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Abstract -

After a brief review of the nonlocal continuum concepts for strain-softening dis-
tributed damage due to microcracking, the present lecture describes in detail a
recently proposed formulation which is derived by micromechanics analysis of
crack interactions. In this formulation, the inelastic stress increments must sa-
tisfy a Fredholm integral equation whose kernel is a continuum crack influence
function. This function depends on the relative crack orientations, is tensorial,
and decays for large distances r as r~? (in two dimensions). A statistical de-
termination of the continuum crack influence function is proposed. It consists
in averaging the discrete crack influence function over all possible locations of
the source crack. Numerical values and diagrams of the typical crack influence
function are given. The proposed formulation appears to be a more rational and
more realistic model for localization problems of cracking damage in continuous
bodies. '

Keywords: Damage mechanics, fracture mechanics, crack propagation, finite ele-
ment analysis, plasticity, strain-softening, localization of damage.

1 Introduction

As is now generally agreed, finite element analysis of distributed softening damage
cannot be based on a classical, that is, local, constitutive model. Such a model
introduces incorrect excessive localizations, spurious .size effect, and spurious
mesh sensitivity in finite element computations. To overcome these problems
one must supplement to the constitutive model some sort of the so-called lo-

calization limiter. One effective type of the localization limiter is the nonlocal
continuum (1, 2, 7].
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The nonlocal continuum is a concept which was first introduced for different
purposes, namely to model the small scale effects of lattice structures or other
inhomogeneities in elastic solids ([26, 27, 41] and many others, as reviewed in [2]).
An effective type of the nonlocal damage concept, in which the local damage or
fracturing strain that figures in the incremental stress-strain relation is replaced
by its spatial average, was proposed in [45] and [12] (also [5, 10, 11, 13]).

Introduction of nonlocality into the concept of damage was initially justified
by computational arguments—particularly the necessity of preventing localization
of strain softening damage to zone of zero volume. A mathematical justification
based on physics of the material behavior has been lacking. Intuitively, it has been
felt that the need for nonlocality of continuum damage description has something
to do with the progressive development of large zones of distributed microcrack-
ing, which typically precede sharp macrofractures in quasibrittle materials such
as concrete, mortars, rock, toughened ceramics, various types of composites, ice,
etc. Some simplified arguments based on a system of microcracks have been
shown to result into some form of nonlocality [3, 4], however, they ignored in-
teractions between growing microcracks. These are certain to bg significant, as
revealed by studies of many researchers, especially Kachanov [36, 37, 39] (also
Pijaudier-Cabot and BaZant, [46]; and BaZant and Tabbara, [13]).

Considerable attention has recently been devoted to a special case of nonlocal
continuum models for strain softening, in which the nonlocality is introduced
through gradients of total strain or damage strain (or plastic strain). These
models can be regarded as the first terms of the Taylor series expansion of the
nonlocal spatial integral [1, 8]. Attention has also been given to micropolar or
Cosserat-type modifications of plasticity [22-25, 43, 47, 48]. Again, however, these
gradient type models have so far been justified only by the mathematical need to
regularize the boundary value problem, and no convincing physical justification
based on micromechanics has been given.

Apart from the problem of continuum modeling of damage, micromechanics of
crack systems which are the physical source of damage has been studied extensive-
ly for many years {14, 16, 20, 30, 33-37, 39, 40, 42]. However, these studies have
focused on the fundamental problem of determining the effective elastic moduli of
a solid containing various types of systems of microcracks. Such analysis requires
assuming the solid to be in a macroscopically statistically homogeneous (uniform)
state. This precludes revealing the properties that govern localization, the princi- -
pal characteristic of which is the macroscopic statistical nonuniformity of the field
of microcracks. Powerful methods have been developed for the problem of deter-
mining the effective macroscopic elastic moduli, for example Hill’s self-consistent
model, methods of periodic cells, method of composite cylinders or composite
spheres, variationally based bounds such as Hashin-Shtrickman bounds, various
statistical models for macrohomogenous crack arrays, etc.

However, these techniques, representing the homogenization techniques for
random inhomogeneities, are not applicable to the development of a continuum
model for damage localization. In the homogeneous state, various important
interactions between microcracks or other effects cancel each other, but they be-
come essential in the case of spatially nonuniform, statistically nonhomogeneous
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deformation. Therefore the homogenization techniques cannot be applied to the
present problem. A different approach is needed. Such an approach has been
proposed in a recent conference paper [5] and was formulated in detail in a report
(13] and a journal article [6]. Application of this approach to localization into a
planar band within an infinite layer or infinite space is studied in a forthcoming
journal article [32], on which a preliminary conference presentation was given [9].
The effect of microdefect interactions on damage localizations has also recently
been taken into account in a different formulation with some similarities to the
present one in the work of Okui, Horii and Akuyama [44].

The purpose of the present workshop lecture is two-fold: To review the basic
aspects of this new approach to nonlocal continuum damage, and to present a
new statistical formulation of the crack influence function which characterizes the
nonlocality due to microcracking. The basic idea of this statistical definition has
already been mentioned in the addendum to [6].

The problem of continuum smearing of damage may be illustrated by Fig. 1,
showing the plot of macro-continuum stress o and strain ¢ in the post-peak strain
softening range. The aforementioned classical homogenization techniques, pur-
sued by many authors, provide the value of the secant elastic moduli, character-
izing the slope of the line 014 in this figure. These moduli or the slope of this line

~are determined under the assumption that the microcracks do not grow during
the load increment and remain statistically uniformly distributed.

A much more difficult problem, to which little attention has been devoted
[13], is to determine the slope of line 12 which corresponds to the case when the
microcracks are growing and remaining at the critical state of fracture propaga-
tion during the loading increment, but under the restriction that the microcrack-
ing remain statistically homogeneous (uniform). A still more difficult, and fully
realistic, problem is to determine the effect of localization of microcracking during
the load increment. This effect is to change the response slope 12 to the response
slope 15, which can be less steep or steeper than the slope T2. The slope 12
represents the local constitutive law because in a macroscopically homogeneously
deformed solid the interactions between the microcracks cancel each other. These
interactions are essential for determining the slope 15 for the nonlocal response
and are the focus of the present formulation. '

2 Review of new nonlocal damage model

The physical cause of post-peak strain softening is the gradual spread of dis-
tributed microcracking. Accordingly, consider an increment of prescribed loads
or boundary displacements for an elastic solid that contains, at the beginning of
the load step, many microcracks numbered as 4 = 1,...N. On the macroscale,
the microcracks are considered to be smeared, as required by a continuum model.
Exploiting the principle of superposition, we may decompose the loading step
into two substeps, as follows.

In the first substep, the cracks (already opened) are imagined temporarily
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Figure 1: Strain increment and the corresponding local and nonlocal inelastic
stress increments
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Figure 2: Superposition method for a body with many cracks

“frozen” (or “filled with a glue”), that is, they can neither grow and open wider
nor close and shorten. Also, no new cracks can nucleate. The stress increments,
caused by strain increments Ae and transmitted across the temporarily frozen
(or glued) cracks (Fig. 2a), are then simply given by E : Ae. This is represented
by the line segment 13 (Fig. 1) having the slope of the initial elastic modulus E.
In the second substep, the prescribed boundary displacements and loads are held
constant, the cracks are “unfrozen” (or “unglued”), and the stresses transmitted
across the cracks are relaxed, which is equivalent to applying pressures (surface
tractions) on the crack faces (Fig. 2). In response to this pressure, the cracks are
now allowed to open wider and grow (remaining in the critical state, according
to the crack propagation criterion), or to close and shorten. Also, new cracks are
now allowed to nucleate.

Under the assumption that no cracks grow or close (nor new cracks nucle-
ate), the unfreezing (or unglueing) at prescribed increments of loads or boundary
displacements that cause macro-strain increment A€ would engender the stress
drop 34 down to point 4 on the secant line 01 (Fig. 1). The change of state of
the solid would then be calculated by applying the opposite of this stress drop
onto the crack surfaces. However, when the cracks propagate (and new cracks
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nucleate), a larger stress drop defined by the local strain-softening constitutive
law and represented by the segment AS = 32 in Fig. 1 takes place. Thus, the
normal surface tractions Ap, = n,AS,n,, representing the normal component
of tensor AS,, must be considered in the second substep as loads Ap, that are
“applied onto the crack surfaces (Fig. 1), the unit normals of which are denoted
as n,.

Let us now introduce two simplifying hypotheses: (1) Although the stress
transmitted across each temporarily frozen crack varies along the crack, we con-
sider only its average, i.e., Ap, is constant along each crack. This approximation,
which is crucial for our formulation, was introduced by Kachanov [37, 38]. He
discovered by numerical calculations that the error is negligible except for the rare
case when the distance between two crack tips is at least an order of magnitude
less than their size. (2) We consider only Mode I crack openings, i.e. neglect the
shear modes (modes II and III).

An effective kind of superposition method is that used by Kachanov [37 38},
which was also used in [19-21, 28, 31], and in a displacement version was intro-
duced already by Collins {18]. In this kind of superposition, one needs to have
the solution of the given body for the case of only one crack, with all the other
cracks considered frozen (Fig. 2). The cost to pay for this advantage is that the
. pressures to be applied at the cracks are unknown in advance and must be solved.

By virtue of Kachanov’s approximation, we apply the superposition method
to the average crack pressures only. The opening and the stress intensity factor
of crack g (s = 1,2,...) are approximately characterized by the uniform (or
average) crack pressure Ap, that acts on a single crack within the given solid
that has elastic moduli E and contains no other crack This pressure is solved
from the superposition relation:

N

v=1

Here (...) represents the averaging operator over the crack length; A,, are the
crack influence coefficients representing the average pressure at the frozen crack
4 caused by a unit uniform pressure applied on unfrozen crack v, with all the
other cracks being frozen; and A,, = 0 because the summation in (1) must skip
v = pu. The reason for the notation Ap, with an overbar instead of the operator
(...) is that the unknown crack pressure is uniform and thus its distribution over
the crack area never needs to be calculated and no averaging operation actually
needs to be carried out. From (1), we obtain

A(n,S5,n,) = (A(n,S,n,)) +ZA,.,A n,S,n,) @)

r=1

The values of AS), are gra,phi’cally represented in Fig. 1 by the segment AS = 35.
Due to crack interactions, this segment can be smaller or larger than segment 32.

Let us now introduce another simplification: In each loading step, the influ-
ence of the microcracks at point £ of the macro-continuum upon the microcracks
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at point z of the macro-continuum is determined only by the dominant micro-
crack orientation. This orientation is normal to the unit vector n, of the maxi-

mum principal inelastic macro-stress tensor AS™ at the location of microcrack

p. We use the definition: A:S_'( = A(n,S,n,) = [n,.S.n.)new — [n,S Sunuloa-
The subscripts ‘new’ and old’ denote the values at the beginning and end of the-
loading step, respectively. According to this simplification, the dominant crack
orientation generally rotates from one loading step to the next. Eq. (2) may now
be written as:

N
AT -3 ALATY = (ASP)  (w=1,2,...N) )

v=1

Now comes the most difficult step. We need to determine the nonlocal field
equation for the macroscopic continuum that represents the continuum counter-
part of (3). The homogenization theories as known are inapplicable, because
they apply only to macroscopically uniform fields, whereas the nonuniformity of
the macroscopic ﬁeld is the most important aspect in the case of localization
problems.

The following simple concept has been proposed in {13, 5): The desired con-
tinuum field equation must be such that its discrete approzimation can be written
in the form of the matriz crack interaction relation (3). This concept leads to the
following field equation for the continuum apprommatxon of microcrack interac-
tions:

23V(z) - /V Az, £)ATV(€)aV (€) = (ASH (=) (4)

Indeed, approximation of the integral by a sum over the continuum variable values
at the crack centers yields (3). Here we introduced A(z,,€,) = (A, )/ V. = crack
influence function; V, is.a constant that may be interpreted roughly as the volume
per crack, and £ is a certain statistical averaging operator. Some suitable form
of such statistical averaging is implied in the macro-continuum smoothing and is
inevitable because in a random crack array the characteristics of the individual
cracks must be expected to exhibit enormous random scatter.

It must be admitted that the sum in (3) is a somewhat unorthodox a.pprox1~
mation of the integral from (4) because the values of the continuum variable are
not sampled at certain predetermined points such as the chosen mesh nodes but
are distributed at random, that is, at the centers of the random microcracks. A
rigorous mathematical theory for such an approximation seems to be lacking at
present. Another point to note is that (3) is only one of various possible discrete
approximations of (4).

When (4) is approximated by finite elements, it is again converted to a matrix
form similar to (3). However, the sum then runs over the integration points of the.
finite elements. This means the crack pressures (or openings) that are translated
into the inelastic stress increments are only sampled at these integration points,
in the sense of their density, instead of being represented individually as in (3).
Obviously, such a sampling can preserve only the long-range interactions of the
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cracks and the short-range averaging. The individual short-range crack %nterac-
tions will be modified. This is a statistical problem of great c'onceptual difficulty
which we will try to tackle in a simplified manner later in this paper.

For macroscopic continuum smearing, the averaging operator {--) over the
crack length now needs reinterpretation. Because of the randomness of the micro-
crack distribution, the macro-continuum variable at point shorxld .repres?nt' the
spatial average of the effects of all the possible microcrack rea.!xzatans within a
seighborhood of point @ whose size is roughly equal to the spacing £ of the dor_m-
1ant microcracks (which is in concrete approximately determined by the spacing
»f the largest aggregates); hence,

(850@) = [ ASP(E)o(=, V() ®

where ® represents the same bell-shaped weight function as used in previmfs
nonlocal continuum models (e.g., {45]). This function, which is scalar and' is
also taken as isotropic (same for every direction), should vanish or almost vanish
everywhere outside a domain of diameter roughly equal to £. ) )

Eq. (4) represents a Fredholm integral equation foF the lfnknov».lbn .AS (=),
which corresponds in Fig. 1b to the segment 35. The melastu': strain increment
tensors AS®(zx) on the right-band side, which corresgond in 1.71g. 1b to the
segment 32, are calculated from the strain increments using the given local con-
stitutive law (for example the microplane model or contl.n_uum c.iama.ge theory).

Eq. (4) supplements the total incremental stress-strain relation

Ao =C,:Ae~AS (6)
where Ao, Ac are the increments of the stress and strain tensor, a,x.ld C, is
the fourth-rank tangential stiffness tensor for unloading of the material. Also
Ao = C, : A€ and AS = (Cy — Cy) : A€ where C, denot.ef the fm{rth.-rank
tangential stiffness tensor for loading, whose matrix in not positive deﬁmt@ in the
case of strain-softening. .

It should be noted that unloading criteria (as well as conditions such as tl.xe
continuity condition) have nothing to do with nonlocality. They appear only in
the constitutive law, which is local. This is a major advantage compared to the
previous nonlocal models.

To obtain the complete formulation of the boundary value problem, E:qs. (5)
and (6) must be supplemented by the strain-displacement re!a.tions, the differen-
tial equations of equilibrium for Ao and the boundary conditions for stresses or
displacements. B

Equation (5) has further been generalized to the case where the dominant
microcracks occur in all three principal stress directions [5, 6, 13].

3 Crack influence function 7
and its statistical determination

The basic characteristics of the new formulation is the crack inﬂuence functio.n
A, whose rate of decay is determined by a certain characteristic length £. This
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function represents the stress field due to pressurizing a single crack in the given.
elastic structure, all other cracks being absent. In practice, the structure is always
finite, and thus the values of A,, should in principle be calculated taking into
account the geometry of the structure. However, the crack is often very small
compared to the dimensions of the structure. Then, as an approximation, one can
use the stress field for a single crack in an infinite body, which is well known and
calculated easily (this is of course not possible for cracks very near the boundary
of the structure).

The cracks in structures are distributed randomly and their number is vast.
Thus, on the macro-continuum level, function A cannot characterize the stress
fields of the individual cracks. Rather, it should characterize the stress field of
a representative crack obtained by a suitable statistical averaging of the random
situation on the microstructure level.

A method of rigorous mathematical formulation of the macroscopic continuum
crack influence function A was briefly proposed in the addendum to [6] and will
now be developed in detail. '

The crack that is pressurized by unit pressure, as specified in the definition
of A, will be called the source crack. The crack in the structure on which the
influence is to be found will be called the target crack. For the purpose of cal-
culations, the target crack is of course closed and glued, as if it were not present
in the solid, and the stresses transmitted across the target crack are calculated
assuming the body to be continuous. Function A(0, £) represents the influence of
a source crack centered at ¢ = 0 on a target crack centered at &.

At the given macro-continuum point, there may or may not-be a crack in the
microstructure. Function A corresponding to that point must reflect the smeared
statistical properties of all the possible microcracks occurring near that point.
To do this, we must idealize the random crack arrangements in some suitable
manner. , :

We will suppose that the center of the source crack can occur randomly any-
where within a square of size s centered at point # = 0; see Fig. 3a, where various
possible cracks are shown by the dashed curves, but only one of these, the crack
showed by the solid lines, is actually realized. The value of s is imagined to repre-
sent the typical spacing of the dominant cracks. In a material such as concrete,
approximately s = md, where d, = spacing of the largest aggregate pieces and
m = coefficient arger than 1 but close to 1 (m would equal d, if the aggregates
were arranged at the ideal cubic packing and if there were no mortar layers within
the contact zones). To simplify the statistical structure of the system of dominant
cracks, one may imagine the material to be subdivided by a square mesh of size
s as shown in Fig. 3b, with one and only one crack center occurring within each
square of the mesh. This is of course a simplification of reality because a square
mesh introduces a certain directional bias (as is well known from finite element
analysis of fracture). It would be more realistic to assume that the possible zone
of occurrence of the center of each crack is not a square but has a raridom shape
and area about s x s, and that all these areas are arranged randomly. But this
would be too difficult for statistical purposes, and probably unimportant with
respect to the other simplifications of the model. ’
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Figure 3: (a) Various possible racdom locations of the source crack influencing a
target crack, (b) dominant cracks appearing in regions of size s that determine
their typical spacing, and (c) general orientations of the source crack and the
target crack relative to the influence ray

Let us now center coordinates z and y in the center of the square s x s, as
hown in Fig. 3a, and consider the influence of a source crack within this square on
» target crack at coordinates £ = (£, 7). The macroscopic crack influence function
hould describe the influence of any possible source crack within the given square
n the average smeared macroscopic sense. Therefore, A(0, £) is defined as the
nathematical expectation £ with regard to all the possible random realizations
f the source crack center within the given square s x s, that is

A(0,8) = £ [e™M (€ - 2,9 —y)] 7

The vector ({ — z,7 —y) = £ = vector from the center = (z,y) of a source
crack to the center £ = (£,7) of the target crack. In detail,

1 s/2

_ A(O’ 5) ==

s/2 .
: / w(z,y)oM (¢ - z,n - y) dzdy (8)
S J_as2J-sp2 )

Here o(!) is the stress in the direction perpendicular to the target crack caused
by applying unit pressure on the faces of the source crack, and the integrals
represent the statistical averaging over the square s x s. We have inserted in
this expression certain specified weights w(z, y). At first one might think that
uniform weights w might be appropriate, but that would not be realistic near the
boundaries of the square because a crack cannot intersect a crack centered in the
adjacent square, and in practice would not even lie too close to it. Rigorously,
one would have to consider the joint probability of the occurrences of the crack
center locations in the adjacent squares, but this would be too complicated. We
prefer to simply reduce the probability of occurrence of the source crack as the
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boundary of the square is approached. For numerical computations we choose a
bell-shaped function in both the z and y directions, given as

2\ ? ir- 212

w(z,y) = wo [l - (2—3') ] [1 - (%y) } y W= 2642 (9)
for z < /2,y < s/2, and w(z,y) = 0 otherwise; constant w, is selected so the
integral of w(z,y) over the square s x s be equal to s?>. It may be added that
there is also a practical reason for introducing this weight function. If the weights
were uniform over the square, function A would not have a smooth shape, which

would be inconvenient and probably also unrealistic for a continuum model.
The stress field in an infinite medium caused by unit pressure applied on the
faces of one single crack is described for the two-dimensional case by the well-
known Westergaard’s solution (see, e.g., [15], or [29]) which is given in [5, 6). The
component o{!) to be integrated in (8) depends on the orientation of the target
crack, which is related to the macroscopic stress field. As a basic situation, we
assume the directions of the maximum principal stress at the source and target

points to be the same, which means that ¢{?) is the stress in the y-direction. The

integral in (8) is difficult to evaluate analytically, and it is better to use numerical
integration to obtain A. However, the asymptotic properties of function A for
large r can be determined easily {13, 6] by considering the lines of influence from
various possible source cracks to the given target crack as shown in Fig. 3a. If the
target crack is very far from the square in which the source crack is centered, all
the possible rays of influence are nearly equally long and come from nearly the
same direction. Therefore, the integral in (8) should exactly preserve the long
range asymptotic field. ,

As shown in (13, 6], the long-range (r — oo) asymptotic crack influence
function is

Aw(z,€) = —k(r)% [cos 29 + cos 24 + cos2(Y9 + )] (10)

where ¥ and 1) are the angles of ray r with the normals of the source crack and the
target crack (see Fig. 3c), k(r) = a®/r?, and £ is a certain constant representing
what may be called the characteristic length for crack interactions.

It is convenient to replace the function k(r) = a?/r? by a function of the same
asymptotic properties for r — oo which does not have a singularity at r = 0;

k(r) = (rz“ﬁ)2 ' . (11)

It is now possible to represent the complete crack influence function given by (8)
in the form:

A(0,€) = A (€,7) + i) ' | (2)

where A, represents a difference which is decaying to infinity faster (ie., as a
higher power of r) than A, and can therefore be neglected for sufficient distances
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Figure 4: (a) Total crack influence function for the case of parallel source an.d
target cracks, (b) analytical expression having the correct long-range asymptotic
field, and (c) difference of the crack influence functions in (a) and (b)
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Table 1: Values of the difference between the calculated crack influence function
and an approximate analytical expression having the correct long-range asymp-
totic field

y| 005 0.55 1.05 1.6 205 255 3.05 3.55  4.05

x

0.00 | -.4133 -.1263 .0345 .0388 .0230 .0126 .0070 . .0040 .0024
0.50 | -.4260 -.4157 -.1550 -.0396 -.0075 .0003 .0017 .0016 .0012
1.00 | -.2835 -.3379 -.2435 -.1184 -.0504 -.0208 -.0087 -.0037 -.0016
1.50 | -.0806 -.1205 -.1315 -.0937 -.0543 -.0288 -.0150 -.0078 -.0041
2.00 | .0440 .0160 -.0214 -.0356 -.0317 -.0225 -.0144 -.0088 -.0053
2.50 | .0680 .0510 .0210 -.0015 -.0112 -.0123 -.0101 -.0074 -.0051
3.00} .0408 .0333 .0190 .0063 -.0016 -.0051 -.0058 -.0051 -.0040
3.50 | .0221 .0191 .0128 .0064 .0016 -.0013 -.0027 -.0031 -.0028
4.00 | .0129 .0115 .0086 .0053 .0024 .0003 -.0010 -.0016 -.0018
4.50 | .0080 .0073 .0059 .0041 .0024 .0010 -.0001 -.0007 -.0010
5.00 { .0052 .0049 .0041 .0031 .0021 .0011 .0004 -.0002 -.0005

r from the center of the source crack. This difference is minimized with the
parameter £ equal to the half crack length a.

Calculations have been made for the case that the target crack is parallel to
the source crack and a/s = 0.25. The values of A were evaluated by numerical
integration of (8) using a dense square mesh; see Fig. 4a. The analytical expres-
sion for the asymptotic crack influence function from (10) is plotted in Fig. 4b,
and after its subtraction from the A, values, the plot of the difference of the
crack influence function shown in Fig. 4c was obtained. For the numerical values
of A,, see Table 1.

Function A,(z,y) obviously depends on the relative crack size a/s. However,
it has been found the it depends on a/s only very little when a/s > 0.25. For
smaller a/s, the crack interactions are probably mostly unimportant. So perhaps
a single crack influence function expression could be used for all the cases.

Another case to study is that of nonparallel target cracks. This is left for a
subsequent journal article.

Analytical closed-form expressions for the stress field of a pressurized penny-
shaped crack in three dimensions are also available. They have been used to
determine the asymptotic crack influence function in three dimensions [5, 6]. A
statistical definition in three dimensions that is analogous to (8) can obviously be
also written. It will be studied in a subsequent journal article, along with other
open questions.

4 Conclusions

1. The recently proposed nonlocal continuum damage model based on micro-
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mechayical analyss of crack interactions, which hax been reviewed in the
present laciare, appesss lo represent & more rational and muwe realistic
mode than the previcus nonlocal farmalations. The analysis of crack inter-
axtions proves Lhat the macroscopic continuum moded onght to by Doulecal,
except for deformations that are nearly homogeoeous over regions that are
much larger than the microcrack spacing and dimansions.

2. The continvum crack influenee function, which describes the =Foct of a
source crack pressurized iy a mnit presgare on the averape stryéen acrom
3 closed target crack, may be defined by averaging over all the possible
random realizations of the source crack within a square domain whose size
represents the typical spacing of the dominant cracks. The numetical table
of this funciion given in this pager can be wed in practios
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