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Abstract 
After a brief review of the nonlocal continuum concepts for strain-softening dis­
tributed damage due to microcracking, the present lecture describes in detail a 
recently proposed formulation which is derived by micromechanics analysis of 
crack interactions. In this formulation, the inelastic stress increments must sa­
tisfy a Fredholm integral equation whose kernel is a continuum crack influence 
function. This function depends on the relative crack orientations, is tensorial, 
and decays for large distances r as r- 2 (in two dimensions). A statistical de­
termination of the continuum crack influence function is proposed. It consists 
in averaging the discrete crack influence function over all possible locations of 
the source crack. Numerical values and diagrams of the typical crack influence 
function are given. The proposed formulation appears to be a more rational and 
more realistic model for localization problems or' cracking damage in continuous 
bodies. 
Keywords: Damage mechanics, fracture mechanics, crack propagation, finite ele­
ment analysis, plasticity, strain-softening, localization of damage. 

1 Introduction 

As is now generally agreed, finite element analysis of distributed softening damage 
cannot be based on a classical, that is, local, constitutive model. Such a model 
introduces incorrect excessive localizations, spurious .size .effect, and spurious 
mesh sensitivity in finite element computations. To overcome these problems 
one must supplement to the constitutive model some sort of the so-called lo­
calization limiter. One effective type of the localization limiter is the nonlocal 
continuum [1, 2, i]. 
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The nonlocal continuum is a concept which was first introduced for different 
purposes, namely to model the small scale effects of lattice structures or other 
inhomogeneities in elastic solids ([26, 2i, 41] and many others, as reviewed in [2]). 
An effective type of the nonlocal damage concept, in which the local damage or 
fracturing strain that figures in the incremental stress-strain relation is replaced 
by its spatial average, was proposed in [45] and [12] (also [5, 10, 11, 13]). 

Introduction of nonlocality into the concept of damage was initially justified 
by computational arguments-particularly the necessity of preventing localization 
of strain softening damage to zone of zero volume. A mathematical justification 
based on physics of the material behavior has been lacking. Intuitively, it has been 
felt that the need for nonlocality of continuum damage description has something 
to do with the progressive development of large zones of distributed microcrack­
ing, whicll typically precede sharp I~crofractures in quasibrittle materials such 
as concrete, mortars, rock, toughened ceramics, various types of composites, ice, 
etc. Some simplified arguments based on a system of microcracks have been 
shown to result into some form of nonlocality [3, 4], however, they ignored in­
teractions between growing microcracks. These are certain to b~ significant, as 
revealed by studies of many researchers, especially Kachanov [36, 37, 39] (also 
Pijaudier-Cabot and BaZant, [46]; and BaZant and Tabbara, [13]). 

Considerable attention has recently been devoted to a special case of nonlocal 
continuum models for strain softening, in which the nonlocality is introduced 
through gradients of total strain or danlage strain (or plastic strain). These 
models can be regarded as the first terms of the Taylor series expansion of the 
nonlocal spatial integral [1, 8J. Attention has also been given to micropolar or 
Cosserat-type modifications of plasticity [22-25, 43, 47, 48J. Again, however, these 
gradient type models have so far been justified only by the mathematical need to 
regularize the boundary value problem, and no convincing physical justification 
based on micromechanics has been given. 

Apart from the problem of continuum modeling of damage, micromechanics of 
crack systems which are the physical source of damage has been studied extensive­
ly for many years [14, 16, 20, 30, 33-37, 39, 40, 42]. However, these studies have 
focused on the fundamental problem of determining the effective elastic, moduli of 
a solid containing various types of systems of microcracks. Such analysis requires 
assuming the solid 'to be in a macroscopically statistically homogeneous (uniform) 
state. This precludes revealing the properties that govern localization, the princi­
pal characteristic of which is the macroscopic statistical nonuniformity of the field 
of ~icrocracks. Powerful methods have been developed for the problem of deter­
mining the effective macroscopic elastic moduli, for example Hill's self-consistent 
model, methods of periodic cells, method of composite cylinders or composite 
spheres, variationally based bounds such as Hashin-Shtrickman bounds, various 
statistical models for macrohomogenous crack arrays, etc. 

However, these techniques, representing the homogenization techniques for 
random inhomogeneities, are not applicable to the development of a c~ntinuum 
model for damage localization. In the homogeneous state, various important 
interactions between microcracks or other effects cancel each other, but they be­
come essential in the case of spatially nonuniforIll, statistically nonhomogeneous 
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deformation. Therefore the homogenization techniques cannot be applied to the 
present problem. A different approach is needed. Such an approach has been 
proposed in a recent conference pap~r [5] and was formulated in detail in a report 
[13) and a journal article [6]. Application of this approach to localization into a 
planar band within an infinite layer or infinite space is studied in a forthcoming 
journal article [32], on which a preliminary conference presentation was given [9]. 
The effect of microdefect interactions on damage localizations has also recently 
been taken into account in a different formulation with some similarities to the 
present one in the work of Okui, Horii and Akuyama (44). 

The purpose of the present workshop lecture is two-fold: To review the basic 
aspects of this new approach to. nonlocal continuum damage, and to present a 
new statistical formulation of the crack influence function which oharacterizes the 
nonlocality due to microcracking. The basic idea of this statistical definition has 
already been mentioned in the addendum to [6]. 

The problem of continuum smearing of damage may be illustrated by Fig. 1, 
showing the plot of macro-continuum stress u and strain f in the post-peak strain 
softening range. The aforementioned classical homogenization techniques, pur­
sued by many authors, provide the value of the secant elastic moduli, character­
izing the slope of the line 014 in this figure. These moduli or the slope of this ,line 
are determined under the assumption that the microcracks do not grow during 
the load increment and remain statistically uniformly distributed. 

A much more difficult problem, to which little attention has been devoted 
[13], is to determine the slope of line 12 which corresponds to the case when the 
microcracks are growing and remaining at the critical state of fracture propaga­
tion during the loading increment, but under the restriction that the microcrack­
ing remain statistically homogeneous (uniform). A still more difficult, and fully 
realistic, problem is to determine the effect of localization of l1'licrocracking during 
the load increment. This effect is to change the response slope 12 to the response 
slope 15, which can be less steep or steeper than the slope 12. The slope 12 
represents the local constitutive law because in a macroscopically homogeneously 
deformed solid the interactions between the microcracks cancel each other. These 
interactions are essential for determining the slope 15 fOI" the nonlocal response 
and are the focus of the present formulation. 

2 Review of new nonlocal damage model 

The physical cause of post-peak strain softening is the gradual spread of dis­
tributed microcracking. Accordingly, consider an increment of prescribed loads 
or boundary displacements for an elastic solid that contains, at the beginning of 
the load step, many microcracks numbered as iJ = 1, ... N. On the macroscale, 
the microcracks are considered to be smeared, as required by a continuum model. 
Exploiting the principle of superposition, we may decompose the loading step 
into two substeps, as follows. 

In the first substep, the cracks (already opened) are imagined temporarily 
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Figure 1: Stra.in increment and the corresponding local and nonlocal inelastic 
stress increments 
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Figure 2: Superposition method for a body with many cracks 

"frozen" (or "filled with a glue"), that is, they can neither grow and open wider 
nor close and shorten. Also, no new cracks can nucleate, The stress increments, 
caused by strain increments 6£ and transmitted across the temporarily frozen 
(or glued) cracks (Fig. 2a), are then simply given by E: 6£. This is represented 
by the line segment 13 (Fig. 1) having the slope of the initial elastic modulus E. 
In the second substep, the prescribed boundary displacements and lo.a.ds are held 
const'ant, the cracks are "unfrozen" (or "unglued"), and the stresses transmitted 
across the cracks are relaxed, which is equivalent to applying pressures (surface . 
tractions) on the crack faces (Fig. 2). In response to this pressure, the cracks are 
now allowed to open wider and grow (remaining in the critical state, according 
to the crack propagation criterion), or to dose and shorten. Also, new cracks are 
now allowed to nudeate, 

Under the assumption that no cracks grow or dose (nor new cracks nucle­
ate), the unfreezing (or unglueing) at prescribed increments of lo.a.ds or boundary 
displacements that cause macro-strain increment .6.£ would engender the stress 
drop 34 down to point 4 OD the secant line 01 (Fig, 1). The change of state of 
the solid would then be calculated by applying the opposite of this stress drop 
onto the crack surfaces. However, when the cracks propagate (and new cracks 
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nucleate), a larger stress drop definedby the loc&l strain-softening constitutive 
law and represented by the sePnent 115 = 32 in Fig. 1 takes place. Thus, the 
normal surface tractions I1p,. = n,.115"n,., rePresenting the normal component 
of tensor 115,., must be considered in the second substep as loads I1p,. that are 
applied onto the crack surfaces (Fig. 1), the unit normals of which are denoted 
as n,.. 

Let us now introduce two simplifying hypotheses: (1) Although the stress 
transmitted across each temporarily frozen crack varies along the crack, we con­
sider only its average, i.e., I1p,. is constant along each crack. This approximation, 
which is crucial for our formulation, was introduced by Ka.chanov [37, 38]. He 
discovered by numerical calculations that the error is negligible except for the rare 
case when the distance between two crack tips is at least an order of magnitude 
less than their size. (2) We consider only Mode I crack openings, i.e. neglect the 
shear modes (modes II and III). 

An effective kind of superposition method is that used by Ka:chanov [37, 38], 
which was also used in [19-21, 28, 31], and in a displacement version was intro­
duced already by Collins [18]. In this kind of superposition, one needs to have 
the solution of the given body for the case of only one crack, with all the other 
cracks considered frozen (Fig. 2). The cost to pay for this advantage is that the 

. pressures to be applied at the cracks are unknown in advance and must be solved. 
By virtue of Kachanov's approximation, we apply the superposition method 

to the average crack pressures only. The opening and the stress intensity factor 
of crack p (p =. 1,2, ... ) are approximately characterized by the uniform (or 
average) crack pressure I1p,. that acts on a single crack within the given solid 
that has elastic moduli E and contains no other crack. This pressure is solved 
from the superposition relation: 

N 

I1p,. = (l1p,.) + L: A,..,Sfj" p = I, ... N (1) 

Here ( ... ) represents the averaging operator over the crack length; A,." are the 
crack influence coefficients representing the average pressure at the frozen crack 
p caused by a unit uniform pressure applied on unfrozen crackll, with all the 
other cracks being frozen; and A,.,. = 0 because the summation in (1) must skip 
v = p. The reason for the notation I1p,. with an overbar instead of the operator 
( ... ) is that the unknown crack pressure is uniform and thus its distribution over 
the crack area never needs to be calculated and no averaging operation actually 
needs to be carried out. From (1), we 1>btain 

. N 

l1(n,.5,.n,.) = (l1(n,.5,.n,.)} + L: A,."I1(n,,5vn v) (2) 
,,=1 

The values of 115,. are graphically represented in Fig. 1 by the segment I1S = 35. 
Due to crack interactions, this segment can be smaller or larger than segment 32. 

Let us now introduce another simplification: In each loading step, the influ­
ence of the microcracks at point e of the macro-continuum upon the microcracks 
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at. point z of the macro-continuum is determined only by the dominant micro­
crack orientation. This orientation is normal to the unit vector n,. of the maxi-
mum principal inelastic macro-stress tensor I1S1

) at the location of microcrack 
• • r;(1) - - -

p. We use the defimtl0n: I1S,. == l1(n,.5,.n,.) = [n,.5,.n,.]new - [n,.5,.n,.]0Id. 
The subscripts 'new' and 'old' denote the values at the beginning and end of the 
loading step, respectively. According to this simplification, the dominant crack 
orientation generally rotates from one loading step to the next. Eq. (2) may now 
he written as: . 

N 

I1S1
) _ "A I1S1

) = (I1S(I)} ,. L..J""" ,. (p = 1,2, .. . N) (3) 
v=1 

Now comes the most difficult step. We need to determine the nonlocal field 
equation for the macroscopic continuum that represents the continuum counter­
part of (3). The homogenization theories as known are inapplicable, because 
they apply only to macroscopically uniform fields, whereas the nonuniformity of 
the macroscopic field is the mos~ important aspect in the case of localization 
problems. 

The following simple concept has been proposed in [13, 5]: The desired con­
tinuum field equation must be such that its discrete approximation can be written 
in the form of the matm crack interaction relation (3). This concept leads to the 
following field equation for the continuum approximation of microcrack interac­
tions: 

(4) 

Indeed, approximation of the integral by a sum over the continuum variable values 
at the crack centers yields (3). Here we hltroduced A(z,.,ev) = £(A,.,,)/Yc = crack 
influence function; Yc isa constant that may be interpreted roughly as the volume 
per crack, and £ is a certain statistical averaging operator. Some suitable form 
of such statistical averaging is implied in the macro-continuum smoothing and is 
inevitable because in a random' crack array the characteristics of the individual 
cracks must be expected to exhibit enormous random scatter. 

Itmust be admitted that the sum in (3) is a somewhat unorthodox approxi­
mation of the integral from (4) because the values of the continuum variable are 
not sampled at certain predetermined points such as the chosen mesh nodes but 
are distributed at random, that is, at the centers of the random microcracks. A 
rigorous mathematical theory for such an approximation seems to be lacking at 
present. Another point to note is that (3) is only one of various possible discrete 
approximations of (4). 

When (4) is approximated by finite elements, it is again converted to a matrix 
form similar to (3). However, the sum then runs over the integration points ofthe. 
finite elements. This means the crack pressures (or openings) that are translated 
into the inelastic stress increments are only sampled at these integration points, 
in the sense of their density, instead of being represented individually as in (3). 
Obviously, such a sampling can preserve only the long-range interactions of the 
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cracks and the short-range averaging. The individual short-range crack ~nterac­
tions will be modified. This is a statistical problem of great conceptual difficulty 
which we will try to tackle in a simplified manner later in this paper. 

For macroscopic continuum smearing, the averaging operator ( ... ) over. the 
crack length now needs reinterpretation. Because of the randomness of the tnlcro­
crack distribution, the macro-continuum variable ~t point z sho~ld ~epr~nt. the 
lpatial average of the effects of all the possible tnlcrocrack ~Izations WIthin .80 

leighborhood of point z whose size is roughly ~ual to the S~lDg l of the do~­
lant microcracks (which is in concrete approximat.ely det.ertnlned by the spaclD[ 
)f the largest aggregates)j hence, 

(6.S(l)(Z») = l6.S(l)(e)~(z,e)dV(e) (5) 

where ~ represents the same bell-shaped w~ight fu~ction ~ u~d in previo~s 
nonlocal continuum models (e.g., [45J). This function, whIch IS scalar and IS 
also taken as isotropic (same for every direction), should vanish or almost vanish 
everywhere outside a domain of diameter roughly equal to t. " -;;(1) 

Eq. (4) represents a Fredholm integral equation for the unknown 6.S (z), 
which corresponds in Fig. Ib to the segment 35. The inelastic strain increment 
tensors 6.S(I)(Z) on the right-hand side, which correspond in ~ig. Ib to the 
segment 32, are calculated from the strain increments u~ing the glVen local con­
stitutive law (for example the microplane model or contlD~um ~amage theory). 

Eq. (4) supplements the total incremental stress-strain relatIon 

t:..fT = C u : 6.£ - 6.5 (6) 

where 6.fT 6.£ are the increments of the stress and strain tensor, and C u is 
the fourth~rank tangential stiffness tensor for unloading of the material. Also 
6.fT = C : 6.£ and 6.S = (Cu - Ct) : t:..£ where C t denotes the fourth-rank 
tangenti~ stiffness tensor for loading, whose matrix in not positive definite in the 
case of strain-softening. . 

. It should be noted that unloading criteria (as well as conditions such as the 
continuity condition) have nothing to do with nonlocality. They appear only in 
the constitutive law, which is local. This is a major advantage compared to.the 
previous nonlocal models. 

To obtain the complete formulation of the boundary value problem, Eqs. (5) 
and (6) must be supplemented by the strain-displacement re~a~ions, the differen­
tial equations of equilibrium for t:..u and the boundary condltlons for stresses or 

displacements. . 
Equation (5) has further been generalized to the case where the domlDant 

microcracks occur in all three principal stress directions [5, 6, 13]. 

3 Crack influence function 
and its statistical determination 

The basic characteristics of the new formulation is the crack influence function 
A, whose rate of decay is determined by a certain characteristic length t. This 
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function represents the stress field due to pressurizing a single crack in the given. 
elastic structure, all other cracks being absent. In practice, the structure is always 
finite, and thus the values of A"" should in principle be calculated taking into 
account the geometry of the structure. However, the crack is often very small 
compared to the dimensions of the structure. Then, as an approximation, one can 
use the stress field for a single crack in an infinite body, which is well known and 
calculated easily (this is of course not possible for cracks very near the boundary 
ofthe structure). 

The cracks in structures are distributed randomly and their number is vast. 
Thus, on the macro-contill'Uum level, function A cannot characterize the stress 
fields of the individual cracks. Rather, it should characterize the stress field of 
a representative crack obtained by a suitable statistical averaging of the random 
situation on the microstructure level. 

A method of rigorous mathematical formulation of the macroscopic continuum 
crack influence function A was briefly proposed in the addendum to [6] and will 
now be developed in detail. 

The crack that is pressurized by unit pressure, as specified in the definition 
of A, will be called the source crack. The crack in the structure on which the 
influence is to be found will be ca,lJed the target crack. For the purpose of cal­
culations, the target crack is of course closed and .glued, as if it were not present 
in the solid, and the stresses transmitted across the target crack are calculated 
assuming the body to be continuous. Function A(O, e) represents the influence of 
a source crack centered at z = 0 on a target crack centered at (. 

At the given macro-continuum point, there mayor may not be a crack in the 
microstructure. Function A corresponding to that point must reflect the smeared' 
statistical properties of all the possible microcracks occurring near that point. 
To do this, we must idealize the random crack arrangements in some suitable 
manner. 

We will suppose that the center of the source crack can occur randomly any­
where within a square of size .q centered at point z = 0; see Fig. 3a, where various 
possible cracks are shown by the dashed curves, but only one of these, the crack 
showed by the solid lines, is actually realized. The value of s is imagined to repre­
sent the typical spacing of the dominant cracks. In a material such as concrete, 
approximately s ::::; mda where d" = spacing of the largest aggregate pieces and 
m = coefficient rarger than 1 but dose to 1 (m would equal cIa if the aggregates 
were arranged at the ideal cubic packing and if there were no mortar layers within 
the contact zones). To simplify the statistical structure of the system of dominant 
cracks, one may imagine the material to be subdivided by a square mesh of size 
s as shown in Fig. 3b, with one and only one crack center occurring within each 
square of the mesh. This is of course a simplification of reality because a square 
mesh introduces a certain directional bias (as is well known from finite element 
analysis of fracture). It would be more realistic to assume that the possible zone 
of occurrence of the center of each crack is not a square but has a raI'fdom ~hape 
and area about s x s, and that all these areas are arranged randomly. But this 
would be too difficult for st.atist.ical purposes, and probably unimportant with 
respest to the other simplifications of the model. 
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Figure 3: (a) Various possible random locations of the source crack influencing a 
target crack, (b) dominant cracks appearing in regions of size s that determine 
their typical spacing, and (c) general orientations of the source crack and the 
target crack relative to the influence ray 

Let us now center coordinates x and 1/ in the center of the square. s x s, as 
hown in Fig. 3a, and consider the influence of a source crack within this square on 
~ target crack at coordinates e == (e,I']). The macroscopic crack infiuence function 
hould describe the influence of any possible source crack within the given square 
n the average smeared macroscopic sense. Therefore, A(O, e) is defined as the 
nathematical expectation £ with regard to all the possible random realizations 
If the source crack center within the given square s x s, that is 

A(O, e) = £ [U(I) (e - x, I'] -1/)] (7) 

The vector (e - x, I'] - 1/) = ,. = vector from the center z == (x, 1/) of a source 
crack to the center e == (e, 1']) of the target crack. In detail, 

1 1./2 1./2 
. A(O, e) = "2 w(x, 1/ )U(I) (e - x, I'] - 1/) dx d1/ 

8 -./2 -./2 
(8) 

Here U(I) is the stress in the direction perpendicular to the target crack caused 
by applying unit pressure on the faces of the source crack, and the integrals 
represent the statistical averaging over the square s x s. We have inserted in 
this expression certain specified weights w(x,1/)' At first one might think that 
uniform weights w might be appropri~te, but that would not be realistic near the 
boundaries of the square because a crack cannot intersect a crack centered in the 
adjacent square, and in practice would not even lie too close to it. Rigorously, 
one would have to consider the joint probability of the occurrences of the crack 
center locations in the adjacent squares, but this would be too complicated. We 
prefer to simply reduce the probability of occurrence of the source crack as the 
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boundary of the square is approached. For numerical computations we choose a 
bell-shaped function in both the x and 11 directions, given as 

225 
Wo=-

64 
(9) 

for x =:; $/2,y =:; $/2, and w(x,y) = 0 otherwise; constant Wo is selected so the 
integral of w(x,y) over the square s x $ be equal to 8 2 • It may be added that 
there is also a practical reason for introducing this weight function. If the weights 
were uniform over the square, function A would not have a smooth shape, which 
would be inconvenient and probably also unreaustic for a continuum model. 

The stress field in an infinite medium caused by unit pressure applied on the 
faces of one single crack is described for the two-dimensional case by the well­
known Westergaard's solution (see, e.g., [15], or [29]) which is given in [5, 6]. The 
component u(l) to be integrated in (8) depends on the orientation of the target 
crack, which is related to the macroscopic stress field. As a basic situation, we 
assume the directions of the maximum principal stress at the source and target 
points to be the same, which means that U(I) is the stress in the y-direction. The 
integral in (8) is difficult to evaluate analytically, and it is better to use numerical 
integration to obtain A. However, the asymptotic properties of function A for 
large r can be determined easily [13,6] by considering the lines of influence from 
various possible source cracks to the given target crack as shown in Fig. 3a. If the 
target crack is very far from the square in which the source crack is centered, a.Il 
the possible rays of infiuence are nearly equaHy.long and come from nearly the 
same direction. Therefore, the integral in (8) should exactly preserve the long 
range asymptotic field. 

As shown in [13, 6], the long-range (r - 00) asymptotic crack influence 
function is 

A~(z,e) = -k(r)~ [cos2t7 + cos2t/J + cos 2(11 + t/J)] (10) 

where f) and t/J are the angles of ray r with the normals of the source crack and the 
target crack (see Fig. 3c), k(r) = a2/r2, andt is a certain constant representing 
what may be called the characteristic length for crack interactions. 

It is convenient to replace the function k( r) = a2 / r2 by a function ofthe same 
asymptotic properties for r - 00 which does not have a singularity at r = 0; 

( 
ar )2 

k(r) = -­
r2 + (2 

(11) 

It is now possible to represent the complete crack influence function given by (8) 
in the form: 

(12) 

where Al represents a difference which is decaying to infinity faster (i.e., as .a. 
higher power of r) than Aoo and can therefore be neglected for sufficient distances 
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Figure 4: (a) Total crack influence function for the case of parallel source an.d 
target cracks, (b) analytical expression having the correct long-range asymptotic 
field, and (c) difference of the crack influence functions in (a) and (b) 
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Table 1: Values of the difference between the calculated crack influence function 
and an approximate analytical expression having the correct long-range asymp-
totic field 

y 0.05 0.55 1.05 1.55 2.05 2.55 3.05 3.55 4.05 
x 
0.00 -.4133 -.1263 .0345 .0388 .0230 .0126 .0070 .0040 .0024 
0.50 -.4260 -.4157 -.1550 -.0396 -.0075 .0003 .0017 .0016 .0012 
1.00 -.2835 -.3379 -.2435 -.1184 -.0504 -.0208 -.0087 -.0037 -.0016 
1.50 -.0806 -.1205 -.1315 -.0937 -.0543 -.0288 -.0150 -.0078 -.0041 
2.00 .0440 .0160 -.0214 -.0356 -.0317 -.0225 -.0144 -.0088 -.0053 
2.50 .0680 .0510 .0210 -.0015 -.0112 -.0123 -.0101 -.0074 -.0051 
3.00 .0408 .0333 .0190 .0063 -.0016 -.0051 -.0058 -.0051 -.0040 
3.50 .0221 .0191 .0128 .0064 .0016 -.0013 -.0027 -.0031 -.0028 
4.00 .0129 .0115 .0086 .0053 .0024 .0003 -.0010 -.0016 -.0018 
4.50 .0080 .0073 .0059 .0041 .0024 .0010 -.0001 -.0007 -.0010 
5.00 .0052 .0049 .0041 .0031 .0021 .0011 .0004 -.0002 -.0005 

r from the center of the source crack. This difference is minimized with the 
parameter e equal to the half crack length a. 

Calculations have been made for the case that the target crack is parallel to 
the source crack and a/s = 0.25. The values of A were evaluated by numerical 
integration of (8) using a dense square mesh; see Fig. 4a. The analyticalexpres­
sion for the asymptotic crack influence function from (10) is plotted in Fig. 4b, 
and after its subtraction from the Aoe; values, the plot of the difference of the 
crack influence function shown in Fig. 4c was obtained. For the numerical values 
of AI, see Table 1-

Function A1(x,y) obviously depends on the relative crack size a/so However, 
it has been found the it depends on a/ s only very little when a/ s ~ 0.25. For 
smaller a/ s, the crack interactions are probably mostly unimportant. So perhaps 
a single crack influence function expression could be used for all the cases. 

Another case to study is that of nonparallel target cracks. This is left for a 
subsequent journal article. 

Analytical closed-form expressions for the stresS field of a pressurized penny­
shaped crack in three dimensions are also available. They have been used to 
determine the asymptotic crack influence function in three dimensions [5, 6]. A 
statistical definition in three dimensions that is analogous to (8) can obviously be 
also written. It will be studied in a subsequent journal article, along with other 
open questions. 

4 Conclusions 

1. The recently proposed nonlocal continuum damage model based on micro-



~eaJ ~ of crack in~ .. hid> bu """" ,eoie"cd io "'" 
p..,..".t led .... , app-. 10 '... I a. ........ ralioo><.I aad ....... ~ 
"""'"' tw... u.. __ IKIIIloca1 famI..t.tK-. The oaaI,.... '" end< ~ 
_jOWl pro-o that the ~ic Q)OlI.in.UIUD modd ""&hl to Jo., -.10...1, 
except I'M doofonnation.< ~ .... nearly h ."." .,.",. ....,. that _ 
much Iaip than the <n~ spacial; ",,<1 m",..;, 

2, The """tiDUunJ <ad ioll_ f....w..., .. hid> dooaiboo u.. .-..:t '" a. 
""""'" <I'lIdr; _~ by a. anit Pi 'e aD tile ~ _ a.cn. 
a. d-.l tu¢ uack, ma.y be de&-' by a.~ __ 011 !be poaible 
rand"", reaJJmons of lhe 00Urte ",ad< "';tlDn a "'I'W'"' domoin .. ~ size 
rq>I'eOents the typical ~ of the d<>mi_ crocb. The........,.;e.J. ~Je 
of uu. fundioD !i~en in thi! paper CUI be 0-.1 i .. pndke. 

AcknowledgeInent 

P;DlIDci&l.upport. under AFOSR G,,,,,t 9HlI~O to Nort.h....tem 1;n;""';'Y, >ad 
tmder ~ ... t. l03j93/11T5 (Czech Gr .... t Ap<:y) ""d Ta/<l'lIM'J/02/93 (CM<b. 
Ministry of lDdusU)') 10 the C_b T.mni<aJ Uoiversily," ~ ~ 
1~. Study of tbe implica.tiono of u.. model I'M """'" d.m "«" probl<ms '" 
_crete ; .... pported by tb. Center lot Ad ..... =:1 ~t·Bued Materioh u 
Nort.hweot= C"ni ... rsity. 

References 

[I] B_1, Z. P., (19M). Imhri<-Ole<ODt.ilWum .... d ilo ¥Viation.J d~, J. 
01 E~61I!J. M«h. ASCE, no, 169:J.-17l2· 

[2] BaZant, Z.P. (1986). Mech ... i",of distributed cncl:inS, A".t M<do. &..-.... 
ASME, 39, 615-70~. 

[3] BaUnt. Z. P. (19ST). Why <oot.inuUID dun,,# io 00DlncaI: jno\i~ by 
qu .. ;'periodk mieroc.ack OI"T"¥. M""""o-ia ~ c. ...... ..,.;"a ....... 14 
(5/6),41)"HI9. 

[tJ Boio.nt, Z.P. (1991). Why COIl.inuum ~ is D<>nIoca!: 'nk",mec.h..ua 
... guments. J~.""oJ. 01 E"§'~..,.."9 Mw,ama ASCE 117(5), urro-I087. 

l~l &zaDt, z.P. (1992). New <tIlI",,!,1 of IIOIIlocal """"UUIIIn ~ CrKk 
]nflu""", funciioD, in M~ &Joo""'~ ~I H~ M~ fr<mo 
MiCT08IT11d1i .... AMD-YoI.!41 (ASME Wiuleo' ADDQoI Meetinc. Anaheim). 
ed. by S. Torqna.lo ""d O. Kn>jcil>OVic, ASME. N.,. York, 153-160. 

[6) B ...... I, Z.P. (1994). NODiocoI ~ 1"-1 baocd aD micr<>m<dI"';'" of 
cr&d i~lenKIi""". J. 01 Enlf'"!/. Md., ASCE. 120 (3), ~17; wilh Ad-­
dendum in .. ,no"",!"",,1 issue.. 

[7[ B ....... t, Z. P., &Iytschko. T. B •• ""d CbaD~, T.·P, (1984). Contin~UID model 
for .I""n ooII""ing. J. -I Eng<lf. M<dur~;c., ASCE, 110, 1666-1692. 

{III !laUn\, Z.P , ...... CedOOl>, L.(I9QI) St,.Ml;t, ej-..>"UC: EIutic,~. ""ctt. ........ ,/4"'49' u. .. riu, Oxfonl Uni"""";ly 1'''''''' N~. y ...... 

[9] BUuI, z.P" _ JirUek, M. (1993). ConliDuum.....,... dllil! to illle:act.i"l: 
propopti"l: mlaoc:racb: N .... ~ modo! ... d Ioca.iization ... &ly.;" in 
lUT.!.M S."..". ._ .... F'1Id"", ~I Brita. DiHnkr<J. M.u..w., Brioban~ 
A...tralla., in 1' ...... 

[10] BaIaDt, Z. P., >ad Lin, F.·B. (11188). NonloWlI!DeI>f'Od cr~ ... <>del for 
C<JDa"eCe &.ctnre, J. o/~. ERgu.g. .!.SCE 114 {Ul, 2493-2510. 

[11} BaiODt, Z. P., ..,d 0lb0J1. J. (1990)JllonlocaI micropl.". model for &act_ 
d'm'S", aad size ~t iii otrurtllJ"el!, ASCE J. 01 Er.¥"f. Medt. llfi(ll), --. 

[13] &i&nt.. Z.P., ""d Tohboro., M.R. 099:2), Bifoua.lion ~ I~ilily of otrue· 
tara with in1.end;inS propapting cracks, 1m. J. ~J Fn.dt.rt r.3, 273-289. 

[U] Bm.....uw; Y., I>vonk, G.J., Zanoour, J., ..,01. Wung. E.C.J. (1989), 0" 
in~ cracb ..,d """pIox <»nfl$unt.t;ooo in nn ..... eI .. tk media, In!. J. 
~J SoIW aaiI Stn.:n .... 25 {II}, 1279-1293. 

[15] B......k, O. (198"1). EI~ "'9i~..,ri>rg fm<t.~ "' ........ ;"., Marti." .. Ni­
jbdl, DoOTd..echI-Bostoo (p. 77). 

[16] B...n-lri, B., aad O'Con<>di, R.J. (1976). Elutic ",<>du6 of .. croded ...tid, 
I..:. J. ~/!kJi4.u S~, 12, 81-117. 

[17] ColIa.tz, L. (1960). n., _-.m.:..I b-'m...t ~I .b.ff=mia! ""' ......... 
Sprinp, Betlin· 

[18] CoIIins, W.O. (1963). P-.. .10.. &lfdl SI>rid.~ A214, 1359, 007-526. 
[19] Cb...mo...Jry, A., and KMb....,.., M. (1983). 1m. J. 4 Eft~. Sci""",21 (8), 

W!»-\\!I&' 
(20) C!mdnovsi:y, A., ~k)", A., and Kach""ov, M. (1987). Elastic iOl .. _ 

..:Uon of acrodt.nu. .. miCl"OC1"rl ..... y (puts I.!.: II), 1m. J .• I SalUl. .. d 
Stn.:t.ru2J, 1-21. 

[21] DuoyoclUn, A.P., ODd s..vrol, M.P. (1973). J. ~I .41'1'1. MtUA. a...! Md. 
(PMM).326-.332. 

f22l do Bont, R. (1990). Simulu;.", of 1o<.a!isaL;oo wring Cosoonl ilieory, PMr.., 
Iat.. Caj . ... Cmn,.tcr..4ic/ed A....JpN <md Dui.,. ~I Concrd. Shlcr..,... 
(hdd at ZOU . ...,..s.,., Austn .. ), ed. hy N. Bi6uU< and B.A. Mal!!:, Pinoridge 
P .... S---.93I.9«-

f23) do Bont, R. (1991). Simu1t.tiorJ of 1IIr&in loeoIioatian: A ~ of the 
c:...-.t C<!lltitnnmJ., E..,. Comp. 8, 317-332. 

[24) do 80m, R. aod Sluyo, L.J. (1991). Loc.olisatiotl in .. eo.-u cont.inuum 
UDder lIa1ic ODd dy"""'< Joodi"ll ctIl)dil;oo" c.",p. Mah. Appl. M.d.. Eng. .. ...." 

f25] Oiebd.e, A., ""d Will""" L.J. (1992). Loc.olitation ""aly.i. of elasto.plutie 
c.-nt C<!IIlinuo.,;n &."1< Q...l L«alizGti ..... AMD-Vol.l42 (WinLer An· 
nual M...ti"&o Anaheim), «I. hy J.W. Ju ..,d K.C. V&I",,;., ASME, W ..... 
Ycrl, 25-40. 

l26J &int;m, A.C. (l96li). Tboory of"';<r"Op<>W- """\;,,Uwn, ~., Hi.a. M;,J.. 
-.. /tI..;,,,,,,,,,, C.",_ Uni,·. ofWIlICODlIiu. Madison. 23-4Il. 



Damage non/ocalily due to microcrack interactions 17 

[27) Eringen, A.C. (1966). A unified ,theory of thermomechanica.l materials, Int. 
J. of Engrg. Science 4, 179-202. 

(28) Gross, D. (1982). Ing~nieur-Archiv 51, 301-310. 
(29) Hellan, K. (1984). Introduction to fracture mechanics, McGraw-Hill, New 

York (p. 234). . 
[30] Hoenig, A. (1979). Elastic moduli of a non-randomly cracked booy. Int. J. 

of Solids and Structures, 15, 137-154. 
(31) Horii, H., and Nemat-Nasser, S. (198.$). Elastic fields of interactingjnhomo­

geneities, Int. J. of Solids and Structures 21, 731-745. 
[32] Jirasek, M., and Baiant, Z.P. (1994). Localization analysis ofnonlocal model 

based on crack interactions; J. of Engrg. Meeh., 120, in press. 
[33] Ju, J.W. (1990). Isotropic and anisotropic damage variables in continuum 

damage mechanics, ASCE J. of Engrg. Mechanics 116 (12), 2764-2770. 
(34] Ju, J.W. (1991). On two-dimensional self-consistent micromechanica.l dam­

age models for brittle solids, Int. J. of Solids and Structures 27 (22), 227-258. 
[35] Ju, J.W., and Lee, X. (1991). Micromechanical damage models for brittle 

solids. Part I: Tensile Loadings, ASCE J. of Engrg. Mech!lnics 117 (7), 1495-
1594. 

[36] Kachanov, M. (1980). A continuum model of medium with cracks, ASCE J. 
of Engrg. Mechanics 106, 1039-1051. 

[37] Kachanov, M. (1985). A simple technique of stress analysis in elastic solids 
with many cracks, Int. J. of Fracture, 28, RlI-RI9. 

[38] Kachanov, M. (1987). Elastic solids with many cracks: A simple method of 
analysis, Int. J. of Solids and Structures 23, 23-43. 

[39] Kachanov, M. (1992). Effective elastic properties of cracked solids: Critical 
review of some basic concepts, App. Meeh. Rev., 45(8), 304-335. 

[40] Krajcinovic, D. and Fonseka, G.U. (1981), The continuous damage theory of 
brittle materials (1 & 2), ASME J. of Applied Mechanics 48, 809-824. 

[41] Kroner, E. (1967), Elasticity theory of materials with long-range cohesive· 
forces, Int. J. of Solids and Structures 3, 731-742 .. 

[42] Lee, X., and Ju, J.W: (1991). Micromechanical damage models for brit 
solids. Part II: Compressive Loadings, ASCE J. of Engrg. Mechanics L 
(7), 1515-1536. 

[43] Miihlhaus, H.-B., and Aifantis, E.C. (1991). A variational prin~iple for gra­
dient plasticity, Int. J. of Solids and Structures 28, 845-858. 

[44] Okui, Y., Horii, H., and Akiyama, A. (1993), A continuum theory for solids 
containing microdefects, Int. J. of Engng. Sci. 31 (5), 735-749. 

[45] Pijaudier-Cabot, G., and BaZant, Z. P. (1987). Nonlocal damage tJleory, J. 
of Engng.Mechanics ASCE, 113, (10), 1512-1533. 

[46] Pijaudier-Cabot, G., and BaZant (1991). Cracks interacting with particles 
or fibers in composite materials. Journal of Engineering Mechanics ASCE 
117(7},1611-1630, 

[47]Sluys, L.J. (1992). Wave propagation, localisation and dispersIon 1D softening 
solids, Doctoral Thesis, Technical University Delft, Netherlands. 

[48] Vardoulakis, I. (1989). Shear banding and liquefaction in granular materials 
on the basis of Cosseraf continuum theory, Ingenieur-Archiv 59, 106-113. 


