system model” on
page 1, UNIX provides a Hierarchical File System, made of directories and files
within the directories for the UNIX users and operating system to store and
retrieve data. This section gives an overview of the UNIX Hierarchical File
System implementation as done in z/OS with a specific focus on the protection of
both the data sets that contain the z/OS UNIX data and the directories and files
as they appear to the z/OS UNIX users.

6.1.1 The z/OS UNIX file systems

The file system implementations that we focus on in this chapter are the z/OS
HFS and z File System (zFS). Other file systems are also supported in z/OS,
such as Network File System (NFS) and Temporary File System (TFS). Although
they abide with the basic security model that we describe for HFS and zFS, they
do not directly involve z/OS data sets and require specific setups that we do not
address in this IBM Redpaper. Further information about NFS can be found in
z/OS V1R8.0 Network File System Guide and Reference, SC26-7417.

The z/OS UNIX file systems data is actually kept in data sets managed by
DFSMS with a specific type of HFS or VSAM linear (the latter for the zFS file
system). The z/OS UNIX logical file system gives the UNIX users the view of the
data residing in the HFS or zFS data sets as though they were in files and
directories.

In z/OS terminology, a file system is one data set that contains z/OS UNIX data.
A z/OS system usually has many file systems that make up the full UNIX file tree.
One data set hosts the root file system and contains the top of the files and
directories hierarchy, while the lower levels of the hierarchy are stored in other
file systems, that is data sets, that provide the lower levels of the hierarchy by
being logically mounted at a directory of the next higher level, as shown in
Figure 6-1 on page 75.

74 z/OS UNIX Security Fundamentals

Figure 6-1 The z/OS UNIX Hierarchical File System

A file system is mounted with the TSO MOUNT, or UNIX mount, command which
specifies the directory that the file system has to be mounted under.
SYS1.PARMLIB(BPXPRMxx) contains the MOUNT commands to be
automatically issued at z/OS UNIX initialization.

6.1.2 Protection of the file system data sets

These data sets must be defined in the RACF DATASET class with
UACC(NONE). The z/OS UNIX kernel address space must have access to these
data sets. The kernel initialization OMVS STC being defined with the TRUSTED
attribute, or its user ID is given UPDATE permission to the Hierarchical File
System data sets.

A very common convention is to give these data sets a high-level qualifier of
OMVS.

Path: /Dir1/Dir3/F3

Root file system (only one)

HFS data set #3
MVS DSN = OMVS.USER.TP

/

Dir1 Dir2

Dir3 Dir4

Dir5

Mount pointMount point F1 F2

F3 F4 F5 F6 F7 F8

HFS data set #1
MVS DSN = OMVS.ROOT

HFS data set #2
MVS DSN = OMVS.USER.GL

 Chapter 6. z/OS UNIX files security 75

In a sysplex environment, the HFS files may be shared between members of the
sysplex. But certain system directories such as /tmp for temporary files cannot be
shared among sysplex members, and thus dedicated file systems are required in
each member of the sysplex to contain such directories. Refer to z/OS V1R8.0
UNIX System Services Planning, GA22-7800, for further information about HFS
file sharing in a sysplex.

6.1.3 Mount security

To dynamically add file systems, use the MOUNT command specifying the
mount point and the data set name to be mounted. The file system has a specific
UNIX security environment that can be specified also at mount time. There are
three optional parameters for the MOUNT command (the default value is shown
in italics):

MODE(READ/RDWR): READ limits access to read-only operations for the files
and directories in the mounted file system.

SETUID/NOSETUID: SETUID specifies that the setuid and setgid attributes in
the file security packets are to be honored. We explain setuid and setgid in 6.2.1,
“The file security packet” on page 77.

SECURITY/NOSECURITY: NOSECURITY specifies that there is free access to
the files and directories mounted in the file system, provided the user has search
access to the mount point directory and the file system MODE is RDWR. The
files extended attributes such as “a” (APF) and “p” (program control) are not
honored. File access auditing is however still operating. All new files created in
the file system will be owned by UID(0), whatever the UID of the actual file
creator is.

MOUNT requires the requestor to have superuser authority or access to the
SUPERUSER.FILESYS.MOUNT profile in the UNIXPRIV class. UPDATE
access to the profile is required to specify SETUID, while READ access is
sufficient for NOSETUID (keep in mind that SETUID leads to execute code under
an identity different from the caller’s identity when the setuid or setgid file
attributes are set).

Recommendation: It is recommended not to give the user’s name for the
high-level qualifier for the file system data set, because doing so “opens” a
door for the user to use his or her MVS identity to legitimately manipulate data
in the data set. These data could be actual data, FSP, or programs that the
user would not be authorized to modify using his or her z/OS UNIX identity.

76 z/OS UNIX Security Fundamentals

Also note that there is no privilege check for the identity that issues the MOUNT
that would be related to the data set resource. Having superuser privilege or
being permitted to SUPERUSER.FILESYS.MOUNT gives MOUNT authority for
any data set the kernel address space is permitted access to. It is quite important
to ensure that MOUNT authority is given to duly trusted users as these users can
unmount an existing file system and mount it at a different mount point with
NOSECURITY.

6.2 UNIX files and directories security

In this section, we address the security information that is specifically assigned to
z/OS UNIX files and directories.

6.2.1 The file security packet

Each z/OS UNIX file and directory has a set of information called the file security
packet (FSP) associated with it, which keeps access control permissions and
other relevant file specific information. The FSP resides with its file or directory in
the file system data set. It is created when a file or directory is created, and is
deleted when the file or directory is deleted.

Note that part of the FSP can also be exported with the file when utilities such as
pax and tar are used. With the consequence that it can also be imported with a
file when using these utilities. It is then important to make sure that this imported
FSP:

� Includes permission bits that match the security policy of the environment the
file is imported into

� Contains UIDs and GIDs that are defined in the receiving system

Figure 6-3 on page 78 shows the information stored in the FSP.

Important: RACF is used to control and audit accesses to z/OS UNIX files or
directories; however, there are no profiles in the RACF database that define
the UNIX resources. RACF is provided with the FSP and the user security
packet (USP), which contains the requestor’s identity, when it comes to make
an access control decision, as shown in Figure 6-2 on page 78.

 Chapter 6. z/OS UNIX files security 77

Figure 6-2 RACF and the file security packet

Figure 6-3 The z/OS UNIX file security packet

The following information is found in the FSP.

Owning user and owning group
The owning z/OS user UID and GID information is always present. When the
corresponding setuid bits, setgid bits, or both are set in the file mode bits and the
file is an executable program, then it will be executed under the UID, GID, or both

Shell

commands

z/OS UNIX
Application

z/OS UNIX
Utility

Kernel

RACF
Callable
Service

RACF SMF

SAF

Verification:
RACF USER = UID
RACF GROUP = GID

Access Control:
UID = RACF USER
(USP)
Type of access
File Security Packet

(FSP)

Audit Records

HFS/zFS
File

File
Security
Packet

Portable with file

File
owner
UID

Owning
group
GID S
et

U
ID

S
et

G
ID

S
tic

ky
 b

it Owner Group Other

r w x r w x r w x

File Owner RACF auditor

File Permission Bits

File Mode

E
xt

en
de

d
A

ttr
ib

ut
es

Auditing Flags

r A
ud

it

r A
ud

it

x
A

ud
it

w
 A

ud
it

w
 A

ud
it

x
A

ud
it

A
cc

es
s

 A
C

L

ACL Flags

D
ire

ct
or

y
m

od
el

 A
C

L

Fi
le

 m
od

el
 A

C
L

78 z/OS UNIX Security Fundamentals

designated as the owning UID and GID, as opposed to the requestor’s UID and
GID. As mentioned earlier, this requires the file system to be mounted with
SETUID.

These values can be set or changed using the chown or chgrp commands in the
z/OS shell or from the ISPF ISHELL menu.

Extended file attributes
There are four extended file attributes:

� The “p” bit for program controlled
� The “a” bit for APF-authorized
� The “s” bit for the ability to run in multi-process (shared) address space
� The “l” bit to indicate that the program is loaded from the shared library region

These values can be set or changed using the extattr command in the z/OS
shell or from the ISPF ISHELL menu.

The setuid and setgid bits
Having the setuid or setgid bit on indicates that when spawned, this executable
runs under the UID, the GID, or both, specified as owning the file.

These values can be set or changed using the chmod command in the z/OS shell
or from the ISPF ISHELL menu.

The sticky bit
The sticky bit indicates to the operating system that the file name points to an
executable program that must first be searched according to the standard z/OS
search sequence (STEPLIB/JOBLIB/LPA/LINKLIST), before looking into the
z/OS UNIX file itself. If a file has both the sticky bit and the APF attribute and is
found in the standard z/OS search sequence, then the file extended attribute “a”
(APF) is ignored, and the APF properties of the z/OS library takes precedence. If
the library is an APF library and the module is link-edited with AC=1, then it runs
APF-authorized.

For a directory, the sticky bit indicates that the user attempting to delete the
contents of the directory must also own the file, or own the directory, or be
superuser.

This value can be set or changed using the chmod command in the z/OS shell or
from the ISPF ISHELL menu.

 Chapter 6. z/OS UNIX files security 79

File or directory permission bits
The permission bits specify who have read, write, and execute/search authority
to the associated file or directory. The permission bits are further discussed in
6.3, “File and directory access control permission bits” on page 81.

The permission bits are specified in three subgroups (called classes) of three bits
each:

� The read, write, and execute bits (rwx) for the owning UID
� The rwx bits for the owning GID
� The rwx bits for other users who are neither owners or in the owning group of

the file.

Note that these permission bits are sometimes referred to as the base ACL
entries.

These values can be set or changed using the chmod command in the z/OS shell
or from the ISPF ISHELL menu.

Optional access control list
The user can also define up to 1024 extended access control list (ACL) entries in
the file security packet, which specifies each the rwx authority for a specific UID
or GID. The ACL entries are inspected in addition to the file mode permission bits
when the FSSEC RACF class is active. ACLs are further discussed in 6.4, “File
and directory access control: Access control list” on page 86.

These values can be set or changed using the setfacl command in the z/OS
shell or from the ISPF ISHELL menu.

Audit attributes
There are two sets of audit attributes in the FSP: One controlled by the z/OS
UNIX owner of the file or directory or a superuser, and one controlled by users
with the RACF AUDITOR attribute.

To modify attributes in the AUDITOR section, the user needs to have the
AUDITOR attribute in RACF and then can use the -a option on chaudit. The
attributes tell whether successful and/or unsuccessful access attempts are
audited for read, write, and execute/search access respectively. Audited means
that RACF creates an SMF type 80 record whenever the auditing criteria are
met.

80 z/OS UNIX Security Fundamentals

6.3 File and directory access control permission bits

The permission bits in the FSP are shown in Figure 6-4.

Figure 6-4 Permissions bits in FSP

The three classes of permission bits are:

� The file/directory owner r/w/x permissions: They specify the access privileges
for the UID that owns the file.

� The file/directory owning group r/w/x permissions: They specify the access
privileges for members of the owning GID. When “list-of-groups” checking is
active in RACF (it is turned on with the command SETROPS GRPLIST), then
the system examines all RACF groups the user is connected for a matching
GID.

Note: Auditing of successful accesses using the permission bits is bypassed
when the FACILITY BPX.SAFFASTPATH profile is defined. In that case, the
z/OS UNIX kernel makes the access decision itself without calling RACF. In
case of unauthorized access, the kernel calls RACF to generate auditing data
if required.

If you have a very sensitive file where you want all accesses to be audited,
even for superusers accesses, then you may not have BPX.SAFFASTPATH
defined.

Tip: The find shell command has many parameters that pertain to the
searching files and directories for specific security-related attributes.

File
owner
UID

Owning
group
GID S

et
U

ID

S
et

G
ID

S
tic

ky
 b

it Owner Group Other

r w x r w x r w x

File Owner RACF auditor

File Permission Bits

File Mode

E
xt

en
de

d
A

ttr
ib

ut
es

chmod

Auditing Flags

r A
ud

it

r A
ud

it

x
A

ud
it

w
 A

ud
it

w
 A

ud
it

x
A

ud
it

A
cc

es
s

 A
C

L

ACL Flags

D
ire

ct
or

y
m

od
el

 A
C

L

Fi
le

 m
od

el
 A

C
L

 Chapter 6. z/OS UNIX files security 81

� Others r/w/x permissions, which is actually the default access for those users
who do not have either the owning UID or the owning GID.

To change the permission bits for a file or a directory the user can use either the
ISPF shell or the chmod (or setfacl) commands. The user issuing the command
must either:

� Be a superuser

� Have the owning UID of the file, or of the directory

� Have READ access to the SUPERUSER.FILESYS.CHANGEPERMS profile
in the UNIXPRIV class

The meaning of the “r/w/x” bits differs depending on whether they pertain to a file
or a directory, as shown in Figure 6-5.

Figure 6-5 Permissions bits signification

Note that the “x” permission bit, which is the authorization to search a directory,
allows to use the directory in the specification of a path to access a file or another
directory. However, “x” alone does not allow to list a directory or to add files or
subdirectories in the directory. In order to access a file, the user must have the
“x” permission bit in all the directories in the file path.

Files

Read
(r)

Read or print the
contents of a

file.

Read, but not
search a directory.

Write
(w)

Change a file,
adding or deleting

data.

Change a
directory, adding

or deleting
members.

Execute
or Search

(x)

Permission to
run an executable

file.

Permission to
search a directory.

Access DirectoriesFiles

Read
(r)

Read or print the
contents of a

file.

Read, but not
search a directory.

Write
(w)

Change a file,
adding or deleting

data.

Change a
directory, adding

or deleting
members.

Execute
or Search

(x)

Permission to
run an executable

file.

Permission to
search a directory.

Access Directories

82 z/OS UNIX Security Fundamentals

Permission bits are often represented using octal values, which are also often
used in commands syntax. Figure 6-6 shows examples of the use of the octal
values.

Figure 6-6 Octal values for permission bits

Commonly used octal configurations of the permission bits are:

� 700 to give the file’s or directory’s owner all accesses to the file and to deny
all accesses to anybody else.

� 755 gives all accesses to the file’s or directory’s owner and only read access
to anybody else.

Note:

� The permission bits do not establish hierarchical permissions, that is, for
instance, the write permission bit does not implicitly grant read permission.

� In order to execute a shell script, both permission bits “r” and “x” are
required. In fact, interpreted language has to be read before being
executed.

 0 --- No access
 1 --x Execute-only
 2 -w- Write-only
 3 -wx Write and execute
 4 r-- Read-only
 5 r-x Read and execute
 6 rw- Read and write
 7 rwx Read, write and execute

Permission bit examples:
700 owner(7=rwx) group(0=---) other(0=---)
755 owner(7=rwx) group(5=r-x) other(5=r-x)

 Chapter 6. z/OS UNIX files security 83

6.3.1 Default permission bits

Permission bits must be assigned by default when creating a new file or directory.
The default values depend both on:

� The command used to create the file or directory
� The value of the user’s “umask”

This is represented in Figure 6-7.

Figure 6-7 Default permission bits for files and directories

The user can change the default setting of the permission bits when a file, or
directory, is created by using the umask shell command. The values set by the
umask command will last for the length of the user's session, or the command can
be part of the user's login so that the user always has the same default
permissions.

mkdir

MKDIR

JCL, no PATHDISP

OEDIT

vi editor

ed editor

Redirection (>)

cp

OCOPY

OPUT/OPUTX

rwx rwx rwx

rwx r-x r-x

--- --- ---

rwx --- ---

rw- rw- rw-

rw- rw- rw-

rw- rw- rw-

output = input

--- --- ---

rw- --- --- (text)
rwx --- --- (binary)

Command Default permission

umask u=rx,go=r

OE Shell

Change defaults
for a user

r - x r - - r - -

0 1 0 0 1 1 0 1 1

r w - r w - r w -

r - - r - - r - -

84 z/OS UNIX Security Fundamentals

The umask operates as follows:

� The user issues the umask command, which specifies allowable permissions
in the classes of access.

� The actual umask, used internally in the system, is derived by converting all
allowed permissions into 0 and disallowed permissions to 1, to generate an
octal string.

� As an example, when the user employs the “vi” editor to create a new file, the
normal set of permissions would be octal “666”. When umask is active, the
permissions from “vi” are compared directly to the umask. Any permission
from “vi”, which has a 1 specified in corresponding position in umask, will be
switched off.

� Therefore, after umask processing, the user has effectively allowable
permissions on the just created file.

6.3.2 The chmod command

The chmod command can modify bits in either a relative way as mentioned above,
or it can be absolute and reset the specified triplets and then set those selected.
The operators + and - designate relative operations that leave unmentioned bits
unchanged:

chmod -w filename

It clears the three write permission bits for owning UID, owning GID, and others
for the file “filename”, whether they were set or not.

chmod a=rwx filename

It sets all nine permission bits and clears the setuid, segtid, and the sticky bits.

chmod g=rx filename

The above command sets the GID permissions to read and execute, and clears
an eventual GID write bit, and clears the set_gid bit.

chmod -R will work on all files and subdirectories in a directory and all files and
subdirectories in subdirectories to any depth.

Note: The umask only turns bits off; it cannot turn them on if the application
did not specify them as on.

 Chapter 6. z/OS UNIX files security 85

6.3.3 Default owning UID and GID

By default, the system sets the UID and GID of the file when the file is created:

� The UID is set to the effective UID of the creating process.

� The GID is set to the GID of the owning directory. You can define
FILE.GROUPOWNER.SETGID to change this behavior.

When you have defined the FILE.GROUPOWNER.SETGID profile in the
UNIXPRIV class, the setgid bit for a directory determines how the group owner is
initialized for new objects created within the directory.

� If the setgid bit is on, then the owning GID is set to that of the directory. It also
means that the setgid bit is propagated from the parent directory to any
created subdirectories.

� If the setgid bit is off, then the owning GID is set to the effective GID of the
process.

6.4 File and directory access control: Access control list

The FSP can contain optional ACL Flags as shown in Figure 6-8.

Figure 6-8 File security packet and ACL support

Tip: When a new file system is mounted, you must turn on the setgid bit of
its root directory if you want new objects within the file system to have their
group owner set to that of the parent directory.

File
owner
UID

Owning
group
GID S

et
U

ID

S
et

G
ID

S
tic

ky
 b

it Owner Group Other

r w x r w x r w x

File Owner RACF auditor

File Permission Bits

File Mode

E
xt

en
de

d
A

ttr
ib

ut
es

setfacl

Auditing Flags

r A
ud

it

r A
ud

it

x
A

ud
it

w
 A

ud
it

w
 A

ud
it

x
A

ud
it

A
cc

es
s

 A
C

L

ACL Flags

D
ire

ct
or

y
m

od
el

 A
C

L

Fi
le

 m
od

el
 A

C
L

86 z/OS UNIX Security Fundamentals

z/OS UNIX supports three types of ACL:

� Access ACL: This is the ACL used to control access to a specific file or
directory. It is this ACL that is used in conjunction with the permission bits as
described in 6.5.2, “Authorization checking algorithm with ACL defined” on
page 92.

� File default ACL: This is a model ACL that files can inherit as default access
ACL when created under a specific directory. It is also assigned to
subdirectories as their own “file default ACL” to be propagated as the default
ACL to hosted files.

� Directory default ACL: This is a model ACL that subdirectories inherit as
default access ACL when created under a specific parent directory. The
directory default ACL is copied to the created subdirectory as both its “access
ACL” and “directory default ACL”.

Default ACLs are intended to help reduce the hierarchical file system
administrative workload.

An ACL is structured as shown in Figure 6-9.

Figure 6-9 z/OS UNIX ACL structure

Important: ACLs are not inherited across mount points.

Entry Type Identifier (UID or GID) Permissions
User (X'01') 46 r - x

Header

- length
- number of entries- type

Entries (1 - 1024)

....

....
....

- number of user entries

 Chapter 6. z/OS UNIX files security 87

It consists of a list of entries, with a maximum of 1024 entries per file or directory,
where every entry holds information about the type of identifier (user or group),
the identifier itself (UID or GID), and permissions (read, write, and execute)
associated to the identifier. The entries are sorted in ascending order by UID,
then GID, to optimize the access checking algorithm.

To change entries in an ACL, you can use either the ISPF shell or the setfacl
command. In order to do so, the requestor must either:

� Be a superuser

� Have the UID of the file, or directory, owner

� Have READ access to the SUPERUSER.FILESYS.CHANGEPERMS profile
in the UNIXPRIV class

To display the ACL entries, you can use either the ISPF shell or the getfacl
command.

Notes:

� ACL entries are used for access control only if the RACF FSSEC class is
active. The class can be activated by the following RACF command:

SETROPTS CLASSACT(FSSEC)

� ACL entries are automatically deleted when the file/directory is removed.

� pax and tar support archiving ACLs along with files.

� Because z/OS ACLs can grant and restrict access, the use of ACLs is not
UNIX 95-compliant (according to the X/Open UNIX 95 specification,
additional access control mechanisms may only restrict the access
permissions that are defined by the file permission bits).

88 z/OS UNIX Security Fundamentals

6.5 File and directory access control: Security checks

When an access control decision is needed, the z/OS UNIX kernel calls the
external security manager through the System Authorization Facility (SAF)
interface, and supplies both the USP and the FSP, shown in Figure 6-10. The
external security manager can then assess the user’s authorization to access the
file or directory.

Figure 6-10 Security control blocks

The Accessor Environment Element (ACEE) is a control block that contains a
description of the current user's security environment, including the user ID,
current connect group, user attributes, and group authorities. The ACEE has
been constructed during the user identification and authentication by RACF.

This information is used to create another control block named USP. The
effective UID and effective GID of the process are used in determining access
decisions (refer to 4.2, “Identities associated with a z/OS UNIX process or
thread” on page 48 for the explanation of the effective UID or GID).

 Chapter 6. z/OS UNIX files security 89

6.5.1 Authorization checking algorithm without using an ACL

The decision algorithm flow is shown in Figure 6-11.

Figure 6-11 Authorization checking flow without ACL

� A superuser is allowed access to all resources, with one exception for the
execution of a file: If the user, with any UID including UID(0), is requesting
execute access to the file, access is always denied if none of the permissions
bits grant execute access, and, if an ACL is present and the FSSEC class is
active, no ACL entry grants execute access as well to the file.

� If the effective UID of the process (the accessor) in the USP equals the file’s
owning UID, RACF uses the owner permission bits in the FSP to either allow
or deny access.

eUID=0?
eUID=FSP

owning
UID?

eGID/sGI
D = FSP

GID?

OWNER
bits allow
access?

GROUP
bits allow
access?

Access granted Access denied

yes

no no no

yes yes

yes
yes

no

SU.FS
allow

access?

yes no

no

RESTRICTE
D user?

no

OTHER bits
allow

access?

RESTRICT.FS.
A access?

yes

RESTRICT.FS.
A defined??

no

yes

no

yes

no
yes

Start

SU.FS = SUPERUSER.FILESYS
RESTRICT.FS.A = RESTRICTED.FILESYS.ACCESS

or TRUSTED
or PRIVILEGED

Note: Tasks running with the TRUSTED or PRIVILEGED attribute do have
superuser privileges even if they are running with a non-zero UID.

90 z/OS UNIX Security Fundamentals

� If the effective GID of the process in the USP equals the owning GID of the
file, RACF uses the group permission bits in the FSP to either allow or deny
access. If RACF list-of-groups checking is active, RACF will look at the user's
connect groups that have a GID (“supplemental groups”) for a group that
matches the owning GID of the file. If it finds a matching GID, RACF will allow
or deny access based on the group permission bits specified in the FSP.
(Note that if a user is connected to more that 300 z/OS UNIX groups, only the
first 300 will be used.)

� If the effective UID or GID of the process does not match the file owning UID
or GID, then the others permission bits determine access. See the possible
effect of the RESTRICTED.FILESYS.ACCESS profile in this case as
described below.

� If access is denied by the permission bits but if the user ID is permitted to the
profile SUPERUSER.FILESYS in the UNIXPRIV class, the user is granted
access to any file or directory.

RESTRICTED.FILESYS.ACCESS
This checking is done for users defined with the RESTRICTED attribute in their
RACF user profile (RESTRICTED users do not have access by default to MVS
resources, that is, they need to be explicitly granted access in the resource
access list). The RESTRICTED.FILESYS.ACCESS profile, when defined,
enforces the RESTRICTED user concept for z/OS UNIX access as well:
RESTRICTED users are not getting the default authorization provided by the
FSP others permission bits. This restriction is lifted for RESTRICTED users, or
one of the groups they belong to, that are permitted in READ to the
RESTRICTED.FILESYS.ACCESS profile. In this latter case, the user’s access is
still controlled by the others permission bits.

SUPERUSER.FILESYS
The SUPERUSER.FILESYS profile in the UNIXPRIV class has three access
levels that allow access to z/OS UNIX files as follows:

� READ: Allows a user to read any local file, and to read or search any local
directory.

� UPDATE: Allows a user to write to any local file, and includes privileges of
READ access.

� CONTROL/ALTER: Allows a user to write to any local directory, and includes
privileges of UPDATE access.

 Chapter 6. z/OS UNIX files security 91

6.5.2 Authorization checking algorithm with ACL defined

If an ACL is defined and the FSSEC RACF class is active, then the decision tree
shown on Figure 6-12 is executed.

Below Figure 6-12, we provide a description of the different branches and nodes
of this algorithm.

Figure 6-12 Authorization checking flow with ACL

Note: Figure 6-11 on page 90 is missing two additional specific paths in this
decision algorithm:

� A RACF AUDITOR can read and search any directory.

� For threads running with unauthenticated client, both client and server
must be authorized to the file if the BPX.SERVER profile is defined, as
explained in 5.5, “BPX.SERVER” on page 62. The same algorithm is
applied to both client and server.

eUID=
FSP?

eUID=
ACL

entry?

eGID/sGID
= FSP or

ACL entry?

OWNER
bits allow
access?

ACL bits
allow

access?

bits allow
access?

SU.FS.
ACLOVRD

access?

SU.FS.
ACLOVRD
defined?

SU.FS
allow

access?

Access granted

Access denied

no no no

yes yes yes

yes

no

no

yes

yes
yes

no

no

SU.FS = SUPERUSER.FILESYS
SU.FS.ACLOVRD = SUPERUSER.FILESYS.ACLOVERRIDE
RESTRICT.FS.A = RESTRICTED.FILESYS.ACCESS

yes

UID=0?

yes

no

EXECUTE
access

requested?

yes

Any
EXECUTE

bit on?

no

yes

no

RESTRICTED
user?

no

OTHER
bits allow
access?

RESTRICT.FS
.A access?

yes

RESTRICT.FS
.A defined??

no

yes

no

yes

no
yes

group
ACL entry

match?

no

yes

no

yes

no

start

or TRUSTED
or PRIVILEGED

92 z/OS UNIX Security Fundamentals

1. UID checking

If the user is not a superuser, the permission bits are first checked:

– If the requestor’s UID matches the file owning UID, the owner permission
bits are checked. If the access requested is not allowed, the requestor’s
permission to the SUPERUSER.FILESYS profile is then checked.

– If the requestor’s effective UID does not match the file owning UID, the
ACL entries are checked. If the selected requestor’s UID matches an ACL
entry, the ACL entry bits are checked. If the requested access is not
allowed in the ACL entry, a check is done to the
SUPERUSER.FILESYS.ACLOVERRIDE profile in the UNIXPRIV class
(see below for an explanation of this profile), to determine if the access
denied by the ACL primes over the user’s permission to
SUPERUSER.FILESYS.

2. GID checking

If a matching ACL entry is not found for the requestor’s UID user, the
requestor’s current connect group, and supplemental groups (if list-of-groups
is in effect), are checked for:

– If the requestor’s group GID matches the file owning GID, the group
permission bits are checked. If the group permission bits allow the
requested access, then access is granted.

– If any of the requestor's supplemental GIDs matches the file owning GID,
the group permission bits are checked. If the group permission bits allow
the requested access, then access is granted.

– If no group permission bits access is allowed and there are ACL entries for
the requestor’s GID or any of the supplemental GIDs, then the permission
bits of these ACL entries are checked (if the RACF FSSEC class is active).
If one ACL entry allows the required access then access is granted. If the
ACL entries that match the requestor’s GID do not allow the access, then
SUPERUSER.FILESYS.ACLOVERRIDE is checked as indicated below.

3. Check SUPERUSER.FILESYS.ACLOVERRIDE

This checking is done only when a user's access was denied by an ACL entry
matching the user's UID or one user connect group’s GID. The purpose of the
profile SUPERUSER.FILESYS.ACLOVERRIDE in the UNIXPRIV class is to
get the ACL entry denial of access decision enforced even if the user has an
access on the profile SUPERUSER.FILESYS in the UNIXPRIV class (actually
this works similarly to the OPERATIONS attribute when given to an MVS
user: The user has access to all data sets unless explicitly denied access in
the data set access list).

If the SUPERUSER.FILESYS.ACLOVERRIDE profile has been defined and it
is established that it should not apply for some users, then these users or

 Chapter 6. z/OS UNIX files security 93

groups can be permitted READ, UPDATE, or CONTROL to
SUPERUSER.FILESYS.ACLOVERRIDE. (Actually the same access level as
would have been required for SUPERUSER.FILESYS.) As shown in
Figure 6-12 on page 92, these users’ access request, if not denied with
SUPERUSER.FILESYS.ACLOVERRIDE, will next go through the permission
checking to SUPERUSER.FILESYS.

4. Check SUPERUSER.FILESYS

If the user ID is permitted to the profile SUPERUSER.FILESYS in the
UNIXPRIV class, then the user is always permitted to access files or
directories, as a superuser would be, to the extent however of the access
level given to SUPERUSER.FILESYS, as explained in 5.7.1, “The UNIXPRIV
class of resources” on page 65.

5. Check RESTRICTED.FILESYS.ACCESS

If no match was found in the permission bits or ACL entries, then the other
class permission bits is checked, unless the requestor has the RESTRICTED
attribute and the profile RESTRICTED.FILESYS.ACCESS in the UNIXPRIV
class is defined. If the requestor’s user ID, or one of the requestor’s group, is
not permitted to RESTRICTED.FILESYS.ACCESS, then the RESTRICTED
status of the user is enforced for z/OS UNIX files and directories as well.

6.6 The IRRHFSU utility

The IRRHFSU utility is available as a network download at:

http://www.ibm.com/servers/eserver/zseries/zos/racf/irrhfsu.html

The utility unloads the UNIX System Services Hierarchical File System file
security information in a manner compatible with IRRDBU00 utility. RACF
provides the IRRDBU00 utility to unload the contents of the RACF database into
a flat file suitable for viewing or loading into a relational database for querying.
Similarly, the IRRHFSU utility downloads data contained within the FSP (such as
file permission bits, owning UID and GID, owner-specified and auditor-specified
logging options) into a UNIX file or an MVS data set.

Important: The z/OS V1R8.0 Security Server RACF Administrator’s Guide,
SA22-7683, has an appendix dedicated to the debug of access control setups.
This appendix thoroughly describes the access control algorithms for z/OS
UNIX files and directories and provides extremely useful debug guidance.

94 z/OS UNIX Security Fundamentals

http://www.ibm.com/servers/eserver/zseries/zos/racf/irrhfsu.html

The find command can locate files with ACLs containing orphaned ACL
references, that is, entries for UIDs ad GIDs that cannot be mapped to RACF
user or group profiles. However, the find output is not useful for removing these
references, because the UID or GID is not reported as part of the output. The
IRRHFSU utility can be invoked with a parameter, which results in deletion of
orphaned ACL entries.

For more information, see:

http://www-1.ibm.com/servers/eserver/zseries/zos/racf/goodies.html

 Chapter 6. z/OS UNIX files security 95

http://www-1.ibm.com/servers/eserver/zseries/zos/racf/goodies.html

96 z/OS UNIX Security Fundamentals

Chapter 7. Overview of multilevel
security

Multilevel security (MLS) is an optional security model with its base features
implemented in RACF since 1990. However, at this time, MLS did not address
specific resources such as the TCP/IP resources or the UNIX System Services
resources. This is addressed in enhancements to RACF MLS at z/OS V1R5 and
z/OS V1R6. In this chapter, we introduce, at a very high level, the principles of
operation of an MLS system and how they can be used to protect z/OS UNIX
resources.

Refer the following books for the setup and use of MLS:

� z/OS V1R8.0 Security Server RACF Security Administrator’s Guide,
SA22-7683

� z/OS Planning for Multilevel Security and the Common Criteria, GA22-7509

7

© Copyright IBM Corp. 2007. All rights reserved. 97

7.1 The MLS security model

Multilevel security is a security policy that allows the classification of data and
users on a system of hierarchical security levels combined with a system of
non-hierarchical security categories. This is shown in Figure 7-1 where
resources and users are classified as belonging to categories and a security
level. The security level implies a hierarchy in data sensitivity, while the
categories are an arbitrary differentiation between data or users.

When using MLS, there are actually two layers of access control being used:

� The mandatory access control (MAC) that locates users and resources in
terms of security level and category and then applies the MAC access control
rules as explained in 7.1.1, “Applying MAC”.

� If the MAC access control allows access, then the regular access control
mechanism, using RACF resource profiles or z/OS UNIX permission bits and
ACLs, is used. Note that this access control mechanism is termed as
discretionary access control (DAC) in the MLS terminology.

Figure 7-1 The MLS security model

7.1.1 Applying MAC

A simplified description of the access control rules with MAC is:

� Users not in the same categories as resources will never get access to these
resources. Note that a specific user or resource can be defined as being in
several categories.

Classification
(Security Level)

Compartment
(Category)

Unclassified

Confidential

Top secret

Project A Project B Project C

No
Access

No
Access

No
Access

No read-up

No write-down

98 z/OS UNIX Security Fundamentals

� When a user and a resource are in the same category, the user has the
following accesses, if also authorized by DAC:

– Read-only access to resources at a lower security level: The idea is that
the user cannot then declassify data by writing them at a confidentiality
level lower than his or her own security level.

– Write-only access to resources at a higher security level.

– Read and write access to resources at the same security level.

Practically, the users and resources categories and security levels are specified
through security labels.

7.1.2 Security labels

The categories to be used for MAC checking are described in the CATEGORY
profile in the RACF SECDATA class. Categories are defined as members of the
CATEGORY profile:

RDEFINE SECDATA CATEGORY UACC(NONE)
RALTER SECDATA CATEGORY ADDMEM(PROJECTA, PROJECTB, PROJECTC)

The security levels are defined in the SECLEVEL profile in the RACF SECDATA
class. The security levels are members of the SECLEVEL profile and are
designated with a name and a number, the latter is used to establish the
sensitivity level of the seclevel:

RDEFINE SECDATA SECLEVEL UACC(NONE)
RALTER SECDATA SECLEVEL ADDMEM(UNCLASSIFIED/10, CONFIDENTIAL/20, +
TOPSECRET/30)

Then security and categories are compounded into security labels (do not
confuse with security levels), which are profiles in the SECLABEL class. A
SECLABEL profile is defined with a name and two components:

� The names of the categories comprised in this security label (one or more
categories)

� The name of the security level that this security label refers to (only one
security level):

RDEFINE SECLABEL EAGLE SECLEVEL(TOPSECRET) +
ADDCATEGORY(PROJECTA,PROJECTB)+ UACC(NONE)
RDEFINE SECLABEL SPARROW SECLEVEL(UNCLASSIFIED) UACC(NONE)

 Chapter 7. Overview of multilevel security 99

Then users are assigned security labels, actually they are given access to
SECLABEL profiles:

PERMIT security-label CLASS(SECLABEL) ACCESS(READ) ID(user-id-1 +
user-id-2 ...)

And they are also specified a default security label in the USER profile:

ALTUSER user-id SECLABEL(default-seclabel)

Note that the user must also be permitted to the profile of its default SECLABEL.

Finally resources are also given a security label (only one):

ALTDSD ‘dataset-profile’ SECLABEL(security-label)

7.1.3 Domination and equivalence of security labels

Security labels are used for MAC according to rules of domination or equivalence
between the accessor and the resource security labels.

Domination
For security label A to dominate security label B, the security level of A must be
higher or equal to the security level of B, and A has at least all the categories
specified in B.

A user who dominates a resource can read the resource. A user who is
dominated by a resource can write into the resource.

Equivalence
For security label A to be equivalent to security label B, the security level of A
must be equal to the security level of B, and both A and B have the same set of
categories.

A user who has an equivalent security label to the resource can read and write
the resource.

Disjoint security labels
Otherwise, the security labels are disjoint or incompatible and the user cannot
get any access to the resource.

100 z/OS UNIX Security Fundamentals

7.1.4 Turning on MLS in RACF

There are a set of SETROPTS options that turn MLS on and provide a fine
control of the mechanisms. They are further explained in the reference
documents:

� COMPATMODE and NOCOMPATMODE
� MLACTIVE and NOMLACTIVE
� MLQUIET and NOMLQUIET
� MLS and NOMLS
� MLSTABLE and NOMLSTABLE
� SECLABELAUDIT and NOSECLABELAUDIT
� SECLABELCONTROL and NOSECLABELCONTROL
� SECLEVELAUDIT and NOSECLEVELAUDIT
� MLFSOBJ
� MLIPCOBJ
� MLNAMES and NOMLNAMES
� SECLBYSYSTEM and NOSECLBYSYSTEM
� SECLABELAUDIT and NOSECLABELAUDIT

7.1.5 When MLS is on

When MLS is on in RACF, the following miscellaneous controls are applied to
accesses to resources, some of them depend on whether the SETROPTS
options listed above are active or not:

� The system controls access to resources

– Mandatory access control (MAC)
– Discretionary access control (DAC)

� The system does not allow a storage object to be reused until it is purged of
residual data.

� The system enforces accountability by requiring each user to be identified,
and creating audit records that associate security-relevant events with the
users who cause them.

� The system labels all hardcopy with security information.

� The system optionally hides the names of data sets, files, and directories from
users who do not have access to those data objects.

� The system does not allow a user to declassify data by “writing down” (that is,
write data to a lower classification than the classification at which it was read)
except with explicit authorization to do so.

 Chapter 7. Overview of multilevel security 101

7.2 MLS and z/OS UNIX resources and users

Security labels can be assigned to z/OS UNIX files and directories and, when
MLS is on, are checked against the security labels allocated to the z/OS UNIX
users (actually the SECLABEL profiles the users are permitted to).

The zFS file system is the only physical file system with support for security
labels in a multilevel-secure environment. The Hierarchical File System does not
provide support for security labels in a multilevel-secure environment. There is
setup that can allow for the use of HFS file systems in this environment, but
capability is limited to read-only access.

Traditionally, access to z/OS UNIX resources is based on POSIX permissions.
With the SECLABEL class active, authorization checks are performed for
security labels in addition to POSIX permissions, to provide additional security.
Security labels are used to maintain multiple levels of security within a system.
By assigning a security label to a resource, the security administrator can
prevent the movement of data from one level of security to another within the
z/OS UNIX environment. When the SECLABEL class is active, security labels
can be set on z/OS UNIX resources in the following ways:

� When a physical file system or zFS aggregate is created, the file system root
will be assigned the security label that is specified in the RACF data set
profile that covers the data set name. If a security label is not specified or if a
data set profile does not exist, then a security label will not be assigned to the
file system root.

� zFS file systems support the chlabel utility, which allows the setting of an
initial security label on a file or directory. Use this utility to set security labels
on zFS files and directories after they have been created.

� If a directory has been assigned a security label through one of the above
steps, then new files and directories created within that directory will inherit a
security label as follows:

– If the parent directory is assigned a security label of SYSMULTI, the new
file or directory is assigned the security label of the user. If the user has no
security label, no label is assigned to the new object.

– If the parent directory is assigned a security label other than SYSMULTI,
the new file or directory is assigned the same security label as the parent
directory.

– The rules for security label assignment are more extensive when running
in a multilevel-secure environment.

102 z/OS UNIX Security Fundamentals

Notes:

� SYSMULTI is a system built-in security label that is always going to be
equivalent to any other security labels.

� The SETROPTS options MLFSOBJ and MLIPCOBJ are used to turn MLS
on or off respectively for files and directories and for Interprocess
communications (IPCs).

 Chapter 7. Overview of multilevel security 103

104 z/OS UNIX Security Fundamentals

Chapter 8. Considerations on z/OS
UNIX program management

In this chapter, we focus on programs residing in z/OS UNIX files and give
miscellaneous considerations that pertain to the security attributes of these
programs. Note that most of the information provided in this chapter was already
mentioned in previous chapters, but we believe it is useful for the reader to
review it in this specific context.

8

© Copyright IBM Corp. 2007. All rights reserved. 105

8.1 How to link-edit program into HFS files

Here is a sample assembly and linked batch job step for placing a load module in
a Hierarchical File System (HFS) file:

// EXEC ASMACL,PARM.C=(NODECK),
// PARM.L='XREF,LET,LIST,XCAL,AMODE=31,RMODE=ANY'
//C.SYSPRINT DD SYSOUT=*
//C.SYSPUNCH DD DSN=ITSOFTC.USS.OBJ(FORK),DISP=SHR
//C.SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
// DD DSN=SYS1.MODGEN,DISP=SHR
//C.SYSIN DD DISP=SHR,DSN=ITSOFTC.USS.SRCE(FORK)
//L.SYSLMOD DD PATH='/u/itsoftc/fork',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU
//L.SYSLIB DD DSN=SYS1.CSSLIB,DISP=SHR

The APF rules for programs that reside in the HFS are similar to those for
programs that reside in MVS authorized libraries. Setting the APF-authorized
extended attribute bit should be thought of as putting that program into an
authorized library. If you try to run a program from an authorized library that is not
linked AC=1, it will not run APF-authorized, but that same program can be
fetched by another that is running APF-authorized and executed in the
authorization state in which it is called, or even have its state changed.

If the specified program is going to be invoked as a job step program, you must
link-edit it with AC=1. In order to avoid possible integrity problems, do not set
AC=1 if the program will be run in an APF-authorized environment but not as the
job step program (such as DLL).

8.2 Owner information for a z/OS UNIX file

Assuming that the FILE.GROUPOWNER.SETGID profile is defined, the owning
UID and GID assigned in the file security packet (FSP) are the UID and GID of
the creator of the file. For the batch job in the previous section, it is the UID and
the current connect group (or the default group) GID of the user running the
batch job. It can also be the default UID and GID that are provided via the
BPX.DEFAULT.USER profile.

106 z/OS UNIX Security Fundamentals

To change the owner information, the user has to be the owner, or a superuser,
or a user with access to UNIXPRIV SUPERUSER.FILESYS.CHOWN, or
UNIXPRIV CHOWN.UNRESTRICTED must be defined, the latter allowing all
users to change ownership of their own files. Then the following command can
be used to change the owner information in the FSP:

chown itsoftx:finn aparm

This commands changes, for the file aparm, the owning user ID to ITSOFTX and
owning group to FINN. This is also translated into the corresponding UID and
GID in the FSP. The chown command can change either user or group or both,
while chgrp changes only group.

8.3 Extended attributes of an HFS file

The extended attributes are the following four bits, manipulated by the extattr
command:

� p: The program controlled bit
� a: The APF bit
� s: The shared space bit
� l: The shared library region bit

8.3.1 Program control bit

The program control bit tells the operating system that this program is considered
clean, therefore executing it will not make the environment dirty. It corresponds
to programs matched by PROGRAM profiles with ADDMEM operands identifying
libraries.

An environment becomes dirty by running a program that is not RACF program
controlled. Once an environment is marked dirty, it remains dirty (z/OS has an
exception for Time Sharing Option (TSO) that temporarily can regain a clean
state with some constraints).

The RACF controlled programs are those the installation considers trusted, in the
sense that they perform what they are supposed to perform and nothing else. In
particular, these programs do not install “backdoors”, update an APF library or an
IBM DB2® table or run some administrative command, just because their caller

Warning: Both chown and chgroup clear the setuid and setgid bits in the file
mode, therefore if the executable file is supposed to run under one of the
owning identities, the chmod command must be used to set the setuid and
setgid bits again.

 Chapter 8. Considerations on z/OS UNIX program management 107

suddenly is one with the needed authority. They can safely be used by all users
on the installation, including security, storage, and database administrators and
system programmers.

In practice, there is a need for trusting more than just the operating system. This
could be software from other vendors than the operating system vendor, and it
might even be some of the installation’s own software. The program control bits
is how software is marked as trusted in z/OS UNIX.

Every update of a file with the “p” bit leads to erasure of the bit. It must be
reassigned using extattr after every update, and this impacts software
maintenance procedures.

The extattr command requires to be owner of the file or a superuser (UID(0))
and also to be permitted to the BPX.FILEATTR.PROGCTL.

A sample command to make the z/OS UNIX executable file aparm to be program
controlled is:

extattr +p aparm

8.3.2 APF bit

The APF bit marks a program as one that is intended to run authorized, that is, it
can potentially bypass security controls and auditing.

The APF bit is also assigned using the extattr command by users who are the
file’s owner or are superusers, and who have access to BPX.FILEATTR.APF in
the FACILITY class. If this profile does not exist, the APF bit cannot be assigned
for z/OS UNIX files.

extattr +a aparm

Unless sanction lists are in use, this bit alone decides whether an executable in a
z/OS UNIX file runs authorized or not. An overview of the sanction list
mechanism is given in 8.5, “The sanction list” on page 111.

8.3.3 The shared space bit

Multiple z/OS UNIX processes may run in the same address space
simultaneously, provided they all run under the same UID and GID, with the
objective of getting better utilization of the system’s resources. The “s” bit applies
to executable code in a z/OS UNIX file and enforces the value given to the
_BPX_SHAREAS environment variable (YES/REUSE or MUST).

For the benefit of performance the bit is on by default for new files.

108 z/OS UNIX Security Fundamentals

Note however that a process sharing an address space then has the restriction
that it may not use the setuid() service (which changes UID). If the program is a
daemon or server that needs to use setuid(), you must remove the “s” bit with the
extattr command so that address space sharing does not occur when the
program is spawned:

extattr -s aparm

8.3.4 The library bit

The library bit indicates to z/OS UNIX that the program should not be loaded
from the file, but instead the system is to get a copy of the program residing in
the shared library region. Using the shared library makes the program available
to many users with a very short load time. The shared library is intended mainly
to hold dll like program modules.

To set the library bit, you need access to FACILITY class entity
BPX.FILEATTR.SHARELIB. It is also important, from the security standpoint, to
tightly control who has access to this profile as it also determines the origin of the
code that is loaded into the address space and implicitly allows consumption of
the system resources needed for the shared library function.

8.4 The file mode section of the FSP

As already mentioned, this topic has already been addressed in further detail,
specifically in Chapter 6, “z/OS UNIX files security” on page 73. We review it with
a special focus on the program management context.

8.4.1 The non-permission bits

These are the setuid, the setgid, and the sticky bit. The first two bits specify that
the program must run with the owning UID or GID, and therefore the system
changes the effective UID or GID during program execution. The sticky bit
specifies that the operating system should look for the program using first the
standard z/OS search sequence (STEPLIB,JOBLIB, LPA, LINKLIST) then, if not
found, attempt to load the program from the z/OS UNIX file.

The bits are assigned, removed, or displayed with the chmod command. This
command requires file ownership or superuser authority or to be permitted to
SUPERUSER.FILESYS.CHANGEPERMS in the UNIXPRIV class. There is no
RACF profile to further restrict the use of the chmod command.

 Chapter 8. Considerations on z/OS UNIX program management 109

8.4.2 The permission bits

Let us assume that a program resides in the file pthreads, which is owned by the
user ITSOFTC. Another user ITSOFTX is in the same group as ITSOFTC, but
has a different UID.

When the user ITSOFTX enters the z/OS shell with the OMVS command and
invokes the program by entering /u/itsoftc/pthreads, then ITSOFTX is denied
execute access with the following violation message in the system SYSLOG:

ICH408I USER(ITSOFTX) GROUP(SYS1) NAME(FINN T CHRISTENSEN)
 /u/itsoftc/pthreads
 CL(FSOBJ) FID(01E6D9D2F1F6D600071E000000200000)
 INSUFFICIENT AUTHORITY TO OPEN
 ACCESS INTENT(--X) ACCESS ALLOWED(GROUP ---)
 EFFECTIVE UID(0000000099) EFFECTIVE GID(0000000000)

We can see that ITSOFTX has UID(99) and that the group access class could
yield the requested access (we do not see anything for the “owner” and “other”
access class). However, the permission bits in this class are all off and therefore
access is denied.

If user ITSOFTC, while in his home directory, issues the command:

ls -E pthreads

The following output is produced that shows the permission bits currently set:

-rwx------ --s- 1 ITSOFTC SYS1 4096 Jun 24 18:46 pthreads

This confirms that read, write, and execute access are granted only for the owner
of the file.

If we want to permit the owning group read, write, and execute access to the
pthreads program, then the owner or a user with superuser authority can enter:

chmod g=rwx pthreads

ls -E pthreads
-rwxrwx--- --s- 1 ITSOFTC SYS1 4096 Jun 24 18:46 pthreads

Now the user ITSOFTX can run the original command without getting violation
messages, and is able to execute the program, provided he also:

� Has at least execute access to all directories in the path to the program file
� Or is a RACF AUDITOR
� Or has superuser authority

110 z/OS UNIX Security Fundamentals

Note that installations that want to exploit the requirement for execute access to
all directories in the path to block access otherwise granted by the permission
bits, may run afoul on the AUDITOR attribute. AUDITORs cannot be kept from
using files whose permissions bits allow the access. Such installations should at
least have a minimum number of AUDITORs.

8.5 The sanction list

An installation can build a list to contain the lists of z/OS UNIX path names and
MVS program names that are approved by the installation for use by
APF-authorized or program-controlled calling programs. This file contains
properly constructed path names and program names, and has to be located in
the /etc directory.

This list provides another layer of control on which programs authorized or
controlled programs are actually sanctioned by the installation. Note that
programs pointed at by the sanction list are not implicitly program controlled or
granted APF authorization, designated z/OS executables must also be marked
with the “p” or “a” extended attribute.

A sanction list is activated using the AUTHPGMLIST(’/etc/<file_name>’) in the
BPXPRMxx member, or by dynamically adding it using the SETOMVS
command.

Sanction lists can contain up to three separate lists:

� A list of directories that is only used in the execution of an hfsload (or C
dlload), exec, spawn, or attach_exec from an authorized program. All path
names are considered to be approved path names from which authorized
programs can be invoked.

� A list of directories that is only used in the execution of an hfsload (or C
dlload), exec, spawn, or attach_exec from an executable that is running
program controlled. All path names are considered to be approved path
names from which program controlled programs can be invoked.

� A list of program names that are allowed to get control of APF-authorized
programs as a result of an exec or spawn. These names are MVS program
names. All programs are considered to be approved program names that can
get control APF-authorized.

Note: Installations that plan on blocking access to files by not providing
search access for directories have to be aware that RACF AUDITORs are
always permitted to search through directories. Therefore, AUDITORs cannot
be prevented from using files, whose permissions bits allow the access.

 Chapter 8. Considerations on z/OS UNIX program management 111

If the sanction list is running on the system, you will get error messages when
you try to run program-controlled or APF-authorized programs that are not in the
sanction list. You will have to add them to the sanction list.

You need to know what directories and what programs are to be set into this file.
You can partially construct this file and add path names and program names as
you go along. A partially complete file can be activated and when additional
entries are known, this file can be updated. A background task will automatically
check this file every 15 minutes for updates and then incorporate them.

Only one sanction list check is done for each program invocation. Although links
in directories are supported, sanction list processing only performs one check.
This check uses the path name or program name that was specified by the user.

Proper controls have to be put in place to protect access to the sanction list.

Directives on how to compose and activate sanction lists are given in z/OS
V1R8.0 UNIX System Services Planning, GA22-7800.

112 z/OS UNIX Security Fundamentals

Chapter 9. Auditing z/OS UNIX

In this chapter, we provide an overview of the Resource Access Control Facility
(RACF) auditing options for accesses to z/OS UNIX resources. We specifically
address:

� The auditing flags in the file security packet (FSP)

� The auditing classes in RACF

� The specific auditing for superusers authority

� The generation of audit reports

The reference book to get further details about these topics is z/OS V1R8.0
Security Server RACF Auditor’s Guide, SA22-7684.

9

© Copyright IBM Corp. 2007. All rights reserved. 113

9.1 Overview of auditing options

The overall auditing infrastructure of z/OS UNIX is shown in Figure 9-1. It points
out that the external security manager is expected to provide System
Management Facility (SMF) records that are used to build the audit trail and
reports.

Figure 9-1 Overview of auditing options for z/OS UNIX

RACF reports audited events in SMF type 80 records, always providing full
accounting of the user involved in the event by giving the user ID and UID.

For violations occurring in the UNIX System Services environment, the user’s
effective UID and effective GID are displayed in violation messages of the
ICH408I type. These identities are used to determine the user’s privilege for the
intended operation. Note that they may not always match the identities defined in
the relevant RACF USER and GROUP OMVS segments, because UNIX System
Services provides methods by which another identity can be assumed.

114 z/OS UNIX Security Fundamentals

9.2 File-based auditing options

The file security packet (FSP) includes the auditing flags, as shown in
Figure 9-2, which pertain to the file or directory.

Figure 9-2 Auditing flags in the file security packet

Therefore, there are two categories of auditing flags:

� The file owner flags: You must be a superuser or the owner of the file (or of
the directory) to specify these user audit options.

� The RACF auditor flags: You must have the RACF AUDITOR attribute to
specify these auditor options.

It is the same command chaudit, with different parameters, which can change
these auditing flags. Audit records are written based on the combined owner and
AUDITOR settings.

Auditing is set for read, write, and execute (search for directories) for the
following kinds of accesses:

� Successful accesses (s parameter in chaudit commands)

� Failures, that is, access violations (f parameter in chaudit commands)

� All, which is both successes and failures (a parameter in chaudit commands)

� None

If auditing is not specified for a file, the defaults are:

� For owner auditing: All failed accesses are audited

� For RACF AUDITOR auditing: There is no auditing by default

File
owner
UID

Owning
group
GID Se

tU
ID

Se
tG

ID

St
ic

ky
 b

it Owner Group Other

r w x r w x r w x

File Owner RACF auditor

File Permission Bits

File Mode

E
xt

en
de

d
A

ttr
ib

ut
es

chaudit

Auditing Flags

r A
ud

it

r A
ud

it

x
A

ud
it

w
 A

ud
it

w
 A

ud
it

x
A

ud
it

A
cc

es
s

 A
C

L

ACL Flags

D
ire

ct
or

y
m

od
el

 A
C

L

Fi
le

 m
od

el
 A

C
L

 Chapter 9. Auditing z/OS UNIX 115

9.3 Events always audited

Audit records are always written:

� When a user who is not defined as a z/OS UNIX System Services user tries
to dub a process

� When a user dubs a process using the default UID that is established via the
FACILITY class profile named BPX.DEFAULT.USER (see 3.3, “Default UID
and GID” on page 38)

� When an unauthorized user tries to mount or unmount a file system

There is no option to turn off this mandatory auditing.

9.3.1 RACF classes for auditing

Seven classes are defined in RACF to control auditing. The classes are
predefined in the RACF class descriptor table (ICHRRCDX). No profiles can be
defined in these classes; they are intended to be used only as parameters for the
SETROPTS LOGOPTIONS. They do not need to be active to be used to control
z/OS UNIX auditing. These classes are:

DIRSRCH Controls auditing of directory searches

DIRACC Controls auditing for access checks for read/write access to
directories

FSOBJ Controls auditing for all access checks for file system objects except
directory searches via SETROPTS LOGOPTIONS and controls
auditing of creation and deletion of file system objects via
SETROPTS AUDIT

FSSEC Controls auditing for changes to the security data (FSP) for file
system objects

PROCESS Controls auditing of changes to the UIDs and GIDs of processes and
changing of the thread limit via the SETROPTS LOGOPTIONS, and
controls auditing of dubbing, undubbing, and server registration of
processes via SETROPTS AUDIT

PROCAT Controls auditing of functions that look at data from or affect other
processes

IPCOBJ Controlling auditing and logging of IPC security checks

116 z/OS UNIX Security Fundamentals

Use SETROPTS LOGOPTIONS to specify logging options for all the classes
associated with z/OS UNIX System Services. The auditing levels for
LOGOPTIONS are:

� ALWAYS: All access attempts to resources protected by the class are
audited. This overrides the file-level audit settings.

� NEVER: No access attempts to resources protected by the class are audited
(all auditing is suppressed). This overrides the file-level audit settings.

� SUCCESSES: All successful access attempts to resources protected by the
class are audited. This is merged with the file-level audit settings.

� FAILURES: All failed access attempts to resources protected by the class are
audited. This is merged with the file-level audit settings.

� DEFAULT: Auditing is controlled by the file-level audit settings in the FSP for
z/OS UNIX files and directories (see 9.2, “File-based auditing options” on
page 115). This auditing level is in effect when the SETROPTS
LOGOPTIONS has not been issued yet.

For example, the syntax of the RACF command to activate auditing for all failed
access (read/write/search) to directories is:

SETROPTS LOGOPTIONS(FAILURES(DIRSRCH,DIRACC))

Notes:

� Activating the classes has no effect on auditing or authorization checking,
except for the FSSEC class, which is also used to enable the use of
access control lists (ACLs) for z/OS UNIX access controls (see 6.4, “File
and directory access control: Access control list” on page 86).

� The file-level audit settings, and their interaction with the SETROPTS
settings, directly mirror the behavior of traditional RACF profile auditing.

� If users are accustomed to getting audit records and violations for
unauthorized issuance of RACF commands, then they probably want to
have SETROPTS LOGOPTIONS(ALWAYS(FSSEC)) being issued.
Otherwise, they will not get the same level of auditing by default for
unauthorized UNIX commands which alter security information, such as
chaudit, chown, chmod, or setfacl.

 Chapter 9. Auditing z/OS UNIX 117

In addition, you can use the SETROPTS AUDIT option to control auditing for
accesses to the following classes of resources:

� FSOBJ: Creating and deleting file system objects

� IPCOBJ: Creating and deleting objects (message queues, semaphores, and
shared memory segments)

� PROCESS: Dubbing or undubbing of a process

Note that you must have the RACF AUDITOR attribute to enter the AUDIT
operand of SETROPTS RACF command. For example, the syntax of the RACF
command to activate auditing for creating and deleting objects is:

SETROPTS AUDIT(FSOBJ,IPCOBJ)

You must have the RACF AUDITOR attribute to enter the LOGOPTIONS
operand of SETROPTS RACF command.

9.4 Auditing for superuser authority and UNIXPRIV
class privileges

If you use profiles in the UNIXPRIV class to control a subset of superuser
authority, you can use the auditing options of these profiles for auditing the
granting of the granular superuser privileges.

For example, to audit the successful access to the kill() function, granted by the
SUPERUSER.PROCESS.KILL profile, set the audit options as follows:

RALTER UNIXPRIV SUPERUSER.PROCESS.KILL AUDIT(SUCCESS(READ))

Note also that the RACF SMF type 80 records have an indicator of whether
authority was granted due to superuser authority.

118 z/OS UNIX Security Fundamentals

9.5 Auditing reports

In this section, we briefly explain the reporting infrastructure shown in Figure 9-3.

Figure 9-3 Producing audit reports

SMF records produced by RACF cannot be exploited directly. At a minimum, you
must use the RACF SMF data unload IRRADU00 utility to reformat the SMF
records to a sequential data set. Refer to z/OS V1R8.0 Security Server RACF
Auditor’s Guide, SA22-7684, for more information about using the IRRADU00
utility. Some sample reports are available and it is also possible to create
customized reports using the RACFICE PROC (documented in same place than
IRRADU00 utility).

For more elaborate reports, you will need information that is in RACF database.
There is another RACF utility, named IRRDBU00, which can create in a
sequential data set, several records type with the whole content of the RACF
database. (Refer to z/OS V1R8.0 Security Server RACF Administrator’s Guide,
SA22-7683, for more information about using the IRRDBU00 utility.)

 Chapter 9. Auditing z/OS UNIX 119

There are several ways to exploit the records produced by IRRADU00 and
IRRDBU00 utilities:

� User applications: The layouts of the records are documented in z/OS
Security Server RACF library (especially in z/OS V1R8.0 Security Server
RACF Macros and Interfaces, SA22-7682). Based on this documentation,
you can develop tools or applications to exploit these data as you want.

� DB2 Tables: With the IRRADU00 and IRRDBU00 utilities, RACF
documentation explain how to load the produced records in DB2 tables. The
DDL of several tables and some procedures are provided. When your data
(events and RACF profiles) is stored in DB2 tables, you can make requests
by SQL statements or develop any program to access them.

� IBM Tivoli® Decision Support (formerly Performance Reporter): This IBM
product program has a RACF component that includes a set of DB2 tables
and a lot of predefined reports to present violations or successful access on
RACF resources. The reports can be graphic reports (specially for evolution
or statistical reports) or tabular report (for lists of violations, for example).

Remember also that the IRRHFSU utility can be used to download data
contained within the FSP (such as file permission bits, owning UID and GID,
owner-specified and auditor-specified logging options) into a UNIX file or an MVS
data set where they can be inspected using miscellaneous commands and tools.

120 z/OS UNIX Security Fundamentals

Appendix A. BPX. RACF profiles

A number of profiles in the RACF FACILITY class have been defined for the use
of z/OS UNIX, mainly used to further control the z/OS UNIX functions and
attributes used by z/OS UNIX programs. Here is the list of these profiles as of
z/OS V1R7.

� BPX.CONSOLE allows a permitted user the ability to use the _console() or
console2() services.

� BPX.DAEMON serves two functions in the z/OS UNIX environment:

– Any superuser permitted to this profile has the daemon authority to
change MVS identities via z/OS UNIX services without knowing the target
user ID’s password. This identity change can only occur if the target user
ID has an OMVS segment defined. If BPX.DAEMON is not defined, then
all superusers (UID=0) have daemon authority. If you want to limit which
superusers have daemon authority, define this profile and permit only
selected superusers to it.

– Any program loaded into an address space that requires daemon level
authority must be defined to program control. If the BPX.DAEMON
FACILITY class profile is defined, then z/OS UNIX will verify that the
address space has not loaded any executables that are uncontrolled
before it allows any of the following services that are controlled by z/OS
UNIX to succeed:

• seteuid
• setuid

A

© Copyright IBM Corp. 2007. All rights reserved. 121

• setreuid
• pthread_security_np()
• auth_check_resource_np()
• _login()
• _spawn() with user ID change
• _password()

Daemon authority is required only when a program does a setuid(),
seteuid(), setreuid(), or spawn() user ID to change the current UID without
first having issued a __passwd() call to the target user ID. In order to
change the MVS identity without knowing the target user ID’s password,
the caller of these services must be a superuser. Additionally, if a
BPX.DAEMON FACILITY class profile is defined and the FACILITY class
is active, the caller must be permitted to use this profile. If a program
comes from a controlled library and knows the target UID’s password, it
can change the UID without having daemon authority.

� BPX.DAEMON.HFSCTL controls which users with daemon authority are
allowed to load uncontrolled programs from MVS libraries into their address
space.

� BPX.DEBUG: Users with READ access to BPX.DEBUG can use ptrace (via
dbx) to debug programs that run with APF authority or with BPX.SERVER
authority.

� BPX.FILEATTR.APF controls which users are allowed to set the
APF-authorized attribute in a z/OS UNIX file. This authority allows the user to
create a program that will run APF-authorized. This is similar to the authority
of allowing a programmer to update SYS1.LINKLIB or SYS1.LPALIB.

� BPX.NEXT.USER enables automatic assignment of UIDs and GIDs. The
APPLDATA of this profile specifies a starting value, or range of values, from
which RACF will derive unused UID and GID values.

� BPX.FILEATTR.PROGCTL controls which users are allowed to set the
program control attribute. Programs marked with this attribute can execute in
server address spaces that run with a high level of authority.

� BPX.FILEATTR.SHARELIB indicates that extra privilege is required when
setting the shared library extended attribute via the chattr() callable service.
This prevents the shared library region from being misused.

� BPX.JOBNAME controls which users are allowed to set their own job names
by using the _BPX_JOBNAME environment variable or the inheritance
structure on spawn. Users with READ or higher permissions to this profile can
define their own job names.

� BPX.SAFFASTPATH enables faster security checks for file system and
interprocess communication (IPC) constructs.

122 z/OS UNIX Security Fundamentals

� BPX.SERVER restricts the use of the pthread_security_np() service. A user
with at least READ or WRITE access to the BPX.SERVER FACILITY class
profile can use this service. It creates or deletes the security environment for
the caller’s thread. This profile is also used to restrict the use of the BPX1ACK
service, which determines access authority to z/OS resources. Servers with
authority to BPX.SERVER must run in a clean program-controlled
environment.

z/OS UNIX will verify that the address space has not loaded any executables
that are uncontrolled before it allows any of the following services that are
controlled by z/OS UNIX to succeed:

– seteuid
– setuid
– setreuid
– pthread_security_np()
– auth_check_resource_np()
– _login()
– _spawn() with user ID change_password()

� BPX.SMF checks if the caller attempting to cut a System Management
Facility (SMF) record is allowed to write an SMF record. It also tests if an SMF
type or subtype is being recorded.

� BPX.SRV.userid allows users to change their UID if they have access to
BPX.SRV.userid, where userid is the MVS user ID associated with the target.
UID. BPX.SRV.userid is a RACF SURROGAT class profile.

� BPX.STOR.SWAP controls which users can make address spaces
nonswappable. Users permitted with at least READ access to
BPX.STOR.SWAP can invoke the __mlockall() function to make their address
space either nonswappable or swappable.

When an application makes an address space nonswappable, it might cause
additional real storage in the system to be converted to preferred storage.
Because preferred storage cannot be configured offline, using this service
can reduce the installation’s ability to reconfigure storage in the future. Any
application using this service should warn the customer about this side effect
in their installation documentation.

� BPX.SUPERUSER allows users to switch to superuser authority.

� BPX.UNLIMITED.OUTPUT allows users to use the
BPX_UNLIMITED_OUTPUT environment variable to override the default
spooled output limits for processes.

 Appendix A. BPX. RACF profiles 123

� BPX.WLMSERVER controls access to the Workload Manager (WLM) server
functions _server_init() and _server_pwu(). It also controls access to these
C language WLM interfaces:

– QuerySchEnv()
– CheckSchEnv()
– DisconnectServer()
– DeleteWorkUnit()
– JoinWorkUnit()
– LeaveWorkUnit()
– ConnectWorkMgr()
– CreateWorkUnit()
– ContinueWorkUnit()

A server application with read permission to this FACILITY class profile can
use the server functions, as well as the WLM C language functions, to create
and manage work requests.

124 z/OS UNIX Security Fundamentals

Appendix B. C/C++ functions and
UNIX System Services
callable services

This appendix provides the list of the C/C++ functions that can switch identity
and can be protected with the BPX.DAEMON or BPX.SERVER profiles in the
FACILITY class, along with the equivalent assembler services names.

� seteuid (BPX1SEU service): Set the effective UID in 31-bit mode.

� seteuid (BPX4SEU service): Set the effective UID in 64-bit mode.

� setegid (BPX1SEG service): Set the effective GID in 31-bit mode.

� setegid (BPX4SEG service): Set the effective GID in 64-bit mode.

� setuid (BPX1SUI service): Set the real, effective and saved UID in 31-bit
mode.

� setuid (BPX4SUI service): Set the real, effective and saved UID in 64-bit
mode.

� setuid (BPX1SGI service): Set the real, effective and saved GID in 31-bit
mode.

� setuid (BPX4SGI service): Set the real, effective and saved GID in 64-bit
mode.

B

© Copyright IBM Corp. 2007. All rights reserved. 125

� setreuid (BPX1SRU service): Set the real and/or effective UID in 31-bit mode.

� setreuid (BPX1SRG service): Set the real and/or effective UID in 64-bit mode.

� setreuid (BPX4SRU service): Set the real and/or effective UID in 31-bit mode.

� setreuid (BPX4SRG service): Set the real and/or effective GID in 64-bit mode.

� _spawn (BPX1SPN service): Invoke spawn with a change in user ID
requested in 31-bit mode.

� _spawn (BPX4SPN service): Invoke spawn with a change in user ID
requested in 64-bit mode.

� pthread_security_np (BPX1TLS service): Invoke pthread_security_np() in
31-bit mode.

� pthread_security_np (BPX4TLS service): Invoke pthread_security_np() in
64-bit mode.

� auth_check_resource_np (BPX1ACK service): Invoke
auth_check_resource_np() in 31-bit mode.

� auth_check_resource_np (BPX4ACK service): Invoke
auth_check_resource_np() in 64-bit mode.

126 z/OS UNIX Security Fundamentals

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this IBM Redpaper.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 128. Note that some of the documents referenced here may be available
in softcopy only.

� ABCs of z/OS System Programming Volume 9, SG24-6989

� UNIX System Services z/OS Version 1 Release 7 Implementation,
SG24-7035

Other publications
These publications are also relevant as further information sources:

� z/OS V1R8.0 UNIX System Services Planning, GA22-7800

� z/OS V1R8.0 MVS Initialization and Tuning Reference, SA22-7592

� z/OS V1R8.0 Security Server RACF System Programmer’s Guide,
SA22-7681

� z/OS V1R8.0 Security Server RACF Macros and Interfaces, SA22-7682

� z/OS V1R8.0 Security Server RACF Administrator’s Guide, SA22-7683

� z/OS V1R8.0 UNIX System Services User’s Guide, SA22-7801

� z/OS V1R8.0 UNIX System Services Command Reference, SA22-7802

� z/OS V1R8.0 Security Server RACF Auditor’s Guide, SA22-7684

� z/OS V1R8.0 Network File System Guide and Reference, SC26-7417

© Copyright IBM Corp. 2007. All rights reserved. 127

Online resources
These Web sites and URLs are also relevant as further information sources:

� RACF-L discussion list at: listserv@listserv.uga.edu

� z/OS UNIX discussion list at: listserv@vm.marist.edu

� IBM: z/OS information wizardry

http://www.ibm.com/servers/eserver/zseries/zos/wizards/

� IBM RACF: The HFS Unload Utility

http://www.ibm.com/servers/eserver/zseries/zos/racf/irrhfsu.html

� IBM RACF: RACF Downloads and Sample Materials

http://www-1.ibm.com/servers/eserver/zseries/zos/racf/goodies.html

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

128 z/OS UNIX Security Fundamentals

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.ibm.com/servers/eserver/zseries/zos/wizards/
http://www.ibm.com/servers/eserver/zseries/zos/racf/irrhfsu.html
mailto:listserv@listserv.uga.edu
mailto:listserv@vm.marist.edu
http://www-1.ibm.com/servers/eserver/zseries/zos/racf/goodies.html

Index

Symbols
/bin 17
/bin/sh 29, 38
/etc 7, 16
/etc/init.options 29
/etc/log 29
/etc/rc 17, 29
/sbin 17
/usr 17
/usr/sbin/init 29
_BPX_SHAREAS 108
_BPX_UNLIMITED_SPOOL 65
_check_resource_auth_np() 49, 59, 62
_login() 49, 55, 59
_password() 49, 59
_spawn() 55
“a” extended attribute 79
“l” extended attribute 79
“p” extended attribute 58, 79
“s” extended attribute 79

A
AC=1 106
access control list (ACL) 80
access modes 10
Accessor Environment Element (ACEE) 89
ACL 80, 86, 90, 93

access ACL 87
directory default ACL 87
file default ACL 87

AF_INET 21
AF_INET6 21
AF_UNIX 21
AIM 30, 40, 42
ALWAYS 117
APF 79, 106–108
Application Identity Mapping (AIM) 42
As 15
ASSIZEMAX 35, 65
audit attributes 80
auditing flags 115
AUDITOR 80, 110, 115, 118
AUTOGID 42–43

© Copyright IBM Corp. 2007. All rights reserved.
AUTOUID 42–43

B
base ACL entries 80
BASIC 70–71
BPX.CONSOLE 121
BPX.DAEMON 30, 56–57, 61, 69, 121
BPX.DAEMON.HFSCTL 61, 122
BPX.DEBUG 69, 122
BPX.DEFAULT.USER 34, 36, 39–40, 53, 57, 106,
116
BPX.FILEATTR.APF 69, 108, 122
BPX.FILEATTR.PROGCTL 61, 69, 108, 122
BPX.FILEATTR.SHARELIB 69, 109, 122
BPX.MAINCHECK 69, 71
BPX.NEXT.USER 42, 122
BPX.SAFFASTPATH 81, 122
BPX.SERVER 30, 62–64, 69, 92, 123
BPX.SMF 123
BPX.SRV.surrogated_id 62, 123
BPX.STOR.SWAP 123
BPX.SUPERUSER 64, 66, 123
BPX.UNLIMITED.OUTPUT 123
BPX.WLMSERVER 124
BPX1ACK 126
BPX1SEG 125
BPX1SEU 125
BPX1SGI 125
BPX1SPN 126
BPX1SRG 126
BPX1SRU 126
BPX1SUI 125
BPX1TLS 126
BPX4ACK 126
BPX4SEG 125
BPX4SEU 125
BPX4SGI 125
BPX4SPN 126
BPX4SRG 126
BPX4SRU 126
BPX4SUI 125
BPX4TLS 126
BPXAS 17, 26

 129

address spaces 29
BPXOINIT 26–27, 29

address space 27
BPXPRMxx 21
BPXROOT 56, 58

C
c89 19
CATEGORY 99
chaudit 80, 115, 117
chgroup 107
child

address space 47
process 4

chlabel 102
chmod 82, 85, 109, 117
chown 107, 117
CHOWN.UNRESTRICTED 66, 107
clean address space 59
CLIST 58
Common Desktop Environment (CDE) 6
controlled environment 57–58, 60
controlled library 61
cpio 16
CPUTIMEMAX 35, 65
cron 18, 69
current connect group 32

D
DAC 98
daemon 8, 17
Data Facility System Managed Storage (DFSMS)
74
DB2 Tables 120
dbx 16
dbx debugger 16
DEFAULT 117
default group 32
DFS 22
DFSMS 19
digital certificate 34
DIRACC 116
directory list 82
directory search 82
DIRSRCH 116
dirty address space 107
dirty bit 59
discretionary access control (DAC) 98, 101

disjoint security labels 100
Distributed File System (DFS) 22
domination 100
dual identity 32, 53–54
dubbing 15, 28, 36, 38–39, 47–48, 53, 116

E
ed 16
effective GID 49
effective UID 49, 86, 90
enable superuser mode 64
ENHANCED 71
enhanced program security 69–70
ENHANCED-WARNING 71
ENQ 47
equivalence 100
exec() 47
EXECUTE control 70
extended attributes 69
external link 25
external security manager 19

F
FAILURES 117
FIELD class 36
file owner auditing flags 115
file security packet (FSP) 77
file system 74
FILE.GROUPOWNER.SETGID 86, 106
FILEPROCMAX 35, 65
fork() 16–17, 46–47
FSOBJ 116, 118
FSP 25, 77, 86, 89, 107
FSSEC 80, 88, 90, 92, 116–117
FSUM2386 37
full mode 21

G
getpwnam() 56
GID 8
granularity of privileges 64, 66

H
hard link 25
HFS 19, 22–23, 74, 102
Hierarchical File System (HFS) 102
HOME 34

130 z/OS UNIX Security Fundamentals

I
ICETOOL 41
ICH408I 114
ICH408I messages 20
ICHEINTY 43
ICHRRCDX 116
identity switch 53, 59
IKJEFT01 70
inetd 18, 69
initACEE 33
interprocess communication (IPC) 8
IPC 8, 71–72, 103

key 72
IPC security packet (ISP) 72
IPCOBJ 116, 118
IRR.PGMSECURITY 70–71
IRRADU00 119
IRRDBU00 41, 94, 119
IRRHFSU 94, 120
ISHELL 24
ishell 16
ISPF 21

J
JOBLIB 58, 79
JWT 19

K
Kerberos ticket 34
kernel 4
kill() 16, 40

L
Language Environment 19
link-edit 106
LINKLIST 79
list-of-groups 54, 81, 91, 93
LNKLST 58
logical file system 6
Lotus Notes 30
LPA 60, 71, 79
LPALST 70
ls 17

M
MAC 98, 101
MAIN 70–71

mandatory access control (MAC) 98
MEMLIMIT 35, 65
message queues 71
minimum mode 21
MIXEDCASE 33
MLACTIVE 101
MLFSOBJ 101, 103
MLIPCOBJ 101, 103
MLS 97, 101
MMAPAREAMAX 35, 65
MOUNT 75–76
mount 19, 116

security 76
multilevel security (MLS) 97

N
Network File System (NFS) 22
NEVER 117
NFS 21–22, 74
NOPASSWORD 27, 32, 39, 57
NOSECURITY 76
NOSETUID 76
NOUID 36, 39
Novell directory 30

O
octal representation 10, 83
oedit 16
OMVS 26, 75

address space 26
OMVSGRP 27
OMVSKERN 27
ONLYAT 43
Open Edition 11
Open System 2
OPERATIONS 52, 93
OPERCMDS 30
orphaned ACL 95
owning GID 78, 80, 82, 93
owning UID 78, 80, 82

P
passticket 33, 64
password phrase 33
pax 16
permission bits 81, 83
PFS 7, 21, 23

 Index 131

Physical File System (PFS) 23
PID 19, 27, 47
pidaffinity() 40
pipe 22
PL/I 38
POSIX 2, 12, 38, 47, 102

POSIX 1003.1 34
POSIX.0 3
POSIX.1 3, 48
POSIX.2 3

prevention of UID sharing 40
PRIVILEGED 53, 90
PROCAT 116
PROCESS 116, 118
process 4, 46
process ID (PID) 19
PROCUSERMAX 35, 65
PROGRAM 35, 58–59
program access to data set (PADS) 70
program control 54, 69, 107
ps 16
pthread_create() 47
pthread_security_np() 49, 55, 59, 62

Q
quiesce 19

R
R_admin 43
R_usermap 34
RACF

auditor auditing flags 115
BPX.DEBUG 69
BPX.FILEATTR 69
BPX.FILEATTR.APF 69
BPX.FILEATTR.SHARELIB 69
BPX.SERVER 69
BPX.SUPERUSER 66
UNIXPRIV class 66

CHOWN.UNRESTRICTED 66
SUPERUSER.FILESYS 67
SUPERUSER.PROCESS 67

RACF Remote Sharing Facility (RRSF) 43
RACFICE 119
RACROUTE 43
RDWR 76
READ 76
real GID 49

real UID 49
Redbooks Web site 128

Contact us xi
Resource Measurement Facility (RMF) 20
RESTRICTED 91
RESTRICTED.FILESYS.ACCESS 91, 94
REXX 17
rlogin 8, 16
rlogind 18, 69
root 9, 17
root file system 23–24, 74

S
SAF interface 19
sanction list 108, 111
saved GID 49
saved UID 49
SECDATA 99
SECLABEL 99, 102
SECLEVEL 99
SECURITY 76
security level 98
sed 16
semaphores 72
server 47
seteuid() 49, 59
setfacl 82, 117
setgid 78–79, 107, 109
setreuid() 49, 59
SETROPS GRPLIST 81
SETROPTS AUDIT 118
SETROPTS LOGOPTIONS 117
SETUID 76
setUID 49, 59
setuid 78–79, 107, 109
setuid() 49, 55, 59
sh_cmd & 16
shared library 109
shared memory 71
shared space 108
SHARED.IDS 41–42
shell

Bourne Again shell 5
Bourne shell 5
C shell 5
Korn shell 5
scripts 15
TC shell 5

132 z/OS UNIX Security Fundamentals

SHMEMMAX 35, 65
signals 5
sigqueue() 40
SMF 19

type 80 80, 114, 118
socket 22, 38
spawn() 16–17, 46, 49, 59
STEPLIB 58, 79
sticky bit 17, 71, 79, 109
su 49, 55, 59, 64
SUCCESSES 117
superuser 17, 52

granularity 66
SUPERUSER.FILESYS 67, 91, 93–94
SUPERUSER.FILESYS. CHANGEPERMS 67
SUPERUSER.FILESYS.ACLOVERRIDE 93
SUPERUSER.FILESYS.CHANGEPERMS 82, 88,
109
SUPERUSER.FILESYS.CHOWN, 107
SUPERUSER.FILESYS.MOUNT 66–67, 76
SUPERUSER.FILESYS.PFSCTL 67
SUPERUSER.FILESYS.QUIESCE 67
SUPERUSER.FILESYS.VREGISTER 67
SUPERUSER.IPC.RMID 67, 72
SUPERUSER.PROCESS 67
SUPERUSER.PROCESS.GETPSENT 67
SUPERUSER.PROCESS.KILL 67, 118
SUPERUSER.PROCESS.PTRACE 68
SUPERUSER.SETPRIORITY 68
SURROGAT 54
surrogate 61–64
symbolic link 25
SYSLOGD 17, 69
SYSMULTI 102
System Display and Search Facility (SDSF) 20
System Management Facility (SMF) 19

T
tar 16
TCB 48
telnet 8, 16
TFS 22, 74
Thread 47
THREADSMAX 35, 65
Tivoli Decision Support 120
trace() 40
TRUSTED 27–29, 53, 75, 90
TSO/E 20

TSO/E MOUNT 24

U
UID 8
umask 84–85
undub 16
UNICS 2
UNIX 95 88
UNIX branding. 12
UNIX System Services 12

extended attributes 69
superuser granularity 69

UNIXPRIV 41, 65–66
UNIXPRIV RACF class 66

SUPERUSER.IPC.RMID 67
SUPERUSER.PROCESS 67
SUPERUSER.SETPRIORITY 68

unmount 19, 116
unquiesce. 19
user name 31–32
user security packet (USP) 77
userID 31
USERIDALIASTABLE 32
USP 77, 89–90
USTAR 34
uucpd 69

V
VSAM linear data set 19, 74

W
WHEN(PROGRAM) 58, 60
Workload Manager (WLM) 17
write down 101

X
X.509 V3 34
XPG4 3, 71
X-Windows 5

Z
z/OS Security Server 20
zFS 19, 23, 74, 102

 Index 133

134 z/OS UNIX Security Fundamentals

®

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Redpaper

z/OS UNIX Security
Fundamentals

The explanation of
the z/OS UNIX
security model

The use of SAF to
achieve superior
security

Professionals’ tips
and
recommendations to
achieve superior
security

This IBM Redpaper introduces the z/OS UNIX security model
and implementation to MVS knowledgeable and
security-minded users. It does not address in detail all the
wealth of specific security features available in z/OS UNIX,
but rather the base principles of operation and the
mechanisms implementation with setup recommendations.

We assume that the user already has a knowledge of the
most commonly used IBM Resource Access Control Facility
(RACF) setups and commands. However, we do not provide
detailed procedures and explanations about the use of these
commands.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this IBM Redpaper
	Become a published author
	Comments welcome

	Chapter 1. Overview of the UNIX operating system model
	1.1 What is UNIX?
	1.1.1 The POSIX standards

	1.2 The UNIX model of operating system
	1.2.1 The UNIX kernel
	1.2.2 The UNIX processes
	1.2.3 Signals
	1.2.4 Virtual memory and memory protection
	1.2.5 Shell
	1.2.6 The UNIX utilities
	1.2.7 The UNIX file system
	1.2.8 The /etc directory
	1.2.9 Daemons

	1.3 The UNIX security model
	1.3.1 Accessing UNIX
	1.3.2 UNIX users and groups
	1.3.3 File and directory permissions

	1.4 The z/OS UNIX System Services history

	Chapter 2. Overview of z/OS UNIX implementation
	2.1 z/OS UNIX System Services fundamentals
	2.1.1 Dubbing
	2.1.2 z/OS UNIX services
	2.1.3 z/OS UNIX and z/OS features
	2.1.4 Resource Measurement Facility
	2.1.5 z/OS UNIX configuration parameters
	2.1.6 z/OS UNIX kernel
	2.1.7 z/OS UNIX file system

	2.2 Securing the z/OS UNIX environment
	2.2.1 z/OS UNIX address spaces
	2.2.2 HFS and zFS data sets
	2.2.3 Protecting the BPXPRMxx member
	2.2.4 Protecting z/OS UNIX related operator commands

	2.3 Applications security: UNIX security and z/OS UNIX security
	2.4 RACF AIM

	Chapter 3. z/OS UNIX users and groups identity management
	3.1 User identification and authentication in z/OS UNIX
	3.1.1 User identity implementation
	3.1.2 User authentication

	3.2 The UID and GID in z/OS UNIX
	3.2.1 The OMVS segment in the RACF USER profile
	3.2.2 RACF group and z/OS UNIX

	3.3 Default UID and GID
	3.4 Shared UID and GID
	3.4.1 Automatic prevention of UID sharing
	3.4.2 Allowing assignment of shared UIDs or GIDs

	3.5 Automatic UID and GID assignment
	3.5.1 Specifying automatic assignment of UIDs and GIDs
	3.5.2 Automatic UID and GID assignment in an RRSF configuration

	Chapter 4. z/OS UNIX task identity management
	4.1 Implementation of the UNIX process and threads concepts
	4.1.1 The UNIX process
	4.1.2 The UNIX thread

	4.2 Identities associated with a z/OS UNIX process or thread
	4.2.1 Real and effective UID and GID
	4.2.2 The saved UID and saved GID

	4.3 Functions that change the effective UID and GID

	Chapter 5. The z/OS UNIX security model
	5.1 The superuser concept and privileges
	5.1.1 The concerns with the superuser concept

	5.2 z/OS UNIX implementation of the superuser concept and privileges
	5.2.1 Reminder on z/OS UNIX identity switching
	5.2.2 Authentication of the switched-to user ID
	5.2.3 The RACF BPX.DAEMON profile in the FACILITY class

	5.3 Introducing the controlled environment
	5.4 Using surrogate users with z/OS UNIX
	5.5 BPX.SERVER
	5.6 z/OS UNIX users privilege granularity
	5.6.1 BPX.SUPERUSER

	5.7 Individual limits in the USER profiles
	5.7.1 The UNIXPRIV class of resources

	5.8 Some recommendations
	5.9 Other restrictions to superuser authority
	5.10 The daemons in z/OS
	5.11 Advanced topic: RACF enhanced program security
	5.11.1 Overview of the principles of operation
	5.11.2 Enhanced program security and z/OS UNIX

	5.12 A word on IPC security

	Chapter 6. z/OS UNIX files security
	6.1 z/OS implementation of the Hierarchical File System
	6.1.1 The z/OS UNIX file systems
	6.1.2 Protection of the file system data sets
	6.1.3 Mount security

	6.2 UNIX files and directories security
	6.2.1 The file security packet

	6.3 File and directory access control permission bits
	6.3.1 Default permission bits
	6.3.2 The chmod command
	6.3.3 Default owning UID and GID

	6.4 File and directory access control: Access control list
	6.5 File and directory access control: Security checks
	6.5.1 Authorization checking algorithm without using an ACL
	6.5.2 Authorization checking algorithm with ACL defined

	6.6 The IRRHFSU utility

	Chapter 7. Overview of multilevel security
	7.1 The MLS security model
	7.1.1 Applying MAC
	7.1.2 Security labels
	7.1.3 Domination and equivalence of security labels
	7.1.4 Turning on MLS in RACF
	7.1.5 When MLS is on

	7.2 MLS and z/OS UNIX resources and users

	Chapter 8. Considerations on z/OS UNIX program management
	8.1 How to link-edit program into HFS files
	8.2 Owner information for a z/OS UNIX file
	8.3 Extended attributes of an HFS file
	8.3.1 Program control bit
	8.3.2 APF bit
	8.3.3 The shared space bit
	8.3.4 The library bit

	8.4 The file mode section of the FSP
	8.4.1 The non-permission bits
	8.4.2 The permission bits

	8.5 The sanction list

	Chapter 9. Auditing z/OS UNIX
	9.1 Overview of auditing options
	9.2 File-based auditing options
	9.3 Events always audited
	9.3.1 RACF classes for auditing

	9.4 Auditing for superuser authority and UNIXPRIV class privileges
	9.5 Auditing reports

	Appendix A. BPX. RACF profiles
	Appendix B. C/C++ functions and UNIX System Services callable services
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

